MAX1178ACUP-T [MAXIM]

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20;
MAX1178ACUP-T
型号: MAX1178ACUP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20

文件: 总14页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2755; Rev 1; 8/03  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
General Description  
Features  
The MAX1178/MAX1188 16-bit, low-power, successive-  
approximation analog-to-digital converters (ADCs) fea-  
ture automatic power-down, a factory-trimmed internal  
clock, and a byte-wide parallel interface. The devices  
operate from a single +4.75V to +5.25V analog supply  
and feature a separate digital supply input for direct  
interface with a +2.7V to +5.25V digital logic.  
Byte-Wide Parallel Interface  
Analog Input Voltage Range: ±±1Vꢀ ±ꢁV  
Single +4.7ꢁV to +ꢁ.2ꢁV Analog Supply Voltage  
Interface with +2.7V to +ꢁ.2ꢁV Digital Logic  
±2 LSB IꢂL  
±± LSB DꢂL  
The MAX1188 accepts a bipolar analog input voltage  
range of 1ꢀV, while the MAX1178 accepts a bipolar  
analog input voltage range of 5V. All devices consume  
no more than 26.5mW at a sampling rate of 135ksps  
when using an external reference, and 31mW when using  
the internal +4.ꢀ96V reference. AutoShutdown™ reduces  
supply current to ꢀ.4mA at 1ꢀksps.  
Low Supply Current (max)  
2.9mA (External Reference)  
3.8mA (Internal Reference)  
ꢁµA AutoShutdown Mode  
Small Footprint  
21-Pin TSSOP Package  
The MAX1178/MAX1188 are ideal for high-perfor-  
mance, battery-powered, data-acquisition applications.  
Excellent AC performance (THD = -1ꢀꢀdB) and DC  
accuracy ( 2 ꢁSB ꢂIꢁ) make the MAX1178/MAX1188  
ideal for industrial process control, instrumentation, and  
medical applications.  
Ordering Information  
IꢂPUT  
PIꢂ-  
VOLTAGE  
RAꢂGE (V)  
PART  
TEMP RAꢂGE  
PACKAGE  
The MAX1178/MAX1188 are available in a 2ꢀ-pin  
TSSOP package and are fully specified over the -4ꢀ°C  
to +85°C extended temperature range and the ꢀ°C to  
+7ꢀ°C commercial temperature range.  
MAX±±78ACUP  
MAX1178BCUP  
MAX1178CCUP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
5
5
5
5
5
5
MAX1178AEUP -40°C to +85°C  
MAX1178BEUP -40°C to +85°C  
MAX1178CEUP -40°C to +85°C  
Ordering Information continued at end of data sheet.  
Typical Operating Circuit  
+5V ANALOG +5V DIGITAL  
Applications  
Temperature Sensing and Monitoring  
ꢂndustrial Process Control  
ꢂ/O Modules  
0.1µF  
0.1µF  
Data-Acquisition Systems  
Precision ꢂnstrumentation  
AV  
DD  
DV  
µP DATA  
BUS  
DD  
D0–D7  
OR  
ANALOG INPUT  
AIN  
D8–D15  
MAX1178  
MAX1188  
EOC  
R/C  
CS  
REF  
REFADJ  
HBEN  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
Pin Configuration and Functional Diagram appear at end of  
data sheet.  
LOW  
BYTE  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Continuous Power Dissipation (T = +70°C)  
TSSOP (derate 10.9mW/°C above +70°C) ..................879mW  
A
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .....................................................-16.5V to +16.5V  
Operating Temperature Ranges  
MAX11_ _ _CUP..................................................0°C to +70°C  
MAX11_ _ _EUP...............................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
REF, REFADJ to AGND............................-0.3V to (AV  
+ 0.3V)  
DD  
CS, R/C, HBEN to DGND .........................................-0.3V to +6V  
D_, EOC to DGND ...................................-0.3V to (DV + 0.3V)  
DD  
Maximum Continuous Current into Any Pin ........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
RES  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Bits  
Resolution  
16  
-1  
MAX11_ _A  
+1  
+1.5  
+2  
No missing codes  
over temperature  
Diꢁꢁerential Nonlinearity  
DNL  
LSB  
MAX11_ _B  
MAX11_ _C  
-1.0  
-1  
MAX11_ _A  
MAX11_ _B  
MAX11_ _C  
-2  
+2  
Integral Nonlinearity  
Transition Noise  
INL  
LSB  
-2  
+2  
-4  
+4  
RMS noise, external reꢁerence  
Internal reꢁerence  
0.6  
0.75  
0
LSB  
RMS  
Oꢁꢁset Error  
Gain Error  
Oꢁꢁset Driꢁt  
Gain Driꢁt  
-10  
+10  
0.2  
mV  
0
ꢀFSR  
µV/°C  
16  
1
ppm/°C  
AC ACCURACY (ꢁ = 1kHz, V  
= ꢁull range, 135ksps)  
IN  
AIN  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
86  
87  
90  
91  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AꢂALOG IꢂPUT  
THD  
-100  
103  
-92  
SFDR  
92  
MAX1178  
-5  
+5  
+10  
9.2  
Input Range  
V
V
AIN  
MAX1188  
-10  
5.3  
3.0  
7.8  
6.0  
Normal operation  
6.9  
10  
MAX1178  
Shutdown mode  
Normal operation  
Shutdown mode  
Input Resistance  
R
k  
AIN  
13.0  
MAX1188  
2
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
Normal operation  
MIꢂ  
-1.8  
-1.8  
-1.8  
-1.8  
TYP  
MAX  
UꢂITS  
+0.4  
+1.8  
+1.2  
+1.8  
MAX1178,  
-5V V  
+5V  
AIN  
Shutdown mode  
Normal operation  
Shutdown mode  
Input Current  
I
mA  
AIN  
MAX1188,  
-10V V  
+10V  
AIN  
MAX1178, V  
operating mode  
= +5V, shutdown mode to  
AIN  
1
1.4  
0.7  
Input Current Step at Power-Up  
I
mA  
pF  
PU  
MAX1188, V  
= +10V, shutdown mode to  
AIN  
0.5  
10  
operating mode  
Input Capacitance  
C
IN  
IꢂTERꢂAL REFEREꢂCE  
REF Output Voltage  
V
4.056  
3.8  
4.096  
35  
4.136  
V
REF  
REF Output Tempco  
ppm/°C  
mA  
REF Short-Circuit Current  
EXTERꢂAL REFEREꢂCE  
I
10  
REF-SC  
REF and REFADJ Input-Voltage  
Range  
4.2  
V
V
AV  
-
AV  
-
DD  
DD  
REFADJ Buꢁꢁer-Disable Threshold  
REF Input Current  
0.4  
0.1  
Normal mode, ꢁ  
= 135ksps  
60  
0.1  
16  
100  
10  
SAMPLE  
I
µA  
µA  
REF  
Shutdown mode (Note 1)  
REFADJ = AV  
REFADJ Input Current  
I
REFADJ  
DD  
DIGITAL IꢂPUTS/OUTPUTS  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V, DV  
-
DD  
SOURCE  
DD  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
V
V
V
V
V
OH  
AV  
0.4  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
OL  
AV  
DD  
0.7 ×  
DV  
V
IH  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
Digital input = DV  
or 0V  
-1  
+1  
µA  
V
DD  
V
0.2  
15  
HYST  
Input Capacitance  
C
pF  
µA  
pF  
IN  
Tri-State Output Leakage  
Tri-State Output Capacitance  
I
10  
OZ  
C
15  
OZ  
_______________________________________________________________________________________  
3
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
5.3  
V
V
DD  
DD  
External reꢁerence, 135ksps  
Internal reꢁerence, 135ksps  
4
Analog Supply Current  
I
mA  
µA  
AVDD  
5.2  
6.2  
Shutdown mode (Note 1), digital input =  
DV or 0V  
0.5  
3.7  
5
Shutdown Supply Current  
I
DD  
SHDN  
DVDD  
Standby mode  
mA  
mA  
Digital Supply Current  
Power-Supply Rejection  
I
0.75  
AV  
= DV  
= 4.75V to 5.25V  
DD  
3.5  
LSB  
DD  
TIMIꢂG CHARACTERISTICS (Figures ± and 2)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to AV , external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF, T = T  
to T  
.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
ksps  
µs  
Maximum Sampling Rate  
Acquisition Time  
135  
SAMPLE-MAX  
t
2
ACQ  
Conversion Time  
t
4.7  
µs  
CONV  
CS Pulse-Width High  
t
(Note 2)  
40  
40  
60  
0
ns  
CSH  
DV  
DV  
= 4.75V to 5.25V  
DD  
DD  
CS Pulse-Width Low (Note 2)  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
ns  
ns  
ns  
CSL  
= 2.7V to 5.25V  
t
DS  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
60  
DD  
DD  
DD  
DD  
t
DH  
40  
80  
CS to Output Data Valid  
EOC Fall to CS Fall  
t
ns  
ns  
ns  
DO  
t
0
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
80  
40  
80  
40  
80  
DD  
DD  
DD  
DD  
DD  
DD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time  
t
ns  
ns  
BR  
HBEN Transition to Output Data  
Valid  
t
1
DO  
ꢂote ±: Maximum speciꢁication is limited by automated test equipment.  
ꢂote 2: To ensure best perꢁormance, ꢁinish reading the data and wait t beꢁore starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics  
(Typical Operating Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF. Typical values are at T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
INL vs. CODE  
DNL vs. CODE  
vs. TEMPERATURE  
MAX1178/88 toc01  
MAX1178/88 toc02  
2.5  
2.0  
2.5  
2.0  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
5.25V  
5.0V  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
4.75V  
= 135ksps  
f
SAMPLE  
SHUTDOWN MODE  
BETWEEN CONVERSIONS  
0
10,000 20,000 30,000 40,000 50,000 60,000  
CODE  
0
10,000 20,000 30,000 40,000 50,000 60,000  
CODE  
80  
-40  
-20  
0
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
SHUTDOWN CURRENT (AV + DV )  
DD DD  
OFFSET ERROR vs. TEMPERATURE  
vs. SAMPLE RATE  
vs. TEMPERATURE  
10  
1
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
8
NO CONVERSIONS  
6
STANDBY MODE  
4
0.1  
2
0
SHUTDOWN MODE  
0.01  
0.001  
-2  
-4  
-6  
-8  
-10  
MAX1188  
MAX1178  
V
AIN  
= 0V  
0.0001  
0.01  
0.1  
1
10  
100  
1000  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
SAMPLE RATE (ksps)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTERNAL REFERENCE  
vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
FFT AT 1kHz  
0.20  
0.15  
0.10  
0.05  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
0
-20  
f
= 131ksps  
SAMPLE  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF. Typical values are at T = +25°C, unless otherwise noted.)  
A
SFDR vs. FREQUENCY  
SINAD vs. FREQUENCY  
THD vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
= 131ksps  
f = 131ksps  
SAMPLE  
SAMPLE  
f
= 131ksps  
SAMPLE  
1
10  
FREQUENCY (kHz)  
100  
1
10  
100  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Pin Description  
PIꢂ  
1
ꢂAME  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
FUꢂCTIOꢂ  
Tri-State Digital-Data Output  
Tri-State Digital-Data Output  
Tri-State Digital-Data Output  
2
3
4
Tri-State Digital-Data Output. D15 is the MSB.  
Read/Convert Input. Power up and put the MAX1178/MAX1188 in acquisition mode by holding R/C  
low during the ꢁirst ꢁalling edge oꢁ CS. During the second ꢁalling edge oꢁ CS, the level on R/C  
determines whether the reꢁerence and reꢁerence buꢁꢁer power down or remain on aꢁter conversion.  
Set R/C high during the second ꢁalling edge oꢁ CS to power down the reꢁerence and buꢁꢁer, or set R/C  
low to leave the reꢁerence and buꢁꢁer powered up. Set R/C high during the third ꢁalling edge oꢁ CS to  
put valid data on the bus.  
5
R/C  
6
7
EOC  
End oꢁ Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
8
AGND  
AIN  
9
10  
AGND  
Analog Ground. Connect pin 10 to pin 8.  
Reꢁerence Buꢁꢁer Output. Bypass REFADJ with a 0.1µF capacitor to AGND ꢁor internal reꢁerence  
11  
12  
REFADJ  
REF  
mode. Connect REFADJ to AV  
to select external reꢁerence mode.  
DD  
Reꢁerence Input/Output. Bypass REF with a 10µF capacitor to AGND ꢁor internal reꢁerence mode.  
External reꢁerence input when in external reꢁerence mode.  
6
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Pin Description (continued)  
PIꢂ  
ꢂAME  
FUꢂCTIOꢂ  
High-Byte Enable Input. Used to multiplex the 16-bit conversion result.  
1: MSB available on the data bus.  
13  
HBEN  
0: LSB available on the data bus.  
Convert Start. The ꢁirst ꢁalling edge oꢁ CS powers up the device and enables acquire mode when R/C  
is low. The second ꢁalling edge oꢁ CS starts conversion. The third ꢁalling edge oꢁ CS loads the result  
onto the bus when R/C is high.  
14  
CS  
15  
16  
17  
18  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
Tri-State Digital-Data Output. D0 is the LSB.  
Tri-State Digital-Data Output  
DD  
D0/D8  
D1/D9  
D2/D10  
D3/D11  
Tri-State Digital-Data Output  
Tri-State Digital-Data Output  
Analog Input  
DV  
DD  
Input Scaler  
The MAX1178/MAX1188 have an input scaler, which  
allows conversion oꢁ true bipolar input voltages and  
input voltages greater than the power supply, while  
operating ꢁrom a single +5V analog supply. The input  
scaler attenuates and shiꢁts the analog input to match  
the input range oꢁ the internal digital-to-analog converter  
(DAC). The MAX1178 input voltage range is 5V, while  
the MAX1188 input voltage range is 10V. Figure 4  
shows the equivalent input circuit oꢁ the MAX1178/  
MAX1188. This circuit limits the current going into or  
out oꢁ AIN to less than 1.8mA.  
1mA  
DOD15  
DOD15  
C
= 20pF  
C
= 20pF  
1mA  
LOAD  
LOAD  
DGND  
DGND  
a) HIGH-Z TO V  
,
OH  
b) HIGH-Z TO V ,  
OL  
V
V
TO V , AND  
OL  
OH  
OH  
V
OH  
V
OL  
TO V , AND  
TO HIGH-Z  
OL  
TO HIGH-Z  
Figure 1. Load Circuits  
Track and Hold (T/H)  
In track mode, the internal hold capacitor acquires the  
analog signal (Figure 4). In hold mode, the T/H switch-  
es open and the capacitive DAC samples the analog  
input. During the acquisition, the analog input (AIN)  
Detailed Description  
Converter Operation  
The MAX1178/MAX1188 use a successive-approxima-  
tion (SAR) conversion technique with an inherent track-  
and-hold (T/H) stage to convert an analog input into a  
16-bit digital output. Parallel outputs provide a high-  
speed interꢁace to microprocessors (µPs). The Func-  
tional Diagram shows a simpliꢁied internal architecture oꢁ  
the MAX1178/MAX1188. Figure 3 shows a typical oper-  
ating circuit ꢁor the MAX1178/MAX1188.  
charges capacitor C  
. The acquisition ends on the  
HOLD  
second ꢁalling edge oꢁ CS. At this instant, the T/H  
switches open. The retained charge on C repre-  
HOLD  
sents a sample oꢁ the input. In hold mode, the capaci-  
tive DAC adjusts during the remainder oꢁ the conversion  
time to restore node T/H OUT to zero within the limits oꢁ  
16-bit resolution. Force CS low to put valid data on the  
bus aꢁter conversion is complete.  
_______________________________________________________________________________________  
7
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
t
t
CSH  
CSL  
CS  
R/C  
t
ACQ  
REF POWER-  
DOWN CONTROL  
t
t
t
DS  
t
DV  
EOC  
DH  
EOC  
t
t
DO  
CONV  
HBEN  
t
t
t
DO1  
BR  
DO  
HIGH-Z  
HIGH-Z  
D7/D15D0/D8  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
Figure 2. MAX1178/MAX1188 Timing Diagram  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
bit during the second ꢁalling edge oꢁ CS (see the  
Selecting Standby or Shutdown Mode section). The  
MAX1178/MAX1188 automatically enter either standby  
mode (reꢁerence and buꢁꢁer on) or shutdown (reꢁerence  
and buꢁꢁer oꢁꢁ) aꢁter each conversion, depending on the  
status oꢁ R/C during the second ꢁalling edge oꢁ CS.  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
AV  
DD  
DV  
DD  
µP DATA  
BUS  
Internal Clock  
The MAX1178/MAX1188 generate an internal conver-  
sion clock to ꢁree the µP ꢁrom the burden oꢁ running the  
D0D7  
ANALOG INPUT  
AIN  
OR  
D8D15  
SAR conversion clock. Total conversion time (t  
)
CONV  
aꢁter entering hold mode (second ꢁalling edge oꢁ CS) to  
MAX1178  
MAX1188  
end-oꢁ-conversion (EOC) ꢁalling is 4.7µs (max).  
EOC  
REF  
Applications Information  
R/C  
CS  
REFADJ  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1178/MAX1188 (Figure 2). The ꢁirst ꢁalling edge oꢁ  
CS powers up the device and puts it in acquire mode iꢁ  
R/C is low. The convert start is ignored iꢁ R/C is high.  
The MAX1178/MAX1188 need at least 12ms ꢁor the  
internal reꢁerence to wake up and settle beꢁore starting  
HBEN  
0.1µF  
10µF  
HIGH  
BYTE  
AGND DGND  
LOW  
BYTE  
the conversion (C  
= 0.1µF, C  
= 10µF), iꢁ  
REF  
REFADJ  
powering up ꢁrom shutdown.  
Figure 3. Typical Operating Circuit for the MAX1178/MAX1188  
8
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Selecting Standby or Shutdown Mode  
The MAX1178/MAX1188 have a selectable standby or  
REF  
low-power shutdown mode. In standby mode, the ADCs  
internal reꢁerence and reꢁerence buꢁꢁer do not power  
MAX1178/MAX1188  
down between conversions, eliminating the need to wait  
R1  
3.4kΩ  
ꢁor the reꢁerence to power up beꢁore perꢁorming the next  
C
HOLD  
30pF  
R2  
161Ω  
conversion. Shutdown mode powers down the reꢁerence  
and reꢁerence buꢁꢁer aꢁter completing a conversion. The  
reꢁerence and reꢁerence buꢁꢁer require a minimum oꢁ  
TRACK  
S1  
AIN  
T/H OUT  
R3  
HOLD  
12ms to power up and settle ꢁrom shutdown (C  
=
REFADJ  
TRACK  
HOLD  
S2  
S3  
POWER-  
DOWN  
0.1µF, C  
= 10µF).  
REF  
The state oꢁ R/C at the second ꢁalling edge oꢁ CS  
selects which power-down mode the MAX1178/  
MAX1188 enter upon conversion completion. Holding  
R/C low causes the MAX1178/MAX1188 to enter stand-  
by mode. The reꢁerence and buꢁꢁer are leꢁt on aꢁter the  
conversion completes. R/C high causes the  
MAX1178/MAX1188 to enter shutdown mode and  
power-down the reꢁerence and buꢁꢁer aꢁter conversion  
(Figures 5 and 6). Set the voltage at R/C high during  
the second ꢁalling edge oꢁ CS to realize the lowest cur-  
rent operation.  
R2 = 7.85k(MAX1188) OR 3.92k(MAX1178)  
S1, S2 = T/H SWITCH  
S3 = POWER-DOWN  
R3 = 5.45k(MAX1188) OR 17.79k(MAX1178)  
Figure 4. Equivalent Input Circuit  
DATA  
OUT  
ACQUISITION  
CONVERSION  
Standby Mode  
While in standby mode, the supply current is less than  
3.7mA (typ). The next ꢁalling edge oꢁ CS with R/C low  
causes the MAX1178/MAX1188 to exit standby mode  
and begin acquisition. The reꢁerence and reꢁerence  
buꢁꢁer remain active to allow quick turn-on time.  
CS  
R/C  
EOC  
Shutdown Mode  
In shutdown mode, the reꢁerence and reꢁerence buꢁꢁer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately aꢁter  
the conversion. The next ꢁalling edge oꢁ CS with R/C low  
causes the reꢁerence and buꢁꢁer to wake up and enter  
acquisition mode. To achieve 16-bit accuracy, allow  
REF AND  
BUFFER  
POWER  
Figure 5. Selecting Standby Mode  
12ms ꢁor the internal reꢁerence to wake up (C  
=
REFADJ  
DATA  
OUT  
0.1µF, C  
= 10µF).  
REF  
ACQUISITION  
CONVERSION  
Internal and External Reference  
Internal Reference  
CS  
The internal reꢁerence oꢁ the MAX1178/MAX1188 is  
internally buꢁꢁered to provide +4.096V output at REF.  
Bypass REF to AGND and REFADJ to AGND with 10µF  
and 0.1µF, respectively. Sink or source current at  
REFADJ to make ꢁine adjustments to the internal reꢁer-  
ence. The input impedance oꢁ REFADJ is nominally  
5k. Use the circuit in Figure 7 to adjust the internal  
reꢁerence to 1.5ꢀ.  
R/C  
EOC  
REF AND  
BUFFER  
POWER  
Figure 6. Selecting Shutdown Mode  
_______________________________________________________________________________________  
9
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1178  
INPUT RANGE = -5V TO +5V  
OUTPUT CODE  
MAX1178  
MAX1188  
FULL-SCALE  
TRANSITION  
+5V  
11 1111 1111 1111  
11 1111 1111 1110  
11 1111 1111 1101  
68k  
100kΩ  
REFADJ  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
0.1µF  
150kΩ  
FULL-SCALE RANGE (FSR) = +1V  
FSR x V  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
REF  
1 LSB =  
65,536 x 4.096  
Figure 7. MAX1178/MAX1188 Reference-Adjust Circuit  
-32,768 -32,766  
0
+32,766+32,768  
+32,767  
-32,767 -32,765 -1  
+1  
INPUT VOLTAGE (LSB)  
External Reference  
An external reꢁerence can be placed at either the input  
(REFADJ) or the output (REF) oꢁ the MAX1178/  
MAX1188sinternal buꢁꢁer ampliꢁier. Using the buꢁꢁered  
REFADJ input makes buꢁꢁering the external reꢁerence  
unnecessary. The input impedance oꢁ REFADJ is typi-  
cally 5k. The internal buꢁꢁer output must be bypassed  
at REF with a 10µF capacitor.  
Figure 8. MAX1178 Transfer Function  
MAX1188  
INPUT RANGE = -10V TO +10V  
OUTPUT CODE  
1111 1111 1111 1111  
FULL-SCALE  
TRANSITION  
Connect REFADJ to AV  
to disable the internal buꢁꢁer.  
DD  
1111 1111 1111 1110  
1111 1111 1111 1101  
Directly drive REF using an external 3.8V to 4.2V reꢁer-  
ence. During conversion, the external reꢁerence must  
be able to drive 100µA oꢁ DC load current and have an  
output impedance oꢁ 10or less.  
1000 0000 0000 0001  
1000 0000 0000 0000  
0001 1111 1111 1111  
For optimal perꢁormance, buꢁꢁer the reꢁerence through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1178/MAX1188sequivalent input  
noise (0.6 LSB) when choosing a reꢁerence.  
FULL-SCALE RANGE (FSR) = +20V  
FSR x V  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
REF  
1 LSB =  
65,536 x 4.096  
Reading the Conversion Result  
EOC is provided to ꢁlag the µP when a conversion is  
complete. The ꢁalling edge oꢁ EOC signals that the data  
is valid and ready to be output to the bus. D0D15 are  
the parallel outputs oꢁ the MAX1178/MAX1188. These  
tri-state outputs allow ꢁor direct connection to a micro-  
controller I/O bus. The outputs remain high impedance  
during acquisition and conversion. Data is loaded onto  
the output bus with the third ꢁalling edge oꢁ CS with R/C  
-32,68 -32,766  
0
+32,766+32,768  
+32,767  
-32,767 -32,765 -1  
+1  
INPUT VOLTAGE (LSB)  
Figure 9. MAX1188 Transfer Function  
Transfer Function  
Figures 8 and 9 show the MAX1178/MAX1188 output  
transꢁer ꢁunctions. The MAX1178 and MAX1188 outputs  
are coded in oꢁꢁset binary.  
high (aꢁter t ). Bringing CS high ꢁorces the output bus  
DO  
back to high impedance. The MAX1178/MAX1188 then  
wait ꢁor the next ꢁalling edge oꢁ CS to start the next con-  
version cycle (Figure 2).  
Input Buffer  
Most applications require an input buꢁꢁer ampliꢁier to  
achieve 16-bit accuracy and prevent loading the  
source. When the input signal is multiplexed, switch the  
channels immediately aꢁter acquisition, rather than near  
the end oꢁ, or aꢁter, a conversion. This allows more time  
ꢁor the input buꢁꢁer ampliꢁier to respond to a large step  
HBEN toggles the output between the high/low byte. The  
low byte is loaded onto the output bus when HBEN is  
low, and the high byte is on the bus when HBEN is high.  
±1 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1178  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
REF  
MAX1178  
MAX1188  
1.5  
1.0  
0.5  
0
SHUTDOWN  
MODE  
AIN  
ANALOG  
INPUT  
MAX427  
-0.5  
-1.0  
-1.5  
STANDBY  
MODE  
-5.0  
-2.5  
0
2.5  
5.0  
ANALOG INPUT VOLTAGE (V)  
Figure 10. MAX1178/MAX1188 Fast-Settling Input Buffer  
Figure 11. MAX1178 Analog Input Current  
change in input signal. The input ampliꢁier must have a  
high enough slew rate to complete the required output  
voltage change beꢁore the beginning oꢁ the acquisition  
time. Figure 10 shows an example oꢁ this circuit using  
the MAX427.  
MAX1188  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
1.5  
Figures 11 and 12 show how the MAX1178/MAX1188  
analog input current varies depending on whether the  
chip is operating or powered down. The part is ꢁully  
powered down between conversions iꢁ the voltage at  
R/C is set high during the second ꢁalling edge oꢁ CS.  
The input current abruptly steps to the powered-up  
value at the start oꢁ acquisition. This step in the input  
current can disrupt the ADC input, depending on the  
driving circuits output impedance at high ꢁrequencies. Iꢁ  
the driving circuit cannot ꢁully settle by the end oꢁ acqui-  
sition, the accuracy oꢁ the system can be compromised.  
To avoid this situation, increase the acquisition time, use  
1.0  
0.5  
0
SHUTDOWN  
MODE  
STANDBY  
MODE  
-0.5  
-1.0  
-1.5  
-10  
-5  
0
5
10  
a driving circuit that can settle within t  
, or leave the  
ANALOG INPUT VOLTAGE (V)  
ACQ  
MAX1178/MAX1188 powered up by setting the voltage  
at R/C low during the second ꢁalling edge oꢁ CS.  
Figure 12. MAX1188 Analog Input Current  
do so at right angles to minimize coupling digital noise  
onto the analog lines. Iꢁ the analog and digital sections  
share the same supply, isolate the digital and analog  
supply by connecting them with a low-value (10)  
resistor or ꢁerrite bead.  
Layout, Grounding, and Bypassing  
For best perꢁormance, use printed circuit boards. Do not  
run analog and digital lines parallel to each other, and do  
not lay out digital signal paths underneath the ADC pack-  
age. Use separate analog and digital ground planes with  
only one point connecting the two ground systems (ana-  
log and digital) as close to the device as possible.  
The ADC is sensitive to high-ꢁrequency noise on the  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
DD  
capacitor in parallel with a 1µF to 10µF low-ESR capaci-  
tor with the smallest capacitor closest to the device.  
Keep capacitor leads short to minimize stray inductance.  
Route digital signals ꢁar away ꢁrom sensitive analog and  
reꢁerence inputs. Iꢁ digital lines must cross analog lines,  
______________________________________________________________________________________ ±±  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Signal-to-Noise Plus Distortion  
Definitions  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all the other ADC output signals:  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the end points oꢁ the transꢁer ꢁunction,  
once oꢁꢁset and gain errors have been nulliꢁied. The sta-  
tic linearity parameters ꢁor the MAX1178/MAX1188 are  
measured using the end-point method.  
Signal  
(Noise + Distortion)  
RMS  
SINAD(dB) = 20 × log  
RMS  
Effective Number of Bits  
Eꢁꢁective number oꢁ bits (ENOB) indicates the global  
accuracy oꢁ an ADC at a speciꢁic input ꢁrequency and  
sampling rate. An ideal ADC error consists oꢁ quantiza-  
tion noise only. With an input range equal to the ꢁull-  
scale range oꢁ the ADC, calculate the ENOB as ꢁollows:  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step width and the ideal value oꢁ 1 LSB. A  
DNL error speciꢁication oꢁ 1 LSB guarantees no missing  
codes and a monotonic transꢁer ꢁunction.  
SINAD 1.76  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples, signal-to-noise ratio (SNR) is the ratio oꢁ the  
ꢁull-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly ꢁrom the ADCs res-  
olution (N bits):  
ENOB =  
6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
2
2
2
2
V
+ V + V + V  
3 4 5  
SNR = (6.02 × N + 1.76)dB  
2
THD = 20 × log  
V
1
where N = 16 bits.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reꢁerence noise, clock jitter,  
etc. The SNR is computed by taking the ratio oꢁ the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the ꢁundamental, the ꢁirst ꢁive  
harmonics, and the DC oꢁꢁset.  
where V is the ꢁundamental amplitude and V through  
5
1
2
V are the 2nd- through 5th-order harmonics.  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ the  
RMS amplitude oꢁ the ꢁundamental (maximum signal  
component) to the RMS value oꢁ the next-largest ꢁre-  
quency component.  
±2 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Functional Diagram  
REFADJ  
HBEN  
AV AGND DV DGND  
DD  
DD  
5k  
REFERENCE  
8 BITS  
8 BITS  
OUTPUT  
REGISTERS  
D0D7  
OR  
D8D15  
REF  
INPUT  
SCALER  
CAPACITIVE  
DAC  
AIN  
MAX1178  
MAX1188  
AGND  
SUCCESSIVE-  
CLOCK  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
EOC  
CS  
R/C  
Pin Configuration  
Ordering Information (continued)  
IꢂPUT  
VOLTAGE  
RAꢂGE (V)  
PIꢂ-  
PACKAGE  
TOP VIEW  
PART  
TEMP RAꢂGE  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
R/C  
1
2
20 D3/D11  
19  
18  
D2/D10  
D1/D9  
MAX±±88ACUP  
MAX1188BCUP  
MAX1188CCUP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
10  
10  
10  
10  
10  
10  
3
4
17 D0/D8  
16  
MAX1188AEUP -40°C to +85°C  
MAX1188BEUP -40°C to +85°C  
MAX1188CEUP -40°C to +85°C  
5
DV  
DD  
MAX1178  
MAX1188  
EOC  
6
15 DGND  
7
14  
13  
12  
11  
AV  
CS  
DD  
8
AGND  
AIN  
HBEN  
REF  
9
Chip Information  
10  
AGND  
REFADJ  
TRANSISTOR COUNT: 15,383  
PROCESS: BiCMOS  
TSSOP  
______________________________________________________________________________________ ±3  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
±4 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

MAX1178AEUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1178AEUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178AEUP+T

暂无描述
MAXIM

MAX1178AEUP-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178BCUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1178BCUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178BCUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178BCUP-T

暂无描述
MAXIM

MAX1178BEUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1178BEUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178BEUP+T

暂无描述
MAXIM

MAX1178CCUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM