MAX1083ACUE [MAXIM]

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference; 高达300ksps / 400ksps ,单电源, 4通道,串行10位ADC ,内置电压基准
MAX1083ACUE
型号: MAX1083ACUE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference
高达300ksps / 400ksps ,单电源, 4通道,串行10位ADC ,内置电压基准

转换器 模数转换器 光电二极管 信息通信管理
文件: 总24页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1690 Rev 0; 5/00  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
General Description  
Features  
The MAX1082/MAX1083 10-bit analog-to-digital convert-  
ers (ADCs) combine a 4-channel analog-input multiplexer,  
high-bandwidth track/hold (T/H), and serial interface with  
high conversion speed and low power consumption. The  
MAX1082 operates from a single +4.5V to +5.5V supply;  
the MAX1083 operates from a single +2.7V to +3.6V sup-  
ply. Both devices’ analog inputs are software configurable  
for unipolar/bipolar and single-ended/pseudo-differential  
operation.  
4-Channel Single-Ended or 2-Channel  
Pseudo-Differential Inputs  
Internal Multiplexer and Track/Hold  
Single-Supply Operation  
+4.5V to +5.5V (MAX1082)  
+2.7V to +3.6V (MAX1083)  
Internal +2.5V Reference  
400kHz Sampling Rate (MAX1082)  
Low Power: 2.5mA (400ksps)  
1.3mA (REDP)  
The 4-wire serial interface connects directly to SPI™/QSPI™  
and MICROWIRE™ devices without external logic. A serial  
strobe output allows direct connection to TMS320-family  
digital signal processors. The MAX1082/ MAX1083 use an  
external serial-interface clock to perform successive-  
approximation analog-to-digital conversions. The devices  
feature an internal +2.5V reference and a reference-buffer  
amplifier with a 1.5ꢀ voltage-adꢁustment range. An  
0.9mA (FASTPD)  
2µA (FULLPD)  
external reference with a 1V to V  
used.  
range may also be  
SPI/QSPI/MICROWIRE/TMS320-Compatible 4-Wire  
DD  
Serial Interface  
The MAX1082/MAX1083 provide a hard-wired SHDN pin  
and four software-selectable power modes (normal opera-  
tion, reduced power (REDP), fast power-down (FASTPD),  
and full power-down (FULLPD)). These devices can be  
programmed to shut down automatically at the end of a  
conversion or to operate with reduced power. When using  
the power-down modes, accessing the serial interface  
automatically powers up the devices, and the quick turn-  
on time allows them to be shut down between all conver-  
sions.  
Software-Configurable Unipolar or Bipolar Inputs  
16-Pin TSSOP Package  
Ordering Information  
TEMP.  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
MAX1082ACUE  
0°C to +70°C  
0°C to +70°C  
16 TSSOP  
16 TSSOP  
16 TSSOP  
1/2  
1
MAX1082BCUE  
The MAX1082/MAX1083 are available in 16-pin TSSOP  
packages.  
MAX1082AEUE -40°C to +85°C  
1/2  
Ordering Information continued at end of data sheet.  
Pin Configuration  
TOP VIEW  
Applications  
Portable Data Logging  
Data Acquisition  
Medical Instruments  
Battery-Powered Instruments  
Pen Digitizers  
V
1
2
3
4
5
6
7
8
16 V  
DD2  
DD1  
CH0  
CH1  
15 SCLK  
14 CS  
Process Control  
CH2  
MAX1082  
MAX1083  
13 DIN  
CH3  
12 SSTRB  
11 DOUT  
10 GND  
COM  
SHDN  
REF  
Typical Operating Circuit appears at end of data sheet.  
9
REFADJ  
TSSOP  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND............................................................ -0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
16-Pin TSSOP (derate 6.7mW/°C above +70°C) ........ 533mW  
Operating Temperature Ranges  
DD_  
A
to V  
....................................................... -0.3V to +0.3V  
DD_  
DD2  
CH0–CH3, COM to GND ............................ -0.3V to (V - 0.3V)  
DD  
REF, REFADJ to GND .................................. -0.3V to V - 0.3V)  
Digital Inputs to GND .............................................. -0.3V to +6V  
MAX1082_C_E/MAX1083_CUE ......................... 0°C to +70°C  
MAX1082_E_E/MAX1083_EUE....................... -40°C to +85°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
DD  
Digital Outputs to GND.............................. -0.3V to (V + 0.3V)  
DD  
Digital Output Sink Current .................................................25mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1082  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5V  
OSC  
DD1  
DD2  
at REF, REFADJ = V  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
DD1,  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
10  
bits  
MAX1082A  
MAX1083B  
0.5  
1.0  
1.0  
3.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
1.6  
0.2  
ppm/°C  
LSB  
Channel-to-Channel Offset-Error  
Matching  
DYNAMIC SPECIFICATIONS (100kHz sine-wave input, 2.5Vp-p, 400ksps, 6.4MHz clock, bipolar input mode)  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
60  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
= 99kHz, f =102kHz  
-70  
70  
76  
dB  
dB  
dB  
f
IN1  
IN2  
Channel-to-Channel Crosstalk  
(Note 4)  
200kHz, V = 2.5Vp-p  
IN  
-78  
dB  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time (Note 5)  
Track/Hold Acquisition Time  
Aperture Delay  
-3dB point  
6
MHz  
kHz  
SINAD > 58dB  
350  
t
2.5  
µs  
ns  
CONV  
t
400  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
0.5  
40  
6.4  
60  
MHz  
SCLK  
2
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1082 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5V  
DD1  
DD2  
OSC  
at REF, REFADJ = V  
, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD1  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS (CH3–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single  
Ended and Differential (Note 6)  
V
CH_  
V
Bipolar, V  
or V  
= V /2, referenced  
REF  
COM  
CH_  
V
/2  
REF  
to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
V
= 0 or V  
µA  
pF  
0.001  
18  
1
COM CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
REF  
T
A
= +25°C  
2.480  
2.500 2.520  
15  
V
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 1mA output load  
0.05  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
100  
V
For small adꢁustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.4  
1.0  
V
- 1.0  
V
DD1  
Buffer Voltage Gain  
+2.05  
200  
V/V  
EXTERNAL REFERENCE (reference buffer disabled, reference applied to REF)  
V
+
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= f  
MAX  
350  
320  
5
REF  
SCLK  
REF Input Current  
= 0  
µA  
REF  
SCLK  
In full power-down mode, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
3.0  
V
V
INH  
V
0.8  
1
INL  
V
0.2  
15  
V
HYST  
I
V
IN  
= 0 or V  
DD2  
µA  
pF  
IN  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
I
I
= 5mA  
0.4  
10  
V
V
OL  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
4
Three-State Leakage Current  
I
µA  
pF  
CS = V  
CS = V  
L
DD2  
DD2  
Three-State Output Capacitance  
C
15  
OUT  
_______________________________________________________________________________________  
3
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1082 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5V  
DD1  
DD2  
OSC  
at REF, REFADJ = V  
, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD1  
A
MIN  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Positive Supply Voltage  
(Note 9)  
V
DD1,  
4.5  
5.5  
V
DD2  
Normal operating mode (Note 10)  
Reduced-power mode (Note 11)  
Fast power-down mode (Note 11)  
Full power-down mode (Note 11)  
2.5  
1.3  
0.9  
2.0  
0.5  
4.0  
2.0  
1.5  
10  
V
V
5.5V  
=
=
DD1  
DD2  
IV  
mA  
DD1  
Supply Current  
+ IV  
DD2  
µA  
Power-Supply Reꢁection  
PSR  
V
= V  
= 5V 10ꢀ, midscale input  
2.0  
mV  
DD1  
DD2  
ELECTRICAL CHARACTERISTICS—MAX1083  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
OSC  
+2.5V at REF, REFADJ = V  
, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD1  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
bits  
MAX1083A  
MAX1083B  
No missing codes over temperature  
0.5  
1.0  
1.0  
3.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
1.6  
0.2  
ppm/°C  
LSB  
Channel-to-Channel Offset-Error  
Matching  
DYNAMIC SPECIFICATIONS (75kHz sine wave input, 2.5Vp-p, 300 ksps, 4.8 MHz clock, bipolar input mode)  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
60  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
= 73kHz, f =77kHz  
-70  
70  
76  
dB  
dB  
dB  
f
IN1  
IN2  
Channel-to-Channel Crosstalk  
(Note 4)  
f = 150kHz, V = 2.5Vp-p  
IN  
-78  
dB  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-3dB point  
3
MHz  
kHz  
SINAD > 58dB  
250  
4
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1083 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
OSC  
+2.5V at REF, REFADJ = V  
, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD1  
A
MIN  
PARAMETER  
CONVERSION RATE  
Conversion Time (Note 5)  
SYMBOL  
CONDITIONS  
Normal operating mode  
MIN  
TYP  
MAX  
UNITS  
t
3.3  
µs  
ns  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
Normal operating mode  
625  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
Normal operating mode  
0.5  
40  
4.8  
60  
MHz  
SCLK  
ANALOG INPUTS (CH3–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single  
Ended and Differential (Note 6)  
V
V
CH_  
Bipolar, V  
or V  
= V  
REF  
/2,  
COM  
CH_  
V
REF  
/2  
referenced to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0 or V  
µA  
pF  
0.001  
18  
1
CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
T
A
= +25°C  
2.480  
2.500 2.520  
15  
V
REF  
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 0.75mA output load  
0.1  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
100  
V
For small adꢁustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.4  
1.0  
V
- 1  
+
V
DD1  
Buffer Voltage Gain  
+2.05  
V/V  
EXTERNALREFERENCE (reference buffer disabled, reference applied to REF)  
V
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= f  
MAX  
200  
350  
320  
5
REF  
REF  
SCLK  
REF Input Current  
= 0  
µA  
SCLK  
In full power-down mode, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
2.0  
V
V
INH  
V
0.8  
1
INL  
V
0.2  
15  
V
HYST  
I
V
= 0 or V  
DD2  
µA  
pF  
IN  
IN  
Input Capacitance  
C
IN  
_______________________________________________________________________________________  
5
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1083 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
OSC  
+2.5V at REF, REFADJ = V  
, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD1  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
I
I
= 5mA  
V
V
OL  
SINK  
Output Voltage High  
V
= 0.5mA  
V
- 0.5V  
DD2  
OH  
SOURCE  
Three-State Leakage Current  
I
10  
µA  
pF  
CS = V  
CS = V  
L
DD2  
DD2  
Three-State Output Capacitance  
C
15  
OUT  
POWER SUPPLY  
Positive Supply Voltage  
(Note 9)  
V
DD1,  
2.7  
3.6  
V
V
DD2  
Normal operating mode (Note 10)  
Reduced-power mode (Note 11)  
Fast power-down mode (Note 11)  
Full power-down mode (Note 11)  
2.5  
1.3  
0.9  
2.0  
0.5  
3.5  
2.0  
1.5  
1.0  
2.0  
V
V
3.6V  
=
=
DD1  
DD2  
mA  
IV  
+ IV  
DD1  
DD2  
Supply Current  
µA  
Power-Supply Reꢁection  
PSR  
V
= V  
= 2.7V to 3.6V, midscale input  
mV  
DD1  
DD2  
TIMING CHARACTERISTICS—MAX1082  
(Figures 1, 2, 5, 6; V  
= V  
= +4.5V to +5.5V; T = T  
A
to T  
; unless otherwise noted.)  
MAX  
DD1  
DD2  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
156  
62  
62  
35  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
t
CL  
DS  
DH  
t
t
t
t
35  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall Ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
CSH  
CSO  
t
35  
35  
10  
10  
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
80  
80  
65  
65  
65  
65  
DOV  
t
STV  
10  
10  
DOD  
t
STD  
t
DOE  
t
STE  
t
100  
CSW  
6
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
TIMING CHARACTERISTICS—MAX1083  
(Figures 1, 2, 5, 6; V  
= V  
= +2.7V to +3.6V; T = T  
A
to T  
; unless otherwise noted.)  
MAX  
DD1  
DD2  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
208  
83  
83  
45  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
t
CL  
DS  
DH  
t
t
t
t
45  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
CSH  
CSO  
t
45  
45  
13  
13  
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
100  
100  
85  
DOV  
t
STV  
13  
13  
DOD  
t
85  
STD  
t
85  
DOE  
t
85  
STE  
t
100  
CSW  
Note 1: Tested at V  
= V  
= V ; COM = GND, unipolar single-ended input mode.  
DD(MIN)  
DD1  
DD2  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Offset nulled.  
Note 4: Ground the “on” channel; sine wave is applied to all “off” channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 6: The common-mode range for the analog inputs (CH3–CH0 and COM) is from GND to V  
Note 7: External load should not change during conversion for specified accuracy.  
.
DD1  
Note 8: ADC performance is limited by the converter’s noise floor, typically 300µVp-p. An external reference below 2.5V  
compromises the performance of the ADC.  
Note 9: Electrical characteristics are guaranteed from V  
= V  
to V  
= V . For operations beyond  
DD2(MAX)  
DD1(MIN)  
DD2(MIN)  
DD1(MAX)  
this range, see Typical Operating Characteristics. For guaranteed specifications beyond the limits, contact the factory.  
Note 10: AIN = midscale.Unipolar Mode. MAX1082 tested with 20pF on DOUT, 20pF on SSTRB, and f = 6.4MHz, 0 to 5V.  
SCLK  
MAX1083 tested with same loads, f  
= 4.8MHz, 0 to 3V.  
SCLK  
Note 11: SCLK = DIN = GND. CS = V  
DD1.  
_______________________________________________________________________________________  
7
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics  
(MAX1082: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1083: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
LOAD  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
1000  
5.5  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (CONVERTING)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
3.5  
3.0  
2.5  
2.0  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
MAX1082  
MAX1083  
-0.05  
-0.10  
-0.15  
-0.05  
-0.10  
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
200  
400  
600  
800  
0
200  
400  
600  
800  
1000  
SUPPLY VOLTAGE (V)  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (STATIC)  
SUPPLY CURRENT vs. TEMPERATURE  
(STATIC)  
SUPPLY CURRENT vs. TEMPERATURE  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX1082 (PD1 = 1, PD0 = 1)  
MAX1083 (PD1 = 1, PD0 = 1)  
MAX1082 (PD1 = 1, PD0 = 0)  
NORMAL OPERATION (PD1 = PD0 = 1)  
REDP (PD1 = 1, PD0 = 0)  
MAX1082  
MAX1083 (PD1 = 1, PD0 = 0)  
FASTPD (PD1 = 0, PD0 = 1)  
MAX1083  
MAX1082 (PD1 = 0, PD0 = 1)  
MAX1083 (PD1 = 0, PD0 = 1)  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
5
4
3
2
1
0
(PD1 = PD0 = 0)  
(PD1 = PD0 = 0)  
MAX1082  
MAX1083  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics (continued)  
(MAX1082: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1083: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
LOAD  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
2.4988  
0.50  
0.25  
0
0
-0.25  
-0.50  
MAX1082  
MAX1083  
-0.25  
-0.50  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
-.25  
-.50  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
Positive Supply Voltage  
Sampling Analog Inputs  
DD1  
2–5  
CH0–CH3  
COM  
Ground Reference for Analog Inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to 0.5LSB.  
6
7
Active-Low Shutdown Input. Pulling SHDN low shuts down the device, reducing supply current to 2µA  
SHDN  
(typ).  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode, the reference buffer provides a 2.500V nominal output, externally  
adꢁustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to  
8
REF  
V
.
DD1  
9
REFADJ  
GND  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, connect REFADJ to V  
Ground  
.
DD1  
10  
11  
DOUT  
Serial-Data Output. Data is clocked out at SCLK’s rising edge. High impedance when CS is high.  
Serial Strobe Output. SSTRB pulses high for one clock period before the MSB decision. High imped-  
ance when CS is high.  
12  
13  
14  
SSTRB  
DIN  
Serial-Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
and SSTRB are high impedance.  
CS  
Serial-Clock Input. Clocks data in and out of serial interface and sets the conversion speed. (Duty  
cycle must be 40ꢀ to 60ꢀ.)  
15  
16  
SCLK  
V
Positive Supply Voltage  
DD2  
V
DD2  
V
DD2  
3k  
3k  
C
DOUT  
DOUT  
DOUT  
DOUT  
C
C
LOAD  
20pF  
C
LOAD  
20pF  
LOAD  
20pF  
LOAD  
20pF  
3k  
3k  
GND  
GND  
GND  
a) High-Z to V and V to V  
OH  
GND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
OH  
b) V to High-Z  
OL  
Figure 1. Load Circuits for Enable Time  
10 ______________________________________________________________________________________  
Figure 2. Load Circuits for Disable Time  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
sinusoidal signal at IN-, the input voltage is determined  
Detailed Description  
by:  
The MAX1082/MAX1083 ADCs use a successive-  
V
− = (V )sin(2πft)  
IN  
IN  
approximation conversion technique and input T/H cir-  
cuitry to convert an analog signal to a 10-bit digital out-  
put. A flexible serial interface provides easy interface to  
microprocessors (µPs). Figure 3 shows a functional dia-  
gram of the MAX1082/MAX1083.  
The maximum voltage variation is determined by:  
d
1LSB  
t
CONV  
V
REF  
(V )  
IN  
max  
= V 2πf ≤  
=
10  
IN  
dt  
2
t
CONV  
Pseudo-Differential Input  
The equivalent circuit of Figure 4 shows the MAX1082/  
MAX1083’s input architecture, which is composed of a  
T/H, input multiplexer, input comparator, switched-  
capacitor DAC, and reference.  
A 2.6Vp-p, 60Hz signal at IN- will generate a 0.5LSB  
error when using a +2.5V reference voltage and a  
2.5µs conversion time (15 / f  
). When a DC refer-  
SCLK  
ence voltage is used at IN-, connect a 0.1µF capacitor  
to GND to minimize noise at the input.  
In single-ended mode, the positive input (IN+) is con-  
nected to the selected input channel and the negative  
input (IN-) is set to COM. In differential mode, IN+ and  
IN- are selected from the following pairs: CH0/CH1 and  
CH2/CH3. Configure the channels according to Tables  
1 and 2.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the input control word’s  
last bit has been entered. At the end of the acquisition  
interval, the T/H switch opens, retaining charge on  
The MAX1082/MAX1083 input configuration is pseudo-  
differential because only the signal at IN+ is sampled.  
The return side (IN-) is connected to the sampling  
capacitor while converting and must remain stable  
within 0.5LSB ( 0.1LSB for best results) with respect  
to GND during a conversion.  
C
as a sample of the signal at IN+. The conver-  
HOLD  
sion interval begins with the input multiplexer switching  
from IN+ to IN-. This unbalances node ZERO at  
C
HOLD  
the comparator’s input. The capacitive DAC adꢁusts  
during the remainder of the conversion cycle to restore  
node ZERO to V  
/2 within the limits of 10-bit resolu-  
DD1  
If a varying signal is applied to the selected IN-, its  
amplitude and frequency must be limited to maintain  
accuracy. The following equations express the relation-  
ship between the maximum signal amplitude and its  
frequency to maintain 0.5LSB accuracy. Assuming a  
tion. This action is equivalent to transferring a  
12pF x (V + - V -) charge from C to the binary-  
IN  
IN  
HOLD  
weighted capacitive DAC, which in turn forms a digital  
representation of the analog input signal.  
14  
15  
GND  
CS  
SCLK  
CAPACITIVE  
DAC  
REF  
INPUT  
MUX  
INPUT  
SHIFT  
REGISTER  
INT  
CLOCK  
13  
7
DIN  
CONTROL  
LOGIC  
C
HOLD  
12pF  
CH0  
CH1  
SHDN  
COMPARATOR  
ZERO  
2
3
4
5
11  
12  
CH2  
CH3  
CH0  
CH1  
CH2  
CH3  
OUTPUT  
SHIFT  
DOUT  
C
*
SWITCH  
R
IN  
800Ω  
REGISTER  
SSTRB  
COM  
6pF  
ANALOG  
INPUT  
MUX  
T/H  
TRACK  
CLOCK  
HOLD  
IN  
AT THE SAMPLING INSTANT,  
10 + 2-BIT  
SAR ADC  
THE MUX INPUT SWITCHES FROM  
THE SELECTED IN+ CHANNEL TO  
THE SELECTED IN- CHANNEL.  
OUT  
1
REF  
V
V
DD1  
6
COM  
16  
A
2.05  
V
DD1  
/2  
DD2  
+1.22V  
REFERENCE  
17k  
SINGLE-ENDED MODE: IN+ = CH0CH3, IN- = COM.  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM  
PAIRS OF CH0/CH1 AND CH2/CH3.  
10  
GND  
9
8
REFADJ  
REF  
MAX1282  
MAX1283  
+2.500V  
*INCLUDES ALL INPUT PARASITICS  
Figure 3. Functional Diagram  
Figure 4. Equivalent Input Circuit  
______________________________________________________________________________________ 11  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
DIN into the MAX1082/MAX1083’s internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 3 shows the control-byte format.  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM and the converter  
samples the “+” input. If the converter is set up for dif-  
ferential inputs, the difference of IN+) - (IN-) is con-  
The MAX1082/MAX1083 are compatible with SPI/  
QSPI and MICROWIRE devices. For SPI, select the cor-  
rect clock polarity and sampling edge in the SPI control  
registers: set CPOL = 0 and CPHA = 0. MICROWIRE,  
SPI, and QSPI all transmit a byte and receive a byte at  
the same time. Using the Typical Operating Circuit, the  
simplest software interface requires only three 8-bit  
transfers to perform a conversion (one 8-bit transfer to  
configure the ADC, and two more 8-bit transfers to clock  
out the conversion result). See Figure 16 for MAX1082/  
MAX1083 QSPI connections.  
[(  
]
verted. At the end of the conversion, the positive input  
connects back to IN+ and C  
signal.  
charges to the input  
HOLD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 500kHz to 6.4MHz (MAX1082) or  
4.8MHz (MAX1083).  
t , is the maximum time the device takes to acquire  
ACQ  
the signal and the minimum time needed for the signal  
to be acquired. It is calculated by the following equa-  
tion:  
t
= 7 x (R + R ) x 18pF  
S IN  
ACQ  
1) Set up the control byte and call it TB1. TB1 should  
be of the format: 1XXXXXXX binary, where the Xs  
denote the particular channel, selected conversion  
mode, and power mode.  
where R = 800, R = the source impedance of the  
IN  
S
ACQ  
input signal, and t  
is never less than 400ns  
(MAX1082) or 625ns (MAX1083). Note that source  
impedances below 4kdo not significantly affect the  
ADC’s AC performance.  
2) Use a general-purpose I/O line on the CPU to pull  
CS low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 6MHz  
(MAX1082) or 3MHz (MAX1083) small-signal band-  
width, so it is possible to digitize high-speed transient  
events and measure periodic signals with bandwidths  
exceeding the ADC’s sampling rate by using under-  
sampling techniques. To avoid high-frequency signals  
being aliased into the frequency band of interest, anti-  
alias filtering is recommended.  
4) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB2.  
5) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB3.  
6) Pull CS high.  
Figure 5 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with three leading zeros, two sub-LSB bits, and one  
trailing zero. The total conversion time is a function of  
the serial-clock frequency and the amount of idle time  
between 8-bit transfers. To avoid excessive T/H droop,  
make sure the total conversion time does not exceed  
120µs.  
Analog Input Protection  
Internal protection diodes, which clamp the analog input  
to V  
and GND, allow the channel input pins to swing  
DD1  
from GND - 0.3V to V  
+ 0.3V without damage.  
DD1  
However, for accurate conversions near full scale, the  
inputs must not exceed V by more than 50mV or be  
DD1  
lower than GND by 50mV.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 13). For bipolar input mode, the output is two’s  
complement (Figure 14). Data is clocked out on the ris-  
ing edge of SCLK in MSB-first format.  
If the analog input exceeds 50mV beyond the sup-  
plies, do not allow the input current to exceed 2mA.  
How to Start a Conversion  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
12 ______________________________________________________________________________________  
Table 1. Channel Selection in Single-Ended Mode (SGL / DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
COM  
0
0
1
+
1
0
1
0
1
1
1
0
0
+
+
+
Table 2. Channel Selection in Pseudo-Differential Mode (SGL / DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
+
CH3  
0
0
1
1
0
1
0
1
1
0
1
0
+
+
+
Serial Clock  
The fastest the MAX1082/MAX1083 can run with CS held  
low between conversions is 16 clocks per conversion.  
Figure 7 shows the serial-interface timing necessary to  
perform a conversion every 16 SCLK cycles. If CS is tied  
low and SCLK is continuous, guarantee a start bit by first  
clocking in 16 zeros.  
The external clock not only shifts data in and out, but it  
also drives the analog-to-digital conversion steps.  
SSTRB pulses high for one clock period after the last bit  
of the control byte. Successive-approximation bit deci-  
sions are made and appear at DOUT on each of the  
next 12 SCLK falling edges, MSB first (Figure 5). SSTRB  
and DOUT go into a high-impedance state when CS  
goes high; after the next CS falling edge, SSTRB out-  
puts a logic low. Figure 6 shows the detailed serial-inter-  
face timings.  
__________ Applications Information  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1082/MAX1083 in normal operating mode, ready to  
convert with SSTRB = low. After the power supplies sta-  
bilize, the internal reset time is 10µs, and no conver-  
sions should be performed during this phase. If CS is  
low, the first logic 1 on DIN is interpreted as a start bit.  
Until a conversion takes place, DOUT shifts out zeros.  
Additionally, wait for the reference to stabilize when  
using the internal reference.  
The conversion must complete in 120µs or less, or  
droop on the sample-and-hold capacitors may degrade  
conversion results.  
Data Framing  
The falling edge of CS does not start a conversion.  
The first logic high clocked into DIN is interpreted as a  
start bit and defines the first bit of the control byte. A  
conversion starts on SCLK’s falling edge, after the eighth  
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as follows:  
Power Modes  
Save power by placing the converter in one of two low-  
current operating modes or in full power-down between  
conversions. Select the power mode through bit 1 and  
bit 0 of the DIN control byte (Tables 3 and 4), or force  
the converter into hardware shutdown by driving SHDN  
to GND.  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e.g., after V  
are applied.  
and V  
DD2  
DD1  
OR  
The first high bit clocked into DIN after bit B4 of a  
conversion in progress is clocked onto the DOUT pin  
(Figure 7).  
The software power-down modes take effect after the  
conversion is completed; SHDN overrides any software  
power mode and immediately stops any conversion in  
progress. In software power-down mode, the serial  
interface remains active while waiting for a new control  
byte to start conversion and switch to full-power mode.  
Once a start bit has been recognized, the current conver-  
sion may only be terminated by pulling SHDN low.  
______________________________________________________________________________________ 13  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
Table 3. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
7(MSB)  
START  
6
5
4
SEL2  
SEL1  
SEL0  
These 3 bits select which of the eight channels are used for the conversion (Tables 1 and 2).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0 to V  
can be converted; in bipolar mode, the differential signal can  
REF  
range from -V /2 to +V /2.  
REF REF  
2
SGL/DIF  
1 = single ended, 0 = pseudo-differential. Selects single-ended or pseudo-differential conver-  
sions. In single-ended mode, input signal voltages are referred to COM. In pseudo-differential  
mode, the voltage difference between two channels is measured (Tables 1 and 2).  
1
PD1  
PD0  
Select operating mode.  
0(LSB)  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full power-down  
Fast power-down  
Reduced power  
Normal operation  
Table 4. Software-Controlled Power Modes  
TOTAL SUPPLY CURRENT  
CIRCUIT SECTIONS*  
PD1/PD0  
MODE  
CONVERTING  
AFTER  
CONVERSION  
INPUT COMPARATOR  
REFERENCE  
(mA)  
Full Power-Down  
(FULLPD)  
00  
01  
2.5  
2µA  
Off  
Off  
Fast Power-Down  
(FASTPD)  
2.5  
0.9mA  
Reduced Power  
On  
Reduced Power  
Mode (REDP)  
10  
11  
2.5  
2.5  
1.3mA  
2.0 mA  
Reduced Power  
Full Power  
On  
On  
Normal Operating  
* Circuit operation between conversions; during conversion all circuits are fully powered up.  
Once conversion is completed, the device goes into  
the programmed power mode until a new control byte  
is written.  
mode, or when exiting hardware shutdown, the device  
goes immediately into full-power mode and is ready to  
convert after 2µs when using an external reference.  
When using the internal reference, wait for the typical  
power-up delay from a full power-down (software or  
hardware) as shown in Figure 8.  
The power-up delay is dependent on the power-down  
state. Software low-power modes will be able to start  
conversion immediately when running at decreased  
clock rates (see Power-Down Sequencing). Upon  
power-on reset, when exiting software full power-down  
14 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
CS  
t
ACQ  
SCLK  
DIN  
1
4
8
9
12  
16  
20  
24  
SEL SEL SEL UNI/ SGL/  
PD2 PD2  
2
1
0
BIP DIF  
START  
SSTRB  
RB1  
RB2  
B9 B8 B7 B6 B5  
CONVERSION  
RB3  
B3 B2 B1 B0 S1 S0  
IDLE  
B4  
DOUT  
IDLE  
400ns  
(CLK = 6.4MHz)  
A/D STATE  
Figure 5. Single-Conversion Timing  
Software Power-Down  
Power-Down Sequencing  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. When software power-down is  
asserted, the ADC completes the conversion in  
progress and powers down into the specified low-qui-  
escent-current state (2µA, 0.9mA, or 1.3mA).  
The MAX1082/MAX1083 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. Figures 9 and 10 show the  
average supply current as a function of the sampling  
rate. The following sections discuss the various power-  
down sequences. Other combinations of clock rates  
and power-down modes may attain the lowest power  
consumption in other applications.  
The first logic 1 on DIN is interpreted as a start bit and  
puts the MAX1082/MAX1083 into its full-power mode.  
Following the start bit, the data input word or control  
byte also determines the next power-down state. For  
example, if the DIN word contains PD1 = 0 and PD0 = 1, a  
0.9mA power-down resumes after one conversion.  
Table 4 details the four power modes with the corre-  
sponding supply current and operating sections.  
Using Full Power-Down Mode  
Full power-down mode (FULLPD) achieves the lowest  
power consumption, up to 1000 conversions per chan-  
nel per second. Figure 9a shows the MAX1083’s power  
consumption for one- or four-channel conversions utiliz-  
ing full power-down mode (PD1 = PD0 = 0), with the  
internal reference and conversion controlled at the  
maximum clock speed. A 0.01µF bypass capacitor at  
REFADJ forms an RC filter with the internal 17krefer-  
ence resistor, with a 170µs time constant. To achieve  
full 10-bit accuracy, seven time constants or 1.2ms are  
required after power-up if the bypass capacitor is fully  
discharged between conversions. Waiting this 1.2ms  
duration in fast power-down (FASTPD) or reduced-  
power (REDP) mode instead of in full power-up can fur-  
ther reduce power consumption. This is achieved by  
using the sequence shown in Figure 11a.  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down. Unlike software power-down mode, the  
conversion is not completed; it stops coincidentally with  
SHDN being brought low. When returning to normal  
operation—from SHDN, with an external reference—the  
MAX1082/MAX1083 can be considered fully powered  
up within 2µs of actively pulling SHDN high. When  
using the internal reference, the conversion should be  
initiated only when the reference has settled; its recov-  
ery time is dependent on the external bypass capaci-  
tors and the time between conversions.  
Figure 9b shows the MAX1083’s power consumption for  
one- or four-channel conversions utilizing FULLPD  
______________________________________________________________________________________ 15  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
CS  
t
CSW  
t
t
t
CSH  
CSS  
t
CH  
CP  
t
t
CS1  
t
CSO  
CL  
#10  
SCLK  
t
DH  
t
DS  
t
DOH  
DIN  
t
t
DOV  
DOD  
t
DOE  
DOUT  
t
STH  
t
t
STD  
STV  
t
STE  
SSTRB  
Figure 6. Detailed Serial-Interface Timing  
mode (PD1 = PD0 = 0), with an external reference and  
conversion controlled at the maximum clock speed.  
One dummy conversion to power up the device is  
needed, but no waiting time is necessary to start the  
second conversion, thereby achieving lower power  
consumption at up to half the full sampling rate.  
Internal Reference  
The MAX1082/MAX1083’s full-scale range with the  
internal reference is 2.5V with unipolar inputs and  
1.25V with bipolar inputs. The internal reference volt-  
age is adꢁustable by 100mV with the circuit in Figure  
12.  
Using Fast Power-Down and Reduced  
Power Modes  
External Reference  
The MAX1082/MAX1083’s external reference can be  
placed at the input (REFADJ) or the output (REF) of the  
internal reference-buffer amplifier. The REFADJ input  
impedance is typically 17k. At REF, the DC input  
resistance is a minimum of 18k. During conversion, an  
external reference at REF must deliver up to 350µA DC  
load current and have 10or less output impedance. If  
the reference has a higher output impedance or is  
noisy, bypass it close to the REF pin with a 4.7µF  
capacitor.  
FASTPD and REDP modes achieve the lowest power  
consumption at speeds close to the maximum sam-  
pling rate. Figure 10 shows the MAX1083’s power con-  
sumption in FASTPD mode (PD1 = 0, PD0 = 1), REDP  
mode (PD1 = 1, PD0 = 0), and, for comparison, normal  
operating mode (PD1 = 1, PD0 = 1). The figure shows  
power consumption using the specified power-down  
mode, with the internal reference and conversion con-  
trolled at the maximum clock speed. The clock speed  
in FASTPD or REDP should be limited to 4.8MHz for the  
MAX1082/MAX1083. FULLPD mode may provide  
increased power savings in applications where the  
MAX1082/MAX1083 are inactive for long periods of  
time, but intermittent bursts of high-speed conversions  
are required.  
To use the direct REF input, disable the internal buffer  
by connecting REFADJ to V  
. Using the REFADJ  
DD1  
input makes buffering the external reference unneces-  
sary.  
Transfer Function  
Table 5 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
Internal and External References  
The MAX1082/MAX1083 can be used with an internal  
or external reference voltage. An external reference  
can be connected directly at REF or at the REFADJ pin.  
Figure 13 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 14 shows the bipolar  
I/O transfer function. Code transitions occur halfway  
between successive-integer LSB values. Output coding  
is binary, with 1LSB = 2.44mV (2.500V/2/1024) for  
An internal buffer is designed to provide 2.5V at  
REF for the MAX1082/MAX1083. The internally trimmed  
1.22V reference is buffered with a 2.05 gain.  
16 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
CS  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
S
CONTROL BYTE 2  
S
ETC  
1
8
12  
B9  
16 1  
5
8
12  
B9  
16 1  
5
8
12  
16 1  
5
SCLK  
B4  
CONVERSION RESULT 0  
S0  
B4  
CONVERSION RESULT 1  
S0  
B9  
B4  
DOUT  
SSTRB  
Figure 7. Continuous 16-Clock/Conversion Timing  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
10,000  
MAX1083, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1  
= 20pF  
DD 2  
C
1000  
100  
10  
4 CHANNELS  
1 CHANNEL  
1
0.0001 0.001  
0.01  
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
TIME IN SHUTDOWN (s)  
SAMPLING RATE (sps)  
Figure 8. Reference Power-Up Delay vs. Time in Shutdown  
Figure 9b. Average Supply Current vs. Conversion Rate with  
External Reference in FULLPD  
2.5  
1000  
MAX1083, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1  
= 20pF  
DD2  
NORMAL OPERATION  
C
2.0  
REDP  
FASTPD  
100  
1.5  
1.0  
4 CHANNELS  
10  
1
1 CHANNEL  
MAX1083, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1  
= 20pF  
DD2  
C
0.5  
50  
200  
SAMPLING RATE (sps)  
150  
250  
0
100  
300 350  
0.1  
1
10  
100  
1k  
10k  
SAMPLING RATE (sps)  
Figure 9a. Average Supply Current vs. Conversion Rate with  
Internal Reference in FULLPD  
Figure 10. Average Supply Current vs. Sampling Rate (in  
FASTPD, REDP, and Normal Operation)  
______________________________________________________________________________________ 17  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
unipolar operation, and 1LSB = 2.44mV [(2.500V / 2) /  
1024] for bipolar operation.  
capacitors close to V  
of the MAX1082/MAX1083.  
DD1  
Minimize capacitor lead lengths for best supply-noise  
reꢁection. If the power supply is very noisy, a 10resis-  
tor can be connected as a lowpass filter (Figure 15).  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit (PC) boards;  
wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
High-Speed Digital Interfacing with QSPI  
The MAX1082/MAX1083 can interface with QSPI using  
the circuit in Figure 16 (CPOL = 0, CPHA = 0). This QSPI  
circuit can be programmed to do a conversion on each of  
the four channels. The result is stored in memory without  
taxing the CPU, since QSPI incorporates its own microse-  
quencer.  
Figure 15 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at GND. Connect all other analog  
grounds to the star ground. Connect the digital system  
ground to this ground only at this point. For lowest-  
noise operation, the ground return to the star ground’s  
power supply should be low impedance and as short  
as possible.  
TMS320LC3x Interface  
Figure 17 shows an application circuit to interface the  
MAX1082/MAX1083 to the TMS320 in external clock  
mode. The timing diagram for this interface circuit is  
shown in Figure 18.  
Use the following steps to initiate a conversion in the  
MAX1082/MAX1083 and to read the results:  
High-frequency noise in the V  
power supply may  
DD1  
affect the high-speed comparator in the ADC. Bypass  
the supply to the star ground with 0.1µF and 10µF  
1) The TMS320 should be configured with CLKX  
(transmit clock) as an active-high output clock and  
WAIT 1.2ms (7 x RC)  
0
0
1
0
0
0
1
1
1
1
DIN  
FULLPD  
REDP  
FULLPD  
1.22V  
DUMMY CONVERSION  
1.22V  
2.5V  
REFADJ  
0V  
0V  
γ = RC = 17kx 0.01µF  
REF  
2.5V  
2.5mA  
2.5mA  
2.5mA  
IV  
+ IV  
DD2  
DD1  
1.3mA OR 0.9mA  
0mA  
0mA  
Figure 11a. Full Power-Down Timing  
1
0
1
0
0
1
1
1
1
DIN  
REDP  
REDP  
FASTPD  
2.5mA  
2.5V (ALWAYS ON)  
2.5mA  
REF  
2.5mA  
1.3mA  
0.9mA  
0.9mA  
IV  
+ IV  
DD1  
DD2  
Figure 11b. FASTPD and REDP Timing  
18 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
+3.3V  
OUTPUT CODE  
24k  
V
REF  
2
FS  
=
+ V  
COM  
011 . . . 111  
011 . . . 110  
MAX1082  
MAX1083  
510k  
ZS = V  
-FS =  
COM  
100k  
REFADJ  
-V  
REF  
2
12  
+ V  
COM  
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
REF  
0.047µF  
1LSB =  
1024  
111 . . . 111  
111 . . . 110  
111 . . . 101  
Figure 12. MAX1082/MAX1083 Reference-Adjust Circuit  
OUTPUT CODE  
FULL-SCALE  
100 . . . 001  
100 . . . 000  
TRANSITION  
11 . . . 111  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1LSB  
11 . . . 110  
11 . . . 101  
*V  
COM  
V
/ 2  
REF  
Figure 14. Bipolar Transfer Function, Full Scale (FS) =  
/ 2 + V , Zero Scale (ZS) = V  
FS = V + V  
REF  
COM  
V
REF  
COM  
COM  
ZS = V  
1LSB =  
COM  
received from the device.  
V
REF  
5) The TMS320 reads in 1 data bit on each of the next  
16 rising edges of SCLK. These data bits represent  
the 10 + 2-bit conversion result followed by 4 trailing  
bits, which should be ignored.  
1024  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
6) Pull CS high to disable the MAX1082/MAX1083 until  
0
1
2
3
FS  
the next conversion is initiated.  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Definitions  
Figure 13. Unipolar Transfer Function, Full Scale (FS) = V  
REF  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
from a straight line on an actual transfer function. This  
straight line can be a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1082/MAX1083  
are measured using the best straight-line fit method.  
+ V  
, Zero Scale (ZS) = V  
COM  
COM  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR on the TMS320 are  
connected to the MAX1082/MAX1083 s SCLK input.  
2) The MAX1082/MAX1083 s CS pin is driven low by  
the TMS320 s XF_ I/O port to enable data to be  
clocked into the MAX1082/MAX1083 s DIN pin.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX1082/MAX1083 to initiate a conversion and  
place the device into normal operating mode. See  
Table 3 to select the proper XXXXX bit values for your  
specific application.  
Aperture Width  
4) The MAX1082/MAX1083 s SSTRB output is moni-  
Aperture width (t ) is the time the T/H circuit requires  
AW  
tored through the TMS320’s FSR input. A falling  
edge on the SSTRB output indicates that the con-  
version is in progress and data is ready to be  
to disconnect the hold capacitor from the input circuit  
(for instance, to turn off the sampling bridge, and put  
the T/H unit in hold mode).  
______________________________________________________________________________________ 19  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
Table 5. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale  
+ V  
Zero Scale  
V
REF  
/ 2  
-V  
REF  
/ 2  
V
V
V
COM  
REF  
COM  
COM  
+ V  
+ V  
COM  
COM  
clock ꢁitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
SUPPLIES  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is the ratio of the fundamental input frequency’s  
RMS amplitude to RMS equivalent of all other ADC out-  
put signals:  
+3V  
+3V  
GND  
SINAD (dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
*R = 10Ω  
Effective Number of Bits (ENOB)  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists only of quantization noise. With an  
input range equal to the ADC’s full-scale range, calcu-  
late ENOB as follows:  
V
DD  
GND  
COM  
V
+3V  
DGND  
DD2  
DIGITAL  
CIRCUITRY  
MAX1082  
MAX1083  
ENOB = (SINAD - 1.76) / 6.02  
*OPTIONAL  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the input signal’s  
first five harmonics to the fundamental itself. This is  
expressed as:  
Figure 15. Power-Supply Grounding Connection  
Aperture Jitter  
Aperture ꢁitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
2
2
2
2
2
V
+ V + V + V + V  
3 4 4 5  
2
THD = 20×log  
Aperture Delay  
V
1
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken.  
where V is the fundamental amplitude, and V through  
V5 are the amplitudes of the 2nd- through 5th-order  
harmonics.  
1
2
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the SNR is the ratio of the full-scale analog  
input (RMS value) to the RMS quantization error (resid-  
ual error). The ideal, theoretical minimum analog-to-dig-  
ital noise is caused only by quantization error and  
results directly from the ADC’s resolution (N bits):  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next-largest distortion component.  
SNR = (6.02 x N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
20 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
+5V  
OR  
+3V  
+5V  
OR  
+3V  
10µF  
0.1µF  
V
DD2 16  
1
2
3
4
5
V
DD1  
0.1µF  
10µF  
(POWER SUPPLIES)  
CH0  
CH1  
CH2  
CH3  
SCLK 15  
CSB 14  
SCK  
MAX1082  
MAX1083  
PCS0  
ANALOG  
INPUTS  
MC683XX  
DIN  
13  
MOSI  
SSTRB  
12  
11  
MISO  
V
DD1  
DOUT  
GND  
6
7
8
COM  
SHDN  
10  
9
REFADJ  
REF  
4.7µF  
0.01µF  
(GND)  
Figure 16. QSPI Connections, External Reference  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
TMS320LC3x  
MAX1082  
MAX1083  
DIN  
DR  
DOUT  
SSTRB  
FSR  
Figure 17. MAX1082/MAX1083-to-TMS320 Serial Interface  
______________________________________________________________________________________ 21  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
CS  
SCLK  
START  
SEL2  
SEL1  
SEL0 UNI/BIP SGI/DIF PD1  
PD0  
DIN  
SSTRB  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DOUT  
B8  
S1  
MSB  
S0  
Figure 18. MAX1082/MAX1083-to-TMS320 Serial Interface  
Typical Operating  
Ordering Information (continued)  
TEMP.  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
+5V OR  
+3V  
MAX1082BEUE -40°C to +85°C  
16 TSSOP  
16 TSSOP  
16 TSSOP  
16 TSSOP  
16 TSSOP  
1
1/2  
1
V
V
CH0  
DD  
DD1  
0.1µF  
MAX1083ACUE  
0°C to +70°C  
0°C to +70°C  
0 TO  
+2.5V  
ANALOG  
INPUTS  
V
DD2  
MAX1083BCUE  
MAX1082  
MAX1083  
CH3  
MAX1083AEUE -40°C to +85°C  
MAX1083BEUE -40°C to +85°C  
1/2  
1
GND  
COM  
CPU  
I/O  
REF  
CS  
Chip Information  
4.7µF  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
DIN  
TRANSISTOR COUNT: 4286  
PROCESS: BiCMOS  
DOUT  
REFADJ  
0.01µF  
SSTRB  
SHDN  
V
SS  
22 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
________________________________________________________Package Information  
Note: MAX1082/MAX1083 do not have an exposed die pad.  
______________________________________________________________________________________ 23  
300ksps/400ksps, Single-Supply, 4-Channel,  
Serial 10-Bit ADCs with Internal Reference  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1083ACUE+

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX1083ACUE+T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX1083ACUE-T

暂无描述
MAXIM

MAX1083AEUE

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1083AEUE-T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, 0.65MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX1083BCUE

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1083BEUE

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1083BEUE+T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX1083BEUE-T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, 0.65MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX1083_12

300ksps/400ksps, Single-Supply, 4-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1084

400ksps/300ksps, Single-Supply, Low-Power, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1084ACSA

400ksps/300ksps, Single-Supply, Low-Power, Serial 10-Bit ADCs with Internal Reference
MAXIM