ICL7665CPA+ [MAXIM]

暂无描述;
ICL7665CPA+
型号: ICL7665CPA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

微处理器 监视器
文件: 总12页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0001; Rev 2; 8/97  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
µP Over/Undervoltage Warning  
The ICL7665 warns microprocessors (µPs) of overvolt-  
age and undervoltage conditions. It draws a typical  
operating current of only 3µA. The trip points and hys-  
teresis of the two voltage detectors are individually pro-  
grammed via external resistors to any voltage greater  
than 1.3V. The ICL7665 will operate from any supply  
voltage in the 1.6V to 16V range, while monitoring volt-  
ages from 1.3V to several hundred volts. The Maxim  
ICL7665A is an improved version with a 2%-accurate  
Improved Second Source  
Dual Comparator with Precision Internal Reference  
3µA Operating Current  
2% Threshold Accuracy (ICL7665A)  
1.6V to 16V Supply Voltage Range  
On-Board Hysteresis Outputs  
Externally Programmable Trip Points  
Monolithic, Low-Power CMOS Design  
V
SET  
threshold and guaranteed performance over  
1
temperature.  
The 3µA quiescent current of the ICL7665 makes it  
ideal for voltage monitoring in battery-powered sys -  
tems. In both battery- and line-powered systems, the  
unique combination of a reference, two comparators,  
and hysteresis outputs reduces the size and compo-  
nent count of many circuits.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
ICL7665CPA  
ICL7665ACPA  
ICL7665BCPA  
ICL7665CSA  
ICL7665ACSA  
ICL7665BCSA  
ICL7665CJA  
ICL7665ACJA  
ICL7665BCJA  
________________________Ap p lic a t io n s  
µP Voltage Monitoring  
8 SO  
Low-Battery Detection  
8 SO  
Power-Fail and Brownout Detection  
Battery Backup Switching  
8 CERDIP  
8 CERDIP  
8 CERDIP  
Power-Supply Fault Monitoring  
Over/Undervoltage Protection  
High/Low Temperature, Pressure, Voltage Alarms  
Ordering Information continued on last page.  
_________________P in Co n fig u ra t io n s  
TOP VIEW  
OUT1  
HYST1  
SET1  
1
2
3
4
8
7
6
5
V+  
__________Typ ic a l Op e ra t in g Circ u it  
OUT2  
SET2  
ICL7665  
V
IN1  
V+  
V
IN2  
GND  
HYST2  
8
OVERVOLTAGE  
DETECTION  
UNDERVOLTAGE  
DETECTION  
V+  
1
3
7
6
DIP/SO  
OUT1  
SET1  
OUT2  
NMI  
V+ (CASE)  
OUT2  
8
ICL7665  
OUT1  
1
7
SET2  
2
HYST1  
6
SET2  
GND  
4
ICL7665  
4
3
5
SET1  
HYST2  
GND  
TO-99  
SIMPLE THRESHOLD DETECTOR  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (Note 1) .........................................-0.3V to +18V  
Output Voltages OUT1 and OUT2  
(with respect to GND) (Note 1)..........................-0.3V to +18V  
Output Voltages HYST1 and HYST2  
(with respect to V+) (Note 1) .............................+0.3V to -18V  
Input Voltages SET1 and SET2  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C) ........................471mW  
CERDIP (derate 8.00mW/°C above +70°C) ................640mW  
TO-99 (derate 6.67mW/°C above +70°C) ...................533mW  
Operating Temperature Ranges  
(Note 1)........................................(GND - 0.3V) to (V+ + 0.3V)  
Maximum Sink Output Current  
OUT1 and OUT2.............................................................25mA  
Maximum Source Output Current  
ICL7665C_ _.......................................................0°C to +70°C  
ICL7665I_ _ .....................................................-20°C to +85°C  
ICL7665E_ _....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
ICL765  
HYST1 and HYST2 ........................................................-25mA  
Note 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to volt-  
ages greater than (V+ + 0.3V) or less than (GND - 0.3V) may cause destructive latchup. For this reason, we recommend  
that inputs from external sources that are not operating from the same power supply not be applied to the device before its  
supply is established, and that in multiple supply systems, the supply to the ICL7665 be turned on first. If this is not possi-  
ble, currents into inputs and/or outputs must be limited to ±0.5mA and voltages must not exceed those defined above.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= +25°C  
MIN  
1.6  
1.8  
2.0  
1.6  
1.8  
TYP  
MAX  
16  
UNITS  
T
A
ICL7665  
T
= T  
= T  
to T  
to T  
16  
A
MIN  
MIN  
MIN  
Operating Supply Voltage  
V+  
ICL7665A  
ICL7665B  
T
A
16  
V
MIN  
T
A
= +25°C  
10  
T
A
= T  
to T  
10  
MIN  
MIN  
V+ = 2V  
V+ = 9V  
2.5  
2.6  
2.9  
10  
10  
15  
ICL7665,  
= +25°C;  
T
A
GND V  
SET1,  
ICL7665A,  
= T to T  
V
SET2  
V+,  
µA  
Supply Current  
I+  
T
A
MIN  
MAX V+ = 15V  
all outputs open  
circuit  
V+ = 2V  
V+ = 9V  
2.5  
10  
ICL7665B,  
= +25°C  
T
A
2.6  
10  
V
1.150  
1.200  
1.275  
1.225  
1.250  
1.215  
1.300  
1.300  
1.300  
1.300  
1.300  
1.300  
100  
1.450  
1.400  
1.325  
1.375  
1.350  
1.385  
SET1  
ICL7665, ICL7665B, T = +25°C  
A
V
SET2  
V
SET1  
Input Trip Voltage  
V
SET  
ICL7665A, T = +25°C  
A
V
V
SET2  
V
SET1  
ICL7665A, T = T  
to T  
MAX  
A
MIN  
V
SET2  
V
Tempco  
ppm/°C  
%/V  
SET  
Supply Voltage Sensitivity  
of V , V  
R
, R  
, R  
, R  
= 1M  
0.004  
OUT1 OUT2 HYST1 HYST2  
SET1 SET2  
2
_______________________________________________________________________________________  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
10  
MAX UNITS  
OUT1, OUT2  
200  
All grades, V  
= 0V or  
SET  
V
SET  
2V, T = +25°C  
A
HYST1, HSYT2  
-10  
-100  
ICL7665, ICL7665A,  
V+ = 15V,  
OUT1, OUT2  
2000  
nA  
-500  
Output Leakage Current  
I
I
,
OLK  
HLK  
HYST1, HSYT2  
T = T  
to T  
MAX  
A
MIN  
OUT1, OUT2  
2000  
-500  
0.50  
ICL7665B, V+ = 9V,  
T = T to T  
A
MIN  
MAX  
HYST1, HSYT2  
ICL7665, ICL7665B: V+ = 2V  
ICL7665A: V+ = 2V  
All grades: V+ = 5V  
ICL7665, ICL7665A: V+ = 15V  
ICL7665B: V+ = 9V  
All grades: V+ = 2V  
All grades: V+ = 5V  
ICL7665, ICL665A: V+ = 15V  
ICL7665B: V+ = 9V  
All grades: V+ = 2V  
All grades: V+ = 5V  
ICL7665, ICL665A: V+ = 15V  
ICL7665B: V+ = 9V  
0.20  
0.20  
0.10  
0.06  
0.06  
-0.15  
-0.05  
-0.02  
-0.02  
0.20  
0.15  
0.11  
0.11  
V
Saturation  
V
SET1  
= 2V,  
OUT1  
0.30  
0.20  
0.25  
-0.30  
-0.15  
-0.10  
-0.15  
0.50  
0.30  
0.25  
0.30  
V
Voltage  
I
= 2mA  
OUT1  
V
Saturation  
V
SET1  
= 2V,  
HYST1  
V
V
Voltage  
I
= -0.5mA  
HYST1  
V
Saturation  
V
SET2  
= 0V,  
OUT2  
Voltage  
I
= 2mA  
OUT2  
V
= 2V,  
= -0.2mA  
SET2  
All grades: V+ = 2V  
-0.25  
-0.80  
I
HYST2  
All grades: V+ = 5V  
ICL7665: V+ = 15V  
ICL7665A: V+ = 15V  
ICL7665B: V+ = 9V  
-0.43  
-0.35  
-0.35  
-0.35  
-1.00  
-0.80  
-1.00  
-1.00  
V
Saturation  
HYST2  
V
Voltage  
V
= 2V,  
= -0.5mA  
SET2  
I
HYST2  
V
Input Leakage  
SET  
GND V  
V+  
I
±0.01  
±10  
nA  
SET  
SET  
Current  
V
Input Change for  
SET  
R
V
OUT  
= 4.7k, R  
LO = 1% V+, V  
= 20k,  
HYST  
OUT  
V  
Complete Output  
Change  
0.1  
mV  
SET  
HI = 99% V+  
OUT  
Difference in Trip  
Voltage  
V
V
SET2  
SET1  
R
R
, R  
= 1MΩ  
= 1MΩ  
±5  
±50  
mV  
mV  
OUT HYST  
Output/Hysteresis  
Difference  
, R  
±0.1  
OUT HYST  
_______________________________________________________________________________________  
3
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
AC OPERATING CHARACTERISTICS  
(V+ = 5V, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
85  
MAX  
UNITS  
t
SO1d  
SH1d  
SO2d  
V
switched from 1.0V to 1.6V,  
SET  
t
90  
Output Delay Time,  
Input Going High  
R
R
= 4.7k, C = 12pF,  
µs  
OUT  
L
t
55  
= 20kΩ  
HYST  
ICL765  
t
t
t
55  
SH2d  
SO1d  
SH1d  
SO2d  
75  
V
switched from 1.6V to 1.0V,  
SET  
80  
Output Delay Time,  
Input Going Low  
R
R
= 4.7k, C = 12pF,  
µs  
µs  
µs  
OUT  
L
t
60  
= 20kΩ  
HYST  
t
60  
SH2d  
t
0.6  
0.8  
7.5  
0.7  
0.6  
0.7  
4.0  
1.8  
O1r  
V
switched between 1.0V and 1.6V,  
SET  
t
O2r  
Output Rise Times  
Output Fall Times  
R
= 4.7k, C = 12pF,  
OUT L  
t
H1r  
H2r  
R
HYST  
= 20kΩ  
t
t
O1f  
V
switched between 1.0V and 1.6V,  
= 4.7k, C = 12pF,  
L
= 20kΩ  
SET  
t
O2f  
R
R
OUT  
t
t
H1f  
HYST  
H2f  
_______________________________________________________S w it c h in g Wa ve fo rm s  
1.6V  
INPUT  
V
V
SET1, SET2  
1.0V  
t
SO1d  
t
V+ (5V)  
SO1d  
OUT1  
GND  
t
O1r  
t
O1f  
V+ (5V)  
t
SH1d  
HYST1  
GND  
t
H1r  
t
t
H1f  
SH1d  
t
t
SO2d  
SO2d  
V+ (5V)  
OUT2  
GND  
t
O2r  
t
O2f  
V+ (5V)  
t
SH2d  
HYST2  
GND  
t
SH2d  
t
H2r  
t
H2f  
4
_______________________________________________________________________________________  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT AS A  
FUNCTION OF SUPPLY VOLTAGE  
SUPPLY CURRENT AS A  
FUNCTION OF AMBIENT TEMPERATURE  
OUT1 SATURATION VOLTAGE AS A  
FUNCTION OF OUTPUT CURRENT  
2.0  
5.0  
4.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0V V , V  
V+  
0V V , V  
V+  
SET1 SET2  
SET1 SET2  
V+ = 2V  
V+ = 15V  
V+ = 9V  
4.0  
3.5  
1.5  
T = -20°C  
A
V+ = 5V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V+ = 9V  
T = +25°C  
A
1.0  
V+ = 15V  
T = +70°C  
A
V+ = 2V  
0.5  
0
0
2
4
6
8
10 12 14 16  
-20  
0
20  
40  
60  
0
5
10  
15  
20  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
I
OUT1 (mA)  
OUT  
OUT2 SATURATION VOLTAGE AS A  
FUNCTION OF OUTPUT CURRENT  
HYST1 OUTPUT SATURATION VOLTAGE  
vs. HYST1 OUTPUT CURRENT  
HYST2 OUTPUT SATURATION VOLTAGE  
vs. HYST2 OUTPUT CURRENT  
2.0  
0
-0.4  
-0.8  
0
-1  
-2  
1.5  
1.0  
V+ = 15V  
V+ = 9V  
V+ = 2V  
V+ = 5V  
V+ = 9V  
V+ = 15V  
V+ = 9V  
V+ = 5V  
V+ = 15V  
-1.2  
-1.6  
-2.0  
-3  
-4  
-5  
V+ = 2V  
V+ = 5V  
0.5  
0
V+ = 2V  
0
5
10  
15  
20  
-20  
-16  
-12  
-8  
-4  
0
-5  
-4  
-3  
-2  
-1  
0
I
OUT2 (mA)  
HYST1 OUTPUT CURRENT (mA)  
HYST2 OUTPUT CURRENT (mA)  
OUT  
_______________________________________________________________________________________  
5
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
V+  
4.7k  
OUT1  
HYST1  
4.7k  
1
2
3
4
V+  
8
7
6
5
OUT1  
ICL765  
OUT2  
HYST1 ICL7665  
OUT2  
SET2  
INPUT  
SET1  
GND  
HSYT2  
HSYT2  
1.6V  
1.0V  
12pF  
12pF  
20k  
20k  
12pF  
12pF  
Figure 1. Test Circuit  
_______________De t a ile d De s c rip t io n  
V+  
As shown in the block diagram of Figure 2, the Maxim  
ICL7665 c omb ine s a 1.3V re fe re nc e with two c om-  
parators, two open-drain N-channel outputs, and two  
open-drain P-channel hysteresis outputs. The refer-  
ence and comparator are very low-power linear CMOS  
circuits, with a total operating current of 10µA maxi-  
mum, 3µA typ ic a l. The N-c ha nne l outp uts c a n s ink  
greater than 10mA, but are unable to source any cur-  
rent. These outputs are suitable for wire-OR connections  
and are capable of driving TTL inputs when an external  
pull-up resistor is added.  
SET1  
HYST1  
OUT1  
1.3V  
BANDGAP  
REFERENCE  
TO V+  
The ICL7665 Truth Table is shown in Table 1. OUT1 is  
an inverting output; all other outputs are noninverting.  
HYST1 a nd HYST2 a re P-c ha nne l c urre nt s ourc e s  
whose sources are connected to V+. OUT1 and OUT2  
are N-channel current sinks with their sources connect-  
ed to ground. Both OUT1 and OUT2 can drive at least  
HYST2  
OUT2  
SET2  
one TTL load with a V of 0.4V.  
OL  
Table 1. ICL7665 Truth Table  
INPUT*  
> 1.3V  
OUTPUT  
HYSTERESIS  
Figure 2. Block Diagram  
V
OUT1 = ON = LOW HYST1 = ON = HI  
SET1  
HYST1 = OFF = LOW  
HYST2 = ON = HI  
HYST2 = OFF = LOW  
V
< 1.3V  
> 1.3V  
< 1.3V  
OUT1 = OFF = HI  
OUT2 = OFF = HI  
OUT2 = ON = LOW  
SET1  
In spite of the very low operating current, the ICL7665  
has a typical propagation delay of only 75µs. Since the  
comparator input bias current and the output leakages  
are very low, high-impedance external resistors can be  
used. This design feature minimizes both the total sup-  
ply current used and loading on the voltage source that  
is being monitored.  
V
SET2  
V
SET2  
OUT1 is an inverting output; all others are noninverting. OUT1  
and OUT2 are open-drain, N-channel current sinks. HYST1  
and HYST2 are open-drain, P-channel current sinks.  
* See Electrical Characteristics  
6
_______________________________________________________________________________________  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
V
IN1  
V+  
V
IN2  
V
IN1  
V+  
V
IN2  
OUT1  
OUT2  
OUT1  
SET1  
OUT2  
R22  
R12  
R21  
R11  
R22  
R21  
R11  
ICL7665  
HYST1  
R31  
R32  
ICL7665  
HYST2  
SET1  
SET2  
SET2  
R12  
V+  
0V  
OUT1  
OUT1  
0V  
V+  
V
L1  
V
U1  
V
OUT2  
V
IN1  
V
IN1  
V
TRIP1  
OUT2  
V
TRIP2  
IN2  
V
V
L2 U2  
V
IN2  
Figure 3. Simple Threshold Detector  
Figure 4. Threshold Detector with Hysteresis  
the difference between the upper and lower trip points)  
keeps noise or small variations in the input signal from  
repeatedly switching the output when the input signal  
remains near the trip point for a long period of time.  
Ba s ic Ove r/Un d e rvo lt a g e  
De t e c t io n Circ u it s  
Figures 3, 4, and 5 show the three basic voltage detec-  
tion circuits.  
The third basic circuit, Figure 5, is suitable only when the  
voltage to be detected is also the power-supply voltage for  
the ICL7665. This circuit has the advantage that all of the  
current flowing through the input divider resistors flows  
through the hysteresis resistor. This allows the use of  
higher-value resistors, without hysteresis output leakage  
having an appreciable effect on the trip point.  
The simplest circuit, depicted in Figure 3, does not  
have any hysteresis. The comparator trip-point formulas  
can easily be derived by observing that the comparator  
changes state when the V  
input is 1.3V. The exter-  
SET  
nal resistors form a voltage divider that attenuates the  
input signal. This ensures that the V terminal is at  
SET  
1.3V when the input voltage is at the desired compara-  
tor trip point. Since the bias current of the comparator  
is only a fraction of a nanoamp, the current in the volt-  
age divider can be less than one microamp without los-  
ing accuracy due to bias currents. The ICL7665A has a  
2% threshold accuracy at +25°C, and a typical temper-  
ature coefficient of 100ppm/°C including comparator  
offset drift, eliminating the need for external poten-  
tiometers in most applications.  
Resistor-Value Calculations  
Figure 3  
1) Choose a value for R11. This value determines the  
amount of current flowing though the input divider,  
equal to V  
/ R11. R11 can typically be in the  
SET  
range of 10kto 10M.  
2) Calculate R21 based on R11 and the desired trip  
point:  
Figure 4 adds another resistor to each voltage detector.  
This third resistor supplies current from the HYST out-  
put whenever the V  
old . As the formula s s how, this hys te re s is re s is tor  
affects only the lower trip point. Hysteresis (defined as  
input is above the 1.3V thresh-  
SET  
V
– V  
V
– 1.3V  
TRIP  
SET  
TRIP  
R21 = R11 ——————— = R11 ——————  
(
)
(
)
V
1.3V  
SET  
_______________________________________________________________________________________  
7
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
Figure 5  
V
IN  
1) Select a value for R11, usually between 10kand  
10M.  
R31  
R21  
2) Calculate R21:  
R32  
R22  
V+  
V – V  
V – 1.3V  
L
L
SET  
HYST1  
HYST2  
R21 = R11 ————— = R11 ————  
(
)
(
)
V
1.3  
SET  
ICL7665  
ICL765  
3) Calculate R31:  
SET1  
SET2  
OVERVOLTAGE  
R11  
UNDERVOLTAGE  
R12  
V – V  
U
L
OUT1  
OUT2  
R31 = R11 ————  
(
)
GND  
V
SET  
4) As in the other circuits, all three resistor values may  
be scaled up or down in value without changing V  
U
and V . V and V depend only on the ratio of the  
three resistors, if the absolute values are such that  
the hysteresis output resistance and the leakage  
L
U
L
OUT1  
OUT2  
V
L1  
V
U1  
currents of the V  
input and hysteresis output can  
SET  
be ignored.  
__________Ap p lic a t io n s In fo rm a t io n  
V
V
L2 U2  
V
IN  
Fa u lt Mo n it o r fo r a S in g le S u p p ly  
Figure 6 shows a typical over/undervoltage fault monitor  
for a single supply. In this case, the upper trip points (con-  
trolling OUT1) are centered on 5.5V, with 100mV of hys-  
Figure 5. Threshold Detector, V = V+  
IN  
teresis (V = 5.55V, V = 5.45V); and the lower trip points  
U
L
Figure 4  
(controlling OUT2) are centered on 4.5V, also with 100mV  
of hysteresis. OUT1 and OUT2 are connected together in  
a wire-OR configuration to generate a power-OK signal.  
1) Choose a resistor value for R11. Typical values are  
in the 10kto 10Mrange.  
2) Calculate R21 for the desired upper trip point, VU,  
using the formula:  
Mu lt ip le -S u p p ly Fa u lt Mo n it o r  
The ICL7665 can simultaneously monitor several power  
supplies, as shown in Figure 7. The easiest way to calculate  
V - V  
V – 1.3V  
U
U
SET  
R21 = R11 —————— = R11 —————  
(
)
(
)
the resistor values is to note that when the V  
input is at  
SET  
V
1.3V  
3) Calculate R31 for the desired amount of hysteresis:  
(R21) (V+ – V (R21) (V+ – 1.3V)  
SET  
the trip point (1.3V), the current through R11 is 1.3V / R11.  
The sum of the currents through R21A, R21B and R31 must  
equal this current when the two input voltages are at the  
desired low-voltage detection point. Ordinarily, R21A and  
R21B are chosen so that the current through the two resis-  
tors is equal. Note that, since the voltage at the ICL7665  
)
SET  
R31 = ————————— = —————————  
V – V V – V  
U
L
U
L
or, if V+ = V :  
IN  
V
SET  
input depends on the voltage of both supplies being  
monitored, there will be some interaction between the low-  
voltage trip points for the two supplies. In this example,  
OUT1 will go low when either supply is 10% below nominal  
(assuming the other supply is at the nominal voltage), or  
when both supplies are 5% or more below their nominal  
voltage. R31 sets the hysteresis, in this case, to about 43mV  
at the 5V supply or 170mV at the 15V supply. The second  
section of ICL7665 can be used to detect overvoltage or, as  
shown in Figure 7, can be used to detect the absence of  
negative supplies. Note that the trip points for OUT2 depend  
on both the voltages of the negative power supplies and  
the actual voltage of the +5V supply.  
(R21) (V – V  
)
(R21) (V – 1.3V)  
L
L
SET  
R31 = ————————— = —————————  
V – V V – V  
U
L
U
L
4) The trip voltages are not affected by the absolute  
value of the resistors, as long as the impedances  
a re hig h e noug h tha t the re s is ta nc e of R31 is  
much greater than the HYST outputs resistance,  
and the current through R31 is much higher than  
the HYST outputs leakage current. Normally, R31  
will be in the 100kto 22Mrange. Multiplying or  
dividing all three resistors by the same factor will  
not affect the trip voltages.  
8
_______________________________________________________________________________________  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
exceeds 10.2V. When the 110V AC power-line voltage  
is either interrupted or reduced so that the peak voltage  
is less than 10.2V, C1 will be charged through R1.  
OUT2, the power-fail warning output, goes high when  
the voltage on C1 reaches 1.3V. The time constant R1 x  
C1 determines the delay time before the power-fail warning  
signal is activated, in this case 42ms or 212 line cycles.  
Optional components R2, R3 and Q1 add hysteresis by  
increasing the peak secondary voltage required to dis-  
charge C1 once the power-fail warning is active.  
Co m b in a t io n Lo w -Ba t t e ry Wa rn in g a n d  
Lo w -Ba t t e ry Dis c o n n e c t  
Nickel cadmium (NiCd) batteries are excellent recharge-  
able power sources for portable equipment, but care  
must be taken to ensure that NiCd batteries are not  
damaged by overdischarge. Specifically, a NiCd battery  
should not be discharged to the point where the polarity  
of the lowest-capacity cell is reversed, and that cell is  
reverse charged by the higher-capacity cells. This reverse  
charging will dramatically reduce the life of a NiCd battery.  
The Figure 8 circuit both prevents reverse charging and  
gives a low-battery warning. A typical low-battery warning  
voltage is 1V per cell. Since a NiCd 9Vbattery is ordi-  
narily made up of six cells with a nominal voltage of 7.2V,  
a low-battery warning of 6V is appropriate, with a small  
hysteresis of 100mV. To prevent overdischarge of a bat-  
tery, the load should be disconnected when the battery  
voltage is 1V x (N – 1), where N = number of cells. In this  
case, the low-battery load disconnect should occur at  
5V. Since the battery voltage will rise when the load is  
disconnected, 800mV of hysteresis is used to prevent  
repeated on/off cycling.  
Ba t t e ry S w it c h o ve r Circ u it  
The circuit in Figure 11 performs two functions: switch-  
ing the power supply of a CMOS memory to a backup  
battery when the line-powered supply is turned off, and  
lighting a low-battery-warning LED when the backup  
battery is nearly discharged. The PNP transistor, Q1,  
connects the line-powered +5V to the CMOS memory  
whe ne ve r the line -p owe re d +5V s up p ly volta g e is  
greater than 3.5V. The voltage drop across Q1 will only  
be a couple of hundred millivolts, since it will be satu-  
rated. Whenever the input voltage falls below 3.5V,  
OUT1 goes high, turns off Q1, and connects the 3V  
lithium cell to the CMOS memory.  
P o w e r-Fa il Wa rn in g a n d  
P o w e r-Up /P o w e r-Do w n Re s e t  
The second voltage detector of the ICL7665 monitors the  
voltage of the lithium cell. If the battery voltage falls below  
2.6V, OUT2 goes low and the low-battery-warning LED  
turns on (assuming that the +5V is present, of course).  
Figure 9 illustrates a power-fail warning circuit that  
monitors raw DC input voltage to the 7805 three-termi-  
nal 5V regulator. The power-fail warning signal goes  
high when the unregulated DC input falls below 8.0V.  
When the raw DC power source is disconnected or the  
AC power fails, the voltage on the input of the 7805  
Another possible use for the second section of the  
ICL7665 is the detection of the input voltage falling  
below 4.5V. This signal could then be used to prevent  
the microprocessor from writing spurious data to the  
CMOS memory while its power-supply voltage is out-  
side its guaranteed operating range.  
decays at a rate of I  
/ C (in this case, 200mV/ms).  
OUT  
Since the 7805 will continue to provide a 5V output at  
1A until V is less than 7.3V, this circuit will give at  
least 3.5mIsN of warning before the 5V output begins to  
drop. If additional warning time is needed, either the  
trip voltage or filter capacitance should be increased,  
or the output current should be decreased.  
S im p le Hig h /Lo w Te m p e ra t u re Ala rm  
The circuit in Figure 12 is a simple high/low tempera-  
ture alarm, which uses a low-cost NPN transistor as the  
sensor and an ICL7665 as the high/low detector. The  
NPN transistor and potentiometer R1 form a Vbe multi-  
plier whose output voltage is determined by the Vbe of  
the transistor and the position of R1s wiper arm. The  
voltage at the top of R1 will have a temperature coeffi-  
cient of approximately -5mV/°C. R1 is set so that the  
The ICL7665 OUT2 is set to trip when the 5V output has  
decayed to 3.9V. This output can be used to prevent  
the microprocessor from writing spurious data to a  
CMOS battery-backup memory, or can be used to acti-  
vate a battery-backup system.  
AC P o w e r-Fa il a n d Bro w n o u t De t e c t o r  
By monitoring the secondary of the transformer, the cir-  
cuit in Figure 10 performs the same power-failure warn-  
ing function as Figure 9. With a normal 110V AC input  
to the tra ns forme r, OUT1 will d is c ha rg e C1 e ve ry  
16.7ms when the peak transformer secondary voltage  
voltage at V  
equals the V  
trip voltage when the  
SET2  
SET2  
temperature of the NPN transistor reaches the level  
selected for the high-temperature alarm. R2 can be  
adjusted so that the voltage at V  
is 1.3V when the  
SET1  
NPN transistors temperature reaches the low-tempera-  
ture limit.  
_______________________________________________________________________________________  
9
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
+5V SUPPLY  
+5V  
HYST2  
R21A  
V+  
HYST1  
274k  
100k  
V+  
R31  
+5V  
HYST1  
HYST2  
22M  
22M  
ICL7665  
324k  
13M  
5%  
249k  
7.5M  
5%  
SET2  
SET1  
ICL7665  
R21B  
ICL765  
1.02M  
OUT2  
OUT1  
301k  
787k  
R11  
49.9k  
SET1  
100k OUT1  
SET2  
OUT2  
+15V  
OVERVOLTAGE  
DETECTOR  
UNDERVOLTAGE  
DETECTOR  
+5V  
100k  
-5V -15V  
POWER OK  
V 5.55V  
V 4.55V  
U
U
V 5.45V  
L
V 4.45V  
L
POWER OK  
Figure 6. Fault Monitor for a Single Supply  
Figure 7. Multiple-Supply Fault Monitor  
+5V, 1A  
OUTPUT  
R31  
R32  
1M  
100Ω  
V+  
V+  
OUT2  
OUT1  
HYST1  
R21  
HYST2  
SENSE  
R22  
R12  
ICL7665  
ICL7663  
SET  
SET1  
SET2  
OUT2  
SHDN  
R11  
OUT1 GND  
GND  
LOW-BATTERY WARNING  
LOW-BATTERY SHUTDOWN  
Figure 8. Low-Battery Warning and Low-Battery Disconnect  
5V, 1A  
UNREGULATED  
DC INPUT  
5V, 1A  
OUTPUT  
7805  
5V REGULATOR  
20V CENTER  
TAPPED TRANS  
7805  
5V REGULATOR  
4700µF  
10VAC  
60Hz  
4700µF  
470µF  
22M  
BACK-UP  
BATTERY  
+5V  
V+  
HYST1  
V+  
HYST2  
HYST1  
HYST2  
R1  
681k  
100k  
5.6M  
715k  
ICL7665  
ICL7665  
2.2M  
SET1  
SET2  
SET1  
SET2  
R2  
1M  
RESET  
OR  
WRITE  
ENABLE  
OUT1  
OUT2  
130k  
1M  
OUT1  
OUT2  
R3  
1M  
C1  
Q1  
POWER-FAIL  
WARNING  
POWER-FAIL WARNING  
Figure 9. Power-Fail Warning and Power-Up/Power-Down Reset  
Figure 10. AC Power-Fail and Brownout Detector  
10 ______________________________________________________________________________________  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
ICL765  
V
CMOS  
MEMORY  
TO  
Q1  
CC  
LINE-POWERED  
+5V INPUT  
100k  
1µF  
1k  
2N7000  
2N4393  
1M  
OUT1  
V+  
HYST1  
HYST2  
3V  
LITHIUM  
CELL  
5.6M  
1M  
22M  
1.15M  
1%  
ICL7665  
2.4M  
SET1  
GND  
SET2  
OUT2  
1M  
1%  
220Ω  
Figure 11. Battery Switchover Circuit  
9V  
V+  
TEMPERATURE  
SENSOR  
(GENERAL  
PURPOSE NPN  
TRANSISTOR)  
HYST2  
HYST1  
R3  
470k  
R4  
22M  
R6  
22M  
LOW-TEMPERATURE  
LIMIT ADJUST  
ICL7665  
SET2  
SET1  
OUT1  
R5  
27k  
R1, 1M  
HIGH-  
TEMPERATURE  
LIMIT  
R2  
R7  
1.5M  
OUT2  
1M  
ALARM  
SIGNAL FOR  
DRIVING LEDS,  
BELLS, ETC.  
ADJUSTMENT  
Figure 12. Simple High/Low Temperature Alarm  
______________________________________________________________________________________ 11  
Mic ro p ro c e s s o r Vo lt a g e Mo n it o r w it h  
Du a l Ove r/Un d e rvo lt a g e De t e c t io n  
_______________________S CR La t c h u p  
___________________Ch ip To p o g ra p h y  
Like all junction-isolated CMOS circuits, the ICL7665 has  
a n inhe re nt four-la ye r or SCR s truc ture tha t c a n b e  
triggered into destructive latchup under certain con-  
ditions. Avoid destructive latchup by following these  
precautions:  
V+  
OUT2  
1) If either V  
terminal can be driven to a voltage  
SET  
ICL765  
greater than V+ or less than ground, limit the input  
current to 500µA maximum. Usually, an input volt-  
age divider resistance can be chosen to ensure  
the inp ut c urre nt re ma ins b e low 500µA, e ve n  
whe n the inp ut volta g e is a p p lie d b e fore the  
ICL7665 V+ supply is connected.  
0. 066"  
(1. 42mm)  
OUT1  
SET2  
HYST2  
2) Limit the ra te -of-ris e of V+ b y us ing a b yp a s s  
capacitor near the ICL7665. Rate-of-rise SCRs  
ra re ly oc c ur unle s s : a ) the b a tte ry ha s a low  
impedanceas is the case with NiCd and lead  
acid batteries; b) the battery is connected directly  
to the ICL7665 or is switched on via a mechanical  
switch with low resistance; or c) there is little or no  
input filter capacitance near the ICL7665. In line-  
powered systems, the rate-of-rise is usually limited  
by other factors and will not cause a rate-of-rise  
SCR action under normal circumstances.  
HYST1  
SET1  
V-  
0. 084"  
(1. 63mm)  
TRANSISTOR COUNT: 38  
SUBSTRATE CONNECTED TO V+.  
3) Limit the maximum supply voltage (including tran-  
sient spikes) to 18V. Likewise, limit the maximum volt-  
age on OUT1 and OUT2 to +18V and the maxi-  
mum voltage on HYST1 and HYST2 to 18V below V+.  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 TO-99  
ICL7665CTV  
ICL7665ACTV  
ICL7665BCTV  
ICL7665AC/D  
ICL7665IPA  
ICL7665IJA  
0°C to +70°C  
8 TO-99  
0°C to +70°C  
8 TO-99  
0°C to +70°C  
Dice*  
-20°C to +85°C  
-20°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 CERDIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
ICL7665EPA  
ICL7665AEPA  
ICL7665ESA  
ICL7665AESA  
8 SO  
*Contact factory for dice specifications.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

ICL7665CSA

Microprocessor Voltage Monitor with
MAXIM

ICL7665CSA-T

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

ICL7665CTV

Microprocessor Voltage Monitor with
MAXIM

ICL7665EPA

Microprocessor Voltage Monitor with
MAXIM

ICL7665EPA+

暂无描述
MAXIM

ICL7665ESA

Microprocessor Voltage Monitor with
MAXIM

ICL7665ESA+T

Power Supply Support Circuit
MAXIM

ICL7665IBA

Analog IC
ETC

ICL7665IJA

Microprocessor Voltage Monitor with
MAXIM

ICL7665IJA+

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, CDIP8, DIP-8
MAXIM

ICL7665IPA

Microprocessor Voltage Monitor with
MAXIM

ICL7665IPA+

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDIP8, DIP-8
MAXIM