MAX11200 [MAXIM]

24-Bit, Single-Channel, Ultra-Low-Power, Delta-Sigma ADCs with GPIO; 24位,单通道,超低功耗, Σ-Δ ADC,具有GPIO
MAX11200
型号: MAX11200
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

24-Bit, Single-Channel, Ultra-Low-Power, Delta-Sigma ADCs with GPIO
24位,单通道,超低功耗, Σ-Δ ADC,具有GPIO

文件: 总27页 (文件大小:1798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5332; Rev 0; 6/10  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
General Description  
Features  
S 24.0-Bit ENOB at 5sps  
The MAX11200/MAX11210 are ultra-low-power (< 300FA  
active current), high-resolution, serial output ADCs.  
These devices provide the highest resolution per unit  
power in the industry, and are optimized for applications  
that require very high dynamic range with low power,  
such as sensors on a 4mA to 20mA industrial control  
loop. Optional input buffers provide isolation of the sig-  
nal inputs from the switched capacitor sampling network  
allowing these converters to be used with high-imped-  
ance sources without compromising available dynamic  
range or linearity. The devices provide a high-accuracy  
internal oscillator that requires no external components.  
When used with the specified data rates, the internal  
digital filter provides more than 100dB rejection of 50Hz  
or 60Hz line noise. The devices are configurable using  
the SPI™ interface and include four GPIOs that can be  
used for external mux control. The MAX11210 includes  
digital programmable gain of 1, 2, 4, 8, or 16.  
20.9-Bit Noise-Free Resolution at 10sps  
19-Bit Noise-Free Resolution at 120sps  
S 570nV  
Noise at 10sps, Q3.6V Input  
FS  
RMS  
S 1ppm INL (typ), 10ppm (max)  
S No Missing Codes  
S Ultra-Low Power Dissipation  
Operating-Mode Current Drain < 300µA (max)  
Sleep-Mode Current Drain < 0.4µA  
S Programmable Gain (1, 2, 4, 8, or 16) (MAX11210)  
S Four SPI-Controlled GPIOs for External Mux  
Control  
S 2.7V to 3.6V Analog Supply Voltage Range  
S 1.7V to 3.6V Digital and I/O Supply Voltage Range  
S Fully Differential Signal and Reference Inputs  
S High-Impedance Inputs  
Optional Input Buffers on Both Signal and  
Reference Inputs  
S Programmable Internal Clock or External Clock  
The MAX11200/MAX11210 operate over the -40NC to  
+85NC temperature range, and are available in a 16-pin  
QSOP package.  
Mode  
S > 100dB (min) 50Hz/60Hz Rejection  
S SPI, QSPI™, MICROWIRE™-Compatible Serial  
Interface  
Applications  
Sensor Measurement (Temperature and  
Pressure)  
S On-Demand Offset and Gain Self-Calibration and  
System Calibration  
S User-Programmable Offset and Gain Registers  
S -40°C to +85°C Operating Temperature Range  
S Q2kV ESD Protection  
Portable Instrumentation  
Battery Applications  
Weigh Scales  
S Lead(Pb)-Free and RoHS-Compliant QSOP  
Package  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX11200EEE+  
MAX11210EEE+  
-40°C to +85°C 16 QSOP  
-40°C to +85°C 16 QSOP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Selector Guide  
RESOLUTION  
(BITS)  
4-WIRE SPI, 16-PIN QSOP,  
PROGRAMMABLE GAIN  
4-WIRE SPI,  
16-PIN QSOP  
2-WIRE SERIAL,  
10-PIN µMAX  
MAX11201 (with buffers)  
MAX11202 (without buffers)  
24  
MAX11210  
MAX11200  
20  
18  
16  
MAX11206  
MAX11209  
MAX11213  
MAX11207  
MAX11211  
MAX11203  
MAX11208  
MAX11212  
MAX11205  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
ABSOLUTE MAXIMUM RATINGS  
Any Pin to GND....................................................-0.3V to +3.9V  
AVDD to GND.......................................................-0.3V to +3.9V  
DVDD to GND ......................................................-0.3V to +3.9V  
Analog Inputs (AINP, AINN, REFP, REFN)  
Continuous Power Dissipation (T = +70NC)  
A
16-Pin QSOP (derate 8.3mW/NC above +70NC)..........667mW  
Operating Temperature Range.......................... -40NC to +85NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -55NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
to GND ............................................. -0.3V to (V  
Digital Inputs and Digital Outputs  
to GND ............................................. -0.3V to (V  
+ 0.3V)  
AVDD  
+ 0.3V)  
DVDD  
ESD  
(AVDD, AINP, AINN, REFP, REFN, DVDD, CLK, CS,  
HB  
SCLK, DIN, RDY/DOUT, GND, GPIO_) ........... Q2kV (Note 1)  
Note 1: Human Body Model to specification MIL-STD-883 Method 3015.7.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
AVDD  
= +3.6V, V  
= +1.7V, V  
- V  
= V  
; internal clock, single-cycle mode (SCYCLE = 1), T = T  
to T  
,
MAX  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
unless otherwise noted. Typical values are at T = +25NC under normal conditions, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
120sps  
10sps  
19  
Noise-Free Resolution (Notes 2, 3)  
NFR  
Bits  
20.9  
2.1  
120sps  
10sps  
Noise (Notes 2, 3)  
Integral Nonlinearity  
Zero Error  
V
N
FV  
RMS  
0.57  
INL  
At 10sps (Note 4)  
-10  
-10  
+10  
+10  
ppmFSR  
ppmFSR  
nV/NC  
After self and system calibration,  
V
REFP  
- V  
= 2.5V  
REFN  
Zero Drift  
50  
After self and system calibration,  
- V = 2.5V (Note 5)  
Full-Scale Error  
-20  
+20  
ppmFSR  
V
REFP  
REFN  
ppmFSR/  
Full-Scale Error Drift  
0.05  
NC  
AVDD DC rejection  
DVDD DC rejection  
70  
90  
80  
Power-Supply Rejection  
dB  
100  
ANALOG INPUTS/REFERENCE INPUTS  
DC rejection  
90  
90  
123  
Common-Mode Rejection  
CMR  
50Hz/60Hz rejection at 120sps  
50Hz/60Hz rejection at 1sps to 15sps  
LINEF = 1, for 1sps to 15sps (Notes 6, 7)  
LINEF = 0, for 1sps to 15sps (Notes 6, 7)  
AIN buffers disabled  
dB  
144  
100  
100  
Normal-Mode 50Hz Rejection  
Normal-Mode 60Hz Rejection  
Common-Mode Voltage Range  
NMR  
NMR  
144  
144  
dB  
dB  
V
50  
60  
V
V
AVDD  
GND  
2
______________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= +3.6V, V  
= +1.7V, V  
- V  
= V  
; internal clock, single-cycle mode (SCYCLE = 1), T = T  
to T  
,
MAX  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
unless otherwise noted. Typical values are at T = +25NC under normal conditions, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
-
GND  
Buffers disabled  
30mV  
Low input voltage  
High input voltage  
V
+
GND  
Buffers enabled  
Buffers disabled  
Buffers enabled  
100mV  
Absolute Input Voltage  
V
V
+
AVDD  
30mV  
V
AVDD  
-
100mV  
DC Input Leakage  
Sleep mode  
Buffer disabled  
Buffer enabled  
Buffer disabled  
Buffer enabled  
Buffer disabled  
Buffer disabled  
Unipolar  
Q1  
FA  
FA/V  
nA  
Q1.4  
Q20  
Q2.1  
Q30  
5
AIN Dynamic Input Current  
FA/V  
nA  
REF Dynamic Input Current  
AIN Input Capacitance  
REF Input Capacitance  
pF  
7.5  
pF  
0
V
REF  
AIN Voltage Range  
Input Sampling Rate  
V
Bipolar  
-V  
+V  
REF  
REF  
LINEF = 0  
246  
f
S
kHz  
LINEF = 1  
204.8  
Buffers disabled  
0
V
V
- 0.1  
AVDD  
REF Voltage Range  
REF Sampling Rate  
V
AVDD  
Buffers enabled  
0.1  
LINEF = 0  
LINEF = 1  
246  
kHz  
204.8  
LOGIC INPUTS (SCLK, CLK, DIN, GPIO1–GPIO4)  
Input Current  
Input leakage current  
Q1  
FA  
0.3 x  
Input Low Voltage  
V
IL  
V
V
DVDD  
0.7 x  
Input High Voltage  
Input Hysteresis  
V
V
IH  
V
DVDD  
V
HYS  
200  
mV  
60Hz line frequency  
55Hz line frequency  
50Hz line frequency  
2.4576  
2.25275  
2.048  
External Clock  
MHz  
LOGIC OUTPUTS (RDY/DOUT, GPIO1–GPIO4)  
Output Low Level  
V
I
= 1mA; also tested for V  
DVDD  
= 3.6V  
= 3.6V  
0.4  
V
V
OL  
OL  
0.9 x  
Output High Level  
V
I
= 1mA; also tested for V  
DVDD  
OH  
OH  
V
DVDD  
Leakage Current  
High-impedance state  
High-impedance state  
Q500  
nA  
pF  
Output Capacitance  
9
_______________________________________________________________________________________  
3
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= +3.6V, V  
= +1.7V, V  
- V  
= V  
; internal clock, single-cycle mode (SCYCLE = 1), T = T  
to T  
,
MAX  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
unless otherwise noted. Typical values are at T = +25NC under normal conditions, unless otherwise noted.)  
A
PARAMETER  
POWER REQUIREMENTS  
Analog Supply  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
2.7  
1.7  
3.6  
3.6  
V
V
AVDD  
Digital Supply  
DVDD  
Buffers disabled  
Buffers enabled  
235  
255  
0.15  
185  
205  
0.25  
50  
300  
Total Operating Current  
AVDD Sleep Current  
AVDD + DVDD  
FA  
FA  
FA  
2
Buffers disabled  
Buffers enabled  
235  
AVDD Operating Current  
DVDD Sleep Current  
2
FA  
FA  
DVDD Operating Current  
SPI TIMING CHARACTERISTICS  
SCLK Frequency  
65  
f
5
MHz  
ns  
SCLK  
SCLK Clock Period  
t
200  
80  
80  
40  
40  
CP  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Low to 1st SCLK Rise Setup  
CS High to 17th SCLK Setup  
t
ns  
CH  
t
60% duty cycle at 5MHz  
ns  
CL  
t
t
ns  
CSS0  
CSS1  
ns  
CS High After 16th SCLK Falling  
Edge Hold  
t
3
ns  
CSH1  
t
40  
40  
0
ns  
ns  
ns  
CS Pulse-Width High  
DIN to SCLK Setup  
DIN Hold After SCLK  
CSW  
t
DS  
DH  
t
Output transition time, data changes on  
falling edge of SCLK  
RDY/DOUT Transition Valid After  
SCLK Fall  
t
40  
ns  
ns  
DOT  
Output hold time allows for negative edge  
data read  
RDY/DOUT Remains Valid After  
SCLK Fall  
t
3
DOH  
t
t
= t - t  
CL DOT  
40  
ns  
ns  
RDY/DOUT Valid Before SCLK Rise  
CS Rise to RDY/DOUT Disable  
DOL  
DOL  
t
C
= 20pF  
25  
40  
DOD  
LOAD  
Default value of RDY is 1 for minimum  
specification; maximum specification for  
valid 0 on RDY/DOUT  
t
0
0
ns  
CS Fall to RDY/DOUT Valid  
DOE  
Maximum time after RDY asserts to read  
DATA register; t  
conversion  
t
-
CP  
CNV  
60 x t  
DATA Fetch  
t
is the time for one  
DF  
CNV  
Note 2: These specifications are not fully tested and are guaranteed by design and/or characterization.  
Note 3: V = V  
AINP  
AINN.  
Note 4: ppmFSR is parts per million of full scale.  
Note 5: Positive full-scale error includes zero-scale errors (unipolar offset error or bipolar zero error) and applies to both unipolar  
and bipolar input ranges.  
Note 6: For data rates (1, 2.5, 5, 10, 15)sps and (0.83, 2.08, 4.17, 8.33, 12.5)sps.  
Note 7: Normal-mode rejection of power line frequencies of 60Hz/50Hz apply only for single-cycle data rates at 15sps/10sps and  
lower or continuous data rate of 60sps/50sps.  
4
______________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Typical Operating Characteristics  
(V  
AVDD  
= +3.6V, V  
= +1.8V, V  
- V  
= 2.5V; internal clock; T = T  
to T , unless otherwise noted. Typical values  
MAX  
DVDD  
REFP  
REFN  
A
MIN  
are at T  
A =  
+25NC.)  
ANALOG ACTIVE CURRENT vs. AVDD VOLTAGE  
(NO BUFFERS ENABLED)  
ANALOG ACTIVE CURRENT vs. AVDD VOLTAGE  
(SIGNAL OR REFERENCE BUFFERS ENABLED)  
260  
ANALOG ACTIVE CURRENT vs. AVDD VOLTAGE  
(SIGNAL AND REFERENCE BUFFERS ENABLED)  
280  
260  
LINEF = 0, LINEF = 1  
240  
220  
200  
180  
160  
140  
120  
240  
220  
200  
180  
160  
140  
120  
260  
T = +85°C  
A
T
= +85°C  
A
240  
220  
200  
180  
160  
T
= +85°C  
A
T = +25°C  
A
T
A
= +25°C  
T
A
= +25°C  
T = -45°C  
A
T
= -45°C  
A
T
A
= -45°C  
SIGNAL BUFFERS  
LINEF = 1  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
AVDD VOLTAGE (V)  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
AVDD VOLTAGE (V)  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
AVDD VOLTAGE (V)  
ANALOG SLEEP CURRENT  
vs. AVDD VOLTAGE  
ACTIVE SUPPLY CURRENT  
vs. TEMPERATURE (LINEF = 0)  
ACTIVE SUPPLY CURRENT  
vs. TEMPERATURE (LINEF = 1)  
1.0  
0.8  
0.6  
0.4  
0.2  
0
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
T = -45°C, +25°C, +85°C  
A
TOTAL  
TOTAL  
V
AVDD  
= 3.0V  
V
= 3.0V  
AVDD  
T = -45°C  
A
V
= 1.8V  
DVDD  
V
= 1.8V  
DVDD  
T = +85°C  
A
0
0
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
AVDD VOLTAGE (V)  
-45 -25  
-5  
15  
35  
55  
75  
95  
-45 -25  
-5  
15  
35  
55  
75  
95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DIGITAL ACTIVE CURRENT  
vs. DVDD VOLTAGE  
DIGITAL SLEEP CURRENT  
vs. DVDD VOLTAGE  
SLEEP CURRENT vs. TEMPERATURE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
130  
120  
110  
100  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T = -45°C, +25°C, +85°C  
A
T = +85°C  
A
T = -45°C  
A
LINEF = 0  
T = +25°C  
A
80  
TOTAL  
DVDD  
T = +85°C  
A
T = -45°C  
A
70  
60  
LINEF = 1  
50  
AVDD  
40  
-45 -25  
-5  
15  
35  
55  
75  
95  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
DVDD VOLTAGE (V)  
1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5  
DVDD VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= +3.6V, V  
= +1.8V, V  
- V  
= 2.5V; internal clock; T = T  
to T , unless otherwise noted. Typical values  
MAX  
DVDD  
REFP  
REFN  
A
MIN  
are at T  
+25NC.)  
A =  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. AVDD VOLTAGE  
NOISE vs. INPUT VOLTAGE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
3.0  
1.0  
V
= 3.0V  
AVDD  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
LINEF = 0  
LINEF = 1  
LINEF = 0  
LINEF = 1  
-45 -25  
-5  
15  
35  
55  
75  
95  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
AVDD VOLTAGE (V)  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INTEGRAL NONLINEARITY  
vs. INPUT VOLTAGE  
LONG-TERM ADC READINGS  
TUE vs. INPUT VOLTAGE  
5
4
10  
8
10  
8
VIN(CM) = 1.8V  
VIN(CM) = 1.8V  
SHORTED INPUTS  
RMS NOISE = 570nV  
= +25°C  
T
A
3
6
6
T
A
= +85°C  
T = -45°C  
A
2
4
4
T
= -45°C  
A
T
A
= +85°C  
1
2
2
0
0
0
-1  
-2  
-3  
-4  
-5  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
T
= +25°C  
A
T
0
= +25°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
-2.5 -2.0 -1.5 -1.0 -0.5  
0.5 1.0 1.5 2.0 2.5  
TIME (MINUTES)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
PSRR vs. FREQUENCY  
(DATA RATE 120SPS)  
PSRR vs. FREQUENCY  
(DATA RATE 10SPS)  
CMRR vs. FREQUENCY  
0
-20  
0
-20  
0
-20  
-40  
-40  
-40  
-60  
-80  
-60  
-60  
-80  
-80  
AVDD  
DVDD  
AVDD  
DVDD  
120SPS  
10SPS  
-100  
-120  
-140  
-100  
-120  
-140  
-100  
-120  
-140  
1
10  
100  
1000 10,000 100,000  
1
10  
100  
1000 10,000 100,000  
1
10  
100  
1000 10,000 100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
______________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Functional Diagram  
CLOCK GENERATOR  
CLK  
TIMING  
AVDD  
DVDD  
GND  
CS  
AINP  
AINN  
DIGITAL LOGIC  
AND SERIAL-  
INTERFACE  
SCLK  
DIN  
PROGRAMMABLE  
GAIN*  
DIGITAL FILTER  
4
(SINC )  
(1–16)  
CONTROLLER  
3RD-ORDER  
DELTA-SIGMA  
MODULATOR  
RDY/DOUT  
REFP  
REFN  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
MAX11200  
MAX11210  
GPIO  
*PROGRAMMABLE GAIN ONLY AVAILABLE ON THE MAX11210.  
_______________________________________________________________________________________  
7
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Pin Configuration  
TOP VIEW  
+
GPIO1  
1
2
3
4
5
6
7
8
16 GPIO4  
15 CLK  
GPIO2  
GPIO3  
GND  
14 SCLK  
13 RDY/DOUT  
12 DIN  
MAX11200  
MAX11210  
REFP  
REFN  
AINN  
AINP  
11 CS  
10 DVDD  
9
AVDD  
QSOP  
Pin Description  
PIN  
1
NAME  
GPIO1  
GPIO2  
GPIO3  
GND  
FUNCTION  
General-Purpose I/O 1. Register controllable using SPI.  
General-Purpose I/O 2. Register controllable using SPI.  
General-Purpose I/O 3. Register controllable using SPI.  
Ground. Ground reference for analog and digital circuitry.  
2
3
4
Differential Reference Positive Input. REFP must be more positive than REFN. Connect REFP to a voltage  
between AVDD and GND.  
5
6
REFP  
REFN  
Differential Reference Negative Input. REFN must be more negative than REFP. Connect REFN to a  
voltage between AVDD and GND.  
7
8
AINN  
AINP  
AVDD  
DVDD  
CS  
Negative Fully Differential Analog Input  
Positive Fully Differential Analog Input  
9
Analog Supply Voltage. Connect a supply voltage between +2.7V and +3.6V with respect to GND.  
Digital Supply Voltage. Connect a digital supply voltage between +1.7V and +3.6V with respect to GND.  
Active-Low, Chip-Select Logic Input  
10  
11  
Serial-Data Input. Data present at DIN is shifted to the device’s internal registers at the rising edge of  
the serial clock at SCLK, when the device is accessed for an internal register write or for a command  
operation.  
12  
DIN  
Data Ready Output/Serial-Data Output. This output serves a dual function. In addition to the serial-data  
output function, the RDY/DOUT also indicates that the data is ready when the RDY is logic-low. RDY/  
DOUT changes on the falling edge of SCLK.  
13  
14  
15  
16  
RDY/DOUT  
SCLK  
Serial-Clock Input. Apply an external serial clock to SCLK.  
External Clock Signal Input. When external clock mode is selected (EXTCLK = 1), provide a 2.4576MHz  
or 2.048MHz clock signal at CLK. Other frequencies can be used, but the data rate and digital filter notch  
frequencies scale accordingly.  
CLK  
GPIO4  
General-Purpose I/O 4. Register controllable using SPI.  
8
______________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
the inputs from the capacitive load presented by the  
modulator, allowing for high source-impedance analog  
transducers. The value of the SIGBUF bit in the CTRL1  
register determines whether the input buffer is enabled  
or disabled. See Table 12.  
Detailed Description  
The MAX11200/MAX11210 are ultra-low-power (< 300FA  
active), high-resolution, low-speed, serial-output ADCs.  
These ADCs provide the highest resolution per unit  
power in the industry, and are optimized for applications  
that require very high dynamic range with low power  
such as sensors on a 4mA to 20mA industrial control  
loop. Optional input buffers provide isolation of the signal  
inputs from the switched capacitor sampling network,  
allowing the devices to be used with very high imped-  
ance sources without compromising available dynamic  
range. The devices provide a high-accuracy internal  
oscillator, which requires no external components. When  
used with the specified data rates, the internal digital fil-  
ter provides more than 144dB rejection of 50Hz or 60Hz  
line noise. The devices are highly configurable using the  
SPI interface and include four GPIOs for external mux  
control.  
Input Voltage Range  
The modulator input range is programmable for bipolar  
(-V  
to +V ) or unipolar (0 to V ) ranges. The U/B  
REF REF  
REF  
bit in the CTRL1 register configures the devices for uni-  
polar or bipolar transfer functions. See Table 12.  
System Clock  
The devices incorporate a highly stable internal oscillator  
that provides the system clock. The system clock runs  
the internal state machine and is trimmed to 2.4576MHz  
or 2.048MHz. The internal oscillator clock is divided  
down to run the digital and analog timing. The LINEF bit  
in the CTRL1 register determines the internal oscillator  
frequency. See Tables 10 and 12. Set LINEF = 0 to select  
the 2.4576MHz oscillator and LINEF = 1 to select the  
2.048MHz oscillator. The 2.4576MHz oscillator provides  
maximum 60Hz rejection, and the 2.048MHz oscillator  
Analog Inputs  
The devices accept two analog inputs (AINP, AINN) in  
buffered or unbuffered mode. The input buffer isolates  
Table 1. Continuous Conversion with SCYCLE Bit = 0  
DATA RATE* (sps)  
LINEF = 0 LINEF = 1  
60 50  
BIPOLAR NFR  
(BITS)  
BIPOLAR  
ENOB (BITS)  
UNIPOLAR  
NFR (BITS)  
UNIPOLAR OUTPUT NOISE  
RATE[2:0]  
ENOB (BITS)  
(µV  
)
RMS  
100  
101  
110  
111  
20.5  
20.0  
19.5  
19.0  
23.2  
22.7  
22.2  
21.7  
19.5  
19.0  
18.5  
18.0  
22.2  
0.74  
120  
240  
480  
100  
200  
400  
21.7  
1.03  
1.45  
2.21  
21.2  
20.7  
*LINEF bit = 0 sets the clock frequency to 2.4576MHz and the input sampling frequency to 245.76kHz. LINEF bit = 1 sets the  
clock frequency to 2.048MHz and the input sampling frequency to 204.8kHz.  
Table 2. Single-Cycle Conversion with SCYCLE Bit = 1  
SINGLE-CYCLE DATA RATE*  
BIPOLAR  
NFR (BITS)  
BIPOLAR  
ENOB (BITS)  
UNIPOLAR  
NFR (BITS)  
UNIPOLAR OUTPUT NOISE  
(sps)  
RATE[2:0]  
ENOB (BITS)  
(µV  
)
RMS  
LINEF = 0  
LINEF = 1  
0.833  
2.08  
4.17  
8.33  
12.5  
25  
000  
001  
010  
011  
100  
101  
110  
111  
1
2.5  
5
22.3  
22  
24.0  
24.0  
24.0  
23.6  
23.2  
22.7  
22.2  
21.7  
21.3  
21.0  
20.4  
19.9  
19.5  
19.0  
18.5  
18.0  
24.0  
23.7  
23.1  
22.6  
22.2  
21.7  
21.2  
20.7  
0.21  
0.27  
0.39  
0.57  
0.74  
1.03  
1.45  
2.21  
21.4  
20.9  
20.5  
20.0  
19.5  
19.0  
10  
15  
30  
60  
120  
50  
100  
*LINEF bit = 0 sets the clock frequency to 2.4576MHz and the input sampling frequency to 245.76kHz. LINEF bit = 1 sets the  
clock frequency to 2.048MHz and the input sampling frequency to 204.8kHz.  
_______________________________________________________________________________________  
9
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
provides maximum 50Hz rejection. See Figures 1 and  
2. For optimal simultaneous 50Hz and 60Hz rejection,  
apply a 2.25275MHz external clock at CLK.  
NOSCO bits in the CTRL3 register. The default values for  
these calibration control bits are 1, which disables the use  
of the internal calibration registers.  
The devices power up with the internal calibration regis-  
ters disabled, and therefore a full-scale input produces  
a result of 60% of the full-scale digital range. To use the  
full-scale digital range, a calibration must be performed.  
Reference  
The devices provide differential inputs REFP and REFN  
for an external reference voltage. Connect the external  
reference directly across the REFP and REFN to obtain  
the differential reference voltage. The common-mode  
The first level of calibration is the self-calibration where  
the part performs the required connections to zero and  
full scale internally. This level of calibration is typically  
sufficient for 1FV of offset accuracy and 2ppm of full-  
scale accuracy. The self-calibration routine does not  
include the source resistance effects from the signal  
source driving the input pins, which can change the off-  
set and gain of the system.  
voltage range for V  
and V  
is between 0 and  
REFP  
REFN  
V
AVDD  
.
The devices accept reference inputs in buffered or  
unbuffered mode. The value of the REFBUF bit in the  
CTRL1 register determines whether the reference buffer  
is enabled or disabled. See Table 12.  
Buffers  
The devices include reference and signal input buffers  
capable of reducing the average input current from  
2.1FA/V on the reference inputs and from 1.4FA/V on  
the analog inputs to a constant 30nA current on the  
reference inputs and 20nA current on the analog inputs.  
The reference and signal input buffers can be selected  
individually by programming the CTRL1 register bits  
REFBUF and SIGBUF. When enabled, the reference and  
input signal buffers require an additional 20FA from the  
AVDD supply pin.  
A second level of calibration is available where the user  
can calibrate a system zero scale and system full scale  
by presenting a zero-scale signal or a full-scale signal  
to the input pins and initiating a system zero scale or  
system gain calibration command.  
A third level of calibration allows for the user to write to  
the internal calibration registers through the SPI interface  
to achieve any digital offset or scaling the user requires  
with the following restrictions. The range of digital offset  
correction is QV /4. The range of digital gain correc-  
REF  
tion is from 0.5 to 1.5. The resolution of offset correction  
is 0.5 LSB.  
Power-On Reset (POR)  
The devices utilize power-on reset (POR) supply monitor-  
ing circuitry on both the digital supply (DVDD) and the  
analog supply (AVDD). The POR circuitry ensures proper  
device default conditions after either a digital or analog  
power-sequencing event.  
The calibration operations are controlled with the CAL1  
and CAL0 bits in the command byte. The user requests  
a self-calibration by setting the CAL1 bit to 0 and CAL0  
bit to 1. A self-calibration requires 200ms to complete,  
and both the SCOC and SCGC registers contain the  
values that correct the chip output for zero scale and full  
scale. The user requests a system zero-scale calibration  
by setting the CAL1 bit to 1 and the CAL0 bit to 0 and  
presents a system zero-level signal to the input pins. The  
system zero calibration requires 100ms to complete, and  
the SOC register contains values that correct the chip  
zero scale. The user requests a system full-scale calibra-  
tion by setting the CAL1 bit to 1 and the CAL0 bit to 1  
and presents a system full-scale signal level to the input  
pins. The system full-scale calibration requires 100ms  
to complete, and the SGC register contains values that  
correct for the chip full-scale value. See Tables 3a and  
3b for an example of a self-calibration sequence and a  
system-calibration sequence.  
The digital POR trigger threshold is approximately 1.2V  
and has 100mV of hysteresis. The analog POR trigger  
threshold is approximately 1.25V and has 100mV of  
hysteresis. Both POR circuits have lowpass filters that  
prevent high-frequency supply glitches from triggering  
the POR.  
Calibration  
The devices provide two sets of calibration registers  
which offer the user several options for calibrating the  
system. The calibration register value defaults are all zero,  
which require a user to either perform a calibration or pro-  
gram the register through the SPI interface to use them.  
The on-chip calibration registers are enabled or disabled  
by programming the NOSYSG, NOSYSO, NOSCG, and  
10 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Table 3a. Example of Self-Calibration  
REGISTER  
BIT  
STEP  
DESCRIPTION  
SCOC  
SCGC  
SOC  
SGC  
1
2
3
Initial power-up  
0x000000 0x000000 0x000000 0x000000  
0x000000 0x000000 0x000000 0x000000  
0x00007E 0xBFD345 0x000000 0x000000  
1
1
1
1
1
1
1
0
0
1
0
0
Enable self-calibration registers  
Self-calibration, DIN = 10010000  
Table 3b. Example of System Calibration  
REGISTER  
BIT  
STEP  
DESCRIPTION  
SCOC  
SCGC  
SOC  
SGC  
1
2
3
4
5
6
7
Initial power-up  
0x000000 0x000000 0x000000 0x000000  
0x000000 0x000000 0x000000 0x000000  
0x00007E 0xBFD345 0x000000 0x000000  
0x00007E 0xBFD345 0x000000 0x000000  
1
1
1
1
1
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
Enable self-calibration registers  
Self-calibration, DIN = 10010000  
Enable system offset register  
System-calibration offset, DIN = 1010000 0x00007E 0xBFD345 0xFFEE1D 0x000000  
Enable system gain register  
0x00007E 0xBFD345 0xFFEE1D 0x000000  
0x00007E 0xBFD345 0xFFEE1D 0x81CB5B  
System-calibration gain, DIN = 1011000  
Noise vs. Data Rate  
Digital Filter  
4
The devices offer software-selectable internal oscillator  
frequencies as well as software-selectable output data  
rates. The LINEF bit in the CTRL1 register (Table 12)  
determines the internal oscillator frequency. The RATE  
bits in the command byte (Table 8) determine the ADC’s  
output data rate. The devices also offer the option of  
running in zero latency single-cycle conversion mode  
(Table 2) or continuous conversion mode (Table 1). Set  
SCYCLE = 0 in the CTRL1 register (Table 12) to run in  
continuous conversion mode and SCYCLE = 1 for single-  
cycle conversion mode.  
The devices include a SINC digital filter that produces  
spectral nulls at the multiples of the data rate. For all  
data rates less than 30sps, a spectral null occurs at the  
line frequency of 60Hz and is guaranteed to attenuate  
60Hz normal-mode components by more than 100dB.  
Simultaneous 50Hz and 60Hz attenuation can be accom-  
plished by using an external clock with a frequency  
of 2.25275MHz. This guarantees a minimum of 80dB  
4
rejection at 50Hz and 85dB rejection at 60Hz. The SINC  
filter has a -3dB frequency equal to 24% of the data rate.  
See Figures 1 and 2.  
Single-cycle conversion mode gives an output result with  
no data latency. The devices output data up to 100sps  
(2.048MHz internal oscillator) or 120sps (2.4576MHz  
internal oscillator) with no data latency. In continuous  
conversion mode, the output data rate is four times the  
single-cycle conversion mode, for sample rates up to  
400sps or 480sps. In continuous conversion mode, the  
output data requires three additional 24-bit cycles to  
settle from an input step.  
GPIOs  
The devices provide four GPIO ports. When set as out-  
puts, these digital I/Os can be used to drive the digital  
inputs to a multiplexer or multichannel switch. Figure 3  
details an example where four single-ended signals are  
multiplexed in a break-before-make switching sequence,  
using the MAX313, a quad SPST analog switch.  
The devices’ GPIO ports are configurable through the  
CTRL2 register. See Table 13. To select AIN1, write the  
command to CTRL2 according to Table 4a.  
______________________________________________________________________________________ 11  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
NORMAL MODE REJECTION  
DATA RATE 10.0SPS  
NORMAL MODE REJECTION  
DATA RATE 120.0SPS  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (Hz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (Hz)  
Figure 1. Normal-Mode Frequency Response (2.4576MHz Oscillator, LINEF = 0)  
NORMAL MODE REJECTION  
DATA RATE 8.333SPS  
NORMAL MODE REJECTION  
DATA RATE 100.000SPS  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (Hz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (Hz)  
Figure 2. Normal-Mode Frequency Response (2.048MHz Oscillator, LINEF = 1)  
Table 4a. Data Command to Select Channel AIN1 in Figure 3  
BIT  
B7  
DIR4  
1
B6  
DIR3  
1
B5  
DIR2  
1
B4  
DIR1  
1
B3  
DIO4  
0
B2  
DIO3  
0
B1  
DIO2  
0
B0  
DIO1  
1
BIT NAME  
VALUE  
Table 4b. Data Command to Set All Channels High Impedance in Figure 3  
BIT  
B7  
DIR4  
1
B6  
DIR3  
1
B5  
DIR2  
1
B4  
DIR1  
1
B3  
DIO4  
0
B2  
DIO3  
0
B1  
DIO2  
0
B0  
DIO1  
0
BIT NAME  
VALUE  
12 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
This selects all GPIO as outputs, as well as setting all  
logic signals to 0 except the selected channel AIN1. To  
select channel AIN3 next, it is best to set all switches to  
a high-impedance state first (see Table 4b).  
MAX313  
LOGIC SWITCH  
0
1
OFF  
ON  
Then select channel AIN3 by driving IN3 high (see  
Table 4c).  
It is not always necessary to transition to a high-imped-  
ance state between channel selections, but depends on  
the source analog signals as well as the control structure  
of the multiplexed switches.  
IN1  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
IN2  
IN3  
IN4  
AIN1  
AIN2  
AIN3  
AIN4  
Digital Programmable Gain (MAX11210)  
The MAX11210 offers programmable gain settings that  
can be digitally set to 1, 2, 4, 8, or 16. The DGAIN_ bits in  
the CTRL3 register (Table 14) configure the digital gain  
setting and control the input referred gain. See Figure 4.  
MAX313  
MAX11200  
COM1  
COM2  
COM3  
COM4  
AINP  
AINN  
The MAX11210’s input range is 0V to V /gain (unipo-  
REF  
lar) or  
V
/gain (bipolar). The MAX11210 modulator  
REF  
produces 32 bits of data, but only 24 bits of data are  
used. For any given data rate, the noise floor remains  
constant, independent of the digital gain setting. The  
MAX11210 digital gain is beneficial for systems that can  
afford averaging multiple readings for higher resolution.  
Figure 3. MAX11200 GPIOs Drive an External 4-Channel  
Switch (MAX313)  
Table 4c. Data Command to Select Channel AIN3 in Figure 3  
BIT  
B7  
DIR4  
1
B6  
DIR3  
1
B5  
DIR2  
1
B4  
DIR1  
1
B3  
DIO4  
0
B2  
DIO3  
1
B1  
DIO2  
0
B0  
DIO1  
0
BIT NAME  
VALUE  
NOISE FLOOR  
REMAINS CONSTANT  
AT 0.21µV  
RMS  
V
= 3.6V,  
= 429nV,  
REF  
24-BIT OUTPUT DATA CYCLE  
MSB  
V
LSB  
BIPOLAR RANGE  
LSB  
BITS USED FOR GAIN = 1  
SUB-LSBs  
BITS USED FOR GAIN = 2  
BITS USED FOR GAIN = 16  
Figure 4. MAX11210 Digital Programmable Gain Example (1sps Output Rate)  
______________________________________________________________________________________ 13  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
CS low and read the RDY/DOUT output; the conversion  
Serial-Digital Interface  
The MAX11200/MAX11210 interface is fully compatible  
with SPI-, QSPI-, and MICROWIRE-standard serial inter-  
faces. The SPI interface provides access to nine on-chip  
registers that are 8 or 24 bits wide.  
is in progress if the RDY/DOUT output reads logic-high  
and the conversion is complete if the RDY/DOUT output  
reads logic-low. Data at RDY/DOUT changes on the  
falling edge of SCLK and is valid on the rising edge of  
SCLK. DIN and DOUT are transferred MSB first. Drive  
CS high to force DOUT high impedance and cause  
the devices to ignore any signals on SCLK and DIN.  
Connect CS low for 3-wire operation. Figures 5, 6, and 7  
show the SPI timing diagrams.  
Drive CS low to transfer data in and out of the devices.  
Clock in data at DIN on the rising edge of SCLK. The  
RDY/DOUT output serves two functions: conversion sta-  
tus and data read. To find the conversion status, assert  
t
DS  
t
CSH1  
t
t
CSW  
CP  
t
CSH0  
t
CSS0  
t
CL  
t
CH  
t
DH  
CS  
SCLK  
DIN  
t
CSS1  
0
1
8
X
1
0
CAL1  
CAL0  
IMPD  
RATE2  
RATE1  
RATE0  
t
t
DOD  
DOE  
HIGH-Z  
HIGH-Z  
RDY/DOUT  
Figure 5. SPI Command Byte  
t
t
CSW  
DS  
t
t
CSH0  
CP  
t
t
CSH1  
CSS0  
t
CL  
t
DH  
t
CH  
CS  
t
CSS1  
SCLK  
DIN  
0
1
8
9
16  
X
1
1
X
RS3  
RS2  
RS1  
RS0  
W/R  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
t
DOD  
HIGH-Z  
DOE  
HIGH-Z  
RDY/DOUT  
Figure 6. SPI Register Access Write  
t
DS  
t
t
DOD  
t
CP  
DOT  
t
CSS0  
t
DOH  
t
CL  
t
DO1  
t
DH  
t
CH  
CS  
t
CSS1  
SCLK  
1
8
9
16  
DIN  
X
1
1
X
RS3  
RS2  
RS1  
RS0  
W/R  
X
X
X
X
X
X
X
X
t
DOE  
HIGH-Z  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RDY/DOUT  
Figure 7. SPI Register Access Read  
14 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Command Byte  
Communication between the user and the device is con-  
ducted through SPI using a command byte. The com-  
mand byte consists of two modes differentiated as com-  
mand modes and data modes. Command modes and  
data modes are further differentiated by decoding the  
remaining bits in the command byte. The mode selected  
is determined by the MODE bit. If the MODE bit is 0, then  
the user is requesting either a conversion, calibration, or  
power-down; see Table 5. If the MODE bit is 1, then the  
user is selecting a data command and can either read  
from or write to a register; see Table 6.  
or two’s complement), and single-cycle or continuous  
conversion mode. See Table 12.  
The Control 2 register (CTRL2) is a read/write register,  
and the bits configure the GPIOs as inputs or outputs  
and their values. See Table 13.  
The Control 3 register (CTRL3) is a read/write register,  
and the bits determine the MAX11210 programmable  
gain setting and the calibration register settings for both  
the MAX11200 and MAX11210. See Table 14.  
The Data register (DATA) is a read-only register. Data is  
output from RDY/DOUT on the next 24 SCLK cycles once  
CS is forced low. The data bits transition on the falling  
edge of SCLK. Data is output MSB first, and is offset  
binary or two’s complement, depending on the setting  
of the FORMAT bit in the CTRL1 register. See Table 15.  
The Status register (STAT1) is a read-only register and  
provides general chip operational status to the user. If  
the user attempts to calibrate the system and overranges  
the internal signal scaling, then a gain overrange condi-  
tion is flagged with the SYSOR bit. The last data rate  
programmed for the ADC is available in the RATE bits.  
If the input signal has exceeded positive or negative full  
scale, this condition is flagged with the OR and UR bits.  
If the modulator is busy converting, then the MSTAT bit is  
set. If a conversion result is ready for read-out, the RDY  
bit is set; see Table 11.  
The System Offset Calibration register (SOC) is a read/  
write register, and the bits contain the digital value that  
corrects the data for system zero scale. See Table 17.  
The System Gain Calibration register (SGC) is a read/  
write register, and the bits contain the digital value that  
corrects the data for system full scale. See Table 18.  
The Self-calibration Offset register (SCOC) is a read/  
write register, and the bits contain the value that corrects  
the data for chip zero scale. See Table 19.  
The Control 1 register (CTRL1) is a read/write register,  
and the bits determine the internal oscillator frequency,  
unipolar or bipolar input range, selection of an internal or  
external clock, enabling or disabling the reference and  
input signal buffers, the output data format (offset binary  
The Self-calibration Gain register (SCGC) is a read/write  
register, and the bits contain the value that corrects the  
data for chip full scale. See Table 20.  
Table 5. Command Byte (MODE = 0)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
BIT NAME  
START = 1  
MODE = 0  
CAL1  
CAL0  
IMPD  
RATE2  
RATE1  
RATE0  
Table 6. Command Byte (MODE = 1)  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
BIT NAME  
START = 1  
MODE = 1  
0
RS3  
RS2  
RS1  
RS0  
W/R  
Note: The START bit is used to synchronize the data from the host device. The START bit is always 1.  
______________________________________________________________________________________ 15  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Table 7. Operating Mode (MODE Bit)  
MODE BIT SETTING  
OPERATING MODE  
0
1
The command byte initiates a conversion or an immediate power-down. See Tables 5 and 8.  
The device interprets the command byte as a register access byte, which is decoded as per Tables 6 and 9.  
Table 8. Command Byte (MODE = 0, LINEF = 0)  
COMMAND  
Self-Calibration Cycle  
System Offset Calibration Cycle  
System Gain Calibration  
Immediate Power-Down  
Convert 1sps  
START  
MODE  
CAL1  
CAL0  
IMPD  
RATE2  
RATE1  
RATE0  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
1
Convert 2.5sps  
Convert 5sps  
Convert 10sps  
Convert 15sps  
Convert 30sps  
Convert 60sps  
Convert 120sps  
Table 9. Register Selection (MODE = 1)  
RS3  
RS2  
RS1  
RS0  
REGISTER ACCESS  
POWER-ON RESET STATUS  
REGISTER SIZE (BITS)  
0
0
0
0
STAT1  
CTRL1  
CTRL2  
CTRL3  
DATA  
SOC  
0x00  
0x02  
8
8
0
0
0
1
0
0
1
0
0x0F  
8
0
0
1
1
0x1E  
8
0
1
0
0
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
24  
24  
24  
24  
24  
0
1
0
1
0
1
1
0
SGC  
0
1
1
1
SCOC  
SCGC  
1
0
0
0
16 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Table 10. Register Address Map  
ADDRESS  
SELECT  
(RS[3:0])  
REGISTER  
NAME  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
R/W  
STAT1  
CTRL1  
CTRL2  
CTRL3  
R
0x0  
0x1  
0x2  
0x3  
SYSOR  
LINEF  
DIR4  
RATE2  
RATE1  
EXTCLK  
DIR2  
RATE0  
REFBUF  
DIR1  
OR  
UR  
MSTAT  
RDY  
SIGBUF  
DIO4  
FORMAT  
DIO3  
SCYCLE RESERVED  
DIO2 DIO1  
NOSCO RESERVED  
R/W  
R/W  
R/W  
U/B  
DIR3  
DGAIN2* DGAIN1* DGAIN0* NOSYSG NOSYSO  
NOSCG  
D[23:16]  
D[15:8]  
D[7:0]  
DATA  
SOC  
R
0x4  
0x5  
0x6  
0x7  
0x8  
B[23:16]  
B[15:8]  
B[7:0]  
R/W  
R/W  
R/W  
R/W  
B[23:16]  
B[15:8]  
B[7:0]  
SGC  
B[23:16]  
B[15:8]  
B[7:0]  
SCOC  
SCGC  
B[23:16]  
B[15:8]  
B[7:0]  
*These DGAIN_ bits set the digital gain for the MAX11210. These bits are don’t-care bits for the MAX11200.  
______________________________________________________________________________________ 17  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
STAT1: Status Register  
Table 11. STAT1 Register (Read Only)  
BIT  
B7  
SYSOR  
0
B6  
RATE2  
0
B5  
RATE1  
0
B4  
RATE0  
0
B3  
OR  
0
B2  
UR  
0
B1  
MSTAT  
0
B0  
RDY  
0
BIT NAME  
DEFAULT  
SYSOR: The system gain overrange bit when set to 1 indicates that a system gain calibration was over range. The  
SCGC calibration coefficient is maximum value of 1.9999999. This bit, when set to 1, indicates that the full-scale value  
out of the converter is likely not available.  
RATE[2:0]: The data rate bits indicate the conversion rate that corresponds to the result in the DATA register or the  
rate that was used for calibration coefficient calculation. If the previous conversions were done at a different rate, the  
RATE[2:0] bits indicate a rate different than the rate of the conversion in progress.  
OR: The overrange bit, OR, is set to 1 to indicate the conversion result has exceeded the maximum value of the  
converter and that the result has been clipped or limited to the maximum value. The OR bit is set to 0 to indicate the  
conversion result is within the full-scale range of the device.  
UR: The underrange bit, UR, is set to 1 to indicate the conversion result has exceeded the minimum value of the  
converter and that the result has been clipped or limited to the minimum value. The UR bit is set to 0 to indicate the  
conversion result is within the full-scale range of the device.  
MSTAT: The measurement status bit, MSTAT is set to 1 when a signal measurement is in progress. When MSTAT = 1,  
a conversion, self-calibration, or system calibration is in progress and indicates that the modulator is busy. When the  
modulator is not converting, the MSTAT bit is set to 0.  
RDY: The RDY ready bit is set to 1 to indicate that a conversion result is available. Reading the DATA register resets the  
RDY bit to 0 only after another conversion has been initiated. If the DATA has not been read before another conversion  
is initiated, the RDY bit remains 1; if the DATA is read before another conversion is initiated, the RDY bit resets to 0. If  
the DATA for the previous conversion is read during a following conversion, the RDY bit is reset immediately after the  
DATA read operation has completed.  
18 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
CTRL1: Control 1 Register  
The byte-wide CTRL1 register is a bidirectional read/write register. The byte written to the CTRL1 register indicates if  
the part converts continuously or single cycle, if an external or internal clock is used, if the reference and signal buffers  
are activated, the format of the data when in bipolar mode, and if the analog signal input range is unipolar or bipolar.  
Table 12. CTRL1 Register (Read/Write)  
BIT  
B7  
LINEF  
0
B6  
B5  
EXTCLK  
0
B4  
REFBUF  
0
B3  
SIGBUF  
0
B2  
FORMAT  
0
B1  
SCYCLE  
1
B0  
UNUSED  
0
BIT NAME  
DEFAULT  
U/B  
0
LINEF: Use the line frequency bit, LINEF, to select if the data rate is centered for 50Hz power mains or 60Hz power  
mains. To select data rates for 50Hz power mains, write 1 to LINEF and to select data rates for 60Hz power mains,  
write 0 to LINEF.  
U/B: The unipolar/bipolar bit, U/B, selects if the input range is unipolar or bipolar. A 1 in this bit location selects a uni-  
polar input range and a 0 selects a bipolar input range.  
EXTCLK: The external clock bit, EXTCLK, controls the selection of the system clock. A 1 enables an external clock as  
system clock, whereas as a 0 enables the internal clock.  
REFBUF: The reference buffer bit, REFBUF, enables/disables the reference buffers. A 1 enables the reference buffers.  
A 0 powers down the reference buffers and the reference inputs bypass the reference buffers when driving the ADC.  
SIGBUF: The signal buffer, SIGBUF, enables/disables the signal buffers. A 1 enables the signal buffer. A 0 powers  
down the signal buffers and the analog signal inputs bypass the signal buffers when driving the ADC.  
FORMAT: The format bit, FORMAT, controls the digital format of the data. Unipolar data is always in offset binary for-  
mat. The bipolar format is two’s complement if the FORMAT bit is set to 0 or offset binary if the FORMAT bit is set to 1.  
SCYCLE: The single-cycle bit, SCYCLE, determines if the device runs in “no-latency” single-conversion mode  
(SCYCLE = 1) or if the device runs in “latent” continuous-conversion mode (SCYCLE = 0). When in single-cycle conver-  
sion mode, the device completes one no-latency conversion and then powers down into a leakage-only state. When  
in continuous-conversion mode, the part is continuously converting and the first three data from the part are incorrect  
4
due to the SINC filter latency.  
Important Note: When operating in continuous-conversion mode (SCYCLE = 0), it is recommended to keep CS low to  
properly detect the end of conversion. The end of conversion is signaled by RDY/DOUT changing from 0 to 1. The tran-  
sition of RDY/DOUT from 0 to 1 must be used to synchronize the DATA register read back. If the RDY/DOUT output is  
not used to synchronize the DATA read back, a timing hazard exists where the DATA register is updated internally after  
a conversion has completed simultaneously with the DATA register being read out, causing an incorrect read of DATA.  
______________________________________________________________________________________ 19  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
CTRL2: Control 2 Register  
The byte-wide CTRL2 register is a bidirectional read/write register. The byte written to the CTRL2 register controls the  
direction and values of the digital I/O ports.  
Table 13. CTRL2 Register (Read/Write)  
BIT  
B7  
DIR4  
0
B6  
DIR3  
0
B5  
DIR2  
0
B4  
DIR1  
0
B3  
DIO4  
1
B2  
DIO3  
1
B1  
DIO2  
1
B0  
DIO1  
1
BIT NAME  
DEFAULT  
DIR[4:1]: The direction bits configure the direction of the DIO bit. When a DIR bit is set to 0, the associated DIO bit  
is configured as an input and the value returned by a read of the DIO bit is the value being driven on the associated  
GPIO. When a DIR bit is set to 1, the associated DIO bit is configured as an output and the GPIO port is driven to a  
logic value of the associated DIO bit.  
DIO[4:1]: The data input/output bits are bits associated with the GPIO ports. When a DIO is configured as an input,  
the value read from the DIO bit is the logic value being driven at the GPIO port. When the direction is configured as an  
output, the GPIO port is driven to a logic value associated with the DIO bit.  
CTRL3: Control 3 Register  
The byte-wide CTRL3 register is a bidirectional read/write register. The CTRL3 register controls the operation and  
calibration of the device.  
Table 14. CTRL3 Register (Read/Write)  
BIT  
B7  
DGAIN2*  
0
B6  
DGAIN1*  
0
B5  
DGAIN0*  
0
B4  
NOSYSG  
1
B3  
NOSYSO  
1
B2  
NOSCG  
1
B1  
NOSCO  
1
B0  
RESERVED  
0
BIT NAME  
DEFAULT  
*These DGAIN_ bits are don’t-care bits for the MAX11200.  
DGAIN[2:0] (MAX11210 Only): The digital gain bits control the input referred gain. With a gain of 1, the input range  
is 0 to V (unipolar) or (bipolar). As the gain in increased by 2x, the input range is reduced to 0 to V /gain  
V
REF  
REF  
REF  
REF  
or  
V
/gain. Digital gain is applied to the final offset and gain-calibrated digital data. The DGAIN[2:0] bits decode  
to digital gains as follows:  
000 = 1  
001 = 2  
010 = 4  
011 = 8  
100 = 16  
NOSYSG: The no-system gain bit, NOSYSG, controls the system gain calibration coefficient. A 1 in this bit location  
disables the use of the system gain value when computing the final offset and gain corrected data value. A 0 in this  
location enables the use of the system gain value when computing the final offset and gain corrected data value.  
NOSYSO: The no system offset bit, NOSYSO, controls the system offset calibration coefficient. A 1 in this location  
disables the use of the system offset value when computing the final offset and gain corrected data value. A 0 in this  
location enables the use of the system offset value when computing the final offset and gain corrected data value.  
NOSCG: The no self-calibration gain bit, NOSCG, controls the self-calibration gain coefficient. A 1 in this location  
disables the use of the self-calibration gain value when computing the final offset and gain corrected data value. A 0  
in this location enables the use of the self-calibration gain value when computing the final offset and gain corrected  
data value.  
NOSCO: The no self-calibration offset bit, NOSCO, controls the use of the self-calibration offset coefficient. A 1 in this  
location disables the use of the self-calibration offset value when computing the final offset and gain corrected data  
value. A 0 in this location enables the use of the self-calibration offset value when computing the final offset and gain  
corrected data value.  
20 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
DATA: Data Register  
The data register is a 24-bit read-only register. Any attempt to write data to the data register has no effect. The data  
read from this register is clocked out MSB first. The data register holds the conversion result. D23 is the MSB, and D0  
is the LSB. The result is stored in a format according to the FORMAT bit in CTRL1 register.  
The data format while in unipolar mode is always straight binary. In straight binary format, the most negative value is  
0x000000 (V  
- V  
= 0V), the midscale value is 0x800000 (V  
- V  
= V  
/2), and the most positive value  
REF  
AINP  
AINN  
AINP  
AINN  
is 0xFFFFFF (V  
- V  
= V ).  
REF  
AINP  
AINN  
In bipolar mode, if the FORMAT bit = 1, then the data format is offset binary. If the FORMAT bit = 0, then the data for-  
mat is two’s complement. In two’s complement, the negative full-scale value is 0x800000 (V - V = -V ), the  
AINP  
AINN  
REF  
midscale is 0x000000 (V  
- V  
= 0V), and the positive full scale is 0x7FFFFF (V  
- V  
= V ). Any input  
AINP  
AINN  
AINP  
AINN  
REF  
exceeding the available input range is limited to the minimum or maximum data value.  
Table 15. DATA Register (Read Only)  
BIT  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEFAULT  
0
0
0
0
0
0
0
0
Table 16a. Output Data Format for the Unipolar Input Range  
DIGITAL OUTPUT CODE FOR UNIPOLAR RANGE  
STRAIGHT BINARY FORMAT  
0xFFFFFF  
INPUT VOLTAGE  
V
AINP  
- V  
AINN  
≥ V  
REF  
1
24  
V
× 1−  
0xFFFFFE  
REF  
2
1  
V
REF  
24  
0x000001  
0x000000  
2
1  
0
______________________________________________________________________________________ 21  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Table 16b. Output Data Formats for the Bipolar Input Range  
DIGITAL OUTPUT CODE FOR BIPOLAR RANGES  
OFFSET BINARY FORMAT TWO’S COMPLEMENT FORMAT  
0xFFFFFF 0x7FFFFF  
INPUT VOLTAGE  
V
AINP  
- V  
AINN  
≥ V  
REF  
1
23  
V
× 1−  
0xFFFFFE  
0x7FFFFE  
REF  
2
1  
V
REF  
23  
0x800001  
0x800000  
0x7FFFFF  
0x000001  
0x000000  
0xFFFFFF  
2
1  
0
V  
REF  
23  
2
1  
1
23  
V  
× 1−  
0x000001  
0x000000  
0x800001  
0x800000  
REF  
2
1  
≤ -V  
REF  
SOC: System Offset Calibration Register  
The system offset calibration register is a 24-bit read/write register. The data written/read to/from this register is clocked  
in/out MSB (most significant bit) first. This register holds the system offset calibration value. The format is always in  
two’s complement binary format. A write to the system-calibration register is allowed. The value written remains valid  
until it is either rewritten or until an on-demand system-calibration operation is performed, which overwrites the user-  
supplied value.  
The system offset calibration value is subtracted from each conversion result provided the NOSYSO bit in the CTRL3  
register is set to 0. The system offset calibration value is subtracted from the conversion result after self-calibration  
but before system gain correction. The system offset calibration value is also applied prior to the 1x or 2x scale factor  
associated with bipolar and unipolar modes.  
Table 17. SOC Register (Read/Write)  
BIT  
B23  
B22  
B21  
B20  
B19  
B18  
B17  
B16  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
0
0
0
0
0
0
0
0
22 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
SGC: System Gain Calibration Register  
The system gain calibration register is a 24-bit read/write register. The data written/read to/from this register is clocked  
in/out MSB first. This register holds the system gain calibration value. The format is always in two’s complement binary  
format. A write to the system-calibration register is allowed. The written value remains valid until it is either rewritten or  
until an on-demand system-calibration operation is performed, which overwrites the user-supplied value.  
The system gain calibration value is used to scale the offset corrected conversion result, provided the NOSYSG bit  
in the CTRL3 register is set to 0. The system gain calibration value scales the offset-corrected result by up to 2x or  
corrects a gain error of approximately -50%. The amount of positive gain error that can be corrected is determined by  
modulator overload characteristics, which can be as much as +25%. The gain is corrected to within 2 LSB.  
Table 18. SGC Register (Read/Write)  
BIT  
B23  
B22  
B21  
B20  
B19  
B18  
B17  
B16  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
0
0
0
0
0
0
0
0
SCOC: Self-Calibration Offset Register  
The self-calibration offset register is a 24-bit read/write register. The data written/read to/from this register is clocked  
in/out MSB first. This register holds the self-calibration offset value. The format is always in two’s complement binary  
format. A write to the self-calibration offset register is allowed. The written value remains valid until it is either rewritten  
or until an on-demand self-calibration operation is performed, which overwrites the user-supplied value.  
The self-calibration offset value is subtracted from each conversion result provided the NOSCO bit in the CTRL3 reg-  
ister is set to 0. The self-calibration offset value is subtracted from the conversion result before the self-calibration gain  
correction and before the system offset and gain correction. The self-calibration offset value is also applied prior to the  
2x scale factor associated with unipolar mode.  
Table 19. SCOC Register (Read/Write)  
BIT  
B23  
B22  
B21  
B20  
B19  
B18  
B17  
B16  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
0
0
0
0
0
0
0
0
______________________________________________________________________________________ 23  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
SCGC: Self-Calibration Gain Register  
The self-calibration gain register is a 24-bit read/write register. The data written/read to/from this register is clocked in/  
out MSB first. This register holds the self-calibration gain value. The format is always in two’s complement binary format.  
A write to the self-calibration gain register is allowed. The written value remains valid until it is either rewritten or until  
an on-demand self-calibration operation is performed, which overwrites the user-supplied value. Any attempt to write  
to this register during an active calibration operation is ignored.  
The self-calibration gain value is used to scale the self-calibration offset corrected conversion result before the system  
offset and gain calibration values have been applied, provided the NOSCG bit in the CTRL3 register is set to 0. The  
self-calibration gain value scales the self-calibration offset corrected conversion result by up to 2x or can correct a gain  
error of approximately -50%. The gain is corrected to within 2 LSB.  
Table 20. SCGC Register (Read/Write)  
BIT  
B23  
B22  
B21  
B20  
B19  
B18  
B17  
B16  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
0
0
0
0
0
0
0
0
Table 21. Data Rates for All Combinations of RATE[2:0] (LINEF = 0)  
RATE[2:0]  
000  
SINGLE-CYCLE DATA RATE (sps)  
CONTINUOUS DATA RATE (sps)  
1
2.5  
5
001  
010  
011  
10  
15  
30  
60  
120  
100  
60  
101  
120  
240  
480  
110  
111  
Table 22. Data Rates for All Combinations of RATE[2:0] (LINEF = 1)  
RATE[2:0]  
000  
SINGLE-CYCLE DATA RATE (sps)  
CONTINUOUS DATA RATE (sps)  
0.833  
2.08  
4.17  
8.33  
12.5  
25  
001  
010  
011  
100  
50  
101  
100  
200  
400  
110  
50  
111  
100  
24 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Applications Information  
I
= K x I  
REF1  
REF2  
See Figure 8 for the RTD temperature measurement  
circuit and Figure 9 for a resistive bridge measurement  
circuit.  
I
REF2  
Magnetic force restoration (MFR) force-measuring (typi-  
cally weight) systems are a good design example requir-  
ing an ADC that has exceptional dynamic range and lin-  
earity. MFR devices use a lever and fulcrum to balance  
an unknown weight (the object to be measured) with  
an electromagnetic force coil. The current necessary to  
keep the balance in equilibrium is equal to the force of  
gravity exerted to the object to be weighed.  
REFP  
R
REF  
MAX11200  
MAX11210  
I
REF1  
REFN  
AINP  
R
RTD  
These currents can be as large as several hundred  
amperes, or as small as several microamperes, all in the  
same system. Often, it is necessary to maintain the given  
accuracy across the entire scale.  
AINN  
GND  
This application requires a quantizing device with  
enough resolution and dynamic range to match the sen-  
sor system. In the past, this was done using an audio  
ADC and DAC under the control of a microprocessor to  
build a discrete delta-modulator-style A/D. This was very  
expensive, and could decrease the mean time between  
failure (MTBF) for measurement devices requiring high  
reliability. The MAX11200/MAX11210 ADCs offer a much  
simpler solution with excellent resolution and dynamic  
range. See Figure 10.  
Figure 8. RTD Temperature Measurement Circuit  
AVDD  
REFP  
REFN  
MAX11200  
MAX11210  
AINP  
AINN  
Chip Information  
PROCESS: BiCMOS  
Figure 9. Resistive Bridge Measurement Circuit  
______________________________________________________________________________________ 25  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
LOAD  
ROBERVAL  
WEIGHING  
PAN  
PHOTODIODE  
BEAM  
GATE  
ARRAY  
2
CPU  
E PROM  
P/D PART  
KEYBOARD  
DISPLAY  
RS-232C  
CURRENT  
DRIVE PART  
FULCRUM  
FLEXURES  
WEIGHT  
ADC  
TEMPERATURE  
ADC  
TEMPERATURE SENSOR  
FORCE COIL  
OUTPUT  
RESISTANCE  
MAGNET  
TENSION  
FLEXURE  
Figure 10. Typical Magnetic Force Restoration Scale  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0055  
16 QSOP  
E16+4  
26 _____________________________________________________________________________________  
24-Bit, Single-Channel, Ultra-Low-Power,  
Delta-Sigma ADCs with GPIO  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/10  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
27  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11200EEE

The MAX11200, MAX11206, MAX11209, MAX11210, and MAX11213 evaluation kits (EV kits) consist of one MAX11200, MAX11206, MAX11209, MAX11210, or MAX11213 evaluation board and software.
MAXIM

MAX11200EEE+

24-Bit, Single-Channel, Ultra-Low-Power, Delta-Sigma ADCs with GPIO
MAXIM

MAX11200EEE+T

A/D Converter, 24-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO16, ROHS COMPLIANT, QSOP-16
MAXIM

MAX11200EVKIT

On-Board Isolated Power Supplies Rejecting Power Line Noise
MAXIM

MAX11200EVKIT+

On-Board Isolated Power Supplies Rejecting Power Line Noise
MAXIM

MAX11200_12

24-Bit, Single-Channel, Ultra-Low-Power, Delta-Sigma ADCs with GPIO
MAXIM

MAX11200_V01

null24-Bit, Single-Channel, Ultra-Low-Power, Delta-Sigma ADCs with GPIO
MAXIM

MAX11201

24-Bit, Single-Channel, Ultra-Low-Power, Delta Sigma ADC with 2-Wire Serial Interface
MAXIM

MAX11201AEUB+

24-Bit, Single-Channel, Ultra-Low-Power, Delta Sigma ADC with 2-Wire Serial Interface
MAXIM

MAX11201BEUB+

24-Bit, Single-Channel, Ultra-Low-Power, Delta Sigma ADC with 2-Wire Serial Interface
MAXIM

MAX11202

24-Bit, Single-Channel, Ultra-Low-Power, Delta Sigma ADC with 2-Wire Serial Interface
MAXIM

MAX11202AEUB

24-Bit, Single-Channel, Ultra-Low-Power, Delta Sigma ADC with 2-Wire Serial Interface
MAXIM