MAX1165BEUI [MAXIM]

Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface; 低功耗, 16位模数转换,并行接口转换器
MAX1165BEUI
型号: MAX1165BEUI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface
低功耗, 16位模数转换,并行接口转换器

转换器
文件: 总15页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2551; Rev 0; 6/02  
Low-Power, 16-Bit Analog-to-Digital Converters  
with Parallel Interface  
General Description  
Features  
The MAX1165/MAX1166 16-bit, low-power, successive-  
approximation analog-to-digital converters (ADCs) fea-  
ture automatic power-down, factory-trimmed internal  
clock, and a 16-bit wide (MAX1165) or byte wide  
(MAX1166) parallel interface. The devices operate from  
a single +4.75V to +5.25V analog supply and a +2.7V  
to +5.25V digital supply.  
o 16-Bit Wide (MAX1165) and Byte Wide (MAX1166)  
Parallel Interface  
o High Speed: 165ksps Sample Rate  
o Accurate: ±±2SB Iꢀ2L 16 Bit ꢀN Missing ꢁNdes  
o 4.096VL 35ppm/°ꢁ Internal Reference  
o External Reference Range: +3.8V tN +5.±5V  
o Single +4.75V tN +5.±5V AnalNg Supply VNltage  
o +±.7V tN +5.±5V Digital Supply VNltage  
The MAX1165/MAX1166 use an internal 4.096V refer-  
ence or an external reference. The MAX1165/MAX1166  
consume only 1.8mA at a sampling rate of 165ksps with  
external reference and 2.7mA with internal reference.  
AutoShutdown™ reduces supply current to 0.1mA at  
10ksps.  
o 2Nw Supply ꢁurrent  
1.8mA (External Reference)  
±.7mA (Internal Reference)  
0.1µA (10kspsL External Reference)  
The MAX1165/MAX1166 are ideal for high-perfor-  
mance, battery-powered, data-acquisition applications.  
Excellent dynamic performance and low power con-  
sumption in a small package make the MAX1165/  
MAX1166 ideal for circuits with demanding power con-  
sumption and space requirements.  
o Small FNNtprint  
±8-Pin TSSOP Package (16-Bit Wide)  
±0-Pin TSSOP Package (Byte Wide)  
Ordering Information  
The 16-bit wide MAX1165 is available in a 28-pin  
TSSOP package and the byte wide MAX1166 is avail-  
able in a 20-pin TSSOP package. Both devices are  
available in either the 0°C to +70°C commercial, or the  
-40°C to +85°C extended temperature range.  
PART  
TEMP RANGE PIN-PACKAGE  
0°C to +70°C 28 TSSOP  
0°C to +70°C 28 TSSOP  
0°C to +70°C 28 TSSOP  
-40°C to +85°C 28 TSSOP  
-40°C to +85°C 28 TSSOP  
-40°C to +85°C 28 TSSOP  
INL  
2
MAX1165ACUI*  
MAX1165BCUI  
MAX1165CCUI  
MAX1165AEUI*  
MAX1165BEUI*  
MAX1165CEUI*  
2
4
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
2
2
4
Applications  
*Future product—contact factory for availability.  
Temperature Sensor/Monitor  
Industrial Process Control  
I/O Boards  
Ordering Information continued at end of data sheet.  
Typical Operating Circuit  
Data-Acquisition Systems  
Cable/Harness Tester  
Accelerometer Measurements  
Digital Signal Processing  
+5V ANALOG  
+5V DIGITAL  
0.1µF  
0.1µF  
µP DATA  
BUS  
DV  
DD  
D0–D15  
AV  
DD  
ANALOG INPUT  
AIN  
Pin Configurations appear at end of data sheet.  
Functional Diagram appears at end of data sheet.  
MAX1165  
EOC  
R/C  
CS  
REF  
REFADJ  
RESET  
AGND DGND  
0.1µF  
4.7µF  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
ABSOLUTE MAXIMUM RATINGS  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
to DGND ........................................-0.3V to (AV  
+ 0.3V)  
20-Pin TSSOP (derate 10.9mW/°C above+70°C) ........879mW  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW  
Operating Temperature Ranges  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
AIN, REF, REFADJ to AGND....................-0.3V to (AV + 0.3V)  
DD  
MAX116_ _CU_...................................................0°C to +70°C  
MAX116_ _EU_................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CS, HBEN, R/C, RESET to DGND ............................-0.3V to +6V  
Digital Output (D15D0, EOC)  
to DGND ..............................................-0.3V to (DV  
+ 0.3V)  
DD  
Maximum Continuous Current Into Any Pin ........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
N
16  
-1  
MAX116_A  
MAX116_B  
MAX116_C  
2
2
Relative Accuracy  
(Note 1)  
INL  
LSB  
4
MAX116_A  
MAX116_B  
1
No missing codes  
over temperature  
Differential Nonlinearity  
Transition Noise  
DNL  
LSB  
1.5  
2
MAX116_C  
RMS noise, external reference, includes  
quantization noise  
0.65  
LSB  
LSB  
RMS  
Internal reference  
0.7  
0.05  
0.002  
0.6  
RMS  
Offset Error  
Gain Error  
Offset Drift  
Gain Drift  
1
mV  
(Note 2)  
0.02  
%FSR  
ppm/°C  
ppm/°C  
0.2  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Sample Rate  
= 1kHz, V = 4.096V , 165ksps)  
IN(SINE-WAVE)  
SINAD  
SNR  
IN  
P-P  
86  
87  
90  
90  
dB  
dB  
THD  
-102  
105  
4
-90  
dB  
SFDR  
92  
dB  
-3dB point  
MHz  
kHz  
SINAD > 81dB  
33  
f
165  
ksps  
ns  
SAMPLE  
Aperture Delay  
27  
Aperture Jitter  
<100  
ps  
ANALOG INPUT  
Input Range  
V
0
V
V
AIN  
AIN  
REF  
Input Capacitance  
C
40  
pF  
2
_______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
INTERNAL REFERENCE  
REF Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
4.056  
4.096  
25  
4.136  
V
ppm/°C  
mA  
REF  
REF Output Tempco  
TC  
REF  
REFSC  
REFADJ  
REF Short-Circuit Current  
Capacitive Bypass at REFADJ  
Capacitive Bypass at REF  
REFADJ Input Leakage Current  
EXTERNAL REFERENCE  
I
10  
C
0.1  
1
µF  
C
µF  
REF  
REFADJ  
I
20  
µA  
AV  
0.4  
-
AV  
0.1  
-
DD  
DD  
REFADJ Buffer Disable Threshold  
REF Input Voltage Range  
REF Input Current  
To power down the internal reference  
Internal reference disabled  
V
V
3.8  
AV  
DD  
V
= +4.096V, f  
= 165ksps  
SAMPLE  
50  
120  
REF  
I
µA  
REF  
Shutdown mode  
0.1  
DIGITAL INPUTS/OUTPUTS  
Input High Voltage  
0.7 ×  
V
V
V
IH  
DV  
DD  
0.3 ×  
Input Low Voltage  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
I
V
= 0 or DV  
DD  
0.1  
0.1  
15  
1
µA  
V
IN  
IH  
V
HYST  
Input Capacitance  
C
pF  
IN  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DV  
0.4  
-
DD  
SOURCE  
DD  
Output High Voltage  
Output Low Voltage  
V
V
V
OH  
AV  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
10  
OL  
AV  
DD  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply  
I
D0D15  
0.1  
15  
µA  
pF  
OZ  
C
OZ  
AV  
DV  
4.75  
2.7  
5.25  
V
V
DD  
AV  
DD  
DD  
165ksps  
2.7  
2.0  
1.0  
1.0  
1.8  
1.1  
0.1  
0.01  
3.2  
100ksps  
10ksps  
1ksps  
Internal reference  
External reference  
Analog Supply Current  
I
mA  
AVDD  
165ksps  
100ksps  
10ksps  
1ksps  
2.3  
_______________________________________________________________________________________  
3
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, T = T  
A
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.5  
MAX  
UNITS  
165ksps  
100ksps  
10ksps  
1ksps  
0.7  
0.3  
Digital Supply Current  
I
I
D0D15 = all zeros  
mA  
DVDD  
SHDN  
0.03  
0.003  
0.5  
I
I
5
5
AVDD  
DVDD  
Full power-down  
µA  
mA  
µA  
dB  
0.5  
Shutdown Supply Current  
I
1.0  
1.2  
AVDD  
REF and REF buffer enabled  
(standby mode)  
I
DVDD  
0.5  
68  
5
(Note 3)  
Power-Supply Rejection Ratio  
PSRR  
AV  
= +5V 5%, full-scale input (Note 4)  
DD  
TIMING CHARACTERISTICS (Figures 1 and 2)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to AV , external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, C = 20pF,  
LOAD  
DD  
DD  
DD  
REF  
REFADJ  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
Acquisition Time  
Conversion Time  
CS Pulse Width High  
t
1.1  
ACQ  
t
4.7  
CONV  
t
(Note 5)  
40  
40  
60  
0
ns  
CSH  
V
V
= 4.75V to 5.25V  
DVDD  
DVDD  
CS Pulse Width Low (Note 5)  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
ns  
CSL  
= 2.7V to 5.25V  
t
ns  
DS  
V
V
V
V
V
V
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
60  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
t
ns  
DH  
40  
80  
40  
80  
CS to Output Data Valid  
t
ns  
DO  
HBEN Transition to Output Data  
Valid (MAX1166 Only)  
t
ns  
ns  
ns  
DO1  
EOC Fall to CS Fall  
t
0
DV  
V
V
V
V
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
80  
40  
80  
DVDD  
DVDD  
DVDD  
DVDD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time (Note 5)  
t
ns  
BR  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 2: Offset nulled.  
Note 3: Shutdown supply currents are typically 0.5µA, maximum specification is limited by automated test equipment.  
Note 4: Defined as the change in positive full scale caused by a 5% variation in the nominal supply.  
Note 5: To ensure best performance, finish reading the data and wait t before starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
REFADJ A  
IAV + IDV SUPPLY CURRENT  
DD  
DD  
INL vs. OUTPUT CODE  
DNL vs. OUTPUT CODE  
vs. SAMPLE RATE  
2.0  
1.5  
2.0  
1.5  
10  
1
1.0  
1.0  
0.5  
0.5  
0.1  
0
0
0.01  
0.001  
0.0001  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
66536  
0.01  
0.1  
1
10  
100  
1000  
OUTPUT CODE  
OUTPUT CODE  
SAMPLE RATE (ksps)  
IAV + IDV SHUTDOWN CURRENT  
INTERNAL REFERENCE  
vs. TEMPERATURE  
IAV + IDV SUPPLY CURRENT  
DD  
DD  
DD  
DD  
vs. TEMPERATURE  
vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SAMPLE RATE = 165ksps  
20 40 60 80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OFFSET ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
SINAD vs. FREQUENCY  
1000  
800  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.020  
0.015  
0.010  
0.005  
0
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
-0.005  
-0.010  
-0.015  
-0.020  
SAMPLE RATE = 165ksps  
10 100  
FREQUENCY (kHz)  
-40  
-20  
0
20  
40  
60  
80  
0.1  
1
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 4.7µF, C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
REFADJ  
A
THD vs. FREQUENCY  
SFDR vs. FREQUENCY  
0
120  
110  
100  
90  
SAMPLE RATE = 165ksps  
-10  
-20  
-30  
80  
-40  
70  
-50  
60  
-60  
50  
-70  
40  
-80  
30  
-90  
20  
-100  
-110  
10  
SAMPLE RATE = 165ksps  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SNR vs. FREQUENCY  
FFT AT 1kHz  
120  
110  
100  
90  
0
-20  
SAMPLE RATE = 165ksps  
-40  
80  
70  
-60  
60  
-80  
50  
40  
-100  
-120  
-140  
30  
20  
10  
SAMPLE RATE = 165ksps  
0
0.1  
1
10  
100  
0
20  
40  
60  
80  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1165 MAX1166 MAX1165 MAX1166  
1
2
3
4
5
6
7
8
1
2
D8  
D4/D12 Three-State Digital Data Output  
D5/D13 Three-State Digital Data Output  
D6/D14 Three-State Digital Data Output  
D9  
3
D10  
D11  
D12  
D13  
D14  
D15  
4
D7/D15 Three-State Digital Data Output. D15 is the MSB.  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output (MSB)  
Read/Convert Input. Power up and put the MAX1165/MAX1166 in acquisition mode  
by holding R/C low during the first falling edge of CS. During the second falling  
edge of CS, the level on R/C determines whether the reference and reference  
buffer power down or remain on after conversion. Set R/C high during the second  
falling edge of CS to power down the reference and buffer, or set R/C low to leave  
the reference and buffer powered up. Set R/C high during the third falling edge of  
CS to put valid data on the bus.  
9
5
R/C  
10  
11  
12  
13  
6
7
8
9
EOC  
End of Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
AGND  
AIN  
Analog Ground. Connect pin 14 to pin 12 (MAX1165). Connect pin 10 to pin 8  
(MAX1166).  
14  
15  
10  
11  
AGND  
Reference Buffer Output. Bypass REFADJ with a 0.1µF capacitor to AGND for internal  
reference mode. Connect REFADJ to AV to select external reference mode.  
DD  
REFADJ  
Reference Input/Output. Bypass REF with a 4.7µF capacitor to AGND for internal  
reference mode. External reference input when in external reference mode.  
16  
17  
12  
REF  
RESET  
Reset Input. Logic high resets the device.  
High-Byte Enable Input. Used to multiplex the 14-bit conversion result:  
1: Most significant byte available on the data bus.  
0: Least significant byte available on the data bus.  
13  
14  
HBEN  
Convert Start. The first falling edge of CS powers up the device and enables  
acquire mode when R/C is low. The second falling edge of CS starts conversion.  
The third falling edge of CS loads the result onto the bus when R/C is high.  
18  
CS  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
15  
16  
17  
18  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
Three-State Digital Data Output  
DD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0/D8  
D1/D9  
Three-State Digital Data Output  
D2/D10 Three-State Digital Data Output  
D3/D11 Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
_______________________________________________________________________________________  
7
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Analog Input  
DV  
DD  
The equivalent input circuit is shown in Figure 4. A  
switched capacitor digital-to-analog converter (DAC)  
provides an inherent T/H function. The single-ended  
input is connected between AIN and AGND.  
1mA  
D0D15  
D0D15  
1mA  
C
= 20pF  
LOAD  
Input Bandwidth  
The ADCs input-tracking circuitry has a 4MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid aliasing of  
unwanted high-frequency signals into the frequency  
band of interest, use anti-alias filtering.  
C
= 20pF  
LOAD  
DGND  
DGND  
a) HIGH-Z TO V , V TO V  
,
b) HIGH-Z TO V , V TO V ,  
OL OH OL  
OH OL  
OH  
AND V TO HIGH-Z  
AND V TO HIGH-Z  
OH  
OL  
Figure 1. Load Circuits  
Analog Input Protection  
Detailed Description  
Internal protection diodes, which clamp the analog  
input to AV  
and/or AGND, allow the input to swing  
DD  
Converter Operation  
from AGND - 0.3V to AV  
the device.  
+ 0.3V, without damaging  
DD  
The MAX1165/MAX1166 use a successive-approxima-  
tion (SAR) conversion technique with an inherent track-  
and-hold (T/H) stage to convert an analog input into a  
16-bit digital output. Parallel outputs provide a high-  
speed interface to most microprocessors (µPs). The  
Functional Diagram shows a simplified internal archi-  
tecture of the MAX1165/MAX1166. Figure 3 shows a  
typical application circuit for the MAX1166.  
If the analog input exceeds 300mV beyond the sup-  
plies, limit the input current to 10mA.  
t
CSH  
t
CSL  
CS  
t
ACQ  
REF POWER-  
DOWN BIT  
R/C  
t
t
DS  
t
t
t
DH  
DV  
EOC  
EOC  
D0D15  
HBEN*  
t
CONV  
BR  
t
DO  
HIGH-Z  
HIGH-Z  
DATA VALID  
t
BR  
t
DO1  
D8/D15–  
D0/D7*  
HIGH-/LOW-  
BYTE VALID  
HIGH-/LOW-  
BYTE VALID  
*HBEN AND BYTE-WIDE DATA BUS  
AVAILABLE ON MAX1166 ONLY.  
Figure 2. MAX1165/MAX1166 Timing Diagram  
8
_______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
REF  
+5V ANALOG  
+5V DIGITAL  
TRACK  
CAPACITIVE DAC  
AIN  
0.1µF  
0.1µF  
ZERO  
C
SWITCH  
3pF  
C
= 32pF  
R
DAC  
IN  
800Ω  
HOLD  
µP DATA  
BUS  
AV  
DD  
DV  
DD  
AGND  
D0D7  
TRACK  
HOLD  
ANALOG INPUT  
AIN  
OR  
D8D15  
AUTOZERO  
RAIL  
MAX1166  
EOC  
R/C  
CS  
REF  
Figure 4. Equivalent Input Circuit  
REFADJ  
HBEN  
HIGH  
BYTE  
AGND DGND  
0.1µF  
4.7µF  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
bit during the second falling edge of CS (see the  
Selecting Standby or Shutdown Mode section). The  
MAX1165/MAX1166 automatically enter either standby  
mode (reference and buffer on) or shutdown (reference  
and buffer off) after each conversion depending on the  
status of R/C during the second falling edge of CS.  
LOW  
BYTE  
Figure 3. Typical Application Circuit for the MAX1166  
Track and Hold (T/H)  
In track mode, the analog signal is acquired on the inter-  
nal hold capacitor. In hold mode, the T/H switches open  
and the capacitive DAC samples the analog input.  
Internal Clock  
The MAX1165/MAX1166 generate an internal conver-  
sion clock. This frees the microprocessor from the bur-  
den of running the SAR conversion clock. Total  
conversion time after entering hold mode (second  
falling edge of CS) to end of conversion (EOC) falling is  
4.7µs (max).  
During the acquisition, the analog input (AIN) charges  
capacitor C  
. The acquisition ends on the second  
DAC  
falling edge of CS. At this instant, the T/H switches  
open. The retained charge on C  
ple of the input.  
represents a sam-  
DAC  
In hold mode, the capacitive DAC adjusts during the  
remainder of the conversion time to restore node ZERO  
to zero within the limits of 16-bit resolution. Force CS low  
to put valid data on the bus at the end of the conversion.  
Applications Information  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1165/MAX1166 (Figure 2). The first falling edge of  
CS powers up the device and puts it in acquire mode if  
R/C is low. The convert start is ignored if R/C is high.  
The MAX1165/MAX1166 need at least 10ms  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signals source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time  
(C  
= 0.1µF, C  
= 4.7µF) for the internal refer-  
REFADJ  
REF  
(t  
) is the maximum time the device takes to acquire  
ACQ  
ence to wake up and settle before starting the conver-  
sion if powering up from shutdown. The ADC can wake  
up, from shutdown, to an unknown state. Put the ADC  
in a known state by completing one dummyconver-  
sion. The MAX1165/MAX1166 are in a known state,  
ready for actual data acquisition, after the completion  
of the dummy conversion. A dummy conversion con-  
sists of one full conversion cycle.  
the signal. Use the following formula to calculate acqui-  
sition time:  
t
= 11 (R + R ) 35pF  
S IN  
ACQ  
where R = 800, R = the input signals source  
IN  
S
ACQ  
impedance, and t  
is never less than 1.1µs. A  
source impedance less than 1kdoes not significantly  
affect the ADCs performance.  
The MAX1165 provides an alternative reset function to  
reset the device (see the RESET section).  
To improve the input signal bandwidth under AC condi-  
tions, drive AIN with a wideband buffer (>4MHz) that  
can drive the ADCs input capacitance and settle  
quickly.  
_______________________________________________________________________________________  
9
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
DATA  
OUT  
DATA  
OUT  
CONVERSION  
ACQUISITION  
CONVERSION  
ACQUISITION  
CS  
R/C  
CS  
R/C  
REF POWER-  
DOWN BIT  
REF POWER-  
DOWN BIT  
EOC  
EOC  
REF  
AND  
BUFFER  
REF  
AND  
BUFFER  
Figure 6. Selecting Shutdown Mode  
Figure 5. Selecting Standby Mode  
causes the reference and buffer to wake up and enter  
acquisition mode. To achieve 16-bit accuracy, allow  
Selecting Standby or Shutdown Mode  
The MAX1165/MAX1166 have a selectable standby or  
low-power shutdown mode. In standby mode, the  
ADCs internal reference and reference buffer do not  
power down between conversions, eliminating the need  
to wait for the reference to power up before performing  
the next conversion. Shutdown mode powers down the  
reference and reference buffer after completing a con-  
version. The reference and reference buffer require a  
10ms (C  
= 0.1µF, C  
= 4.7µF) for the internal  
REFADJ  
REF  
reference to wake up.  
Internal and External Reference  
Internal Reference  
The internal reference of the MAX1165/MAX1166 is  
internally buffered to provide +4.096V output at REF.  
Bypass REF to AGND and REFADJ to AGND with 4.7µF  
and 0.1µF, respectively.  
minimum of 10ms (C  
= 0.1µF, C  
= 4.7µF) to  
REF  
REFADJ  
power up and settle from shutdown.  
The state of R/C at the second falling edge of CS  
selects which power-down mode the MAX1165/  
MAX1166 enter upon conversion completion. Holding  
R/C low causes the MAX1165/MAX1166 to enter stand-  
by mode. The reference and buffer are left on after the  
conversion completes. R/C high causes the MAX1165/  
MAX1166 to enter shutdown mode and shut down the  
reference and buffer after conversion (Figures 5 and 6).  
When using an external reference, set the REF power-  
down bit high for lowest current operation.  
Fine adjustments can be made to the internal reference  
voltage by sinking or sourcing current at REFADJ. The  
input impedance of REFADJ is nominally 5k. The  
internal reference voltage is adjustable to 1.5% with  
the circuit of Figure 7.  
+5V  
MAX1165  
MAX1166  
68k  
100kΩ  
150kΩ  
REFADJ  
Standby Mode  
While in standby mode, the supply current is reduced  
to less than 1mA (typ). The next falling edge of CS with  
R/C low causes the MAX1165/MAX1166 to exit standby  
mode and begin acquisition. The reference and refer-  
ence buffer remain active to allow quick turn-on time.  
Standby mode allows significant power savings while  
running at the maximum sample rate.  
0.1µF  
Figure 7. MAX1165/MAX1166 Reference Adjust Circuit  
Shutdown Mode  
In shutdown mode, the reference and reference buffer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately after  
the conversion. The falling edge of CS with R/C low  
External Reference  
An external reference can be placed at either the input  
(REFADJ) or the output (REF) of the MAX1165/  
MAX1166sinternal buffer amplifier. When connecting an  
10 ______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
external reference to REFADJ, the input impedance is  
OUTPUT CODE  
typically 5k. Using the buffered REFADJ input makes  
FULL-SCALE  
TRANSITION  
buffering the external reference unnecessary; however,  
11...111  
the internal buffer output must be bypassed at REF with  
11...110  
11...101  
a 1µF capacitor.  
Connect REFADJ to AV  
to disable the internal buffer.  
DD  
Directly drive REF using an external reference. During  
conversion the external reference must be able to drive  
100µA of DC load current and have an output imped-  
ance of 10or less. REFADJs impedance is typically  
5k. The DC input impedance of REF is a minimum  
40k.  
FS = V  
REF  
1LSB = V  
REF  
65536  
00...011  
00...010  
00...001  
00...000  
0
1
2
3
FS  
For optimal performance, buffer the reference through  
an op amp and bypass REF with a 1µF capacitor.  
Consider the MAX1165/MAX1166sequivalent input  
INPUT VOLTAGE (LSB) FS - 3/2LSB  
Figure 8. MAX1165/MAX1166 Transfer Function  
noise (38µV ) when choosing a reference.  
RMS  
plexed, the input channel should be switched immedi-  
ately after acquisition, rather than near the end of or  
after a conversion. This allows more time for the input  
buffer amplifier to respond to a large step change in  
input signal. The input amplifier must have a high  
enough slew rate to complete the required output volt-  
age change before the beginning of the acquisition  
time. At the beginning of acquisition, the internal sam-  
pling capacitor array connects to AIN (the amplifier out-  
put), causing some output disturbance. Ensure that the  
sampled voltage has settled to within the required limits  
before the end of the acquisition time. If the frequency  
of interest is low, AIN can be bypassed with a large  
enough capacitor to charge the internal sampling  
capacitor with very little ripple. However, for AC use,  
AIN must be driven by a wideband buffer (at least  
10MHz), which must be stable with the ADCs capaci-  
tive load (in parallel with any AIN bypass capacitor  
used) and also settle quickly. An example of this circuit  
using the MAX4434 is given in Figure 9.  
Reading a Conversion Result  
EOC is provided to flag the microprocessor when a con-  
version is complete. The falling edge of EOC signals  
that the data is valid and ready to be output to the bus.  
D0D15 are the parallel outputs of the MAX1165/  
MAX1166. These three-state outputs allow for direct  
connection to a microcontroller I/O bus. The outputs  
remain high-impedance during acquisition and conver-  
sion. Data is loaded onto the bus with the third falling  
edge of CS with R/C high after t . Bringing CS high  
DO  
forces the output bus back to high impedance. The  
MAX1165/MAX1166 then wait for the next falling edge  
of CS to start the next conversion cycle (Figure 2).  
The MAX1165 loads the conversion result onto a 16-bit  
wide data bus while the MAX1166 has a byte-wide out-  
put format. HBEN toggles the output between the  
most/least significant byte. The least significant byte is  
loaded onto the output bus when HBEN is low and the  
most significant byte is on the bus when HBEN is high  
(Figure 2).  
RESET  
Toggle RESET with CS high. The next falling edge of CS  
begins acquisition. This reset is an alternative to the  
dummy conversion explained in the Starting a Conversion  
section.  
MAX1165  
MAX1166  
10Ω  
AIN  
40pF  
ANALOG  
INPUT  
Transfer Function  
Figure 8 shows the MAX1165/MAX1166 output transfer  
function. The output is coded in standard binary.  
MAX4434  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 16-bit accuracy. If the input signal is multi-  
Figure 9. MAX1165/MAX1166 Fast Settling Input Buffer  
______________________________________________________________________________________ 11  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
noise error only and results directly from the ADCs res-  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards. Do  
not run analog and digital lines parallel to each other,  
and do not lay out digital signal paths underneath the  
ADC package. Use separate analog and digital ground  
planes with only one point connecting the two ground  
systems (analog and digital) as close to the device as  
possible.  
olution (N bits):  
SNR = (6.02 N + 1.76)dB  
where N = 16 bits.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Route digital signals far away from sensitive analog and  
reference inputs. If digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
onto the analog lines. If the analog and digital sections  
share the same supply, then isolate the digital and ana-  
log supply by connecting them with a low-value (10)  
resistor or ferrite bead.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS equivalent of all the other ADC output signals:  
The ADC is sensitive to high-frequency noise on the  
Signal  
(Noise+Distortion)  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
DD  
RMS  
SINAD (dB) = 20 × log  
capacitor in parallel with a 1µF to 10µF low-ESR capaci-  
tor with the smallest capacitor closest to the device.  
Keep capacitor leads short to minimize stray inductance.  
RMS  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1165/MAX1166  
are measured using the end-point method.  
SINAD 1.76  
ENOB =  
6.02  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of 1 LSB guarantees no miss-  
ing codes and a monotonic transfer function.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
2
2
2
2
Aperture Jitter and Delay  
Aperture jitter is the sample-to-sample variation in the  
time between samples. Aperture delay is the time  
between the rising edge of the sampling clock and the  
instant when the actual sample is taken.  
V
+ V + V + V  
3 4 5  
2
THD = 20×log  
V
1
where V is the fundamental amplitude and V through  
5
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
1
2
V are the 2nd- through 5th-order harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component.  
12 ______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Functional Diagram  
AV AGND DV DGND  
HBEN*  
REFADJ  
DD  
DD  
5k  
REFERENCE  
16 OR 8*  
16 OR 8*  
D0D15  
OUTPUT  
REGISTERS  
OR  
D0/D7D8/D15*  
REF  
AIN  
CAPACITIVE  
DAC  
MAX1165  
MAX1166  
AGND  
RESET**  
SUCCESSIVE-  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
CLOCK  
EOC  
CS  
R/C  
* BYTE WIDE (MAX1166 ONLY)  
**16-BIT WIDE (MAX1165 ONLY)  
Chip Information  
Ordering Information (continued)  
TRANSISTOR COUNT: 15,140  
PART  
TEMP RANGE PIN-PACKAGE  
0°C to +70°C 20 TSSOP  
0°C to +70°C 20 TSSOP  
0°C to +70°C 20 TSSOP  
INL  
2
PROCESS: BiCMOS  
MAX1166ACUP*  
MAX1166BCUP  
MAX1166CCUP  
2
4
MAX1166AEUP* -40°C to +85°C 20 TSSOP  
MAX1166BEUP* -40°C to +85°C 20 TSSOP  
MAX1166CEUP* -40°C to +85°C 20 TSSOP  
2
2
4
*Future product—contact factory for availability.  
______________________________________________________________________________________ 13  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Pin Configurations  
TOP VIEW  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
R/C  
1
2
3
4
5
6
7
8
9
20 D3/D11  
19 D2/D10  
18 D1/D9  
17 D0/D8  
D8  
D9  
1
2
3
4
5
6
7
8
9
28 D7  
27 D6  
26 D5  
25 D4  
24 D3  
23 D2  
22 D1  
21 D0  
20 DV  
D10  
D11  
D12  
D13  
D14  
D15  
R/C  
MAX1166  
16 DV  
DD  
MAX1165  
EOC  
15 DGND  
14  
AV  
DD  
CS  
AGND  
AIN  
13 HBEN  
12 REF  
DD  
AGND 10  
11 REFADJ  
EOC 10  
AV 11  
19 DGND  
18 CS  
DD  
TSSOP  
AGND 12  
AIN 13  
17 RESET  
16 REF  
AGND 14  
15 REFADJ  
TSSOP  
14 ______________________________________________________________________________________  
Low-Power, 16-Bit Analog-to-Digital Converter  
with Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1165BEUI+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX1165BEUI-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX1165CCUI

Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface
MAXIM

MAX1165CEUI

Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface
MAXIM

MAX1165EVKIT

MAX1165 Evaluation Kit
MAXIM

MAX1166

Low-Power, 16-Bit Analog-to-Digital Converters with Parallel Interface
MAXIM

MAX11661

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11661AUT

500ksps, Low-Power,Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11661AUT+

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11661_11

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs Low-Noise 73dB SNR
MAXIM

MAX11661_1111

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11661_12

500ksps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM