MAX111ACAP-T [MAXIM]

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20;
MAX111ACAP-T
型号: MAX111ACAP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20

光电二极管 转换器
文件: 总24页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0283; Rev 5; 11/98  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Single +5V Supply (MAX111)  
The MAX110/MAX111 a na log -to-d ig ita l c onve rte rs  
(ADCs) use an internal auto-calibration technique to  
achieve 14-bit resolution plus overrange, with no exter-  
na l c omp one nts . Op e ra ting s up p ly c urre nt is only  
550µA (MAX110) and reduces to 4µA in power-down  
mode, making these ADCs ideal for high-resolution bat-  
tery-powered or remote-sensing applications. A fast  
serial interface simplifies signal routing and opto-isola-  
tion, saves microcontroller pins, and offers compatibility  
with SPI™, QSPI™, and MICROWIRE™. The MAX110  
operates with ±5V supplies, and converts differential  
analog signals in the -3V to +3V range. The MAX111  
operates with a single +5V supply and converts differ-  
ential analog signals in the ±1.5V range, or single-  
ended signals in the 0V to +1.5V range.  
Two Differential Input Channels  
14-Bit Resolution Plus Sign and Overrange  
0.03% Linearity (MAX110)  
0.05% Linearity (MAX111)  
Low Power Consumption:  
550µA (MAX110)  
640µA (MAX111)  
4µA Shutdown Current  
Up to 50 Conversions/sec  
50Hz/60Hz Rejection  
Auto-Calibration Mode  
No External Components Required  
16-Pin DIP/SO, 20-Pin SSOP  
Internal calibration allows for both offset and gain-error  
correction under microprocessor (µP) control. Both  
devices are available in space-saving 16-pin DIP and  
SO packages, as well as an even smaller 20-pin SSOP  
package.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE PIN-PACKAGE INL(%)  
MAX110ACPE  
MAX110BCPE  
MAX110ACWE  
MAX110BCWE  
MAX110ACAP  
MAX110BCAP  
MAX110BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
20 SSOP  
±0.03  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.05  
________________________Ap p lic a t io n s  
Process Control  
Weigh Scales  
20 SSOP  
Panel Meters  
Dice*  
Data-Acquisition Systems  
Temperature Measurement  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
P in Co n fig u ra t io n s  
Typ ic a l Op e ra t in g Circ u it  
+5V  
TOP VIEW  
IN1+  
1
2
3
4
5
6
7
8
16 IN1-  
15 IN2+  
V
DD  
IN1+  
RCSEL  
REF-  
MAX110  
MAX111  
REF+  
14 IN2-  
13 (AGND)  
IN1-  
MAX110  
MAX111  
V
DD  
V
SS  
IN2+  
IN2-  
RCSEL  
XCLK  
SCLK  
BUSY  
12 GND  
11 DIN  
REF+  
REF-  
10 DOUT  
CS  
SCLK  
9
CS  
FROM µC  
DIN  
V
SS  
DIP/SO  
DOUT  
(AGND)  
( ) ARE FOR MAX111  
( ) ARE FOR MAX111  
-5V (0V)  
Pin Configurations continued at end of data sheet.  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND ...........................................................................+6V  
to GND (MAX110)..............................................+0.3V to -6V  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) ......762mW  
20-Pin SSOP (derate 8.00mW/°C above +70°C) ...........640mW  
16-Pin CERDIP (derate 10.00mW/°C above +70°C)......800mW  
Operating Temperature Ranges  
V
SS  
AGND to DGND.....................................................-0.3V to +0.3V  
, V ......................................(V + 0.3V) to (V - 0.3V)  
V
IN1+ IN1-  
DD  
SS  
V
, V  
, V  
......................................(V + 0.3V) to (V - 0.3V)  
....................................(V + 0.3V) to (V - 0.3V)  
MAX11_ _C_ _......................................................0°C to +70°C  
MAX11_ _E_ _...................................................-40°C to +85°C  
MAX11_BMJE .................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
IN2+ IN2-  
DD  
SS  
V
REF+ REF- DD SS  
Digital Inputs and Outputs .........................(V + 0.3V) to -0.3V  
Continuous Power Dissipation  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C).....842mW  
DD  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX110  
(V = 5V ±5%, V = -5V ±5%, f  
= 1MHz, ÷ 2 mode (DV2 = 1), 81,920 CLK cycles/conv, V  
= 1.5V, V = -1.5V,  
REF-  
DD  
SS  
XCLK  
REF+  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
0/MAX1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY (Note 1)  
14 + POL  
+ OFL  
Resolution  
RES  
(Note 2)  
Bits  
LSB  
Bits  
Differential Nonlinearity  
DNL  
(Notes 3, 4)  
(Note 3)  
±2  
No-Missing-Codes  
Resolution  
13 + POL  
+ OFL  
-V  
V V  
REF  
±0.03 ±0.06  
±0.015 ±0.03  
±0.04  
REF  
IN  
MAX110AC/E  
MAX110BC/E  
MAX110BM  
-0.83 x V  
V 0.83 x V  
IN REF  
REF  
-V  
REF  
V V  
IN REF  
Relative Accuracy  
(Notes 3, 5–7)  
INL  
%FSR  
-0.83 x V  
V 0.83 x V  
REF  
±0.018  
±0.1  
REF  
IN  
-V  
REF  
V V  
IN REF  
-0.83 x V  
V 0.83 x V  
REF  
±0.05  
REF  
IN  
Offset Error  
V
IN+  
= V = 0V  
±4  
mV  
IN-  
After offset null  
Uncalibrated  
0.003  
Offset Error  
Temperature Drift  
µV/°C  
0.02  
Common-Mode Rejection  
Ratio  
CMRR  
-2.5V (V  
= V ) 2.5V  
6
ppm/V  
%
IN+  
IN-  
After gain calibration (Note 5)  
Uncalibrated  
±0.1  
0
Full-Scale Error  
-8  
Full-Scale Error  
Temperature Drift  
8
ppm/°C  
ppm  
V
= -5V, V = 4.75V to 5.25V  
15  
30  
SS  
DD  
Power-Supply Rejection  
V
DD  
= 5V, V = -4.75V to -5.25V  
SS  
ANALOG INPUTS  
Differential Input Voltage  
Range  
V
(Note 6)  
(Note 3)  
-V  
+V  
REF  
V
V
IN  
REF  
V
SS  
+
V
DD  
-
Absolute Input Voltage  
Range  
V
,
IN+  
V
IN-  
2.25  
2.25  
500  
10  
Input Bias Current  
Input Capacitance  
I
, I  
IN+ IN-  
nA  
pF  
2
_______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
ELECTRICAL CHARACTERISTICS—MAX110 (continued)  
(V = 5V ±5%, V = -5V ±5%, f  
= 1MHz, ÷ 2 mode (DV2 = 1), 81,920 CLK cycles/conv, V  
= 1.5V, V = -1.5V,  
REF-  
DD  
SS  
XCLK  
REF+  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE INPUTS  
Differential Reference  
Input Voltage Range  
V
0
3.0  
V
V
REF  
Absolute Reference Input  
Voltage Range  
V
,
V
+
V
-
REF+  
SS  
2.25  
DD  
V
REF-  
2.25  
I
I
,
REF+  
Reference Input Current  
V
= 2.5V, V  
= 0V  
500  
nA  
pF  
REF+  
REF-  
REF-  
Reference Input  
Capacitance  
(Note 3)  
10  
CONVERSION TIME  
10,240 clock-cycles/conversion  
102,400 clock-cycles/conversion  
20.48  
Synchronous Conversion  
Time (Note 7)  
t
ms  
CONV  
204.80  
Oversampling Clock  
Frequency  
f
(Note 8)  
0.25  
2.4  
1.25  
MHz  
OSC  
DIGITAL INPUTS (CS, SCLK, DIN, and XCLK when RCSEL = 0V)  
Input High Voltage  
Input Low Voltage  
Input Capacitance  
Input Leakage Current  
V
V
V
IH  
V
IL  
0.8  
10  
(Note 3)  
pF  
µA  
I
Digital inputs at 0V or 5V  
±1  
LKG  
DIGITAL OUTPUTS (DOUT, BUSY, and XCLK when RCSEL = V  
)
DD  
0.4  
0.4  
DOUT, BUSY, I  
= 1.6mA  
SINK  
Output Low Voltage  
V
V
V
OL  
XCLK, I  
= 200µA  
SINK  
V
- 0.5  
DOUT, BUSY, V = 4.75V, I  
= 1.0mA  
DD  
DD  
SOURCE  
Output High Voltage  
V
OH  
V - 0.5  
DD  
XCLK, V = 4.75V, I  
= 200µA  
DD  
SOURCE  
Leakage Current  
I
V
= 5V or 0V  
±10  
10  
µA  
pF  
LKG  
OUT  
Output Capacitance  
(Note 3)  
POWER REQUIREMENTS (all digital inputs at 0V or 5V)  
Positive Supply Voltage  
Negative Supply Voltage  
V
Performance guaranteed by supply rejection test  
Performance guaranteed by supply rejection test  
4.75  
5.25  
V
V
DD  
V
SS  
-4.75  
-5.25  
f
= 500kHz,  
XCLK  
550  
780  
320  
950  
continuous-conversion mode  
V
V
SS  
= 5.25V,  
= -5.25V  
DD  
Positive Supply Current  
I
DD  
µA  
XCLK unloaded,  
continuous-conversion mode, RC  
oscillator operational (Note 9)  
V
V
SS  
= 5.25V,  
= -5.25V  
f
= 500kHz,  
DD  
XCLK  
Negative Supply Current  
Power-Down Current  
I
650  
µA  
µA  
SS  
continuous-conversion mode  
= 5.25V, V = -5.25V, V = 0V, PD = 1  
SS XCLK  
I
DD  
4
10  
2
V
DD  
I
SS  
0.05  
_______________________________________________________________________________________  
3
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
ELECTRICAL CHARACTERISTICS—MAX111  
(V = 5V ±5%, f  
= 1MHz, ÷ 2 mode (DV2 = 1), 81,920 CLK cycles/conv, V  
= 1.5V, V  
= 0V, T = T  
to T  
,
DD  
XCLK  
REF+  
REF-  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY (Note 1)  
14 + POL  
+ OFL  
Resolution  
RES  
(Note 2)  
Bits  
LSB  
Bits  
Differential Nonlinearity  
DNL  
(Notes 3, 4)  
(Note 3)  
±2  
No-Missing-Codes  
Resolution  
13 + POL  
+ OFL  
-V  
V V  
REF  
±0.05 ±0.10  
±0.03 ±0.05  
±0.18  
REF  
IN  
MAX111AC/E  
MAX111BC/E  
MAX111BM  
MAX111AC/E  
MAX111BC/E  
MAX111BM  
-0.667 x V  
V 0.667 x V  
IN REF  
REF  
Relative Accuracy,  
Differential Input  
(Notes 3, 5–7)  
-V  
REF  
V V  
IN REF  
INL  
%FSR  
%FSR  
-0.667 x V  
V 0.667 x V  
REF  
±0.10  
REF  
IN  
0/MAX1  
-V  
REF  
V V  
REF  
±0.25  
IN  
-0.667 x V  
V 0.667 x V  
REF  
±0.20  
REF  
IN  
0V V V  
±0.1  
IN  
REF  
V
IN  
0.667 x V  
±0.06  
REF  
REF  
Relative Accuracy,  
Single-Ended Input  
(IN- = GND)  
0V V V  
±0.18  
IN  
INL  
V
IN  
0.667 x V  
±0.10  
REF  
REF  
0V V V  
±0.25  
IN  
V
IN  
0.667 x V  
±0.15  
REF  
Offset Error  
V
IN+  
= V = 0V  
±4  
mV  
IN-  
Common-Mode Rejection  
Ratio  
CMRR  
10mV (V  
= V ) 2.0V  
6
ppm/V  
IN+  
IN-  
After gain calibration (Note 5)  
Uncalibrated  
±0.2  
0
Full-Scale Error  
%
-8  
Full-Scale Error  
Temperature Drift  
8
ppm/°C  
ppm  
Power-Supply Rejection  
V
DD  
= 4.75V to 5.25V  
15  
ANALOG INPUTS  
Differential Input Voltage  
Range  
V
(Note 6)  
(Note 3)  
-V  
+V  
REF  
V
V
IN  
REF  
Absolute Input Voltage  
Range  
V
,
IN+  
0
V
DD  
- 3.2  
V
IN-  
Input Bias Current  
Input Capacitance  
I
, I  
IN+ IN-  
500  
10  
nA  
pF  
4
_______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
ELECTRICAL CHARACTERISTICS—MAX111 (continued)  
(V = 5V ±5%, f  
= 1MHz, ÷ 2 mode (DV2 = 1), 81,920 CLK cycles/conv, V  
= 1.5V, V  
= 0V, T = T  
to T  
,
DD  
XCLK  
REF+  
REF-  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE INPUTS  
Differential Reference  
Input Voltage Range  
V
0
0
1.5  
V
V
REF  
Absolute Reference Input  
Voltage Range  
V
,
REF+  
V
- 3.2  
DD  
V
REF-  
I
I
,
REF+  
Reference Input Current  
V
= 1.5V, V  
= 0V  
500  
10  
nA  
pF  
REF+  
REF-  
REF-  
Reference Input  
Capacitance  
(Note 3)  
CONVERSION TIME  
10,240 clock-cycles/conversion  
102,400 clock-cycles/conversion  
20.48  
204.80  
Synchronous Conversion  
Time (Note 7)  
t
ms  
CONV  
Oversampling Clock  
Frequency  
f
(Note 8)  
0.25  
2.4  
1.25  
MHz  
OSC  
DIGITAL INPUTS (CS, SCLK, DIN, and XCLK when RCSEL = 0V)  
Input High Voltage  
Input Low Voltage  
Input Capacitance  
Input Leakage Current  
V
V
V
IH  
V
IL  
0.8  
10  
(Note 3)  
pF  
µA  
I
Digital inputs at 0V or 5V  
±1  
LKG  
DIGITAL OUTPUTS (DOUT, BUSY, and XCLK when RCSEL = V  
)
DD  
0.4  
0.4  
DOUT, BUSY, I  
= 1.6mA  
SINK  
Output Low Voltage  
V
V
V
OL  
XCLK, I  
= 200µA  
SINK  
V
- 0.5  
DOUT, BUSY, V = 4.75V, I  
= 1.0mA  
DD  
DD  
SOURCE  
Output High Voltage  
V
OH  
V - 0.5  
DD  
XCLK, V = 4.75V, I  
= 200µA  
DD  
SOURCE  
Leakage Current  
I
V
= 5V or 0V  
±1  
10  
µA  
pF  
LKG  
OUT  
Output Capacitance  
(Note 3)  
POWER REQUIREMENTS (all digital inputs at 0V or 5V)  
Positive Supply Voltage  
V
DD  
Performance guaranteed by supply rejection test  
4.75  
5.25  
V
f
= 500kHz,  
XCLK  
640  
1200  
continuous-conversion mode  
Supply Current  
I
V
= 5.25V  
µA  
µA  
DD  
DD  
XCLK unloaded,  
continuous-conversion mode, RC  
oscillator operational (Note 9)  
960  
4
Power-Down Current  
I
DD  
V
DD  
= 5.25V, V = 0V, PD = 1  
XCLK  
10  
_______________________________________________________________________________________  
5
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
Note 1: These specifications apply after auto-null and gain calibration. Performance at power-supply tolerance limits is guaranteed  
by power-supply rejection tests. Tests are performed at V = 5V and V = -5V (MAX110).  
DD  
SS  
Note 2: 32,768 LSBs cover an input voltage range of ±V  
(15 bits). An additional bit (OFL) is set for V > V  
.
REF  
IN  
REF  
Note 3: Guaranteed by design. Not subject to production testing.  
Note 4: DNL is less than ±2 counts (LSBs) out of 215 counts (±14 bits). The major source of DNL is noise, and this can be further  
improved by averaging.  
Note 5: See 3-Step Calibration section in text.  
Note 6:  
V
REF  
= (V  
- V  
), V = (V  
- V  
) or (V  
- V  
). The voltage is interpreted as negative when the voltage at  
REF+  
REF-  
IN  
IN1+  
IN1-  
IN2+  
IN2-  
the negative input terminal exceeds the voltage at the positive input terminal.  
Note 7: Conversion time is set by control bits CONV1–CONV4.  
Note 8: Tested at clock frequency of 1MHz with the divide-by-2 mode (i.e. oversampling clock of 500kHz). See Typical Operating  
Characteristics section for the effect of other clock frequencies. Also read the Clock Frequency section.  
Note 9: This current depends strongly on C  
(see Applications Information section).  
XCLK  
TIMING CHARACTERISTICS (see Figure 6)  
(V = 5V, V = -5V (MAX110), T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
SS  
A
MIN  
0/MAX1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
60  
TYP  
MAX  
UNITS  
T
= +25°C  
A
CS to SCLK Setup Time  
(Note 10)  
t
MAX11_ _C/E  
MAX11_ BM  
80  
ns  
CSS  
100  
CS to SCLK Hold Time  
(Note 10)  
t
0
ns  
ns  
ns  
ns  
CSH  
T
= +25°C  
60  
80  
A
DIN to SCLK Setup Time  
(Note 10)  
t
DS  
MAX11_ _C/E  
MAX11_ BM  
100  
DIN to SCLK Hold Time  
(Note 10)  
t
0
DH  
T
A
= +25°C  
100  
120  
160  
0
SCLK, XCLK Pulse Width  
(Note 10)  
t
MAX11_ _C/E  
MAX11_ BM  
CK  
DA  
DO  
T
= +25°C  
35  
60  
80  
A
Data Access Time  
(Note 10)  
t
C
C
= 50pF  
= 50pF  
MAX11_ _C/E  
MAX11_ BM  
0
100  
120  
100  
120  
140  
80  
ns  
LOAD  
LOAD  
0
T
A
= +25°C  
0
SCLK to DOUT Valid  
Delay (Note 10)  
t
MAX11_ _C/E  
MAX11_ BM  
0
ns  
ns  
0
T
A
= +25°C  
35  
Bus Relinquish Time  
(Note 10)  
t
DH  
MAX11_ _C/E/M  
= +25°C  
120  
T
2.0  
A
RC Oscillator Frequency  
MHz  
MAX11_ _C/E  
MAX11_ BM  
1.3  
1.1  
2.8  
3.0  
Note 10: Timing specifications are guaranteed by design. All input control signals are specified with t = t = 5ns  
r
f
(10% to 90% of +5V) and timed from a +1.6V voltage level.  
6
_______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(MAX110, V = 5V, V = -5V, V  
= 1.5V, V  
= -1.5V, differential input (V  
= -V ), f  
= 1MHz, ÷ 2 mode (DV2 = 1),  
DD  
SS  
REF+  
REF-  
IN+  
IN- XCLK  
81,920 clocks/conv, T = +25°C, unless otherwise noted.)  
A
MAX110 RELATIVE ACCURACY  
MAX110 RELATIVE ACCURACY  
(-V < V < V  
(-0.83 V < V < 0.83 V  
)
)
REF  
REF  
IN  
REF  
REF  
IN  
0.10  
0.10  
0.05  
0
-40°C T +85°C  
-40°C T +85°C  
RANGE OF INL VALUES  
(200 PIECE SAMPLE SIZE)  
A
A
RANGE OF INL VALUES  
(200 PIECE SAMPLE SIZE)  
0.05  
0
-0.05  
-0.10  
-0.05  
-0.10  
-4  
-2  
0
2
4
-4  
-2  
0
2
4
V
IN  
(V)  
V
IN  
(V)  
MAX110 RELATIVE ACCURACY vs.  
OVERSAMPLING FREQUENCY (f  
MAX110 RELATIVE ACCURACY  
vs. TEMPERATURE  
)
OSC  
0.07  
0.06  
0.10  
0.08  
0.06  
0.04  
V
DD  
= 4.75V  
V
SS  
= -4.75V  
T = +85°C  
A
0.05  
0.04  
0.03  
0.02  
0.01  
0
÷1 MODE  
÷2 MODE  
0.02  
0
÷ 4 MODE  
0
0.25  
0.50  
0.75  
(MHz)  
1.00  
1.25  
-25  
-50  
0
25  
50  
75  
100  
f
TEMPERATURE (°C)  
OSC  
MAX110 POWER DISSIPATION vs.  
OVERSAMPLING FREQUENCY (f  
)
OSC  
8
7
V
= 5.25V  
= 0V  
DD  
V
IN  
T = -40°C  
A
6
5
4
÷ 4 MODE  
÷ 2 MODE  
÷ 1 MODE  
3
2
0
0.25  
0.50  
0.75  
(MHz)  
1.00  
1.25  
f
OSC  
_______________________________________________________________________________________  
7
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX111, V = 5V, V  
= 1.5V, V  
= 0V, differential input (V  
= -V ), f = 1MHz, ÷ 2 mode (DV2 = 1),  
IN- XCLK  
DD  
REF+  
REF-  
IN+  
81,920 clocks/conv, T = +25°C, unless otherwise noted.)  
A
MAX111 RELATIVE ACCURACY  
MAX111 RELATIVE ACCURACY  
(-V < V < V  
)
(-0.667V < V < 0.667V )  
REF  
REF  
IN  
REF  
REF  
IN  
0.10  
0.05  
0.10  
0.05  
0
0
-0.05  
-0.05  
0/MAX1  
-0.10  
-0.10  
-2.0  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
2.0  
-2.0  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
2.0  
V
IN  
(V)  
V
IN  
(V)  
MAX111 RELATIVE ACCURACY  
vs. TEMPERATURE  
MAX111 RELATIVE ACCURACY vs.  
OVERSAMPLING FREQUENCY (f  
)
OSC  
0.14  
0.10  
V
= 4.75V  
= +85°C  
DD  
T
0.12  
A
0.08  
0.06  
0.04  
0.1  
0.08  
0.06  
0.04  
0.02  
0
÷ 1 MODE  
÷2 MODE  
÷4 MODE  
0.02  
0
-25  
0
0.25  
0.50  
1.00  
-50  
0
25  
50  
75  
100  
0.75  
f
(MHz)  
TEMPERATURE (°C)  
OSC  
MAX111 POWER DISSIPATION vs.  
OVERSAMPLING FREQUENCY (f  
)
OSC  
7
6
V
= 5.25V  
= 0V  
DD  
V
IN  
T
A
= -40°C  
5
4
3
2
1
0
÷ 4 MODE  
÷ 2 MODE  
÷ 1 MODE  
0
0.25  
0.50  
0.75  
1.00  
1.25  
f
(MHz)  
OSC  
8
_______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
DIP/SO  
SSOP  
1
2
3
4
1
2
3
6
IN1+  
REF-  
REF+  
Channel 1 Positive Analog Input  
Negative Reference Input  
Positive Reference Input  
V
DD  
Positive Power-Supply Input—connect to +5V  
RC Select Input. Connect to GND to select external clock mode. Connect to V to  
DD  
5
6
7
8
RCSEL  
XCLK  
select RC OSC mode. XCLK must be connected to V or GND through a resistor  
(1Mor less) when RC OSC mode is selected.  
DD  
Clock Input / RC Oscillator Output. TTL/CMOS-compatible oversampling clock input  
when RCSEL = GND. Connects to the internal RC oscillator when RCSEL = V . XCLK  
DD  
must be connected to V or GND through a resistor (1Mor less) when RC OSC  
DD  
mode is selected.  
7
8
9
SCLK  
Serial Clock Input. TTL/CMOS-compatible clock input for serial-interface data I/O.  
Busy Output. Goes low at conversion start, and returns high at end of conversion.  
10  
BUSY  
Chip-Select Input. Pull this input low to perform a control-word-write/data-read opera-  
tion. A conversion begins when CS returns high, provided NO-OP is a 1. See the sec-  
tion Using the MAX110/MAX111 with SPI, QSPI, and MICROWIRE Serial Interfaces.  
9
11  
CS  
10  
11  
12  
12  
13  
16  
DOUT  
DIN  
Serial Data Output. High-impedance when CS is high.  
Serial Data Input. See Control Register section.  
GND  
Digital Ground  
V
MAX110 Negative Power-Supply Input—connect to -5V  
MAX111 Analog Ground  
SS  
13  
17  
AGND  
IN2-  
14  
15  
16  
18  
19  
Channel 2 Negative Analog Input  
IN2+  
IN1-  
Channel 2 Positive Analog Input  
20  
Channel 1 Negative Analog Input  
4, 5, 14, 15  
N.C.  
No Connect—there is no internal connection to this pin  
to the ADC. The up/down counter clocks data in from  
_______________De t a ile d De s c rip t io n  
the comparator at the oversampling clock rate and  
averages the pulse-width-modulated (PWM) square  
wave to produce the conversion result. A 16-bit static  
shift register stores the result at the end of the conver-  
sion. Figure 2 shows the ADC waveforms for a differen-  
The MAX110/MAX111 ADC c onve rts low-fre q ue nc y  
analog signals to a 16-bit serial digital output (14 data  
bits, a sign bit, and an overrange bit) using a first-order  
sigma-delta loop (Figure 1). The differential input volt-  
age is internally connected to a precision voltage-to-  
current converter. The resulting current is integrated  
and applied to a comparator. The comparator output  
then drives an up/down counter and a 1-bit DAC. When  
the DAC output is fed back to the integrator input, the  
sigma-delta loop is completed.  
tia l a na log inp ut e q ua l to 1/2 (V  
- V  
). The  
REF+  
REF-  
resulting comparator and 1-bit DAC outputs are high  
for seven cycles and low for three cycles of the over-  
sampling clock.  
Since the analog input signal is integrated over many  
clock cycles, much of the signal and quantization noise  
is attenuated. The more clock cycles allowed during  
each conversion, the greater the noise attenuation (see  
Programming Conversion Time).  
During a conversion, the comparator output is a VREF-  
to VREF+ square wave; its duty cycle is proportional to  
the magnitude of the differential input voltage applied  
_______________________________________________________________________________________  
9
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
DIN SCLK CS  
DITHER  
GENERATOR  
IN1+  
IN1-  
IN+  
IN-  
INTEGRATOR  
IN2+  
IN2-  
INPUT  
MUX  
Gm  
Gm  
Σ
SERIAL  
SHIFT  
REGISTER  
UP/DOWN  
COUNTER  
DOUT  
-
REF+  
REF-  
16 16  
CONTROL  
REGISTER  
16 16  
BUSY  
TIMER + CONTROL  
LOGIC + CLOCK GENERATOR  
RCSEL  
OSC  
A
DIVIDER  
NETWORK,  
DIVIDE BY  
1, 2, OR 4  
XCLK  
MAX110  
MAX111  
RC  
OSCILLATOR  
Figure 1. Functional Diagram  
Ove rs a m p lin g Clo c k  
XCLK internally connects to a clock-frequency divider  
network, whose output is the ADC oversampling clock,  
V
V
REF+  
DC LEVEL AT 1/2 V  
REF  
DIFFERENTIAL  
ANALOG  
f
. This allows the selected clock source (internal RC  
OSC  
os c illa tor or e xte rna l c loc k a p p lie d to XCLK) to b e  
divided by one, two, or four (see Clock Divider-Ratio  
Control Bits).  
INPUT  
REF-  
Figure 3 shows the two methods for providing the over-  
sampling clock to the MAX110/MAX111. In external-  
clock mode (Figure 3a), the internal RC oscillator is  
disabled and XCLK accepts a TTL/CMOS-level clock to  
provide the oversampling clock to the ADC.  
V
REF+  
OUTPUT FROM  
1-BIT DAC  
V
REF-  
Select external-clock mode (Figure 3a) by connecting  
RCSEL to GND and a TTL/CMOS-compatible clock to  
XCLK (s e e Se le c ting the Ove rs a mp ling Cloc k  
Frequency).  
OVERSAMPLING  
CLOCK  
In RC-oscillator mode (Figure 3b), the internal RC oscil-  
lator is active and its output is connected to XCLK  
(Figure 1). Select RC-oscillator mode by connecting  
MAX110  
MAX111  
RCSEL to V . This enables the internal oscillator and  
DD  
Figure 2. ADC Waveforms During a Conversion  
connects it to XCLK for use by the ADC and external  
system components. Minimize the capacitive loading on  
XCLK when using the internal RC oscillator.  
10 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
+5V  
+5V  
V
DD  
V
DD  
RCSEL  
RCSEL  
MAX110  
MAX111  
MAX110  
MAX111  
+5V  
GND  
GND  
TTL/CMOS  
1MΩ  
XCLK  
XCLK  
V
(AGND)  
SS  
V
(AGND)  
SS  
-5V (0V)  
( ) ARE FOR MAX111.  
-5V (0V)  
( ) ARE FOR MAX111.  
Figure 3b. Connection for Internal RC-Oscillator ModeXCLK  
connects to the internal RC oscillator. Note, the pull-up resistor  
is not necessary if the internal oscillator is never shut down.  
Figure 3a. Connection for External-Clock Mode  
properly if the reference voltage remains within the rec-  
ommended voltage range (see Reference Inputs). If the  
reference voltage exceeds the recommended input  
range, the overrange bit may not operate properly.  
ADC Op e ra t io n  
The output data from the MAX110/MAX111 is arranged  
in twos-complement format (Figures 4, 5). The sign bit  
(POL) is shifted out first, followed by the overrange bit  
(OR), and the 14 data bits (MSB first) (see Figure 6).  
The MAX110 operates from ±5V power supplies and  
c onve rts low-fre q ue nc y a na log s ig na ls in the ± 3V  
range when using the maximum reference voltage of  
). Within the ±3V input  
range, greater accuracy is obtained within ±2.5V (see  
Electrical Characteristics for details). Note that a nega-  
Dig it a l In t e rfa c e —S t a rt in g a Co n ve rs io n  
Data is transferred into and out of the serial I/O shift  
register by pulling CS low and applying a serial clock  
at SCLK. This fully static shift register allows SCLK to  
range from DC to 2MHz. Output data from the ADC is  
clocked out on SCLK’s falling edge and should be read  
on SCLK’s rising edge. Input data to the ADC at DIN is  
clocked in on SCLK’s rising edge. A new conversion  
begins when CS returns high, provided the MSB in the  
inp ut c ontrol word (NO-OP) is a 1 (s e e Us ing the  
MAX110/MAX111 with MICROWIRE, SPI, and QSPI  
Serial Interfaces). Figure 6 shows the detailed serial-  
interface timing diagram.  
V
= 3V (V  
= V  
- V  
REF  
REF  
REF+  
REF-  
tive input voltage is defined as V  
> V . For the  
IN-  
IN+  
MAX110, the absolute voltage at any analog input pin  
must remain within the (V + 2.25V) to (V - 2.25V)  
SS  
DD  
range.  
The MAX111 operates from a single +5V supply and  
converts low-frequency differential analog signals in the  
±1.5V range when using the maximum reference volt-  
= 1.5V. As ind ic a te d in the Ele c tric a l  
Characteristics, greater accuracy is achieved within the  
±1.2V range. The absolute voltage at any analog input  
CS must remain high during the conversion (while  
BUSY remains low). Bringing CS low during the conver-  
s ion c a us e s the ADC to s top c onve rting , a nd ma y  
result in erroneous output data.  
a g e of V  
REF  
pin for the MAX111 must remain within 0V to V - 3.2V.  
DD  
When V > V  
the input is interpreted as negative.  
IN-  
IN+  
Using the MAX110/MAX111 with SPI, QSPI, and  
MICROWIRE Serial Interfaces  
Figure 7 shows the most common serial-interface con-  
nections. The MAX110/MAX111 are compatible with  
SPI, QSPI (CPHA = 0, CPOL = 0), and MICROWIRE  
serial-interface standards.  
The overrange bit (OFL) is provided to sense when the  
input voltage level has exceeded the reference voltage  
level. The converter does not saturate” until the input  
voltage is typically 20% larger. The linearity is not guar-  
anteed in this range. Note that the overrange bit works  
______________________________________________________________________________________ 11  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
OUTPUT  
CODE  
+OVERFLOW  
TRANSITION  
POL OFL D13...D0  
0
0
0
0
0
1
0
0
0
0
00 . . .000  
+OVERFLOW  
11 . . .111  
11 . . .110  
11 . . .101  
11 . . .100  
0
0
0
1
1
0
0
0
1
1
00 . . .001  
00 . . .001  
00 . . .000  
11 . . .111  
11 . . .110  
-OVERFLOW  
TRANSITION  
0/MAX1  
1
1
1
1
1
1
1
1
1
0
00 . . .011  
00 . . .010  
00 . . .001  
00 . . .000  
11 . . .111  
-OVERFLOW  
- V  
REF  
V
REF  
-1LSB  
INPUT VOLTAGE (LSBs)  
Figure 4. Differential Transfer Function  
OUTPUT  
CODE  
POL OFL D13...D0  
OVERFLOW  
TRANSITION  
0
0
0
0
0
1
0
0
0
0
00 . . .000  
11 . . .111  
11 . . .110  
11 . . .101  
11 . . .100  
+OVERFLOW  
0
0
0
0
1
0
0
0
0
1
00 . . .011  
00 . . .010  
00 . . .001  
00 . . .000  
11 . . .111  
0
1
2
3
V
REF  
-1LSB  
INPUT VOLTAGE (LSBs)  
Figure 5. Unipolar Transfer Function  
12 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
CS  
t
t
CK  
CSH  
t
CSS  
SCLK  
DIN  
t
CK  
t
DH  
t
DS  
MSB  
LSB  
t
DO  
t
DH  
t
DA  
DOUT  
BUSY  
POL  
OFL  
MSB  
DO  
END OF  
CONVERSION  
START OF  
CONVERSION  
Figure 6. Detailed Serial-Interface Timing  
The ADC serial interface operates with just SCLK, DIN,  
and DOUT (allow sufficient time for the conversion to  
complete between read/write operations). Achieve con-  
tinuous operation by connecting BUSY to an uncommit-  
ted µP I/O or interrupt, to signal the processor when the  
conversion results are ready. Figures 8a and 8b show  
the timing for SPI/MICROWIRE and QSPI operation.  
+5V  
I/O  
SCK  
MISO  
MOSI  
CS  
SCLK  
DOUT  
DIN  
MAX110  
MAX111  
µP  
SS  
MASKABLE  
INTERRUPT  
BUSY  
The fully static 16-bit I/O register allows infinite time  
between the two 8-bit read/write operations necessary  
to ob ta in the full 16 b its of d a ta with SPI a nd  
MICROWIRE. CS must remain low during the entire  
two-byte transfer (Figure 8a). QSPI allows a full 16-bit  
data transfer (Figure 8b).  
a. SPI/QSPI  
I/O  
SK  
SI  
SO  
CS  
SCLK  
DOUT  
DIN  
MAX110  
MAX111  
µP  
Interfacing to the 80C32 Microcontroller Family  
Figure 7c shows the general 80C32 connection to the  
MAX110/MAX111 using Port 1. For a more detailed dis-  
cussion, see the MAX110 evaluation kit manual.  
MASKABLE  
INTERRUPT or I/O  
BUSY  
b. MICROWIRE  
I/O S h ift Re g is t e r  
Serial data transfer is accomplished with a 16-bit fully  
static shift register. The 16-bit control word shifted into  
this register during a data-transfer operation controls  
the ADCs va rious func tions . The MSB (NO-OP)  
enables/disables transfer of the control word within the  
ADC. A logic 1 causes the remaining 15 bits in the con-  
trol word to be transferred from the I/O register into the  
c ontrol re g is te r whe n CS g oe s hig h, up d a ting the  
ADCs configuration and starting a new conversion. If  
P1.0  
CS  
SCLK  
DIN  
DOUT  
BUSY  
P1.1  
µP  
MAX110  
MAX111  
P1.2  
P1.3  
P1.4  
c. 80C51/80C32  
Figure 7. Common Serial-Interface Connections  
______________________________________________________________________________________ 13  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
ST  
ND  
MAX110  
MAX111  
1
BYTE READ/WRITE  
2
BYTE READ/WRITE  
BUSY  
CS  
SCLK  
DOUT  
0/MAX1  
POL  
OFL D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIN  
NO OP NU NU CONV4 CONV3 CONV2 CONV1 DV4  
DV2  
NU NU CHS CAL NUL PDX PD  
Figure 8a. SPI/MICROWIRE-Interface Timing  
MAX110  
MAX111  
BUSY  
CS  
SCLK  
DOUT  
POL  
OFL D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIN  
NO OP NU NU CONV4 CONV3 CONV2 CONV1 DV4 DV2 NU NU CHS CAL NUL PDX PD  
Figure 8b. QSPI Serial-Interface Timing  
14 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
Table 1. Input Control-Word Bit Map  
15  
NO-OP  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NU  
NU CONV4 CONV3 CONV2 CONV1 DV4  
DV2  
NU  
NU  
CHS  
CAL  
NUL  
PDX  
PD  
First bit clocked in.  
BIT  
NAME  
NO-OP  
NU  
DESCRIPTION  
If this bit is a logic high, the remaining 15 LSBs are transferred to the control register and a  
new conversion begins when CS returns high. If this bit is set low, the control word is not  
passed to the control register, the ADC configuration remains unchanged, and no new con-  
version begins when CS returns high.  
15  
5, 6, 13, 14  
Used for test purposes only. Set these bits low.  
Conversion Time Control Bits. See Table 4.  
9–12  
7, 8  
CONV1–CONV4  
DV2, DV4  
XCLK to Oversampling Cock Ratio Control Bits. See Table 5.  
Input Channel Select. A logic high selects channel 2 (IN2+ and IN2-), while a logic low  
selects channel 1 (IN1+ and IN1-). See Tables 2 and 3.  
4
CHS  
3
2
1
0
CAL  
NUL  
PDX  
PD  
Gain-Calibration Bit. A logic high selects gain-calibration mode. See Table 3.  
Internal Offset-Null Bit. A logic high selects offset-null mode. See Table 3.  
Oscillator Power-Down. Set this bit high to power down the RC oscillator.  
Analog Power-Down. Set this bit high to power down the analog section.  
When PDX is set high, the internal RC oscillator stops  
shortly after CS returns high. If the next control word  
written to the device has NO-OP = 1 instructing the  
ADC to convert, BUSY will go low, but because the RC  
oscillator is stopped, BUSY will remain low and will not  
allow a new conversion to begin. To avoid this situation,  
write a “dummy” control word with NO-OP = 0 and any  
combination of bits 14-0 in the control word following  
the control word with PDX = 0. With NO-OP = 0, bits 14-  
0 are ignored and the internal state machine resets.  
Next, perform a normal 3-step calibration (see Table 3).  
NO-OP is a zero, the control word is not transferred to  
the control register, the ADCs configuration remains  
unchanged, and no new conversion is initiated. This  
allows specific ADCs in a “daisy chain” arrangement to  
b e re c onfig ure d while le a ving the re ma ining ADCs  
unchanged. Table 1 lists the various ADC control word  
functions.  
Output data is shifted out of DOUT at the same time the  
input control word for the next conversion is shifted in  
(Figure 8).  
On p owe r-up , a ll inte rna l re g is te rs re s e t to ze ro.  
Therefore, when writing the first control word to the  
ADC, the data simultaneously shifted out will be zeros.  
The first conversion begins when CS goes high (NO-OP  
= 1). The results are placed in the 16-bit I/O register for  
access on the next data-transfer operation.  
Note that XCLK must be connected to V  
or GND  
DD  
through a resistor (suggested value is 1M) when the  
RC oscillator mode is selected (RCSEL = V ). This  
DD  
resistor is not necessary if the external oscillator mode  
is used, or if the internal oscillator is not shut down.  
S e le c t in g t h e An a lo g In p u t s  
Bit 4 (CHS) controls which of the two differential inputs  
connect to the internal ADC inputs (see the Functional  
Diagram). A logic high selects IN2+ and IN2- while a  
logic low selects IN1+ and IN1-. Table 2 shows the  
allowable input multiplexer configurations.  
P o w e r-Do w n Mo d e  
Bits 0 and 1 control the ADCs power-down mode. If bit  
0 (PD) is a logic high, power is removed from all analog  
circuitry except the RC oscillator. A logic high at bit 1  
(PDX) removes power from the RC oscillator. If both bits  
PD a nd PDX a re a log ic hig h, or if PD is hig h a nd  
RCSEL is low, the supply currents reduce to 4µA. If an  
external XCLK clock continues to run in power-down  
mode, the supply current will depend on the clock rate.  
______________________________________________________________________________________ 15  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
Table 2. Allowable Input Multiplexer Configurations  
CAL NUL CHS NO-OP ADC IN+ ADC IN-  
DESCRIPTION  
0
0
0
0
1
0
0
1
1
1
0
1
1
1
1
1
1
IN1+  
IN2+  
IN1-  
IN2-  
REF-  
IN1-  
IN2-  
IN1-  
IN2-  
REF-  
Channel 1 connected to ADC inputs. Conversion begins when CS returns high.  
Channel 2 connected to ADC inputs. Conversion begins when CS returns high.  
IN1- connected to the ADC inputs; offset-null mode selected. Autonull conversion  
begins when CS returns high, and the results are stored in the null register.  
0
IN2- connected to the ADC inputs; offset-null mode selected. Autonull conversion  
begins when CS returns high, and the results are stored in the null register.  
1
REF- connected to the ADC inputs; offset-null mode selected. Autonull conversion  
begins when CS returns high, and the results are stored in the null register.  
X
0/MAX1  
REF+ and REF- connected to the ADC inputs; gain-calibration mode  
selected. Autocal conversion begins when CS returns high, and the results are  
stored in the 16-bit I/O register.  
1
0
X
X
1
0
REF+  
REF-  
Input control word is not transferred to the control register. ADC  
configuration remains unchanged and no new conversion starts when CS  
returns high.  
No  
No  
X
X
Change Change  
X = Don't Care  
Table 3. Procedure to Calibrate the ADC  
CONTROL WORD  
Not CONV1- DV2 & Not  
STEP  
DESCRIPTION  
NO-OP  
CHS CAL NUL PDX PD  
Used CONV4 DV4 Used  
Sets the new conversion speed (if required)  
and performs an offset correction conversion  
with the internal ADC inputs shorted to REF-.  
The result is stored in the null register.  
(This step also selects the speed/resolution  
for the ADC.)  
New  
Data  
1
1
00  
XX  
00  
X
X
1
1
0
0
Performs a gain-calibration conversion with  
the null register contents as the starting value.  
The result is stored in the calibration register.  
No  
Change  
2
3
1
1
00  
00  
XX  
XX  
00  
00  
1
0
0
1
0
0
0
0
Performs an offset-null conversion with the  
internal ADC inputs shorted to the selected  
input channel's negative input (IN1- or IN2-).  
The next operation performs the first signal  
conversion with the new setup.  
0
or  
1
No  
Change  
X = Don't Care  
16 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
Automatic gain calibration is not allowed in the  
102,400 cycles per conversion mode (s e e  
Programming Conversion Time). In this mode, calibra-  
tion can be achieved by connecting the reference volt-  
age to one input channel and performing a normal  
conversion. Subsequent conversion results can be cor-  
rected by software. Do not issue a NO-OP command  
directly following the gain calibration, as the cali-  
bration data will be lost.  
3 -S t e p Ca lib ra t io n  
The data sheet electrical specifications apply to the  
device after optional calibration of gain error and offset.  
Uncalibrated, the gain error is typically 2%.  
Table 3 describes the three steps required to calibrate  
the ADC completely.  
Once the ADC is calibrated to the selected channel, set  
CAL = 0 and NUL = 0 and leave CHS unchanged in the  
next control word to perform a signal conversion on the  
selected analog input channel.  
P ro g ra m m in g Co n ve rs io n Tim e  
The MAX110/MAX111 are specified for 12 bits of accu-  
racy and up to ±14 bits of resolution. The ADCs resolu-  
tion depends on the number of clock cycles allowed  
d uring e a c h c onve rs ion. Control-re g is te r b its 9–12  
(CONV1–CONV4) determine the conversion time by  
controlling the nominal number of oversampling clock  
cycles required for each conversion (OSCC/CONV).  
Table 4 lists the available conversion times and result-  
ing resolutions.  
Calibrate the ADC after the following operations:  
when power is first applied  
if the reference common-mode voltage changes  
if the common-mode voltage of the selected input  
channel varies significantly. The CMRR of the analog  
inputs is 0.25LSB/V.  
after changing channels (if the common-mode volt-  
ages of the two channels are different)  
To program a new conversion time, perform a 3-step  
calibration with the appropriate CONV1–CONV4 data  
used in Table 3. The ADC is now calibrated at the new  
conversion speed/resolution.  
after changing conversion speed/resolution.  
after significant changes in temperature. The offset  
drift with temperature is typically 0.003µV/°C.  
Table 4. Available Conversion Times  
CLOCK CYCLES  
PER  
CONVERSION  
NOMINAL CONVERSION TIME  
RCSEL = GND, DV2 = DV4 = 0, XCLK = 500kHz  
(ms)  
CONVERSION  
RESOLUTION  
(Bits)  
CONV4 CONV3 CONV2 CONV1  
1
0
0
0
0
0
1
0
0
1
1
0
1
1
0
0
10,240  
20,480  
20.48  
40.96  
12 + POL  
13 + POL  
14 + POL  
14 + POL  
81,920  
163.84  
204.80  
102,400*  
* Gain-calibration mode is not available with 102,400 clock cycles/conversion selected.  
Table 5. Clock Divider-Ratio Control  
DV2  
DV4  
DESCRIPTION  
XCLK or internal RC oscillator connects directly to the ADC; f  
0
0
1
1
0
1
0
1
= f  
.
OSC  
XCLK  
XCLK or internal RC oscillator is divided by 4 and connects to the ADC; f  
XCLK or internal RC oscillator is divided by 2 and connects to the ADC; f  
Not allowed  
= fXCLK ÷ 4.  
= fXCLK ÷ 2.  
OSC  
OSC  
Clock duty cycles of 50% ±10% are recommended.  
______________________________________________________________________________________ 17  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0
-10  
-20  
-30  
-40  
-50  
-60  
CONVERSION TIME  
LINE CYCLE PERIOD  
0.1  
1
1
2
3
4
5
6
7 8 9 10  
SIGNAL FREQUENCY IN Hz  
FOR 100ms CONVERSION  
TIME (see Table 6)  
10  
20  
30 40 50 60 708090100  
0/MAX1  
Figure 9. MAX110/MAX111 Noise Rejection Follows SIN(X) / X Function  
clock frequency can be used for best performance.  
Over the extended and military temperature ranges, the  
ratio of 2 or 4 gives the best performance. See the  
Typical Operating Characteristics to observe the effect  
of the clock divider on the converters linearity.  
S e le c t in g t h e Ove rs a m p lin g  
Clo c k Fre q u e n c y  
Choose the oversampling frequency, f  
, carefully to  
OSC  
achieve the best relative-accuracy performance from the  
MAX110/MAX111 (see Typical Operating Characteristics).  
5 0 Hz/6 0 Hz Lin e Fre q u e n c y Re je c t io n  
High rejection of 50Hz or 60Hz is obtained by using an  
oversampling clock frequency and a clock-cycles/con-  
version setting so the conversion time equals an inte-  
gral number of line cycles, as in the following equation:  
Clock Divider-Ratio Control Bits  
Bits 7 a nd 8 (DV2 a nd DV4) p rog ra m the c loc k-  
frequency divider network. The divider network sets the  
frequency ratio between f  
(the frequency of the  
XCLK  
external TTL/CMOS clock or internal RC oscillator) and  
(the oversampling frequency used by the ADC).  
f
OSC  
f
= f  
x m / n  
OSC  
LINE  
An oversampling clock frequency between 450kHz and  
700kHz is optimum for the converter. Best perfor-  
mance over the extended temperature range is  
obtained by choosing 1MHz or 1.024MHz with the  
divide-by-2 option (DV2 = 1) (see the section Effect  
of Dither on INL). To determine the converters accura-  
c y a t othe r c loc k fre q ue nc ie s , s e e the Typ ic a l  
Operating Characteristics and Table 5.  
where f  
is the oversampling clock frequency, f  
LINE  
OSC  
= 50Hz or 60Hz, m is the number of clock cycles per  
conversion (see Table 4), and n is the number of line  
cycles averaged every conversion.  
This nois e re je c tion is inhe re nt in inte g ra ting a nd  
sigma-delta ADCs, and follows a SIN(X) / X function  
(Figure 9). Notches in this function represent extremely  
high rejection, and correspond to frequencies with an  
integral number of cycles in the MAX110/MAX111s  
selected conversion time.  
Effect of Dither on Relative Accuracy  
First-order sigma-delta converters require dither for  
randomizing any systematic tone being generated in  
the modulator. The frequency of the dither source plays  
an important role in linearizing the modulator. The ratio  
of the dither generators frequency to that of the modu-  
lators oversampling clock can be changed by setting  
the DV2/DV4 bits. The XCLK clock is directly used by  
the dither generator while the DV2/DV4 bits reduce the  
oversampling clock by a ratio of 2 or 4. Over the com-  
mercial temperature range, any ratio (i.e., 1, 2, or 4)  
between the dither frequency and the oversampling  
The shortest conversion time resulting in maximum  
simultaneous rejection of both 60Hz and 50Hz line fre-  
quencies is 100ms. When using the MAX111, use a  
200ms conversion time for maximum 60Hz and 50Hz  
rejection and optimum performance. For either device,  
select the appropriate oversampling clock frequency  
and either an 81,240 or 102,400 clock cycles per con-  
version (CCPC) ratio. Table 6 suggests the possible  
configurations.  
18 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
POWER  
SUPPLIES  
POWER  
SUPPLIES  
+5V  
+5V  
-5V  
GND  
GND  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
*R = 10Ω  
*R = 10Ω  
V
GND  
AGND  
+5V DGND  
V
GND  
V
+5V DGND  
DD  
DD  
SS  
DIGITAL  
CIRCUITRY  
DIGITAL  
CIRCUITRY  
MAX111  
MAX110  
*OPTIONAL  
*OPTIONAL  
Figure 10a. MAX110 Power-Supply Grounding Connections  
A 100ms conversion time cannot be achieved with either  
Figure 10b. MAX111 Power-Supply Grounding Connections  
If you wish to use a configuration other than those sug-  
gested in Table 6, you can accomplish similar 50Hz  
and 60Hz line-frequency rejection off-chip by averag-  
ing several conversions.  
10,240 CCPC or 20,480 CCPC modes because f  
would be below the minimum 250kHz requirement.  
OSC  
When the gain calibration is performed, the conversion  
times change approximately 1% to compensate for the  
modulators gain error. This slightly degrades the line-  
frequency rejection, because the corrected conversion  
time is no longer an exact multiple of the line frequency.  
Typically, the rejection of 50Hz/60Hz from the converter  
is 55dB; i.e., if there is 100mV injection at the reference  
or the analog input pin, it will cause an uncertainty of  
±0.006%. If the system has large 50Hz/60Hz noise, the  
use of internal auto gain calibration is not recommend-  
ed. Instead, gain calibration should be done off-chip,  
using numerical computation methods.  
__________Ap p lic a t io n s In fo rm a t io n  
La yo u t , Gro u n d in g , Byp a s s in g  
For minimal noise, bypass each supply to GND with a  
0.1µF capacitor. A ground plane should also be placed  
under the analog circuitry. To minimize the coupling  
effects of stray capacitance, keep digital lines as far  
from analog components and lines as possible. Figure  
10 shows the suggested power-supply and ground-  
plane connections.  
Table 6. Suggested XCLK Frequencies to Achieve Maximum Rejection of Both 50Hz/60Hz Line  
Frequencies  
MAX111 (t  
= 200ms)  
MAX110 (t  
= 100ms)  
CONVERT  
CONVERT  
81,240 CCPC  
102,400 CCPC  
81,240 CCPC  
102,400 CCPC  
DIVIDER  
RATIO  
DIVIDER  
RATIO  
RELATIVE  
ACCURACY  
(%)  
RELATIVE  
ACCURACY  
(%)  
RELATIVE  
ACCURACY  
(%)  
RELATIVE  
ACCURACY  
(%)  
f
f
XCLK  
(MHz)  
f
f
XCLK  
(MHz)  
XCLK  
XCLK  
(MHz)  
(MHz)  
1:1  
2:1  
4:1  
0.4062  
0.8124  
1.6248  
0.030  
0.025  
0.022  
0.512  
1.024  
2.048  
0.030  
0.025  
0.023  
1:1  
2:1  
4:1  
0.8124  
1.6248  
3.2496  
0.025  
0.018  
0.016  
1.024  
2.048  
4.096  
0.065  
0.045  
0.030  
CCPC = Clock Cycles per Conversion  
______________________________________________________________________________________ 19  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
+5V  
0.1µF  
+5V  
V
DD  
22k  
10k  
1k  
REF+  
REF-  
1/2 MAX492  
+5V  
30mV  
FULL-SCALE  
1k  
MAX111  
1µF  
1µF  
+5V  
121k  
121k  
49.9k  
49.9k  
IN1+  
IN1-  
CS  
0/MAX1  
2k  
DIN  
1k  
DOUT  
+5V  
SCLK  
GND  
AGND  
1/2 MAX492  
Figure 11. Weigh Scale Application  
Capacitive Loading Effects of XCLK in  
Internal RC-Oscillator Mode  
When using the internal RC oscillator, capacitive load-  
We ig h S c a le Ap p lic a t io n  
The fully differential analog signal and reference inputs  
make the MAX111 easy to interface to transducers with  
differential outputs, such as the load cell in Figure 11.  
Because the ADC input is differential, the load cell only  
requires differential gain, eliminating the need for the  
difference amplifier (differential to single-ended con-  
verter) of the standard three op-amp instrumentation-  
amplifier realization.  
ing effects on the XCLK pin must be minimized. Stray  
capacitance causes the V  
power consumption to  
DD  
increase by an amount p = 12CV2f, where C = stray  
capacitance, V is the supply voltage, and f is the fre-  
quency of the internal RC oscillator.  
Ex t e rn a l Re fe re n c e  
The reference inputs to the ADC are high impedance,  
allowing both an external voltage reference and ratio-  
metric applications without loading effects. The fully dif-  
fe re ntia l a na log s ig na l a nd re fe re nc e inp uts a re  
advantageous for performing ratiometric conversions  
(Figures 11 and 12). For example, when measuring  
load cells, the bridge excitation and the ADC reference  
input both share the same voltage source. As the exci-  
tation changes with temperature or voltage, the output  
of the load cell will change. But since the differential  
reference voltage also changes, the conversion results  
remain constant, all else remaining equal.  
The 30mV full-scale bridge output is amplified to 2V  
full-s c a le a nd a p p lie d to the MAX111 c ha nne l-one  
input. The reference voltage to the ADC is created by a  
voltage divider connected to the +5V rail. The same 5V  
provides excitation for the bridge; therefore, as the  
excitation voltage varies, the reference voltage to the  
ADC also varies, providing an ADC output that does  
not depend on the supply voltage.  
The two 121kresistors connected to the +5V supplies  
shift the common-mode voltage from 2.5V (5V/2) to  
1.5V to ensure linearity. Match these two resistors to  
avoid introducing differential offset, or trim the resistor  
mismatch with a potentiometer. In practice, the scale is  
zeroed” or tared” by storing the average of several  
conversions in a memory location while the scale is  
20 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
+5V  
1/4 MAX479  
V
DD  
IN2+  
IN2-  
10k  
10k  
MAX110  
1/4 MAX479  
1k  
+5V  
1µF  
V
IN  
243k  
243k  
TEMP  
IN1+  
IN1-  
CS  
MAX874  
OUT  
K-TYPE  
1k  
DIN  
DOUT  
SCLK  
10k  
REF+  
REF-  
1k  
V
SS  
1µF  
1/4 MAX479  
-5V  
1M  
Figure 12. Thermocouple Circuit with Software Compensation  
unloaded, and subtracting this value from actual weight  
me a s ure me nts . The lowp a s s filte ring a c tion of the  
MAX111s sigma-delta converter helps minimize noise.  
The re s olution of the we ig h s c a le c a n b e furthe r  
increased by averaging several conversions.  
where α is the Seebeck constant for the type of thermo-  
couple, T1 is the temperature being measured, and  
T
REF  
is the temperature of the junction block. Although  
one method to obtain T  
is to force the junction block  
REF  
to a known te mp e ra ture (0°C), a more p op ula r  
approach is to measure T  
or PN junction voltage.  
directly using a thermistor  
REF  
Th e rm o c o u p le Circ u it w it h S o ft w a re  
Co m p e n s a t io n  
The circuit in Figure 12 shows a k-type thermocouple  
going through a 54dB gain stage to channel 1 of the  
MAX110. A MAX874 voltage reference provides both  
the 3V reference voltage and reference junction tem-  
perature information to the MAX110. Armed with the  
temperature information provided by the MAX874, the  
thermocouple voltage created at the junction block can  
be subtracted out in software. The TEMP output of the  
MAX874 is nominally 690mV at room temperature, and  
increases with temperature at about 2.3mV/°C. Place  
the MAX874 as close as possible to the terminal block,  
and ensure good thermal contact between them. This  
circuit employs a common k-type thermocouple and,  
with the component values shown, can indicate tem-  
peratures in the range of -150°C to +125°C.  
A thermocouple is created by the junction of dissimilar  
metals, and generates a voltage proportional to temper-  
ature (Seebeck voltage), making it useful for tempera-  
ture-measurement instruments. When a thermocouple  
probe is connected to a measurement instrument, other  
thermoelectric potentials are created between the alloys  
of the probe and the copper connectors of the instru-  
ment. These potentials introduce a temperature-depen-  
dent error that must be subtracted from the temperature  
measurement to obtain an accurate result. According to  
the law of intermediate metals, the junction of the ther-  
mocouple-probe alloys with the copper of the instrument  
junction block can be treated as another thermocouple  
of the same type. The voltage measured by the instru-  
ment can be expressed as:  
V = α(T1 - T  
)
REF  
______________________________________________________________________________________ 21  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
__________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE PIN-PACKAGE INL(%)  
REF+REF- IN1+  
IN1- IN2+  
IN2-  
MAX110AEPE  
MAX110BEPE  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
20 SSOP  
±0.03  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.03  
±0.05  
±0.05  
MAX110AEWE -40°C to +85°C  
MAX110BEWE -40°C to +85°C  
MAX110AEAP  
MAX110BEAP  
MAX110BMJE  
MAX111ACPE  
MAX111BCPE  
MAX111ACWE  
MAX111BCWE  
MAX111ACAP  
MAX111BCAP  
MAX111BC/D  
MAX111AEPE  
MAX111BEPE  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
V
SS  
-55°C to +125°C 16 CERDIP**  
(AGND)  
V
SS  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
20 SSOP  
(AGND)  
GND  
V
DD  
GND  
V
DD  
0/MAX1  
RCSEL  
20 SSOP  
0. 168"  
(4. 27mm)  
Dice*  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
20 SSOP  
MAX111AEWE -40°C to +85°C  
MAX111BEWE -40°C to +85°C  
MAX111AEAP  
MAX111BEAP  
MAX111BMJE  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
-55°C to +125°C 16 CERDIP**  
XCLK  
SCLK BUSY CS  
DOUT  
DIN  
* Contact factory for dice specifications.  
** Contact factory for availability.  
0. 121"  
(3. 07mm)  
____P in Co n fig u ra t io n s (c o n t in u e d )  
( ) ARE FOR MAX111  
TRANSISTOR COUNT: 5849  
SUBSTRATE CONNECTED TO VDD  
TOP VIEW  
IN1+  
REF-  
REF+  
N.C.  
1
2
3
4
5
6
7
8
9
20 IN1-  
19 IN2+  
18 IN2-  
MAX110  
MAX111  
17  
V (AGND)  
SS  
N.C.  
16 GND  
15 N.C.  
14 N.C.  
13 DIN  
12 DOUT  
11 CS  
V
DD  
RCSEL  
XCLK  
SCLK  
BUSY 10  
SSOP  
( ) ARE FOR MAX111  
22 ______________________________________________________________________________________  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
0/MAX1  
_______________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 23  
Lo w -Co s t , 2 -Ch a n n e l, ±1 4 -Bit S e ria l ADCs  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
0/MAX1  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX111ACPE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX111ACPE+

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM

MAX111ACWE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX111ACWE+

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX111ACWE+T

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX111AEAP

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX111AEAP-T

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20
MAXIM

MAX111AEPE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX111AEWE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX111AEWE+

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX111AEWE+T

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 0.300 INCH, MS-013AA, SOIC-16
MAXIM

MAX111AEWE-T

暂无描述
MAXIM