MAX1084ACSA+T [MAXIM]

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, SOIC-8;
MAX1084ACSA+T
型号: MAX1084ACSA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, SOIC-8

文件: 总16页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1686; Rev 0; 5/00  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
General Description  
Features  
The MAX1084/MAX1085 10-bit analog-to-digital convert-  
ers (ADCs) combine a high-bandwidth track/hold, a serial  
interface with high conversion speed, an internal +2.5V  
reference, and low power consumption. The MAX1084  
operates from a single +4.5V to +5.5V supply; the  
MAX1085 operates from a single +2.7V to +3.6V supply.  
o Single-Supply Operation  
+4.5V to +5.5V (MAX1084)  
+2.7V to +3.6V (MAX1085)  
o 10-Bit Resolution  
o 400ksps Sampling Rate (MAX1084)  
o Internal Track/Hold  
The 3-wire serial interface connects directly to  
SPI™/QSPI™/MICROWIRE™ devices without external  
logic. The devices use an external serial-interface clock to  
perform successive-approximation analog-to-digital con-  
versions.  
o Internal +2.5V Reference  
o Low Power: 2.5mA (400ksps)  
o SPI/QSPI/MICROWIRE 3-Wire Serial Interface  
Low power combined with ease of use and small pack-  
age size make these converters ideal for remote-sensor  
and data-acquisition applications, or for other circuits with  
demanding power consumption and space requirements.  
The MAX1084/MAX1085 are available in 8-pin SO  
packages.  
o Pin-Compatible, High-Speed Upgrade to  
MAX1242/MAX1243  
o 8-Pin SO Package  
These devices are pin-compatible, higher-speed versions  
of the MAX1242/MAX1243; for more information, refer to  
the respective data sheets.  
Ordering Information  
TEMP.  
PIN-  
INL  
PART  
RANGE  
PACKAGE  
(LSB)  
Applications  
MAX1084ACSA  
MAX1084BCSA  
MAX1084AESA  
MAX1084BESA  
MAX1085ACSA  
MAX1085BCSA  
MAX1085AESA  
MAX1085BESA  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
1/2  
1
Portable Data Logging  
Data Acquisition  
1/2  
1
Medical Instruments  
Battery-Powered Instruments  
Pen Digitizers  
1/2  
1
1/2  
1
Process Control  
Pin Configuration  
Functional Diagram  
V
DD  
TOP VIEW  
1
7
CS  
8
SCLK  
3
V
CONTROL  
LOGIC  
INT  
DD  
SCLK  
CS  
1
2
3
4
8
7
6
5
SHDN  
CLOCK  
OUTPUT  
SHIFT  
REGISTER  
6
AIN  
DOUT  
MAX1084  
MAX1085  
SHDN  
REF  
DOUT  
GND  
2
10-BIT  
SAR  
T/H  
AIN  
2.5V  
REFERENCE  
SO  
MAX1084  
MAX1085  
4
REF  
SPI and QSPI are trademarks of Motorola, Inc.  
5
GND  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND.............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
AIN to GND................................................-0.3V to (V + 0.3V)  
8-Pin SO (derate 5.88mW/°C above +70°C) ..............471mW  
Operating Temperature Ranges  
DD  
REF to GND ...............................................-0.3V to (V + 0.3V)  
DD  
Digital Inputs to GND...............................................-0.3V to +6V  
MAX1084_CSA/MAX1085_CSA.........................0°C to +70°C  
MAX1084_ESA/MAX1085_ESA ......................-40°C to +85°C  
Storage Temperature Range............................-60°C to +150°C  
Lead Temperature (soldering, 10s)................................+300°C  
DOUT to GND............................................-0.3V to (V + 0.3V)  
DD  
DOUT Current.................................................................. 25mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1084  
(V  
= +4.5V to +5.5V, f  
= 6.4MHz, 50% duty cycle, 16 clocks/conversion cycle (400ksps), 4.7µF capacitor at REF, T = T  
to  
MIN  
DD  
SCLK  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
10  
Bits  
MAX1084A  
MAX1084B  
0.5  
1.0  
1.0  
4.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
0.8  
60  
ppm/°C  
DYNAMIC SPECIFICATIONS (100kHz sine wave, 2.5Vp-p, clock = 6.4MHz)  
Signal-to-Noise Plus Distortion  
Ratio  
SINAD  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time (Note 4)  
Track/Hold Acquisition Time  
Aperture Delay  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
= 99kHz, f =102kHz  
-70  
70  
76  
6
dB  
dB  
f
dB  
IN1  
IN2  
-3dB point  
SINAD > 58dB  
MHz  
kHz  
350  
t
2.5  
µs  
ns  
CONV  
t
468  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
0.5  
40  
6.4  
60  
MHz  
%
SCLK  
ANALOG INPUT (AIN)  
Input Voltage Range  
Input Capacitance  
V
AIN  
0
2.5  
V
18  
pF  
2
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1084 (continued)  
(V  
= +4.5V to +5.5V, f  
= 6.4MHz, 50% duty cycle, 16 clocks/conversion cycle (400ksps), 4.7µF capacitor at REF, T = T  
to  
MIN  
DD  
SCLK  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE  
REF Output Voltage  
V
T
= +25°C  
2.48  
2.50  
30  
2.52  
V
REF  
A
REF Short-Circuit Current  
REF Output Tempco  
mA  
TC V  
15  
ppm/°C  
mV/mA  
µF  
REF  
Load Regulation (Note 5)  
Capacitive Bypass at REF  
0 to 1.0mA output load  
0.1  
2.0  
10  
4.7  
3.0  
DIGITAL INPUTS (SCLK, CS, SHDN)  
Input High Voltage  
V
V
V
INH  
Input Low Voltage  
V
0.8  
1
INL  
Input Hysteresis  
V
HYST  
0.2  
15  
V
Input Leakage  
I
V
= 0 or V  
DD  
µA  
pF  
IN  
IN  
Input Capacitance  
C
IN  
DIGITAL OUTPUT (DOUT)  
Output Voltage Low  
V
I
I
= 5mA  
0.4  
10  
V
V
OL  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
4
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLY  
I
µA  
pF  
CS = 5V  
CS = 5V  
L
C
OUT  
15  
Positive Supply Voltage (Note 6)  
Positive Supply Current (Note 7)  
Shutdown Supply Current  
Power-Supply Rejection  
V
4.5  
5.5  
4.0  
10  
V
DD  
I
V
= 5.5V  
2.5  
2
mA  
µA  
mV  
DD  
DD  
I
SCLK = V , SHDN = GND  
SHDN  
DD  
PSR  
V
DD  
= 5V 10%, midscale input  
0.5  
2.0  
ELECTRICAL CHARACTERISTICS—MAX1085  
(V  
= +2.7V to +3.6V, f  
= 4.8MHz, 50% duty cycle, 16 clocks/conversion cycle (300ksps), 4.7µF capacitor at REF, T = T  
to  
MIN  
DD  
SCLK  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
10  
Bits  
MAX1085A  
MAX1085B  
0.5  
1.0  
1.0  
3.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
1.6  
ppm/°C  
_______________________________________________________________________________________  
3
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1085 (continued)  
(V  
= +2.7V to +3.6V, f  
= 4.8MHz, 50% duty cycle, 16 clocks/conversion cycle (300ksps), 4.7µF capacitor at REF, T = T  
to  
MIN  
DD  
SCLK  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 300ksps, f  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC SPECIFICATIONS (75kHz sinewave, 2.5Vp-p, f  
= 4.8MHz)  
SCLK  
SAMPLE  
Signal-to-Noise Plus Distortion  
Ratio  
SINAD  
60  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time (Note 4)  
Track/Hold Acquisition Time  
Aperture Delay  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
= 99kHz, f =102kHz  
-70  
70  
76  
3
dB  
dB  
f
dB  
IN1  
IN2  
-3dB point  
SINAD > 58dB  
MHz  
kHz  
250  
t
3.3  
µs  
ns  
CONV  
t
625  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
0.5  
40  
4.8  
60  
MHz  
%
SCLK  
ANALOG INPUT  
Input Voltage Range  
Input Capacitance  
V
0
2.5  
V
AIN  
C
18  
pF  
IN  
INTERNAL REFERENCE  
REF Output Voltage  
V
T
= +25°C  
2.48  
2.50  
15  
2.52  
V
REF  
A
REF Short Circuit Current  
REF Output Tempco  
Load Regulation (Note 5)  
Capacitive Bypass at REF  
mA  
TC V  
15  
ppm/°C  
mV/mA  
µF  
REF  
0 to 0.75mA output load  
0.1  
2.0  
10  
4.7  
2.0  
DIGITAL INPUTS (SCLK,CS, SHDN)  
Input High Voltage  
V
V
V
INH  
Input Low Voltage  
V
0.8  
1
INL  
Input Hysteresis  
V
HYST  
0.2  
15  
V
Input Leakage  
I
V
= 0 or V  
DD  
µA  
pF  
IN  
IN  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (DOUT)  
Output Voltage Low  
V
V
I
I
= 5mA  
0.4  
10  
V
V
OL  
SINK  
Output Voltage High  
= 0.5mA  
V 0.5V  
DD  
-
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
µA  
pF  
CS = 3V  
CS = 3V  
L
C
OUT  
15  
POWER SUPPLY  
Positive Supply Voltage (Note 6)  
Positive Supply Current (Note 7)  
Shutdown Supply Current  
Power-Supply Rejection  
V
2.7  
3.6  
3.5  
10  
V
DD  
I
V
= 3.6V  
2.5  
2
mA  
µA  
mV  
DD  
DD  
I
SCLK = V , SHDN = GND  
SHDN  
DD  
PSR  
V
DD  
= 2.7V to 3.6V, midscale input  
0.5  
2.0  
4
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
TIMING CHARACTERISTICS—MAX1084  
(Figures 1, 2, 8, 9; V  
= +4.5V to +5.5V, T = T  
A
to T , unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
156  
62  
62  
35  
0
TYP  
MAX  
UNITS  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
t
CL  
ns  
t
ns  
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall Ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to DOUT Valid  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
CS Pulse Width High  
CSS  
CSH  
t
t
ns  
35  
35  
10  
ns  
CSO  
t
ns  
CS1  
t
C
= 20pF  
= 20pF  
= 20pF  
= 20pF  
ns  
DOH  
LOAD  
LOAD  
LOAD  
LOAD  
t
t
C
C
C
80  
65  
65  
ns  
DOV  
10  
ns  
DOD  
t
ns  
DOE  
CSW  
t
100  
ns  
TIMING CHARACTERISTICS—MAX1085  
(Figures 1, 2, 8, 9; V  
= +2.7V to +3.6V, T = T  
A
to T , unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
208  
83  
83  
45  
0
TYP  
MAX  
UNITS  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
t
CL  
ns  
t
ns  
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall Ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to DOUT Valid  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
CS Pulse Width High  
CSS  
CSH  
t
t
ns  
45  
45  
13  
ns  
CSO  
t
ns  
CS1  
t
C
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
ns  
DOH  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
t
C
C
C
C
100  
85  
ns  
DOV  
t
13  
ns  
DOD  
t
85  
ns  
DOE  
t
100  
ns  
CSW  
Note 1: Tested at V  
= V  
.
DD  
DD,MIN  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Internal reference, offset, and reference errors nulled.  
Note 4: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 5: External load should not change during conversion for specified accuracy. Guaranteed specification limit of 2mV/mA due to  
production test limitation.  
Note 6: Electrical characteristics are guaranteed from V  
to V  
. For operations beyond this range, see Typical Operating  
DD,MAX  
DD,MIN  
Characteristics.  
Note 7: MAX1084 tested with 20pF on DOUT and f  
= 6.4MHz, 0 to 5V. MAX1085 tested with same loads, f  
= 4.8MHz, 0 to  
SCLK  
SCLK  
3V. DOUT = full scale.  
_______________________________________________________________________________________  
5
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics  
(MAX1084: V  
= +5.0V, f  
= 6.4MHz; MAX1055: V  
= +3.0V, f  
= 4.8MHz; C = 20pF, 4.7µF capacitor at REF,  
LOAD  
DD  
SCLK  
DD  
SCLK  
T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARLITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.10  
0.50  
0.15  
0.10  
0.05  
0
0.08  
0.06  
0.04  
0.02  
0
0.25  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.05  
-0.10  
-0.15  
-0.25  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
V
(V)  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
DD  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-0.25  
-0.50  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
DD  
6
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics (continued)  
(MAX1084: V  
= +5.0V, f  
= 6.4MHz; MAX1085: V  
= +3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor at REF,  
LOAD  
DD  
SCLK  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
CONVERTING,  
SCLK = 6.4MHz  
CODE = 1111 1111 1111  
L
C = 10pF  
L
V
= 5V, CONVERTING  
R =   
DD  
V
V
= 3V, CONVERTING  
DD  
CONVERTING,  
SCLK = 4.8MHz  
= 5V, STATIC  
DD  
STATIC  
V
= 3V, STATIC  
DD  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage  
Sampling Analog Input, 0 to V  
2
AIN  
Range  
REF  
Active-Low Shutdown Input. Pulling SHDN low shuts down the device and reduces the supply current  
to 2µA (typ).  
3
4
SHDN  
Reference Voltage for Analog-to-Digital Conversion. Internal 2.5V reference output. Bypass with a  
4.7µF capacitor.  
REF  
5
6
GND  
Analog and Digital Ground  
DOUT  
Serial Data Output. DOUT changes state at SCLK’s rising edge. High impedance when CS is high.  
Active-Low Chip Select. Initiates conversions on the falling edge. When CS is high, DOUT is high  
impedance.  
7
8
CS  
Serial Clock Input. SCLK drives the conversion process and clocks data out at rates up to 6.4MHz  
(MAX1084) or 4.8MHz (MAX1085).  
SCLK  
_______________________________________________________________________________________  
7
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
V
DD  
6k  
DOUT  
DOUT  
6k  
C
= 20pF  
C
= 20pF  
LOAD  
LOAD  
DGND  
a) HIGH-Z TO V AND V TO V  
DGND  
b) HIGH-Z TO V AND V TO V  
OH  
OL  
OH  
OL  
OH  
OL  
Figure 1. Load Circuits for DOUT Enable Time  
V
DD  
6k  
DOUT  
DOUT  
6k  
C
= 20pF  
C
= 20pF  
LOAD  
LOAD  
DGND  
DGND  
a) V TO HIGH-Z  
b) V TO HIGH-Z  
OH  
OL  
Figure 2. Load Circuits for DOUT Disable Time  
Analog Input  
_______________Detailed Description  
Figure 4 shows the sampling architecture of the ADC’s  
comparator. The full-scale input voltage is set by the  
Converter Operation  
The MAX1084/MAX1085 use an input track/hold (T/H)  
and successive-approximation register (SAR) circuitry to  
convert an analog input signal to a digital 10-bit output.  
Figure 3 shows the MAX1084/MAX1085 in their simplest  
configuration. The internal reference is trimmed to 2.5V.  
The serial interface requires only three digital lines  
(SCLK, CS, and DOUT) and provides an easy interface to  
microprocessors (µPs).  
The MAX1084/MAX1085 have two modes: normal and  
shutdown. Pulling SHDN low shuts the device down and  
reduces supply current to 2µA (typ); pulling SHDN high  
puts the device into operational mode. Pulling CS low ini-  
tiates a conversion that is driven by SCLK. The conver-  
sion result is available at DOUT in unipolar serial format.  
The serial data stream consists of three zeros, followed  
by the data bits (MSB first). All transitions on DOUT  
occur 20ns after the rising edge of SCLK. Figures 8 and  
9 show the interface timing information.  
internal reference (V  
= +2.5V).  
REF  
Track/Hold  
In track mode, the analog signal is acquired and stored  
in the internal hold capacitor. In hold mode, the T/H  
switch opens and maintains a constant input to the  
ADC’s SAR section.  
During acquisition, the analog input AIN charges  
capacitor CHOLD. Bringing CS low ends the acquisition  
interval. At this instant, the T/H switches the input side  
of CHOLD to GND. The retained charge on CHOLD repre-  
sents a sample of the input, unbalancing node ZERO at  
the comparator’s input.  
In hold mode, the capacitive digital-to-analog converter  
(DAC) adjusts during the remainder of the conversion  
cycle to restore node ZERO to 0 within the limits of 10-  
bit resolution. This action is equivalent to transferring a  
charge from CHOLD to the binary-weighted capacitive  
8
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
DAC, which in turn forms a digital representation of the  
analog input signal. At the conversion’s end, the input  
side of CHOLD switches back to AIN, and CHOLD  
charges to the input signal again.  
+3V to +5V  
0.1µF  
10µF  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
1
2
8
7
V
SCLK  
CS  
DD  
ANALOG INPUT  
0 TO V  
AIN  
SERIAL  
REF  
INTERFACE  
MAX1084  
MAX1085  
t
, is the maximum time the device takes to acquire  
ACQ  
3
4
6
5
SHUTDOWN  
INPUT  
the signal and the minimum time needed for the signal  
to be acquired. Acquisition time is calculated by:  
SHDN  
DOUT  
REF  
GND  
tACQ = 7(RS + RIN) 12pF  
4.7µF  
where RIN = 800, RS = the input signal’s source  
impedance, and tACQ is never less than 468ns  
(MAX1284) or 625ns (MAX1085). Source impedance  
below 4kdoes not significantly affect the ADC’s AC  
performance.  
Figure 3. Typical Operating Circuit  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the analog input. Note that  
the input capacitor forms an RC filter with the input  
source impedance, limiting the ADC’s input signal  
bandwidth.  
GND  
CAPACITIVE DAC  
REF  
C
HOLD  
12pF  
AIN  
Input Bandwidth  
The ADC’s input tracking circuitry has a 6MHz  
(MAX1084) or 3MHz (MAX1085) small-signal band-  
width, so it is possible to digitize high-speed transient  
events and measure periodic signals with bandwidths  
exceeding the ADC’s sampling rate by using under-  
sampling techniques. To avoid aliasing of unwanted  
high-frequency signals into the frequency band of inter-  
est, anti-alias filtering is recommended.  
ZERO  
COMPARATOR  
R
IN  
C
*
SWITCH  
6pF  
800Ω  
TRACK  
HOLD  
Analog Input Protection  
AUTOZERO  
RAIL  
Internal protection diodes, which clamp the analog  
input to V  
and GND, allow the input to swing from  
GND - 0.3V to VDD + 0.3V without damage.  
DD  
*INCLUDES ALL INPUT PARASITICS  
If the analog input exceeds 50mV beyond the supplies,  
limit the input current to 2mA.  
Figure 4. Equivalent Input Circuit  
Internal Reference  
The MAX1084/MAX1085 have an on-chip voltage refer-  
ence trimmed to 2.5V. The internal reference output is  
connected to REF and also drives the internal capacitive  
DAC. The output can be used as a reference voltage  
source for other components and can source up to  
800µA. Bypass REF with a 4.7µF capacitor. Larger  
capacitors increase wake-up time when exiting shut-  
down (see Using SHDN to Reduce Supply Current). The  
internal reference is disabled in shutdown (SHDN = 0).  
Serial Interface  
Initialization After Power-Up and  
Starting a Conversion  
When power is first applied, and if SHDN is not pulled  
low, it takes the fully discharged 4.7µF reference  
bypass capacitor up to 1.4ms to acquire adequate  
charge for specified accuracy. No conversions should  
be performed during this time.  
_______________________________________________________________________________________  
9
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
needed to shift out these bits. Extra clock pulses occur-  
ring after the conversion result has been clocked out,  
and prior to a rising edge of CS, produce trailing zeros  
at DOUT and have no effect on converter operation.  
To start a conversion, pull CS low. At CS’s falling edge,  
the T/H enters its hold mode and a conversion is initiat-  
ed. Data can then be shifted out serially with the exter-  
nal clock.  
Pull CS high after reading the conversion’s LSB. For  
maximum throughput, CS can be pulled low again to ini-  
tiate the next conversion immediately after the specified  
SHDN  
Using  
to Reduce Supply Current  
Power consumption can be reduced significantly by  
shutting down the MAX1084/MAX1085 between conver-  
sions. Figure 6 shows a plot of average supply current  
minimum time (t ).  
CS  
vs. conversion rate. The wake-up time, t  
, is the  
WAKE  
Output Coding and Transfer Function  
time from SHDN deasserted to the time when a conver-  
sion may be initiated (Figure 5).This time depends on  
the time in shutdown (Figure 7) because the external  
4.7µF reference bypass capacitor loses charge slowly  
during shutdown and can be as long as 1.4ms.  
The data output from the MAX1084/MAX1085 is binary.  
Figure 10 depicts the nominal transfer function. Code  
transitions occur halfway between successive-integer  
LSB values; V  
1024.  
= 2.5V, and 1LSB = 2.44mV or 2.5V /  
REF  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the CS and SCLK digital inputs. The timing  
diagrams of Figures 8 and 9 outline serial-interface  
operation.  
Applications Information  
Connection to Standard Interfaces  
The MAX1084/MAX1085 serial interface is fully compat-  
ible with SPI, QSPI, and MICROWIRE (Figure 11).  
If a serial interface is available, set the CPU’s serial  
interface in master mode so the CPU generates the ser-  
ial clock. Choose a clock frequency up to 6.4MHz  
(MAX1084) or 4.8MHz (MAX1085).  
A
CS falling edge initiates a conversion sequence: the  
T/H stage holds the input voltage, the ADC begins to  
convert, and DOUT changes from high impedance to  
logic low. SCLK is used to drive the conversion  
process, and it shifts data out as each bit of conversion  
is determined.  
1) Use a general-purpose I/O line on the CPU to pull CS  
low. Keep SCLK low.  
SCLK begins shifting out the data after the rising edge  
of the third SCLK pulse. DOUT transitions 20ns after  
each SCLK rising edge. The third rising clock edge  
produces the MSB of the conversion at DOUT, followed  
by the remaining bits. Since there are 12 data bits and  
3 leading zeros, at least 15 rising clock edges are  
2) Activate SCLK for a minimum of 13 clock cycles. The  
first two clocks produce zeros at DOUT. DOUT output  
data transitions 20ns after SCLK rising edge and is  
available in MSB-first format. Observe the SCLK-to-  
DOUT valid timing characteristic. Data can be clocked  
into the µP on SCLK’s falling or rising edge.  
COMPLETE CONVERSION SEQUENCE  
CS  
t
WAKE  
SHDN  
DOUT  
CONVERSION 0  
POWERED UP  
CONVERSION 1  
POWERED UP  
POWERED DOWN  
Figure 5. Shutdown Sequence  
10 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
SUPPLY CURRENT  
vs. CONVERSION RATE  
10,000  
1000  
100  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
C
= 4.7µF  
REF  
V
= 3.0V  
DD  
DOUT = FS  
R = ∞  
C = 10pF  
L
L
10  
1
0.1  
0.1  
1
10  
100  
1k  
10k 100k  
0.0001 0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (s)  
CONVERSION RATE (SAMPLES)  
Figure 6. Supply Current vs. Conversion Rate  
Figure 7. Reference Power-Up vs. Time in Shutdown  
CS  
1
3
4
8
12  
15  
SCLK  
DOUT  
HIGH-Z  
HIGH-Z  
D9 D8 D7 D6 D5 D4 D3 D23 D1 D0 S1 S0  
ACQ  
HOLD/CONVERT  
ACQUISITION  
A/D STATE  
Figure 8. Interface Timing Sequence  
CS  
t
CSW  
t
t
t
t
CSH  
CL  
CSS  
CH  
tt  
CSO  
t
CSI  
SCLK  
DOUT  
t
CP  
t
DOH  
t
t
DOV  
DOD  
t
DOE  
Figure 9. Detailed Serial-Interface Timing  
______________________________________________________________________________________ 11  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
OUTPUT CODE  
FULL-SCALE  
I/O  
SCK  
CS  
TRANSITION  
11111  
11110  
11101  
SCLK  
DOUT  
MISO  
+3V OR +5V  
MAX1084  
MAX1085  
SS  
FS = V - 1LSB  
REF  
V
1024  
REF  
1LSB =  
a) SPI  
CS  
SCK  
CS  
00011  
00010  
00001  
SCLK  
DOUT  
MISO  
+3V OR +5V  
00000  
MAX1084  
MAX1085  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
FS - 3/2LSB  
SS  
b) QSPI  
Figure 10. Unipolar Transfer Function, Full Scale (FS) = V  
1LSB, Zero Scale (ZS) = GND  
-
REF  
I/O  
SK  
SI  
CS  
SCLK  
DOUT  
3) Pull CS high at or after the 13th rising clock edge. If  
CS remains low, the two sub-bits and trailing zeros  
are clocked out after the LSB.  
4) With CS = high, wait the minimum specified time, t  
,
MAX1084  
MAX1085  
CS  
before initiating a new conversion by pulling CS low.  
If a conversion is aborted by pulling CS high before  
the conversion completes, wait the minimum acquisi-  
c) MICROWIRE  
tion time, t  
, before starting a new conversion. CS  
ACQ  
Figure 11. Common Serial-Interface Connections to the  
MAX1084/MAX1085  
must be held low until all data bits are clocked out.  
Data can be output in 2 bytes or continuously, as shown  
in Figure 8. The bytes contain the result of the conversion  
padded with three leading zeros, 2 sub-bits, and trailing  
zeros if SCLK is still active with CS kept low.  
the 10 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles necessary to clock in the  
data. The MAX1084/MAX1085 require 13 clock cycles  
from the µP to clock out the 10 bits of data. Additional  
clock cycles clock out the 2 sub-bits followed by trailing  
zeros. Figure 13 shows a transfer using CPOL = 0 and  
CPHA = 1. The result of conversion contains two zeros  
followed by the 10 bits of data in MSB-first format.  
SPI and Microwire  
When using SPI or QSPI, set CPOL = 0 and CPHA = 0.  
Conversion begins with a CS falling edge. DOUT goes  
low, indicating a conversion is in progress. Two con-  
secutive 1-byte reads are required to get the full 10+2  
bits from the ADC. DOUT output data transitions on  
SCLK’s rising edge and is clocked into the µP on the  
following rising edge.  
Layout and Grounding  
For best performance, use PC boards. Wire-wrap  
boards are not recommended. Board layout should  
ensure that digital and analog signal lines are separat-  
ed from each other. Do not run analog and digital  
(especially clock) lines parallel to one another, or digital  
lines underneath the ADC package.  
The first byte contains 3 leading zeros, and 5 bits of  
conversion result. The second byte contains the remain-  
ing 5 bits, 2 sub-bits, and 1 trailing zero. See Figure 11  
for connections and Figure 12 for timing.  
Figure 14 shows the recommended system ground con-  
nections. Establish a single-point analog ground (“star”  
QSPI  
Unlike SPI, which requires two 1-byte reads to acquire  
12 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
ground point) at GND, separate from the logic ground.  
Connect all other analog grounds and GND to this star  
ground point for further noise reduction. No other digital  
system ground should be connected to this single-point  
analog ground. The ground return to the power supply for  
this ground should be low impedance and as short as  
possible for noise-free operation.  
static linearity parameters for the MAX1084/MAX1085  
are measured using the endpoints method.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of 1LSB or less guarantees no  
missing codes and a monotonic transfer function.  
High-frequency noise in the VDD power supply may affect  
the ADC’s high-speed comparator. Bypass this supply to  
the single-point analog ground with 0.1µF and 10µF  
bypass capacitors. Minimize capacitor lead lengths for  
best supply-noise rejection. To reduce the effect of sup-  
ply noise, a 10resistor can be connected as a lowpass  
filter to attenuate supply noise (Figure 14).  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of CS and the instant when an actual sam-  
ple is taken.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The theoretical minimum analog-  
to-digital noise is caused by quantization error and  
results directly from the ADC’s resolution, (N bits):  
CS  
8
9
1
SCLK  
DOUT  
HIGH-Z  
HIGH-Z  
D8  
D7  
D3  
D2  
D1  
D0  
S1  
S0  
D9  
D6  
D5  
D4  
FIRST BYTE READ  
SECOND BYTE READ  
Figure 12. SPI/MICROWIRE Serial Interface Timing (CPOL = CPHA = 0)  
CS  
12  
14  
1
SCLK  
DOUT  
HIGH-Z  
HIGH-Z  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
D9  
D6  
D5  
Figure 13. QSPI Serial Interface Timing (CPOL = 0, CPHA = 1)  
______________________________________________________________________________________ 13  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
SUPPLIES  
V
DD  
V
GND  
DD  
of bits as follows:  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
R* = 10Ω  
4.7µF  
0.1µF  
2
2
2
2
V
DD  
V
GND  
DGND  
DD  
V
+ V + V + V  
3 4 5  
2
THD = 20 × LOG  
DIGITAL  
CIRCUITRY  
V
1
MAX1084  
MAX1085  
where V1 is the fundamental amplitude, and V2 through  
V5 are the amplitudes of the 2nd- through 5th-order  
harmonics, respectively.  
*OPTIONAL  
Figure 14. Power-Supply Grounding Condition  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is computed by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
___________________Chip Information  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to RMS  
equivalent of all other ADC output signals.  
TRANSISTOR COUNT: 4286  
PROCESS: BiCMOS  
SINAD (dB) = 20 log (SignalRMS / NoiseRMS)  
14 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
________________________________________________________________Package Information  
______________________________________________________________________________________ 15  
400ksps/300ksps, Single-Supply, Low-Power,  
Serial 10-Bit ADCs with Internal Reference  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1084ACSA-T

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX1084AESA

400ksps/300ksps, Single-Supply, Low-Power, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1084AESA+

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, SOIC-8
MAXIM

MAX1084AESA+T

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, SOIC-8
MAXIM

MAX1084AESA-T

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX1084BCSA

400ksps/300ksps, Single-Supply, Low-Power, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1084BCSA+

暂无描述
MAXIM

MAX1084BCSA-T

暂无描述
MAXIM

MAX1084BESA

400ksps/300ksps, Single-Supply, Low-Power, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1084BESA+

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, SOIC-8
MAXIM

MAX1084BESA-T

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX1085

400ksps/300ksps.Single-Supply.Low-Power.Serial 10-Bit ADCs with Internal Reference
MAXIM