MAX11663AUT+ [MAXIM]

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs; 500KSPS ,低功耗,串行12位/ 10位/ 8位ADC
MAX11663AUT+
型号: MAX11663AUT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
500KSPS ,低功耗,串行12位/ 10位/ 8位ADC

转换器 模数转换器 光电二极管
文件: 总28页 (文件大小:1601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5530; Rev 1; 1/11  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
General Description  
Features  
S 500ksps Conversion Rate, No Pipeline Delay  
S 12-/10-/8-Bit Resolution  
The MAX11661−MAX11666 are 12-/10-/8-bit, compact,  
low-power, successive approximation analog-to-digital  
converters (ADCs). These high-performance ADCs include  
a high-dynamic range sample-and-hold and a high-speed  
serial interface. These ADCs accept a full-scale input from  
0V to the power supply or to the reference voltage.  
S 1-/2-Channel, Single-Ended Analog Inputs  
S Low-Noise 73dB SNR  
S Variable I/O: 1.5V to 3.6V (Dual-Channel Only)  
Allows the Serial Interface to Connect Directly  
to 1.5V, 1.8V, 2.5V, or 3V Digital Systems  
The MAX11662/MAX11664/MAX11666 feature dual, sin-  
gle-ended analog inputs connected to the ADC core  
using a 2:1 MUX. The devices also include a separate  
supply input for data interface and a dedicated input  
for reference voltage. In contrast, the single-channel  
devices generate the reference voltage internally from  
the power supply.  
S 2.2V to 3.6V Supply Voltage  
S Low Power  
2.98mW  
Very Low Power Consumption at 2.5µA/ksps  
S External Reference Input (Dual-Channel Devices Only)  
S 1.3µA Power-Down Current  
These ADCs operate from a 2.2V to 3.6V supply and  
consume only 2.98mW. The devices include full power-  
down mode and fast wake-up for optimal power man-  
agement and a high-speed 3-wire serial interface. The  
3-wire serial interface directly connects to SPIK, QSPIK,  
and MICROWIREKdevices without external logic.  
S SPI-/QSPI-/MICROWIRE-Compatible Serial  
Interface  
S 10-Pin, 3mm x 5mm µMAX Package  
S 6-Pin, 2.8mm x 2.9mm SOT23 Package  
S Wide -40NC to +125NC Operation  
Excellent dynamic performance, low voltage, low power,  
ease of use, and small package size make these con-  
verters ideal for portable battery-powered data-acquisi-  
tion applications, and for other applications that demand  
low-power consumption and minimal space.  
Applications  
Data Acquisition  
®
These ADCs are available in a 10-pin FMAX package,  
Portable Data Logging  
and a 6-pin SOT23 package. These devices operate  
over the -40NC to +125NC temperature range.  
Medical Instrumentation  
Battery-Operated Systems  
Communication Systems  
Automotive Systems  
Ordering Information  
PART  
MAX11661AUT+  
MAX11662AUB+*  
MAX11663AUT+  
MAX11664AUB+*  
MAX11665AUT+  
MAX11666AUB+*  
PIN-PACKAGE  
6 SOT23  
BITS  
8
NO. OF CHANNELS  
1
2
1
2
1
2
10 FMAX-EP**  
6 SOT23  
8
10  
10  
12  
12  
10 FMAX-EP**  
6 SOT23  
10 FMAX-EP**  
Note: All devices are specified over the -40°C to +125°C operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND.............................................................-0.3V to +4V  
Continuous Power Dissipation (T = +70NC)  
A
REF, OVDD, AIN1, AIN2, AIN to GND ........-0.3V to the lower of  
(V + 0.3V) and +4V  
6-Pin SOT23 (derate 8.7mW/NC above +70NC)...........696mW  
10-Pin FMAX (derate 8.8mW/NC above +70NC)........707.3mW  
Operating Temperature Range....................... .-40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
DD  
CS, SCLK, CHSEL, DOUT TO GND............-0.3V to the lower of  
(V + 0.3V) and +4V  
OVDD  
AGND to GND......................................................-0.3V to +0.3V  
Input/Output Current (all pins) ...........................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (MAX11666)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V . f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
OE  
Q1  
Q1  
Q3  
Q3  
No missing codes  
Excluding offset and reference errors  
Q0.3  
Q1  
Gain Error  
GE  
Total Unadjusted Error  
TUE  
Q1.5  
Channel-to-Channel Offset  
Matching  
Q0.4  
LSB  
LSB  
Channel-to-Channel Gain  
Matching  
Q0.05  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
= 250kHz)  
SINAD  
SNR  
AIN  
70  
72  
72  
dB  
dB  
70.5  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
THD  
-85  
85  
-75  
dB  
SFDR  
IMD  
76  
dB  
f = 239.8kHz, f = 200.2kHz  
-84  
40  
dB  
1
2
-3dB point  
MHz  
MHz  
MHz  
dB  
Full-Linear Bandwidth  
SINAD > 68dB  
2.5  
45  
Small-Signal Bandwidth  
Crosstalk  
-90  
2
______________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11666) (continued)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V . f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
CONVERSION RATE  
Throughput  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
Fs  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial-Clock Frequency  
ANALOG INPUT (AIN1, AIN2)  
Input Voltage Range  
Input Leakage Current  
f
0.08  
0
8
MHz  
CLK  
V
V
V
AIN_  
REF  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
V
AIN_  
4
EXTERNAL REFERENCE INPUT (REF)  
V
+
DD  
0.05  
Reference Input Voltage Range  
V
1
REF  
ILR  
Reference Input Leakage  
Current  
I
Conversion stopped  
0.005  
5
Q1  
FA  
Reference Input Capacitance  
C
pF  
REF  
DIGITAL INPUTS (SCLK, CS, CHSEL)  
0.75 x  
Digital Input High Voltage  
V
V
V
V
IH  
V
OVDD  
0.25 x  
Digital Input Low Voltage  
V
IL  
V
OVDD  
0.15 x  
Digital Input Hysteresis  
V
HYST  
V
OVDD  
0.001  
2
Digital Input Leakage Current  
Digital Input Capacitance  
DIGITAL OUTPUT (DOUT)  
I
Inputs at GND or V  
Q1  
FA  
IL  
DD  
C
pF  
IN  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
= 200FA  
SOURCE  
V
V
OH  
V
OVDD  
0.15 x  
V
I
= 200FA  
SINK  
OL  
OL  
V
OVDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
pF  
High-Impedance Output  
Capacitance  
C
4
OUT  
_______________________________________________________________________________________  
3
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11666) (continued)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V . f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply Voltage  
Digital I/O Supply Voltage  
V
2.2  
1.5  
3.6  
V
V
DD  
V
V
DD  
OVDD  
I
V
V
= GND  
= GND  
1.6  
Positive Supply Current  
(Full-Power Mode)  
VDD  
AIN_  
mA  
mA  
I
0.05  
OVDD  
AIN_  
Positive Supply Current (Full-  
Power Mode), No Clock  
I
1.48  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V, V  
1.3  
0.7  
10  
FA  
PD  
V
= 2.2V  
LSB/V  
DD  
REF  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
t
CS Fall to SCLK Setup  
2
CS Falling Until DOUT High-  
Impedance Disabled  
t
(Note 2)  
1
ns  
ns  
3
4
Figure 2, V  
Figure 2, V  
= 2.2V to 3.6V  
= 1.5V to 2.2V  
15  
16.5  
60  
Data Access Time After SCLK  
Falling Edge  
OVDD  
t
OVDD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
%
%
5
60  
6
Data Hold Time From SCLK  
Falling Edge  
SCLK Falling Until DOUT High  
Impedance  
t
Figure 3  
5
ns  
7
8
t
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
ELECTRICAL CHARACTERISTICS (MAX11665)  
(V  
DD  
= 2.2V to 3.6V, f  
= 8MHz, 50% duty cycle, 500ksps, C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
Q1  
Q1  
Q4  
Q3  
DNL  
OE  
No missing codes  
Excluding offset and reference errors  
Q1.5  
Q1  
Gain Error  
GE  
Total Unadjusted Error  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
TUE  
Q1.5  
= 250kHz)  
SINAD  
SNR  
AIN  
70  
72.5  
73  
dB  
dB  
70.5  
4
______________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11665) (continued)  
(V  
DD  
= 2.2V to 3.6V, f  
= 8MHz, 50% duty cycle, 500ksps, C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
-85  
85  
MAX  
UNITS  
dB  
Total Harmonic Distortion  
THD  
-76  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
Small-Signal Bandwidth  
CONVERSION RATE  
Throughput  
SFDR  
IMD  
77  
dB  
f = 239.8kHz, f = 200.2kHz  
-84  
40  
dB  
1
2
-3dB point  
SINAD > 68dB  
MHz  
MHz  
MHz  
2.5  
45  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
ns  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial Clock Frequency  
ANALOG INPUT  
f
0.08  
0
8
MHz  
CLK  
Input Voltage Range  
Input Leakage Current  
V
V
V
AIN  
DD  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
AIN  
4
DIGITAL INPUTS (SCLK, CS, CHSEL)  
0.75 x  
Digital Input High Voltage  
V
V
V
V
IH  
V
VDD  
0.25 x  
Digital Input Low Voltage  
V
IL  
V
VDD  
0.15 x  
Digital Input Hysteresis  
V
HYST  
V
VDD  
Digital Input Leakage Current  
Digital Input Capacitance  
DIGITAL OUTPUT (DOUT)  
I
Inputs at GND or V  
0.001  
2
Q1  
FA  
IL  
DD  
C
pF  
IN  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
= 200FA  
SOURCE  
V
V
OH  
V
VDD  
0.15 x  
V
I
= 200FA  
SINK  
OL  
OL  
V
VDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
pF  
High-Impedance Output  
Capacitance  
C
4
OUT  
POWER SUPPLY  
Positive Supply Voltage  
V
DD  
2.2  
3.6  
V
Positive Supply Current  
(Full-Power Mode)  
I
V
AIN  
= GND  
1.76  
mA  
VDD  
_______________________________________________________________________________________  
5
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11665) (continued)  
(V  
DD  
= 2.2V to 3.6V, f  
= 8MHz, 50% duty cycle, 500ksps, C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply Current (Full-  
Power Mode), No Clock  
I
1.48  
mA  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V  
1.3  
0.7  
10  
FA  
PD  
V
LSB/V  
DD  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
2
t
CS Fall to SCLK Setup  
CS Falling Until DOUT High-  
Impedance Disabled  
t
(Note 2)  
1
ns  
ns  
3
4
Data Access Time After SCLK  
Falling Edge  
t
Figure 2, V  
= 2.2V to 3.6V  
15  
DD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
60  
60  
%
%
5
6
Data Hold Time From SCLK  
Falling Edge  
t
Figure 3  
5
ns  
7
8
SCLK Falling Until DOUT High  
Impedance  
t
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
ELECTRICAL CHARACTERISTICS (MAX11664)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V , f  
= 8MHz, 50% duty cycle, 500ksps; C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
OE  
Q0.4  
Q0.4  
Q1  
No missing codes  
Excluding offset and reference errors  
Q0.5  
0
Gain Error  
GE  
Q1  
Total Unadjusted Error  
TUE  
Q0.5  
Channel-to-Channel Offset  
Matching  
Q0.05  
LSB  
LSB  
Channel-to-Channel Gain  
Matching  
Q0.05  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
= 250kHz)  
SINAD  
SNR  
AIN  
61  
61  
61.8  
61.8  
-83  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
THD  
-74  
SFDR  
75  
6
______________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11664) (continued)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V , f  
= 8MHz, 50% duty cycle, 500ksps; C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
Small-Signal Bandwidth  
Crosstalk  
SYMBOL  
CONDITIONS  
MIN  
TYP  
-82  
40  
MAX  
UNITS  
dB  
IMD  
f = 239.8kHz, f = 200.2kHz  
1
2
-3dB point  
SINAD > 60dB  
MHz  
MHz  
MHz  
dB  
2.5  
45  
-90  
CONVERSION RATE  
Throughput  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
ns  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial-Clock Frequency  
ANALOG INPUT (AIN1, AIN2)  
Input Voltage Range  
Input Leakage Current  
f
0.08  
0
8
MHz  
CLK  
V
V
V
AIN_  
REF  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
V
AIN-_  
4
EXTERNAL REFERENCE INPUT (REF)  
V
+
DD  
0.05  
Reference Input Voltage Range  
V
1
REF  
ILR  
Reference Input Leakage  
Current  
I
Conversion stopped  
0.005  
5
Q1  
FA  
Reference Input Capacitance  
C
pF  
REF  
DIGITAL INPUTS (SCLK, CS, CHSEL)  
0.75 x  
Digital Input High Voltage  
V
V
V
V
IH  
V
OVDD  
0.25 x  
Digital Input Low Voltage  
V
IL  
V
OVDD  
0.15 x  
Digital Input Hysteresis  
V
HYST  
V
OVDD  
0.001  
2
Digital Input Leakage Current  
Digital Input Capacitance  
DIGITAL OUTPUT (DOUT)  
I
Inputs at GND or V  
Q1  
FA  
IL  
DD  
C
pF  
IN  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
I
= 200µA  
SOURCE  
V
V
OH  
V
OVDD  
0.15 x  
V
= 200µA  
SINK  
OL  
V
OVDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
pF  
OL  
High-Impedance Output  
Capacitance  
C
4
OUT  
_______________________________________________________________________________________  
7
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11664) (continued)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V , f  
= 8MHz, 50% duty cycle, 500ksps; C  
= 10pF, T = -40NC to +125NC,  
DOUT A  
REF  
DD OVDD  
DD SCLK  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply Voltage  
Digital I/O Supply Voltage  
V
2.2  
1.5  
3.6  
V
V
DD  
V
V
DD  
OVDD  
I
V
V
= GND  
= GND  
1.6  
Positive Supply Current  
(Full-Power Mode)  
VDD  
AIN_  
AIN_  
mA  
mA  
I
0.05  
OVDD  
Positive Supply Current  
(Full-Power Mode), No Clock  
I
1.48  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V, V  
1.3  
10  
FA  
PD  
V
= 2.2V  
REF  
0.17  
LSB/V  
DD  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
2
t
CS Fall to SCLK Setup  
CS Falling Until DOUT High-  
Impedance Disabled  
t
(Note 2)  
1
ns  
ns  
3
4
V
V
= 2.2V to 3.6V  
= 1.5V to 2.2V  
15  
16.5  
60  
Data Access Time After SCLK  
Falling Edge (Figure 2)  
OVDD  
t
OVDD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
%
%
5
60  
6
Data Hold Time From SCLK  
Falling Edge  
t
Figure 3  
5
ns  
7
8
SCLK Falling Until DOUT High  
Impedance  
t
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
ELECTRICAL CHARACTERISTICS (MAX11663)  
(V  
DD  
= 2.2V to 3.6V. f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
Q0.5  
Q0.5  
Q1.3  
Q1.3  
DNL  
OE  
No missing codes  
Excluding offset and reference errors  
Q0.3  
Q0.15  
Q1  
Gain Error  
GE  
Total Unadjusted Error  
TUE  
8
______________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11663) (continued)  
(V  
DD  
= 2.2V to 3.6V. f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
Small-Signal Bandwidth  
CONVERSION RATE  
Throughput  
= 250kHz)  
SINAD  
SNR  
AIN  
60.5  
60.5  
61.5  
61.5  
-85  
dB  
dB  
THD  
-73  
dB  
SFDR  
IMD  
75  
dB  
f =239.8kHz, f =200.2kHz  
-82  
40  
dB  
1
2
-3dB point  
MHz  
MHz  
MHz  
SINAD > 60dB  
2.5  
45  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
ns  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial Clock Frequency  
ANALOG INPUT (AIN)  
Input Voltage Range  
Input Leakage Current  
f
0.08  
0
8
MHz  
CLK  
V
V
V
AIN  
DD  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
AIN  
4
DIGITAL INPUTS (SCLK, CS, CHSEL)  
0.75 x  
Digital Input High Voltage  
V
V
V
V
IH  
V
VDD  
0.25 x  
Digital Input Low Voltage  
V
IL  
V
VDD  
0.15 x  
Digital Input Hysteresis  
V
HYST  
V
VDD  
Digital Input Leakage Current  
Digital Input Capacitance  
I
Inputs at GND or V  
0.001  
2
Q1  
FA  
IL  
DD  
C
pF  
IN  
_______________________________________________________________________________________  
9
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11663) (continued)  
(V  
DD  
= 2.2V to 3.6V. f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUT (DOUT)  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
= 200µA  
SOURCE  
V
V
OH  
V
VDD  
0.15 x  
V
I = 200µA  
SINK  
OL  
OL  
V
VDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
pF  
High-Impedance Output  
Capacitance  
C
4
OUT  
POWER SUPPLY  
Positive Supply Voltage  
V
2.2  
3.6  
V
DD  
Positive Supply Current  
(Full-Power Mode)  
I
V
AIN  
= GND  
1.76  
mA  
VDD  
Positive Supply Current  
(Full-Power Mode), No Clock  
I
1.48  
mA  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V  
1.3  
10  
FA  
PD  
V
0.17  
LSB/V  
DD  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
2
t
CS Fall to SCLK Setup  
CS Falling Until DOUT High-  
Impedance Disabled  
t
t
(Note 2)  
1
ns  
ns  
3
4
Data Access Time After SCLK  
Falling Edge  
Figure 2, V  
= 2.2V to 3.6V  
15  
DD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
60  
60  
%
%
5
6
Data Hold Time From SCLK  
Falling Edge  
t
t
Figure 3  
5
ns  
7
8
SCLK Falling Until DOUT High  
Impedance  
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
10 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11662)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V , f  
= 8MHz, 50% duty cycle, 500ksps, C  
= 10pF, T = -40NC to +125NC,  
A
REF  
DD OVDD  
DD SCLK  
DOUT  
MIN  
8
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
TYP  
MAX  
UNITS  
Resolution  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
OE  
Q0.15  
Q0.15  
Q0.7  
No missing codes  
Excluding offset and reference errors  
0.45  
0
Gain Error  
GE  
Q0.2  
Total Unadjusted Error  
TUE  
0.5  
Channel-to-Channel Offset  
Matching  
0.01  
0.01  
LSB  
LSB  
Channel-to-Channel Gain  
Matching  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
Small-Signal Bandwidth  
Crosstalk  
= 250kHz)  
SINAD  
SNR  
AIN  
49  
49  
49.8  
49.8  
-75  
67  
dB  
dB  
THD  
-67  
dB  
SFDR  
IMD  
63  
dB  
f = 239.8kHz, f = 200.2kHz  
-65  
40  
dB  
1
2
-3dB point  
SINAD > 49dB  
MHz  
MHz  
MHz  
dB  
2.5  
45  
-90  
CONVERSION RATE  
Throughput  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
ns  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial-Clock Frequency  
ANALOG INPUT (AIN1, AIN2)  
Input Voltage Range  
Input Leakage Current  
f
0.08  
0
8
MHz  
CLK  
V
V
V
AIN_  
REF  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
V
AIN_  
4
EXTERNAL REFERENCE INPUT (REF)  
V
+
DD  
0.05  
Reference Input Voltage Range  
V
I
1
REF  
Reference Input Leakage Current  
Reference Input Capacitance  
Conversion stopped  
0.005  
5
Q1  
FA  
ILR  
C
pF  
REF  
______________________________________________________________________________________ 11  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11662) (continued)  
(V  
DD  
= 2.2V to 3.6V, V  
= V , V  
= V , f  
= 8MHz, 50% duty cycle, 500ksps, C  
= 10pF, T = -40NC to +125NC,  
A
REF  
DD OVDD  
DD SCLK  
DOUT  
unless otherwise noted. Typical values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, CS)  
0.75 x  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Hysteresis  
V
V
V
V
IH  
V
OVDD  
0.25 x  
V
IL  
V
OVDD  
0.15 x  
V
HYST  
V
OVDD  
0.001  
2
Digital Input Leakage Current  
Digital Input Capacitance  
DIGITAL OUTPUT (DOUT)  
I
IL  
Inputs at GND or V  
Q1  
FA  
DD  
C
pF  
IN  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
I
= 200µA (Note 2)  
SOURCE  
V
V
OH  
V
OVDD  
0.15 x  
V
= 200µA (Note 2)  
SINK  
OL  
V
OVDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
OL  
High-Impedance Output  
Capacitance  
C
OUT  
4
pF  
POWER SUPPLY  
Positive Supply Voltage  
Digital I/O Supply Voltage  
V
2.2  
1.5  
3.6  
V
V
DD  
V
V
DD  
OVDD  
I
V
V
= GND  
= GND  
1.6  
Positive Supply Current  
(Full-Power Mode)  
VDD  
AIN_  
mA  
mA  
I
0.05  
OVDD  
AIN_  
Positive Supply Current  
(Full-Power Mode), No Clock  
I
1.48  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V, V  
1.3  
10  
FA  
PD  
V
= 2.2V  
REF  
0.17  
LSB/V  
DD  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
2
t
CS Fall to SCLK Setup  
CS Falling Until DOUT High-  
Impedance Disabled  
t
(Note 2)  
1
ns  
ns  
3
4
V
V
= 2.2V to 3.6V  
= 1.5V to 2.2V  
15  
16.5  
60  
Data Access Time After SCLK  
Falling Edge (Figure 2)  
OVDD  
t
OVDD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
%
%
5
60  
6
Data Hold Time From SCLK  
Falling Edge  
SCLK Falling Until DOUT High  
Impedance  
t
Figure 3  
5
ns  
7
8
t
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
12 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11661)  
(V  
DD  
= 2.2V to 3.6V. f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
8
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
Q0.25  
Q0.25  
Q0.8  
DNL  
OE  
No missing codes  
Excluding offset and reference errors  
Q0.45  
Q0.04  
Q0.75  
Gain Error  
GE  
Q0.5  
Total Unadjusted Error  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise and Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
Small-Signal Bandwidth  
CONVERSION RATE  
Throughput  
TUE  
= 250kHz)  
SINAD  
SNR  
AIN  
49  
49  
49.5  
49.5  
-70  
66  
dB  
dB  
THD  
-67  
dB  
SFDR  
IMD  
63  
dB  
f = 239.8kHz, f = 200.2kHz  
-65  
40  
dB  
1
2
-3dB point  
MHz  
MHz  
MHz  
SINAD > 49dB  
2.5  
45  
5
500  
ksps  
Fs  
Conversion Time  
1.56  
52  
Acquisition Time  
t
ns  
ACQ  
Aperture Delay  
4
ns  
From CS falling edge  
Aperture Jitter  
15  
ps  
Serial-Clock Frequency  
ANALOG INPUT (AIN)  
Input Voltage Range  
Input Leakage Current  
f
0.08  
0
8
MHz  
CLK  
V
V
V
AIN  
DD  
I
0.002  
20  
Q1  
FA  
ILA  
Track  
Hold  
Input Capacitance  
C
pF  
AIN  
4
DIGITAL INPUTS (SCLK, CS)  
0.75 x  
Digital Input High Voltage  
V
V
V
V
IH  
V
VDD  
0.25 x  
Digital Input Low Voltage  
Digital Input Hysteresis  
V
IL  
V
VDD  
0.15  
V
HYST  
V
VDD  
Digital Input Leakage Current  
Digital Input Capacitance  
I
Inputs at GND or V  
0.001  
2
Q1  
FA  
IL  
DD  
C
pF  
IN  
______________________________________________________________________________________ 13  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (MAX11661) (continued)  
(V  
DD  
= 2.2V to 3.6V. f  
= 8MHz, 50% duty cycle, 500ksps. C  
= 10pF, T = -40NC to +125NC, unless otherwise noted. Typical  
DOUT A  
SCLK  
values are at T = +25NC.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUT (DOUT)  
0.85 x  
Output High Voltage  
Output Low Voltage  
V
I
I
= 200µA  
SOURCE  
V
V
OH  
V
VDD  
0.15 x  
V
= 200µA  
SINK  
OL  
OL  
V
VDD  
High-Impedance Leakage  
Current  
I
Q1.0  
FA  
pF  
High-Impedance Output  
Capacitance  
C
OUT  
4
POWER SUPPLY  
Positive Supply Voltage  
V
DD  
2.2  
3.6  
V
Positive Supply Current  
(Full-Power Mode)  
I
V
AIN  
= GND  
1.76  
mA  
VDD  
Positive Supply Current  
(Full-Power Mode), No Clock  
I
1.48  
mA  
VDD  
Power-Down Current  
Line Rejection  
I
Leakage only  
= 2.2V to 3.6V  
1.3  
10  
FA  
PD  
V
0.17  
LSB/V  
DD  
TIMING CHARACTERISTICS (Note 1)  
Quiet Time  
t
4
10  
5
ns  
ns  
ns  
Q
t
CS Pulse Width  
1
2
t
CS Fall to SCLK Setup  
CS Falling Until DOUT High-  
Impedance Disabled  
t
(Note 2)  
1
ns  
ns  
3
4
Data Access Time After SCLK  
Falling Edge  
t
Figure 2, V  
= 2.2V to 3.6V  
15  
DD  
SCLK Pulse Width Low  
SCLK Pulse Width High  
t
t
Percentage of clock period  
Percentage of clock period  
40  
40  
60  
60  
%
%
5
6
Data Hold Time From SCLK  
Falling Edge  
t
Figure 3  
5
ns  
7
8
SCLK Falling Until DOUT High  
Impedance  
t
Figure 4 (Note 2)  
Conversion cycle  
2.5  
14  
1
ns  
Power-Up Time  
Cycle  
Note 1: All timing specifications given are with a 10pF capacitor.  
Note 2: Guaranteed by design in characterization; not production tested.  
14 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
SAMPLE  
SAMPLE  
t
1
t
6
t
5
CS  
t
2
SCLK  
16  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
DOUT  
(MSB)  
t
3
t
4
t
7
t
t
8 QUIET  
t
t
ACQ  
CONVERT  
1/f  
SAMPLE  
Figure 1. Interface Signals for Maximum Throughput, 12-Bit Devices  
t
7
t
4
SCLK  
DOUT  
SCLK  
V
V
IH  
IL  
V
IH  
OLD DATA  
NEW DATA  
OLD DATA  
NEW DATA  
DOUT  
V
IL  
Figure 3. Hold Time After SCLK Falling Edge  
Figure 2. Setup Time After SCLK Falling Edge  
t
8
SCLK  
HIGH IMPEDANCE  
DOUT  
Figure 4. SCLK Falling Edge DOUT Three-State  
______________________________________________________________________________________ 15  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Typical Operating Characteristics  
(MAX11665AUT+, T = +25°C, unless otherwise noted.)  
A
SOT23 TYPICAL OPERATING CHARACTERISTICS  
INTEGRAL NONLINEARITY (INL)  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY (DNL)  
vs. OUTPUT CODE  
OFFSET ERROR vs. TEMPERATURE  
1.0  
0.5  
0
1.0  
0.5  
0
3
2
1
0
-0.5  
-1.0  
-0.5  
-1.0  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DIGITAL OUTPUT CODE (DECIMAL)  
DIGITAL OUTPUT CODE (DECIMAL)  
SIGNAL-TO-NOISE RATIO (SNR)  
vs. ANALOG INPUT FREQUENCY  
GAIN ERROR vs. TEMPERATURE  
2
1
76  
74  
72  
70  
0
-1  
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
50  
100  
150  
(kHz)  
200  
250  
f
IN  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
vs. ANALOG INPUT FREQUENCY  
THD vs. ANALOG INPUT FREQUENCY  
95  
93  
91  
89  
87  
85  
-70  
-80  
-90  
-100  
0
50  
100  
f
150  
(kHz)  
200  
250  
0
50  
100  
f
150  
(kHz)  
200  
250  
IN  
IN  
16 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Typical Operating Characteristics (continued)  
(MAX11665AUT+, T = +25°C, unless otherwise noted.)  
A
SOT23 TYPICAL OPERATING CHARACTERISTICS  
SIGNAL-TO-NOISE AND DISTORTION RATIO  
(SINAD) vs. ANALOG INPUT FREQUENCY  
100kHz SINE-WAVE INPUT  
76  
74  
72  
70  
0
-20  
f
f
V
= 99.4kHz  
IN  
S
= 500ksps  
= 3V  
DD  
-40  
-60  
A
= - 88dB  
HD2  
-80  
-100  
-120  
0
50  
100  
150  
(kHz)  
200  
250  
0
50  
100  
150  
200  
250  
f
FREQUENCY (kHz)  
IN  
SIGNAL-TO-NOISE RATIO (SNR)  
vs. SUPPLY VOLTAGE (V  
SUPPLY CURRENT vs. TEMPERATURE  
)
DD  
1.6  
1.5  
1.4  
1.3  
1.2  
75  
74  
73  
72  
71  
V
V
= 3.6V  
= 3V  
DD  
DD  
V
= 2.2V  
DD  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
(V)  
V
DD  
THD vs. INPUT RESISTANCE  
HISTOGRAM FOR 30,000 CONVERSIONS  
-75  
-80  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
f
f
= 500ksps  
S
= 250kHz  
IN  
-85  
-90  
-95  
-100  
0
0
20  
40  
60  
80  
100  
2046  
2047  
2048  
2049  
2050  
R
(I)  
DIGITAL CODE OUTPUT  
IN  
______________________________________________________________________________________ 17  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Pin Configurations  
TOP VIEW  
TOP VIEW  
+
+
V
DD  
1
6
5
4
CS  
AIN1  
AIN2  
AGND  
REF  
1
2
3
4
5
10  
9
SCLK  
DOUT  
OVDD  
CHSEL  
CS  
MAX11661  
MAX11663  
MAX11665  
MAX11662  
MAX11664  
MAX11666  
8
GND  
AIN  
2
3
DOUT  
SCLK  
7
V
DD  
6
EP*  
µMAX  
SOT23  
*CONNECT EP TO GROUND PLANE. DEVICES DO NOT OPERATE WHEN EP IS NOT CONNECTED TO GROUND!  
Pin Description  
PIN  
NAME  
AIN1  
FUNCTION  
µMAX  
SOT23  
Analog Input Channel 1. Single-ended analog input with respect to AGND with range of 0V to  
1
V
.
REF  
Analog Input Channel 2. Single-ended analog input with respect to AGND with range of 0V to  
2
AIN2  
V
REF.  
3
3
2
AIN  
Analog Input Channel. Single-ended analog input with respect to GND with range of 0V to V  
Ground. Connect GND to the GND ground plane.  
.
DD  
GND  
AGND Analog Ground. Connect AGND directly the GND ground plane.  
External Reference Input. REF defines the signal range of the input signal AIN1/AIN2: 0V to V  
.
REF  
4
1
REF  
The range of V  
is 1V to V  
Bypass REF to AGND with 10FF || 0.1FF capacitor.  
REF  
DD.  
Positive Supply Voltage. Bypass V  
with a 10FF || 0.1FF capacitor to GND. V  
range is 2.2V  
DD  
DD  
5
V
to 3.6V. For the SOT23 package, V  
also defines the signal range of the input signal AIN: 0V to  
DD  
DD  
V
DD  
.
Active-Low Chip-Select Input. The falling edge of CS samples the analog input signal, starts a  
conversion, and frames the serial-data transfer.  
6
7
6
5
CS  
Channel Select. Set CHSEL high to select AIN2 for conversion. Set CHSEL low to select AIN1 for  
conversion.  
CHSEL  
OVDD  
DOUT  
SCLK  
GND  
Digital Interface Supply for SCLK, CS, DOUT, and CHSEL. The OVDD range is 1.5V to V  
Bypass OVDD with a 10FF || 0.1FF capacitor to GND.  
.
DD  
8
Three-State Serial-Data Output. ADC conversion results are clocked out on the falling edge of  
SCLK, MSB first. See Figure 1.  
9
Serial-Clock Input. SCLK drives the conversion process. DOUT is updated on the falling edge of  
SCLK. See Figures 2 and 3.  
10  
EP  
4
Exposed Pad. Connect EP directly to a solid ground plane. Devices do not operate when EP is  
not connected to ground!  
18 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Functional Diagrams  
V
OVDD  
V
DD  
DD  
MAX11661  
MAX11663  
MAX11665  
MAX11662  
MAX11664  
MAX11666  
CS  
CS  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
SCLK  
SCLK  
DOUT  
OUTPUT  
BUFFER  
DOUT  
OUTPUT  
BUFFER  
SAR  
SAR  
CHSEL  
AIN  
AIN1  
AIN2  
CDAC  
= V  
MUX  
CDAC  
V
REF  
REF  
DD  
AGND  
GND (EP)  
GND  
Typical Operating Circuit  
V
DD  
OVDD  
V
OVDD  
+3V  
AIN1  
AIN2  
MAX11662  
MAX11664  
MAX11666  
SCLK  
DOUT  
SCK  
CPU  
ANALOG  
INPUTS  
MISO  
SS  
AGND  
REF  
CS  
+2.5V  
CHSEL  
GND (EP)  
V
DD  
SCLK  
DOUT  
SCK  
+3V  
MAX11661  
MAX11663  
MAX11665  
MISO  
SS  
CPU  
GND  
AIN  
CS  
ANALOG  
INPUT  
______________________________________________________________________________________ 19  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Detailed Description  
The MAX11661–MAX11666 are fast, 12-/10-/8-bit, low-  
power, single-supply ADCs. The devices operate from  
a 2.2V to 3.6V supply and consume only 2.98mW  
throughput rates. The wake-up and power-down feature  
is controlled by using the SPI interface as described in  
the Operating Modes section.  
Serial Interface  
The devices feature a 3-wire serial interface that directly  
connects to SPI, QSPI, and MICROWIRE devices without  
external logic. Figures 1 and 5 show the interface sig-  
nals for a single conversion frame to achieve maximum  
throughput.  
(V  
= 2.2V) or 4.37mW (V  
= 3V). These devices  
DD  
DD  
are capable of sampling at full rate when driven by  
an 8MHz clock. The dual-channel devices provide a  
separate digital supply input (OVDD) to power the digi-  
tal interface enabling communication with 1.5V, 1.8V,  
2.5V, or 3V digital systems.  
The falling edge of CS defines the sampling instant.  
Once CS transitions low, the external clock signal  
(SCLK) controls the conversion.  
The conversion result appears at DOUT, MSB first, with a  
leading zero followed by the 12-bit, 10-bit, or 8-bit result.  
A 12-bit result is followed by two trailing zeros, a 10-bit  
result is followed by four trailing zeros, and an 8-bit result  
is followed by six trailing zeros. See Figures 1 and 5.  
The SAR core successively extracts binary-weighted bits  
in every clock cycle. The MSB appears on the data bus  
during the 2nd clock cycle with a delay outlined in the  
timing specifications. All extracted data bits appear suc-  
cessively on the data bus with the LSB appearing during  
the 13th/11th/9th clock cycle for 12-/10-/8-bit operation.  
The serial data stream of conversion bits is preceded by  
a leading “zero” and succeeded by trailing “zeros.” The  
data output (DOUT) goes into a high-impedance state  
during the 16th clock cycle.  
The dual-channel devices feature a dedicated refer-  
ence input (REF). The input signal range for AIN1/AIN2  
is defined as 0V to V  
with respect to AGND. The  
REF  
single-channel devices use V  
as the reference. The  
DD  
input signal range of AIN is defined as 0V to V  
respect to GND.  
with  
DD  
These ADCs include a power-down feature allowing  
minimized power consumption at 2.5FA/ksps for lower  
SAMPLE  
SAMPLE  
CS  
SCLK  
DOUT  
16  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
SAMPLE  
SAMPLE  
CS  
SCLK  
DOUT  
16  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
Figure 5. 10-/8-Bit Timing Diagrams  
20 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
To sustain the maximum sample rate, all devices have to  
be resampled immediately after the 16th clock cycle. For  
lower sample rates, the CS falling edge can be delayed  
leaving DOUT in a high-impedance condition. Pull CS  
high after the 10th SCLK falling edge (see the Operating  
Modes section).  
The source impedance of the external driving stage in  
conjunction with the sampling switch resistance affects  
the settling performance. The THD vs. Input Resistance  
graph in the Typical Operating Characteristics shows  
THD sensitivity as a function of the signal source imped-  
ance. Keep the source impedance at a minimum for  
high-dynamic-performance applications. Use a high-  
performance op amp such as the MAX4430 to drive the  
analog input, thereby decoupling the signal source and  
the ADC.  
Analog Input  
The devices produce a digital output that corresponds to  
the analog input voltage within the specified operating  
range of 0V to V  
for the dual-channel devices and 0V  
REF  
While the ADC is in conversion mode, the sampling  
to V  
for the single-channel devices.  
DD  
switch is open presenting a pin capacitance, C (C  
P
P
Figure 6 shows an equivalent circuit for the analog input  
AIN (for single-channel devices) and AIN1/AIN2 (for  
dual-channel devices). Internal protection diodes D1/D2  
confine the analog input voltage within the power rails  
= 5pF), to the driving stage. See the Applications  
Information section for information on choosing an  
appropriate buffer for the ADC.  
(V , GND). The analog input voltage can swing from  
ADC Transfer Function  
The output format is straight binary. The code transi-  
tions midway between successive integer LSB values  
DD  
GND - 0.3V to V  
+ 0.3V without damaging the device.  
DD  
The electric load presented to the external stage driv-  
ing the analog input varies depending on which mode  
the ADC is in: track mode vs. conversion mode. In track  
such as 0.5 LSB, 1.5 LSB, etc. The LSB size for single-  
n
channel devices is V /2 and for dual-channel devices  
DD  
n
is V  
/2 , where n is the resolution. The ideal transfer  
REF  
mode, the internal sampling capacitor C (16pF) has to  
S
characteristic is shown in Figure 10.  
be charged through the resistor R (R = 50I) to the input  
voltage. For faithful sampling of the input, the capacitor  
Operating Modes  
voltage on C has to settle to the required accuracy dur-  
S
The ICs offer two modes of operation: normal mode and  
power-down mode. The logic state of the CS signal  
during a conversion activates these modes. The power-  
down mode can be used to optimize power dissipation  
with respect to sample rate.  
ing the track time.  
SWITCH CLOSED IN TRACK MODE  
SWITCH OPEN IN CONVERSION MODE  
V
DD  
Normal Mode  
In normal mode, the devices are powered up at all times,  
thereby achieving their maximum throughput rates.  
Figure 7 shows the timing diagram of these devices in  
normal mode. The falling edge of CS samples the analog  
input signal, starts a conversion, and frames the serial-  
data transfer.  
D1  
D2  
C
S
R
AIN1/AIN2  
AIN  
C
P
Figure 6. Analog Input Circuit  
KEEP CS LOW UNTIL AFTER THE 10TH SCLK FALLING EDGE  
PULL CS HIGH AFTER THE 10TH SCLK FALLING EDGE  
CS  
SCLK  
DOUT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VALID DATA  
HIGH  
HIGH  
IMPEDANCE  
IMPEDANCE  
Figure 7. Normal Mode  
______________________________________________________________________________________ 21  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
PULL CS HIGH AFTER THE 2ND AND BEFORE THE 10TH SCLK FALLING EDGE  
CS  
SCLK  
DOUT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
HIGH  
IMPEDANCE  
INVALID  
DATA  
INVALID DATA OR HIGH IMPEDANCE  
HIGH IMPEDANCE  
Figure 8. Entering Power-Down Mode  
CS  
SCLK  
DOUT  
HIGH  
IMPEDANCE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
N
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
INVALID DATA (DUMMY CONVERSION)  
VALID DATA  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
Figure 9. Exiting Power-Down Mode  
However, pulling CS high before the 10th SCLK falling  
edge terminates the conversion, DOUT goes into high-  
impedance mode, and the device enters power-down  
mode. See Figure 8.  
OUTPUT CODE  
FS - 1.5 x LSB  
111...111  
111...110  
111...101  
Power-Down Mode  
In power-down mode, all bias circuitry is shut down  
drawing typically only 1.3FA of leakage current. To save  
power, put the device in power-down mode between  
conversions. Using the power-down mode between  
conversions is ideal for saving power when sampling the  
analog input infrequently.  
000...010  
000...001  
000...000  
Entering Power-Down Mode  
To enter power-down mode, drive CS high between the  
2nd and 10th falling edges of SCLK (see Figure 8). By  
pulling CS high, the current conversion terminates and  
DOUT enters high impedance.  
ANALOG  
INPUT (LSB)  
n
n
n
0
1
2
3
2 -2 2 -1 2  
FULL SCALE (FS):  
AIN1/AIN2 = REF (TDFN, µMAX)  
Exiting Power-Down Mode  
To exit power-down mode, implement one dummy con-  
version by driving CS low for at least 10 clock cycles  
(see Figure 9). The data on DOUT is invalid during this  
dummy conversion. The first conversion following the  
dummy cycle contains a valid conversion result.  
AIN = V (SOT23)  
n = RESOLUTION  
DD  
Figure 10. ADC Transfer Function  
To remain in normal mode, keep CS low until the falling  
edge of the 10th SCLK cycle. Pulling CS high after the  
10th SCLK falling edge keeps the part in normal mode.  
The power-up time equals the duration of the dummy  
cycle, and is dependent on the clock frequency. The  
power-up time for 500ksps operation (8MHz SCLK) is 2Fs.  
22 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
is never powered down. The user can also power down  
the ADC between conversions by using the power-down  
mode. Figure 12 shows for the 500ksps device that as  
the sample rate is reduced, the device remains in the  
power-down state longer and the average supply cur-  
Supply Current vs. Sampling Rate  
For applications requiring lower throughput rates, the  
user can reduce the clock frequency (f ) to lower  
SCLK  
the sample rate. Figure 11 shows the typical supply  
current (I ) as a function of sample rate (f for the  
VDD  
S)  
rent (I  
) drops accordingly.  
VDD  
500ksps devices. The part operates in normal mode and  
SUPPLY CURRENT vs. SAMPLING RATE  
SUPPLY CURRENT vs. SAMPLING RATE  
2.0  
1.5  
1.0  
0.5  
0
V
f
= 3V  
V
f
= 3V  
DD  
DD  
= 8MHz  
= VARIABLE  
SCLK  
SCLK  
16 CYCLES/CONVERSIONS  
1.5  
1.0  
0.5  
0
0
100  
200  
300  
400  
500  
0
20 40 60 80 100 120 140 160  
SAMPLING RATE (ksps)  
SAMPLING RATE (ksps)  
Figure 11. Supply Current vs. Sample Rate (Normal Operating  
Mode)  
Figure 12. Supply Current vs. Sample Rate (Device Powered  
Down Between Conversions)  
______________________________________________________________________________________ 23  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Dual-Channel Operation  
Applications Information  
The MAX11662/MAX11664/MAX11666 feature dual-input  
channels. These devices use a channel-select (CHSEL)  
input to select between analog input AIN1 (CHSEL = 0)  
or AIN2 (CHSEL = 1). As shown in Figure 13, the CHSEL  
signal is required to change between the 2nd and 12th  
clock cycle within a regular conversion to guarantee  
proper switching between channels.  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with a solid ground  
plane. Ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digital  
(especially clock) lines parallel to one another or digital  
lines underneath the ADC package. Noise in the V  
DD  
power supply, OVDD, and REF affects the ADC’s perfor-  
mance. Bypass the V , OVDD, and REF to ground with  
0.1FF and 10FF bypass capacitors. Minimize capacitor  
lead and trace lengths for best supply-noise rejection.  
DD  
14-Cycle Conversion Mode  
The ICs can operate with 14 cycles per conversion.  
Figure 14 shows the corresponding timing diagram.  
Observe that DOUT does not go into high-impedance  
Choosing an Input Amplifier  
It is important to match the settling time of the input  
amplifier to the acquisition time of the ADC. The conver-  
sion results are accurate when the ADC samples the  
input signal for an interval longer than the input signal’s  
worst-case settling time. By definition, settling time is  
the interval between the application of an input voltage  
step and the point at which the output signal reaches  
mode. Also, observe that t  
needs to be sufficiently  
ACQ  
long to guarantee proper settling of the analog input  
voltage. See the Electrical Characteristics table for t  
ACQ  
requirements and the Analog Input section for a descrip-  
tion of the analog inputs.  
CS  
SCLK  
CHSEL  
DOUT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
DATA CHANNEL AIN2  
DATA CHANNEL AIN1  
Figure 13. Channel Select Timing Diagram  
SAMPLE  
SAMPLE  
CS  
SCLK  
DOUT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
1
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
(MSB)  
t
ACQ  
1/f  
SAMPLE  
t
CONVERT  
Figure 14. 14-Clock Cycle Operation  
24 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
and stays within a given error band centered on the  
resulting steady-state amplifier output level. The ADC  
input sampling capacitor charges during the sampling  
cycle, referred to as the acquisition period. During this  
acquisition period, the settling time is affected by the  
input resistance and the input sampling capacitance.  
This error can be estimated by looking at the settling of  
an RC time constant using the input capacitance and  
the source impedance over the acquisition time period.  
Choosing a Reference  
For devices using an external reference, the choice of  
the reference determines the output accuracy of the  
ADC. An ideal voltage reference provides a perfect initial  
accuracy and maintains the reference voltage indepen-  
dent of changes in load current, temperature, and time.  
Considerations in selecting a reference include initial  
voltage accuracy, temperature drift, current source,  
sink capability, quiescent current, and noise. Figure 15  
shows a typical application circuit using the MAX6126  
to provide the reference voltage. The MAX6033 and  
MAX6043 are also excellent choices.  
Figure 15 shows a typical application circuit. The  
MAX4430, offering a settling time of 37ns at 16 bits, is  
an excellent choice for this application. See the THD  
vs. Input Resistance graph in the Typical Operating  
Characteristics.  
+5V  
0.1µF  
10µF  
3V  
V
OVDD  
100pF C0G  
V
DD  
OVDD  
500I  
10µF  
0.1µF  
SCK  
10µF  
0.1µF  
AGND  
AIN1  
500I  
5
AIN1  
3
10I  
1
MAX11662  
MAX11664  
MAX11666  
MAX4430  
470pF  
C0G CAPACITOR  
-5V  
SCLK  
DOUT  
CS  
V
DC  
4
2
AIN2  
REF  
MISO  
SS  
470pF  
C0G CAPACITOR  
CPU  
+3V  
0.1µF  
10µF  
CHSEL  
10µF  
+5V  
EP  
0.1µF  
10µF  
7
8
2
1
OUTF  
OUTS  
IN  
100pF C0G  
0.1µF  
1µF  
500I  
0.1µF  
MAX6126  
4
3
GNDS  
NR  
500I  
5
AIN2  
3
4
0.1µF  
10I  
GND  
1
MAX4430  
-5V  
V
DC  
2
0.1µF  
10µF  
Figure 15. Typical Application Circuit  
______________________________________________________________________________________ 25  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Signal-to-Noise Ratio and Distortion  
(SINAD)  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. For  
these devices, the straight line is a line drawn between  
the end points of the transfer function after offset and  
gain errors are nulled.  
SINAD is a dynamic figure of merit that indicates the  
converter’s noise and distortion performance. SINAD  
is computed by taking the ratio of the RMS signal to  
the RMS noise plus distortion. RMS noise plus distor-  
tion includes all spectral components to the Nyquist  
frequency excluding the fundamental and the DC offset:  
.
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of 1 LSB or less guarantees no mis-  
sing codes and a monotonic transfer function.  
SIGNAL  
RMS  
SINAD(dB) = 20 × log  
NOISE + DISTORTION  
(
)
RMS  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Offset Error  
The deviation of the first code transition (00 . . . 000) to  
(00 . . . 001) from the ideal, that is, AGND + 0.5 LSB.  
Gain Error  
The deviation of the last code transition (111 . . . 110) to  
(111 . . . 111) from the ideal after adjusting for the offset  
2
2
2
2
5
V
+ V + V + V  
3 4  
2
THD = 20 × log  
V
1
error, that is, V  
- 1.5 LSB.  
REF  
Aperture Jitter  
where V is the fundamental amplitude and V –V are  
the amplitudes of the 2nd- through 5th-order harmonics.  
1
2
5
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is a dynamic figure of merit that indicates the low-  
est usable input signal amplitude. SFDR is the ratio of  
the RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest spuri-  
ous component, excluding DC offset. SFDR is specified  
in decibels with respect to the carrier (dBc).  
Aperture Delay  
Aperture delay (t ) is the time between the falling edge  
AD  
of sampling clock and the instant when an actual sample  
is taken.  
Signal-to-Noise Ratio (SNR)  
SNR is a dynamic figure of merit that indicates the con-  
verter’s noise performance. For a waveform perfectly  
reconstructed from digital samples, the theoretical maxi-  
mum SNR is the ratio of the full-scale analog input (RMS  
value) to the RMS quantization error (residual error).  
The ideal, theoretical minimum analog-to-digital noise  
is caused by quantization error only and results directly  
from the ADC’s resolution (N bits):  
Full-Power Bandwidth  
Full-power bandwidth is the frequency at which the input  
signal amplitude attenuates by 3dB for a full-scale input.  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the  
signal-to-noise ratio and distortion (SINAD) is equal to a  
specified value.  
SNR (dB) (MAX) = (6.02 x N + 1.76) (dB)  
Intermodulation Distortion  
Any device with nonlinearities creates distortion prod-  
ucts when two sine waves at two different frequencies  
In reality, there are other noise sources such as thermal  
noise, reference noise, and clock jitter that also degrade  
SNR. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spectral  
components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
(f and f ) are applied into the device. Intermodulation  
1
2
distortion (IMD) is the total power of the IM2 to IM5 inter-  
modulation products to the Nyquist frequency relative to  
the total input power of the two input tones, f and f . The  
1
2
.
individual input tone levels are at -6dBFS  
26 _____________________________________________________________________________________  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: CMOS  
LAND  
PATTERN  
NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
10 µMAX  
6 SOT23  
U10E+3  
U6+1  
21-0109  
21-0058  
90-0148  
90-0175  
______________________________________________________________________________________ 27  
500ksps, Low-Power,  
Serial 12-/10-/8-Bit ADCs  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
11/10  
1/11  
0
1
Initial release  
Released the MAX11663 and updated Figures 11 and 12.  
1, 23  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

MAX11664

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11664AUB

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11664AUB+

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11665

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11665AUT

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11665AUT+

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11665AUT+T

A/D Converter, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO6, 2.90 X 2.80 MM, ROHS COMPLIANT, SOT-23, 6 PIN
MAXIM

MAX11666

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11666AUB

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11666AUB+

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11666AUB/V

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11666AUB/V+

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM