MAX1124 [MAXIM]

1.8V, 10-Bit, 250Msps Analog-to-Digital Converter with LVDS Outputs for Wideband Applications; 1.8V , 10位,250Msps模拟数字转换器,LVDS输出,适用于宽带系统
MAX1124
型号: MAX1124
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.8V, 10-Bit, 250Msps Analog-to-Digital Converter with LVDS Outputs for Wideband Applications
1.8V , 10位,250Msps模拟数字转换器,LVDS输出,适用于宽带系统

转换器
文件: 总17页 (文件大小:436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3029; Rev 1; 2/04  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
General Description  
Features  
The MAX1124 is a monolithic 10-bit, 250Msps analog-  
to-digital converter (ADC) optimized for outstanding  
dynamic performance at high IF frequencies up to  
500MHz. The product operates with conversion rates of  
up to 250Msps while consuming only 477mW.  
250Msps Conversion Rate  
SNR = 56.8dB/55.5dB at f = 100MHz/500MHz  
IN  
SFDR = 71dBc/63.8dBc at f = 100MHz/500MHz  
IN  
NPR = 54.8dB at f  
= 28.8MHz  
NOTCH  
At 250Msps and an input frequency of 100MHz, the  
MAX1124 achieves a spurious-free dynamic range  
(SFDR) of 71dBc. Its excellent signal-to-noise ratio  
(SNR) of 57.1dB at 10MHz remains flat (within 1dB) for  
input tones up to 500MHz. This makes the MAX1124  
ideal for wideband applications such as digital predis-  
tortion in cellular base-station transceiver systems.  
Single 1.8V Supply  
477mW Power Dissipation at 250Msps  
On-Chip Track-and-Hold and Internal Reference  
On-Chip Selectable Divide-by-2 Clock Input  
LVDS Digital Outputs with Data Clock Output  
Evaluation Kit Available (Order MAX1124EVKIT)  
The MAX1124 requires a single 1.8V supply. The ana-  
log input is designed for either differential or single-  
ended operation and can be AC- or DC-coupled. The  
ADC also features a selectable on-chip divide-by-2  
clock circuit, which allows the user to apply clock fre-  
quencies as high as 500MHz. This helps to reduce the  
phase noise of the input clock source. A differential  
LVDS sampling clock is recommended for best perfor-  
mance. The converter’s digital outputs are LVDS com-  
patible, and the data format can be selected to be  
either two’s complement or offset binary.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1124EGK  
-40°C to +85°C  
68 QFN-EP*  
*EP = Exposed paddle.  
The MAX1124 is available in a 68-pin QFN with  
exposed paddle (EP) and is specified over the industri-  
al (-40°C to +85°C) temperature range.  
Pin Configuration  
For pin-compatible, lower speed versions of the  
MAX1124, refer to the MAX1122 (170Msps) and the  
MAX1123 (210Msps) data sheets. For a pin-compatible  
8-bit version of the MAX1124, refer to the MAX1121  
data sheet.  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
AV  
1
2
3
4
5
6
7
8
9
51 D6P  
50 D6N  
49 D5P  
48 D5N  
47 D4P  
46 D4N  
45 OGND  
Applications  
Wireless and Wired Broadband Communication  
Cable-Head End Systems  
CC  
EP  
AGND  
REFIO  
REFADJ  
AGND  
AV  
CC  
Digital Predistortion Receivers  
AGND  
INP  
Communications Test Equipment  
44 OV  
CC  
INN  
43 DCLKP  
42 DCLKN  
MAX1124  
Radar and Satellite Subsystems Antenna Array  
Processing  
AGND 10  
AV  
AV  
AV  
AV  
11  
12  
13  
14  
41 OV  
CC  
CC  
CC  
CC  
CC  
40 D3P  
39 D3N  
38 D2P  
37 D2N  
36 D1P  
35 D1N  
AGND 15  
AGND 16  
CLKDIV 17  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
ABSOLUTE MAXIMUM RATINGS  
AV  
to AGND ......................................................-0.3V to +2.1V  
to OGND .....................................................-0.3V to +2.1V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
OV  
68-Pin QFN (derate 41.7mW/°C above +70°C) .........3333mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Maximum Current into Any Pin............................................50mA  
CC  
AV  
to OV .......................................................-0.3V to +2.1V  
CC  
CC  
AGND to OGND ....................................................-0.3V to +0.3V  
Analog Inputs to AGND ...........................-0.3V to (AV  
Digital Inputs to AGND.............................-0.3V to (AV  
REF, REFADJ to AGND............................-0.3V to (AV  
Digital Outputs to OGND.........................-0.3V to (OV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
CC  
CC  
ESD on All Pins (Human Body Model)............................. 2000V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250MHz, differential sine-wave clock input drive, 0.1µF capacitor on REFIO,  
CC  
CC  
SAMPLE  
internal reference, digital output pins differential R = 1001ꢀ, C = 5pF, T = T  
to T  
, unless otherwise noted. 25°C guar-  
L
L
A
MIN  
MAX  
anteed by production test, <25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
10  
-2.4  
-1.0  
-25  
-37  
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
(Note 1)  
No missing codes (Note 1)  
±0.8  
±0.5  
+2.4  
+1.5  
+25  
+37  
DNL  
T
A
+25°C  
Transfer Curve Offset  
V
(Note 1)  
LSB  
OS  
(Note 2)  
Offset Temperature Drift  
20  
µV/°C  
ANALOG INPUTS (INP, INN)  
Full-Scale Input Voltage Range  
V
(Note 1)  
1100  
1250  
130  
1375  
mV  
P-P  
FS  
Full-Scale Range Temperature  
Drift  
ppm/°C  
1.38  
0.18  
Common-Mode Input Range  
V
V
CM  
Input Capacitance  
C
3
pF  
kΩ  
IN  
Differential Input Resistance  
Full-Power Analog Bandwidth  
REFERENCE (REFIO, REFADJ)  
Reference Output Voltage  
Reference Temperature Drift  
R
3.00  
1.18  
4.3  
600  
6.25  
1.30  
IN  
FPBW  
Figure 8  
MHz  
V
1.24  
90  
V
REFIO  
ppm/°C  
AV  
0.3  
-
CC  
REFADJ Input High Voltage  
V
Used to disable the internal reference  
V
REFADJ  
SAMPLING CHARACTERISTICS  
Maximum Sampling Rate  
f
f
250  
MHz  
MHz  
SAMPLE  
Minimum Sampling Rate  
20  
SAMPLE  
2
_______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250MHz, differential sine-wave clock input drive, 0.1µF capacitor on REFIO,  
CC  
CC  
SAMPLE  
internal reference, digital output pins differential R = 1001ꢀ, C = 5pF, T = T  
to T  
, unless otherwise noted. 25°C guar-  
L
L
A
MIN  
MAX  
anteed by production test, <25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
PARAMETER  
Clock Duty Cycle  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40 to 60  
350  
MAX  
UNITS  
Set by clock management circuit  
Aperture Delay  
t
ps  
AD  
Aperture Jitter  
t
0.2  
ps  
RMS  
AJ  
CLOCK INPUTS (CLKP, CLKN)  
Differential Clock Input Amplitude  
(Note 2)  
200  
500  
mV  
P-P  
Clock Input Common-Mode  
Voltage Range  
1.15  
±0.25  
V
Clock Differential Input  
Resistance  
11 ±  
25ꢀ  
R
C
kΩ  
CLK  
Clock Differential Input  
Capacitance  
5
pF  
CLK  
DYNAMIC CHARACTERISTICS (at -0.5dBFS)  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 10MHz, T +25°C  
54.3  
54  
57.1  
56.8  
56.3  
55.5  
57  
A
= 100MHz, T +25°C  
A
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
dB  
dB  
= 180MHz  
= 500MHz  
= 10MHz, T +25°C  
54  
A
= 100MHz, T +25°C  
53.5  
56.5  
56  
Signal-to-Noise  
and Distortion  
A
= 180MHz  
= 500MHz  
55  
= 10MHz, T +25°C  
62.6  
62  
75  
A
= 100MHz, T +25°C  
71  
A
Spurious-Free  
Dynamic Range  
dBc  
dBc  
= 180MHz  
= 500MHz  
= 10MHz  
68.3  
63.8  
-75  
= 100MHz  
= 180MHz  
= 500MHz  
-71  
Worst Harmonics  
(HD2 or HD3)  
-68.3  
-63.8  
f
f
= 99MHz at -7dBFS,  
= 101MHz at -7dBFS  
IN1  
IN2  
IMD  
IMD  
-65  
-56  
100  
Two-Tone Intermodulation  
Distortion  
dBc  
mV  
f
f
= 498.5MHz at -7dBFS,  
= 502.5MHz at -7dBFS  
IN1  
IN2  
500  
LVDS DIGITAL OUTPUTS (D0P/N–D9P/N, DCLKP/N)  
Differential Output Voltage |V  
|
250  
400  
OD  
_______________________________________________________________________________________  
3
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250MHz, differential sine-wave clock input drive, 0.1µF capacitor on REFIO,  
CC  
CC  
SAMPLE  
internal reference, digital output pins differential R = 1001ꢀ, C = 5pF, T = T  
to T  
, unless otherwise noted. 25°C guar-  
L
L
A
MIN  
MAX  
anteed by production test, <25°C guaranteed by design and characterization. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
OV  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Offset Voltage  
1.125  
1.310  
V
OS  
LVCMOS DIGITAL INPUTS (CLKDIV, T/B)  
0.2 x  
Digital Input Voltage Low  
Digital Input Voltage High  
V
V
V
IL  
AV  
CC  
0.8 x  
V
IH  
AV  
CC  
TIMING CHARACTERISTICS  
CLK to Data Propagation Delay  
CLK to DCLK Propagation Delay  
t
Figure 4  
Figure 4  
1.5  
ns  
ns  
PDL  
t
2.85  
CPDL  
t
-
CPDL  
Data Valid to DCLK Rising Edge  
Figure 4 (Note 2)  
20ꢀ to 80ꢀ, C = 5pF  
0.92  
1.35  
1.86  
ns  
t
PDL  
LVDS Output Rise-Time  
LVDS Output Fall-Time  
t
460  
460  
ps  
ps  
RISE  
L
t
20ꢀ to 80ꢀ, C = 5pF  
L
FALL  
Clock  
cycles  
Output Data Pipeline Delay  
t
8
LATENCY  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
Analog Supply  
AV  
OV  
1.7  
1.7  
1.8  
1.8  
220  
45  
1.9  
1.9  
290  
75  
V
V
CC  
CC  
I
f
f
f
= 100MHz  
= 100MHz  
= 100MHz  
mA  
AVCC  
OVCC  
IN  
IN  
IN  
Digital Supply Current  
I
mA  
Analog Power Dissipation  
P
477  
1.6  
1.9  
657  
mW  
mV/V  
ꢀFS/V  
DISS  
Offset  
Gain  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
Note 1: Static linearity and offset parameters are computed from a best-fit straight line through the code transition points. The full-  
scale range is defined as 1023 x slope of the line.  
Note 2: Parameter guaranteed by design and characterization; T = T  
to T  
.
MAX  
A
MIN  
Note 3: PSRR is measured with both analog and digital supplies connected to the same potential.  
4
_______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Typical Operating Characteristics  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250.0057MHz, -0.5dBFS; see TOCs for detailed information on test condi-  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
FFT PLOT (8192-POINT DATA RECORD,  
COHERENT SAMPLING)  
FFT PLOT (8192-POINT DATA RECORD,  
COHERENT SAMPLING)  
FFT PLOT (8192-POINT DATA RECORD,  
COHERENT SAMPLING)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
= 250.0057MHz  
= 11.5054MHz  
f = 250.0057MHz  
SAMPLE  
f
f
= 250.0057MHz  
= 60.0294MHz  
SAMPLE  
IN  
SAMPLE  
IN  
f
IN  
= 183.5064MHz  
A
IN  
= -0.4795dBFS  
A = -0.5335dBFS  
IN  
SNR = 56dB  
SFDR = 68.7dBc  
HD2 = -78.1dBc  
HD3 = -68.7dBc  
A
IN  
= -0.4885dBFS  
SNR = 56.5dB  
SNR = 56.4dB  
SFDR = 73.5dBc  
HD2 = -82.4dBc  
HD3 = -73.5dBc  
SFDR = 74.6dBc  
HD2 = -82.1dBc  
HD3 = -75.6dBc  
HD3  
HD2  
HD3  
HD3  
HD2  
HD2  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SNR vs. ANALOG INPUT FREQUENCY  
SFDR vs. ANALOG INPUT FREQUENCY  
(f = 250.0057MHz, A = -0.5dBFS)  
SAMPLE  
FFT PLOT (8192-POINT DATA RECORD,  
COHERENT SAMPLING)  
(f  
= 250.0057MHz, A = -0.5dBFS)  
SAMPLE  
IN  
IN  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
58  
57  
56  
55  
54  
53  
52  
51  
50  
80  
75  
70  
65  
60  
55  
50  
45  
f
f
A
= 250.0057MHz  
= 500.516MHz  
= -0.5155dBFS  
SAMPLE  
IN  
IN  
FUNDAMENTAL  
SNR = 55.4dB  
SFDR = 64.8dBc  
HD2 = -69.9dBc  
HD3 = -64.8dBc  
HD2  
HD3  
40  
35  
30  
0
100  
200  
300  
(MHz)  
400  
500  
0
100  
200 300  
f (MHz)  
IN  
400  
500  
0
20  
40  
60  
80 100 120 140  
f
IN  
ANALOG INPUT FREQUENCY (MHz)  
HD2/HD3 vs. ANALOG INPUT FREQUENCY  
SFDR vs. ANALOG INPUT AMPLITUDE  
= 250.0057MHz, f = 60.0294MHz)  
(f  
= 250.0057MHz, A = -0.5dBFS)  
(f  
(f  
SAMPLE  
IN  
SAMPLE  
IN  
-50  
-60  
62  
80  
75  
70  
65  
60  
55  
50  
45  
40  
57  
52  
47  
42  
37  
HD3  
-70  
-80  
HD2  
-90  
32  
27  
-100  
0
100  
200  
f
300  
(MHz)  
400  
500  
-28 -24 -20 -16 -12  
-8  
-4  
0
-28 -24 -20 -16 -12  
-8  
-4  
0
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
IN  
_______________________________________________________________________________________  
5
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Typical Operating Characteristics (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250.0057MHz, -0.5dBFS; see TOCs for detailed information on test condi-  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
HD2/HD3 vs. ANALOG INPUT AMPLITUDE  
= 250.0057MHz, f = 60.0294MHz)  
SNR vs. f  
(f = 60.0294MHz, A = -0.5dBFS)  
SFDR vs. f  
(f = 60.0294MHz, A = -0.5dBFS)  
SAMPLE  
IN  
SAMPLE  
IN  
(f  
SAMPLE  
IN  
IN  
IN  
58  
57  
56  
55  
54  
53  
52  
51  
50  
-40  
90  
80  
70  
60  
50  
40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
HD3  
HD2  
-28 -24 -20 -16 -12  
-8  
-4  
0
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
ANALOG INPUT AMPLITUDE (dBFS)  
f
(MHz)  
f
(MHz)  
SAMPLE  
SAMPLE  
HD2/HD3 vs. f  
(f = 60.03294MHz, A = -0.5dBFS)  
SAMPLE  
IN  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
TWO-TONE IMD PLOT (8192-POINT  
DATA RECORD, COHERENT SAMPLING)  
IN  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
1.0  
0.8  
0
f
f
f
= 250.0057MHz  
SAMPLE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
= 99.0317MHz  
IN1  
IN2  
= 101.0459MHz  
= A = -7dBFS  
0.6  
HD3  
A
IN1  
IN2  
0.4  
IMD = -65dBc  
f
IN1  
f
IN2  
0.2  
2f  
IN2  
-
0
f
IN1  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2f - f  
IN1 IN2  
HD2  
10  
50  
90  
130  
170  
210  
250  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
20  
40  
60  
80 100 120 140  
f
(MHz)  
SAMPLE  
ANALOG INPUT FREQUENCY (MHz)  
SNR vs. TEMPERATURE (f = 65.0344MHz,  
IN  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
GAIN BANDWIDTH PLOT  
f
= 250.0057MHz, A = -0.5dBFS)  
SAMPLE  
IN  
(f  
= 250.0057MHz, A = -0.5dBFS)  
SAMPLE  
IN  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
0.6  
0.4  
0.2  
0
2
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-8  
-10  
-12  
-40  
-15  
10  
35  
60  
85  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
1000  
°
TEMPERATURE ( C)  
6
_______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Typical Operating Characteristics (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250.0057MHz, -0.5dBFS; see TOCs for detailed information on test condi-  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
SINAD vs. TEMPERATURE (f = 65.0344MHz,  
SFDR vs. TEMPERATURE (f = 65.0344MHz,  
IN  
IN  
POWER DISSIPATION vs. f  
SAMPLE  
f
= 250.0057MHz, A = -0.5dBFS)  
f
= 250.0057MHz, A = -0.5dBFS)  
SAMPLE IN  
SAMPLE  
IN  
(f = 60.0294MHz, A = -0.5dBFS)  
IN  
IN  
60  
59  
80  
75  
70  
65  
60  
55  
50  
505  
495  
485  
475  
465  
455  
445  
435  
425  
58  
57  
56  
55  
54  
53  
52  
51  
50  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
10  
50  
90  
130  
170  
210  
250  
°
°
TEMPERATURE ( C)  
TEMPERATURE ( C)  
f
(MHz)  
SAMPLE  
SNR vs. VOLTAGE SUPPLY  
(f = 60.0294MHz, A = -0.5dBFS)  
INTERNAL REFERENCE vs. SUPPLY VOLTAGE  
(f = 250.0057MHz)  
FS VOLTAGE vs. FS ADJUST RESISTOR  
IN  
AV = OV  
IN  
SAMPLE  
MEASURED AT THE REFIO PIN  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
1.2350  
1.2340  
1.2330  
1.2320  
1.2310  
1.2300  
FIGURE 6  
CC  
CC  
REFADJ = AV = OV  
CC  
CC  
RESISTOR VALUE APPLIED  
BETWEEN REFADJ AND AGND  
RESISTOR VALUE APPLIED  
BETWEEN REFADJ AND REFIO  
0
100 200 300 400 500 600 700 800 900 1000  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
FS ADJUST RESISTOR ()  
VOLTAGE SUPPLY (V)  
SUPPLY VOLTAGE (V)  
NOISE HISTOGRAM  
(DC INPUT, 128k-POINT DATA RECORD)  
PROPAGATION DELAY TIMES  
vs. TEMPERATURE  
8.0E+04  
7.0E+04  
6.0E+04  
5.0E+04  
4.0E+04  
3.0E+04  
2.0E+04  
1.0E+04  
0.0E+00  
6
74401  
f
= 250MHz  
SAMPLE  
5
4
3
2
1
0
56333  
t
CPDL  
t
PDL  
295  
507  
43  
508  
509  
510  
511  
-40  
-15  
10  
35  
60  
85  
°
DIGITAL OUTPUT NOISE  
TEMPERATURE ( C)  
_______________________________________________________________________________________  
7
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Typical Operating Characteristics (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 250.0057MHz, -0.5dBFS; see TOCs for detailed information on test condi-  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
SINAD vs. CLOCK DUTY CYCLE (f = 1.8148MHz,  
IN  
NOISE POWER RATIO PLOT  
f
= 249.856MHz, A = -0.5dBFS)  
SAMPLE  
IN  
60  
59  
-40  
-50  
58  
57  
56  
-60  
-70  
55  
54  
53  
-80  
-90  
52  
51  
50  
f
f
= 250MHz  
= 28.8MHz  
SAMPLE  
NOTCH  
-100  
NPR = 54.8dB  
5
10  
15  
20  
25  
30  
35  
30  
36  
42  
48  
54  
60  
66  
72  
ANALOG INPUT FREQUENCY (MHz)  
CLOCK DUTY CYCLE (%)  
Pin Description  
PIN  
NAME  
AV  
FUNCTION  
1, 6, 11–14, 20,  
25, 62, 63, 65  
Analog Supply Voltage. Bypass each pin with a 0.1µF capacitor for best decoupling results.  
Analog Converter Ground. Connect the converter’s exposed paddle (EP) to AGND.  
CC  
2, 5, 7, 10, 15, 16,  
18, 19, 21, 24, 64,  
66, 67, EP  
AGND  
REFIO  
Reference Input/Output. With REFADJ pulled high through a 1kresistor, this I/O port allows  
an external reference source to be connected to the MAX1124. With REFADJ pulled low  
through the same 1kresistor, the internal 1.23V bandgap reference is active.  
3
Reference-Adjust Input. REFADJ allows for full-scale range adjustments by placing a resistor  
or trim potentiometer between REFADJ and AGND (decreases FS range) or REFADJ and  
REFIO (increases FS range). If REFADJ is connected to AV  
through a 1kresistor, the  
CC  
4
REFADJ  
internal reference can be overdriven with an external source connected to REFIO. If REFADJ  
is connected to AGND through a 1kresistor, the internal reference is used to determine the  
full-scale range of the data converter.  
8
9
INP  
INN  
Positive Analog Input Terminal  
Negative Analog Input Terminal  
Clock Divider Input. This LVCMOS-compatible input controls which speed the converter’s  
digital outputs are updated. CLKDIV has an internal pulldown resistor.  
CLKDIV = 0: ADC updates digital outputs at one-half the input clock rate.  
CLKDIV = 1: ADC updates digital outputs at the input clock rate.  
17  
CLKDIV  
True Clock Input. This input requires an LVDS-compatible input level to maintain the  
converter’s excellent performance.  
22  
23  
CLKP  
CLKN  
Complementary Clock Input. This input requires an LVDS-compatible input level to maintain  
the converter’s excellent performance.  
8
_______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Digital Converter Ground. Ground connection for digital circuitry and output drivers.  
Digital Supply Voltage. Bypass with a 0.1µF capacitor for best decoupling results.  
No Connection. Do not connect to these pins.  
Complementary Output Bit 0 (LSB)  
26, 45, 61  
OGND  
27, 28, 41, 44, 60  
OV  
CC  
29–32  
33  
N.C.  
D0N  
D0P  
D1N  
D1P  
D2N  
D2P  
D3N  
D3P  
34  
True Output Bit 0 (LSB)  
35  
Complementary Output Bit 1  
36  
True Output Bit 1  
37  
Complementary Output Bit 2  
38  
True Output Bit 2  
39  
Complementary Output Bit 3  
40  
True Output Bit 3  
Complementary Clock Output. This output provides an LVDS-compatible output level and can  
be used to synchronize external devices to the converter clock. There is a 2.1ns delay  
between CLKN and DCLKN.  
42  
43  
DCLKN  
DCLKP  
True Clock Output. This output provides an LVDS-compatible output level and can be used to  
synchronize external devices to the converter clock. There is a 2.1ns delay between CLKP  
and DCLKP.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
D4N  
D4P  
D5N  
D5P  
D6N  
D6P  
D7N  
D7P  
D8N  
D8P  
D9N  
D9P  
Complementary Output Bit 4  
True Output Bit 4  
Complementary Output Bit 5  
True Output Bit 5  
Complementary Output Bit 6  
True Output Bit 6  
Complementary Output Bit 7  
True Output Bit 7  
Complementary Output Bit 8  
True Output Bit 8  
Complementary Output Bit 9 (MSB)  
True Output Bit 9 (MSB)  
Complementary Output for Out-of-Range Control Bit. If an out-of-range condition is detected,  
bit ORN flags this condition by transitioning low.  
58  
59  
ORN  
ORP  
True Output for Out-of-Range Control Bit. If an out-of-range condition is detected, bit ORP  
flags this condition by transitioning high.  
Two’s Complement or Binary Output Format Selection. This LVCMOS-compatible input  
controls the digital output format of the MAX1124. T/B has an internal pulldown resistor.  
T/B = 0: Two’s complement output format  
68  
T/B  
T/B = 1: Binary output format  
_______________________________________________________________________________________  
9
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
CLKDIV  
DCLKP  
DCLKN  
CLKP  
CLKN  
CLOCK-  
DIVIDER  
CONTROL  
CLOCK  
MANAGEMENT  
INPUT  
BUFFER  
INP  
INN  
LVDS  
DATA PORT  
10-BIT PIPELINE  
QUANTIZER CORE  
T/H  
D0P/N–D9P/N  
10  
2.2k  
2.2kΩ  
ORP  
ORN  
REFERENCE  
COMMON-MODE  
BUFFER  
MAX1124  
REFIO  
REFADJ  
Figure 1. MAX1124 Block Diagram  
AV  
CC  
REFERENCE  
SCALING  
ADC FULL-SCALE = REFT - REFB  
AMPLIFIER  
REFT  
REFB  
G
INP  
INN  
REFERENCE  
BUFFER  
2.2kΩ  
2.2kΩ  
REFIO  
0.1µF  
1kΩ  
1V  
REFADJ  
TO COMMON-MODE INPUT  
TO COMMON-MODE INPUT  
AGND  
CONTROL LINE TO  
DISABLE REFERENCE  
BUFFER  
Figure 2. Simplified Analog Input Architecture  
AV  
AV / 2  
CC  
CC  
Detailed Description—Theory  
of Operation  
The MAX1124 uses a fully differential, pipelined archi-  
tecture that allows for high-speed conversion, opti-  
mized accuracy and linearity, while minimizing power  
consumption and die size.  
Figure 3. Simplified Reference Architecture  
Digitized and reference signals are then subtracted,  
resulting in a fractional residue signal that is amplified  
before it is passed on to the next stage through another  
T/H amplifier. This process is repeated until the applied  
input signal has successfully passed through all stages  
of the 10-bit quantizer. Finally, the digital outputs of all  
stages are combined and corrected for in the digital cor-  
rection logic to generate the final output code. The result  
is a 10-bit parallel digital output word in user-selectable  
two’s complement or binary output formats with LVDS-  
compatible output levels. See Figure 1 for a more  
detailed view of the MAX1124 architecture.  
Both positive (INP) and negative/complementary analog  
input terminals (INN) are centered around a common-  
mode voltage of 1.4V, and accept a differential analog  
input voltage swing of ±0.3125V each, resulting in a typi-  
cal differential full-scale signal swing of 1.25V  
.
P-P  
INP and INN are buffered prior to entering each track-  
and-hold (T/H) stage and are sampled when the differen-  
tial sampling clock signal transitions high. A 2-bit ADC  
following the first T/H stage then digitizes the signal, and  
controls a 2-bit digital-to-analog converter (DAC).  
10 ______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INN  
INP  
CLKN  
CLKP  
t
t
CL  
CH  
t
AD  
N
N + 1  
N + 8  
N + 9  
t
CPDL  
t
LATENCY  
DCLKP  
DCLKN  
N - 8  
N - 7  
N
N + 1  
t
- t  
CPDL PDL  
t
PDL  
D0P/N–D9P/N  
ORP/N  
N - 8  
N - 7  
N - 1  
N
N + 1  
t - t ~ 0.4 x t  
CPDL PDL  
with t  
= 1/f  
SAMPLE  
SAMPLE SAMPLE  
NOTE: THE ADC SAMPLES ON THE RISING EDGE OF CLKP. THE RISING EDGE OF DCLKP CAN BE USED TO EXTERNALLY LATCH THE OUTPUT DATA.  
Figure 4. System and Output Timing Diagram  
Analog Inputs (INP, INN)  
OV  
CC  
INP and INN are the fully differential inputs of the  
MAX1124. Differential inputs usually feature good rejec-  
tion of even-order harmonics, which allows for enhanced  
AC performance as the signals are progressing through  
the analog stages. The MAX1124 analog inputs are self-  
biased at a common-mode voltage of 1.4V and allow a  
differential input voltage swing of 1.25V . Both inputs  
P-P  
are self-biased through 2.2kresistors, resulting in a  
typical differential input resistance of 4.4k. It is recom-  
mended to drive the analog inputs of the MAX1124 in  
AC-coupled configuration to achieve best dynamic per-  
formance. See the AC-Coupled Analog Inputs section for  
a detailed discussion of this configuration.  
V
V
ON  
OP  
2.2k  
2.2kΩ  
On-Chip Reference Circuit  
The MAX1124 features an internal 1.23V bandgap ref-  
erence circuit (Figure 3), which, in combination with an  
internal reference-scaling amplifier, determines the full-  
scale range of the MAX1124. Bypass REFIO with a  
0.1µF capacitor to AGND. To compensate for gain  
errors or increase the ADC’s full-scale range, the volt-  
age of this bandgap reference can be indirectly adjust-  
ed by adding an external resistor (e.g., 100ktrim  
potentiometer) between REFADJ and AGND or  
REFADJ and REFIO. See the Applications Information  
section for a detailed description of this process.  
OGND  
Figure 5. Simplified LVDS Output Architecture  
Clock Inputs (CLKP, CLKN)  
Designed for a differential LVDS clock input drive, it is  
recommended to drive the clock inputs of the MAX1124  
______________________________________________________________________________________ 11  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Table 1. MAX1124 Digital Output Coding  
BINARY  
DIGITAL OUTPUT CODE  
(D9–D0)  
TWO’S COMPLEMENT  
DIGITAL OUTPUT CODE  
(D9–D0)  
INP ANALOG  
VOLTAGE LEVEL  
INN ANALOG  
VOLTAGE LEVEL  
OUT-OF-RANGE  
ORP (ORN)  
11 1111 1111  
(exceeds positive full scale,  
OR set)  
01 1111 1111  
(exceeds positive full scale,  
OR set)  
> V  
+ 0.3125V  
< V  
- 0.3125V  
CM  
1 (0)  
0 (1)  
0 (1)  
0 (1)  
1 (0)  
CM  
11 1111 1111  
(represents positive full  
scale)  
01 1111 1111  
(represents positive full  
scale)  
V
+ 0.3125V  
V
- 0.3125V  
CM  
CM  
10 0000 0000 or  
01 1111 1111  
(represents midscale)  
00 0000 0000 or  
11 1111 1111  
(represents midscale)  
V
V
CM  
CM  
00 0000 0000  
(represents negative full  
scale)  
10 0000 0000  
(represents negative full  
scale)  
V
- 0.3125V  
V
+ 0.3125V  
CM  
CM  
00 0000 0000  
10 0000 0000  
(exceeds negative full scale, (exceeds negative full scale,  
OR set) OR set)  
< V  
- 0.3125V  
> V  
+ 0.3125V  
CM  
CM  
with an LVDS-compatible clock to achieve the best  
dynamic performance. The clock signal source must be  
a high-quality, low phase noise to avoid any degrada-  
tion in the noise performance of the ADC. The clock  
inputs (CLKP, CLKN) are internally biased to 1.2V,  
can be used to synchronize external devices (e.g.,  
FPGAs) to the ADC. DCLKP and DCLKN are differential  
outputs with LVDS-compatible voltage levels. There is a  
2.1ns delay time between the rising (falling) edge of  
CLKP (CLKN) and the rising edge of DCLKP (DCLKN).  
See Figure 4 for timing details.  
accept a differential signal swing of 0.2V  
to 1.0V  
P-P  
P-P  
and are usually driven in AC-coupled configuration.  
See the Differential, AC-Coupled Clock Input in the  
Applications Information section for more circuit details  
on how to drive CLKP and CLKN appropriately.  
Although not recommended, the clock inputs also  
accept a single-ended input signal.  
Divide-by-2 Clock Control (CLKDIV)  
The MAX1124 offers a clock control line (CLKDIV),  
which supports the reduction of clock jitter in a system.  
Connect CLKDIV to OGND to enable the ADC’s internal  
divide-by-2 clock divider. Data is now updated at one-  
half the ADC’s input clock rate. CLKDIV has an internal  
pulldown resistor and can be left open for applications  
that only operate with update rates one-half of the con-  
The MAX1124 also features an internal clock manage-  
ment circuit (duty-cycle equalizer) that ensures that the  
clock signal applied to inputs CLKP and CLKN is  
processed to provide a 50ꢀ duty cycle clock signal,  
which desensitizes the performance of the converter to  
variations in the duty cycle of the input clock source.  
Note that the clock duty-cycle equalizer cannot be  
turned off externally and requires a minimum clock fre-  
quency of >20MHz to work appropriately and accord-  
ing to data sheet specifications.  
verter’s sampling rate. Connecting CLKDIV to OV  
CC  
allows data to be updated at the speed of the ADC input  
clock.  
System Timing Requirements  
Figure 4 depicts the relationship between the clock  
input and output, analog input, sampling event, and  
data output. The MAX1124 samples on the rising  
(falling) edge of CLKP (CLKN). Output data is valid on  
the next rising (falling) edge of the DCLKP (DCLKN)  
clock, but has an internal latency of nine clock cycles.  
Clock Outputs (DCLKP, DCLKN)  
The MAX1124 features a differential clock output, which  
can be used to latch the digital output data with an  
external latch or receiver. Additionally, the clock output  
12 ______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Digital Outputs (D0P/N–D9P/N, DCLKP/N,  
ORP/N) and Control Input T/B  
ADC FULL-SCALE = REFT - REFB  
REFERENCE-  
SCALING  
AMPLIFIER  
The digital outputs D0P/N–D9P/N, DCLKP/N, and  
ORP/N are LVDS compatible, and data on  
D0P/N–D9P/N is presented in either binary or two’s  
complement format (Table 1). The T/B control line is an  
LVCMOS-compatible input, which allows the user to  
select the desired output format. Pulling T/B low out-  
puts data in two’s complement and pulling it high pre-  
sents data in offset binary format on the 10-bit parallel  
bus. T/B has an internal pulldown resistor and may be  
left unconnected in applications using only two’s com-  
plement output format. All LVDS outputs provide a typi-  
cal voltage swing of 0.4V around a common-mode  
voltage of approximately 1.2V, and must be terminated  
at the far end of each transmission line pair (true and  
complementary) with 100. The LVDS outputs are pow-  
ered from a separate power supply, which can be  
operated between 1.7V and 1.9V.  
REFT  
REFB  
G
REFERENCE  
BUFFER  
REFIO  
0.1µF  
13kTO 1MΩ  
13kTO 1MΩ  
1V  
REFADJ  
CONTROL LINE TO  
DISABLE REFERENCE  
BUFFER  
AV  
CC  
AV / 2  
CC  
Figure 6. Circuit Suggestions to Adjust the ADC’s Full-Scale  
Range  
The MAX1124 offers an additional differential output  
pair (ORP, ORN) to flag out-of-range conditions, where  
out of range is above positive or below negative full  
scale. An out-of-range condition is identified with ORP  
(ORN) transitioning high (low).  
Applications Information  
Full-Scale Range Adjustments Using the  
Internal Bandgap Reference  
Note: Although differential LVDS reduces single-ended  
transients to the supply and ground planes, capacitive  
loading on the digital outputs should still be kept as low  
as possible. Using LVDS buffers on the digital outputs  
of the ADC when driving off-board may improve overall  
performance and reduce system timing constraints.  
The MAX1124 supports a full-scale adjustment range of  
10ꢀ (±5ꢀ). To decrease the full-scale range, an exter-  
nal resistor value ranging from 13kto 1Mmay be  
added between REFADJ and AGND. A similar  
approach can be taken to increase the ADCs full-scale  
range. Adding a variable resistor, potentiometer, or  
V
CLK  
0.1µF  
8
0.1µF  
SINGLE-ENDED  
INPUT TERMINAL  
7
6
0.1µF  
50Ω  
2
150Ω  
MC100LVEL16  
AV OV  
CC CC  
0.1µF  
3
CLKN CLKP  
INP  
INN  
150Ω  
D0P/N–D9P/N  
10  
510Ω  
510Ω  
4
5
0.01µF  
MAX1124  
VGND  
AGND  
OGND  
Figure 7. Differential, AC-Coupled, PECL-Compatible Clock Input Configuration  
______________________________________________________________________________________ 13  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
AV  
OV  
CC  
CC  
SINGLE-ENDED  
INPUT TERMINAL  
0.1µF  
15Ω  
15Ω  
ADT1–1WT  
INP  
INN  
D0P/N–D9P/N  
10  
25Ω  
25Ω  
MAX1124  
0.1µF  
AGND  
OGND  
Figure 8. Transformer-Coupled Analog Input Configuration with Secondary-Side Termination  
predetermined resistor value between REFADJ and  
REFIO increases the full-scale range of the data con-  
AV  
OV  
CC  
CC  
verter. Figure 6 shows the two possible configurations  
SINGLE-ENDED  
INPUT TERMINAL  
0.1µF  
and their impact on the overall full-scale range adjust-  
ment of the MAX1124. Do not use resistor values of less  
than 13kto avoid instability of the internal gain regula-  
tion loop for the bandgap reference.  
INP  
INN  
D0P/N–D9P/N  
10  
50Ω  
MAX1124  
0.1µF  
Differential, AC-Coupled, PECL-Compatible  
Clock Input  
25Ω  
The preferred method of clocking the MAX1124 is differ-  
entially with LVDS- or PECL-compatible input levels. To  
accomplish this, a 50reverse-terminated clock signal  
source with low phase noise is AC-coupled into a fast  
differential receiver such as the MC100LVEL16 (Figure  
7). The receiver produces the necessary PECL output  
levels to drive the clock inputs of the data converter.  
AGND  
OGND  
Figure 9. Single-Ended AC-Coupled Analog Input  
Configuration  
Single-Ended, AC-Coupled Analog Input  
Although not recommended, the MAX1124 can be  
used in single-ended mode (Figure 9). Analog signals  
can be AC-coupled to the positive input INP through a  
0.1µF capacitor and terminated with a 50resistor to  
AGND. The negative input should be 25reverse-ter-  
minated and AC grounded with a 0.1µF capacitor.  
Differential, AC-Coupled Analog Input  
An RF transformer provides an excellent solution to  
convert a single-ended source signal to a fully differen-  
tial signal, required by the MAX1124 for optimum  
dynamic performance. In general, the MAX1124 pro-  
vides the best SFDR and THD with fully differential  
input signals and it is not recommended to drive the  
ADC inputs in single-ended configuration. In differential  
input mode, even-order harmonics are usually lower  
since INP and INN are balanced, and each of the ADC  
inputs only requires half the signal swing compared to  
a single-ended configuration.  
Grounding, Bypassing, and Board  
Layout Considerations  
The MAX1124 requires board layout design techniques  
suitable for high-speed data converters. This ADC pro-  
vides separate analog and digital power supplies. The  
analog and digital supply voltage pins accept input  
voltage ranges of 1.7V to 1.9V. Although both supply  
types can be combined and supplied from one source,  
it is recommended to use separate sources to cut down  
on performance degradation caused by digital switch-  
ing currents, which can couple into the analog supply  
Figure 8 depicts a secondary-side termination of the 1:1  
transformer into two separate 25loads. Terminating  
the transformer in this fashion reduces the potential  
effects of transformer parasitics. The source impedance  
combined with the shunt capacitance provided by a PC  
board and the ADC’s parasitic capacitance reduce the  
combined bandwidth to approximately 550MHz.  
network. Isolate analog and digital supplies (AV  
OV ) where they enter the PC board with separate  
and  
CC  
CC  
14 ______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
BYPASSING—BOARD LEVEL  
BYPASSING—ADC LEVEL  
AV  
CC  
AV  
OV  
CC  
CC  
0.1µF  
0.1µF  
ANALOG POWER-  
SUPPLY SOURCE  
1µF  
10µF  
47µF  
AGND  
OGND  
D0P/N–D9P/N  
10  
OV  
CC  
MAX1124  
DIGITAL/OUTPUT-  
DRIVER POWER-  
SUPPLY SOURCE  
1µF  
10µF  
47µF  
AGND  
OGND  
NOTE: EACH POWER-SUPPLY PIN (ANALOG AND DIGITAL)  
SHOULD BE DECOUPLED WITH AN INDIVIDUAL 0.1µF CAPACITOR CLOSE TO THE ADC.  
Figure 10. Grounding, Bypassing, and Decoupling Recommendations for the MAX1124  
networks of ferrite beads and capacitors to their corre-  
sponding grounds (AGND, OGND).  
effects of digital noise coupling, ground return vias can  
be positioned throughout the layout to divert digital  
switching currents away from the sensitive analog sec-  
tions of the ADC. This does not require additional  
ground splitting, but can be accomplished by placing  
substantial ground connections between the analog  
front end and the digital outputs.  
To achieve optimum performance, provide each supply  
with a separate network of a 47µF tantalum capacitor in  
parallel with 10µF and 1µF ceramic capacitors.  
Additionally, the ADC requires each supply pin to be  
bypassed with separate 0.1µF ceramic capacitors  
(Figure 10). Locate these capacitors directly at the ADC  
supply pins or as close as possible to the MAX1124.  
Choose surface-mount capacitors, which are preferably  
located on the same side as the converter, to save  
space and minimize the inductance.  
The MAX1124 is packaged in a 68-pin QFN-EP pack-  
age (package code: G6800-4), providing greater  
design flexibility, increased thermal efficiency, and opti-  
mized AC performance of the ADC. The EP must be  
soldered down to AGND.  
Multilayer boards with separated ground and power  
planes produce the highest level of signal integrity.  
Consider the use of a split ground plane arranged to  
match the physical location of analog and digital  
ground on the ADC’s package. The two ground planes  
should be joined at a single point so the noisy digital  
ground currents do not interfere with the analog ground  
plane. A major concern with this approach are the  
dynamic currents that may need to travel long dis-  
tances before they are recombined at a common  
source ground, resulting in large and undesirable  
ground loops. Ground loops can add to digital noise by  
coupling back to the analog front end of the converter,  
resulting in increased spur activity and a decreased  
noise performance.  
In this package, the data converter die is attached to  
an EP lead frame with the back of this frame exposed  
at the package bottom surface, facing the PC board  
side of the package. This allows a solid attachment of  
the package to the PC board with standard infrared (IR)  
flow soldering techniques.  
Note that thermal efficiency is not the key factor, since  
the MAX1124 features low-power operation. The  
exposed pad is the key element to ensure a solid  
ground connection between the DAC and the PC  
board’s analog ground layer.  
Considerable care must be taken, when routing the  
digital output traces for a high-speed, high-resolution  
data converter. It is essential to keep trace lengths at a  
minimum and place minimal capacitive loading—less  
than 5pF—on any digital trace to prevent coupling to  
sensitive analog sections of the ADC. It is recommend-  
ed to run the LVDS output traces as differential lines  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy, digital systems ground. To minimize the  
______________________________________________________________________________________ 15  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
with 100characteristic impedance from the ADC to  
the LVDS load device.  
CLKP  
CLKN  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
ANALOG  
INPUT  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
t
AD  
line can be either a best straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. However, the  
static linearity parameters for the MAX1124 are mea-  
sured using the histogram method with an input fre-  
quency of 10MHz.  
t
AJ  
SAMPLED  
DATA (T/H)  
HOLD  
TRACK  
TRACK  
T/H  
Differential Nonlinearly (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. The  
MAX1124’s DNL specification is measured with the his-  
togram method based on a 10MHz input tone.  
Figure 11. Aperture Jitter/Delay Specifications  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal component) to the RMS value  
of the next-largest noise or harmonic distortion compo-  
nent. SFDR is usually measured in dBc with respect to  
the carrier frequency amplitude or in dBFS with respect  
to the ADC’s full-scale range.  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 11 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Two-Tone Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 3rd-order (or higher) inter-  
modulation products. The individual input tone levels  
are at -7dB full scale.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken (Figure 11).  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
Pin-Compatible Higher Speed/  
Lower Resolution Versions  
RESOLUTION  
(Bits)  
SPEED GRADE  
(Msps)  
PART  
MAX1122  
MAX1123  
MAX1121  
10  
10  
8
170  
210  
250  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
In reality, other noise sources such as thermal noise,  
clock jitter, signal phase noise, and transfer function  
nonlinearities are also contributing to the SNR calcula-  
tion and should be considered when determining the  
SNR in ADC.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components excluding the fundamen-  
tal and the DC offset. In case of the MAX1124, SINAD  
is computed from a curve fit.  
16 ______________________________________________________________________________________  
1.8V, 10-Bit, 250Msps Analog-to-Digital Converter  
with LVDS Outputs for Wideband Applications  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY