DS3911T+T [MAXIM]

Temperature-Controlled, Nonvolatile, I2C Quad DAC; 温度控制,非易失, I²C四通道DAC
DS3911T+T
型号: DS3911T+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Temperature-Controlled, Nonvolatile, I2C Quad DAC
温度控制,非易失, I²C四通道DAC

模拟IC 信号电路 光电二极管
文件: 总24页 (文件大小:1611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 1  
19-5933; Rev 0; 6/11  
General Description  
Features  
The DS3911 is a quad, 10-bit delta-sigma output, nonvol-  
atile (NV) controller that features an on-chip temperature  
sensor and associated analog-to-digital converter (ADC).  
The integrated temperature sensor indexes the up to  
2NC resolution NV lookup tables (LUTs), encompassing  
a -40NC to +100NC temperature range. The LUT directly  
drives the delta-sigma digital-to-analog converter (DAC)  
outputs. This flexible LUT-based architecture allows the  
device to provide a temperature-compensated DAC out-  
put with arbitrary slope. Programming is accomplished  
SꢀFourꢀ10-BitꢀDelta-SigmaꢀOutputs  
SꢀOn-ChipꢀTemperatureꢀSensorꢀandꢀADC  
SꢀFourꢀTemperature-IndexedꢀLUTs,ꢀUpꢀtoꢀ2NCꢀ  
Resolution  
2
SꢀI C-CompatibleꢀSerialꢀInterface  
SꢀAddressꢀPinsꢀAllowꢀUpꢀtoꢀFourꢀDS3911sꢀtoꢀShareꢀ  
2
theꢀSameꢀI CꢀBus  
Sꢀ2.8Vꢀtoꢀ5.5VꢀDigitalꢀSupply  
2
Sꢀ-40NCꢀtoꢀ+100NCꢀOperatingꢀTemperatureꢀRange  
Sꢀ3mmꢀxꢀ5mm,ꢀ14-PinꢀTDFNꢀPackage  
by an I C-compatible interface that operates at speeds  
of up to 400kHz.  
Applications  
Ordering Information appears at end of data sheet.  
Active Optical Cables  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/DS3911.related.  
Optical Transceivers  
Linear and Nonlinear Compensation  
Instrumentation and Industrial Controls  
Typical Operating Circuit  
3.3V  
V
CC  
3.3V  
V
CC  
R
PU  
DS3911  
0.1µF  
3.3V  
SDA  
SCL  
GND  
2
I C  
MASTER  
100  
2
TEMP  
SENSOR  
I C  
V
REF  
SLAVE  
V
A1  
A0  
REF  
0.1µF  
GND  
2.5V  
R1  
R2  
EEPROM  
LUT  
10-BIT DAC0  
DAC  
MODSET  
APCSET  
LASER  
DRIVER  
C1  
C2  
EEPROM  
LUT  
10-BIT DAC1  
DAC  
MODSET  
APCSET  
LASER  
DRIVER  
EEPROM  
LUT  
10-BIT DAC2  
DAC  
MODSET  
APCSET  
LASER  
DRIVER  
EEPROM  
LUT  
10-BIT DAC3  
DAC  
MODSET  
APCSET  
LASER  
DRIVER  
Forꢀpricing,ꢀdelivery,ꢀandꢀorderingꢀinformation,ꢀpleaseꢀcontactꢀMaximꢀDirectꢀatꢀ1-888-629-4642,ꢀ  
orꢀvisitꢀMaxim’sꢀwebsiteꢀatꢀwww.maxim-ic.com.  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 2  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
ABSOLUTEꢀMAXIMUMꢀRATINGS  
Voltage Range on SDA, SCL, and V  
Operating Temperature Range........................ -40NC to +100NC  
Programming Temperature Range .................... -40NC to +85NC  
Storage Temperature Range............................ -55NC to +125NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
CC  
Relative to GND ................................................-0.3V to +6.0V  
Voltage Range on DAC0, DAC1, DAC2, DAC3,  
V
, A0, A1 Relative to GND.............. -0.3V to (V  
+ 0.3V)  
REF  
CC  
Continuous Power Dissipation (T = +70NC)  
A
TDFN (derate 21.7mW/NC above +70NC)...............1739.1mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDEDꢀOPERATINGꢀCONDITIONS  
(T = -40NC to +100NC, unless otherwise noted.)  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 1)  
2.8  
5.5  
V
CC  
Input Logic 1  
(SCL, SDA, A0, A1)  
V
0.7 x V  
V + 0.3  
CC  
V
V
IH  
CC  
Input Logic 0  
(SCL, SDA, A0, A1)  
V
-0.3  
+0.3 x V  
CC  
IL  
DCꢀELECTRICALꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, T = -40NC to +100NC, unless otherwise noted.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Leakage  
(SDA, SCL, A0, A1)  
I
-1  
+1  
FA  
L
V
Supply Current  
I
(Note 2)  
0.9  
5
2.0  
0.4  
10  
2.7  
5
mA  
V
CC  
CC  
Low-Level Output Voltage (SDA)  
I/O Capacitance  
V
3mA sink current  
0
OL  
C
pF  
V
I/O  
Power-On Recall Voltage  
Power-Up Recall Delay  
V
(Note 3)  
(Note 4)  
1.6  
POR  
t
ms  
D
DACꢀELECTRICALꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, T = -40NC to +100NC, unless otherwise noted.)  
A
CC  
PARAMETER  
Delta-Sigma Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
V
f
2.1  
DS  
Reference Voltage Input (V  
)
V
Minimum 0.1FF to GND  
2.4  
0
V
CC  
REF  
REF  
Output Range  
V
V
REF  
See the Delta-Sigma DAC Output and  
Control section for details  
Output Resolution  
Output Impedance  
10  
Bits  
R
35  
100  
I
DS  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 3  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
TEMPERATUREꢀSENSORꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, T = -40NC to +100NC, unless otherwise noted.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
= -40NC to +100NC  
MIN  
TYP  
MAX  
UNITS  
Temperature Error  
T
Q5  
NC  
A
Update Rate (Temperature and  
Supply Conversion Time)  
t
16  
ms  
FRAME  
ANALOGꢀVOLTAGEꢀMONITORINGꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, T = -40NC to +100NC, unless otherwise noted.)  
A
CC  
PARAMETER  
SYMBOL  
LSB  
CONDITIONS  
Full-scale voltage of 6.5536V  
At factory setting  
MIN  
TYP  
800  
0.25  
0
MAX  
UNITS  
FV  
Supply Resolution  
Input/Supply Accuracy  
Input Supply Offset  
ACC  
1
5
%FS  
LSB  
V
(Note 5)  
OS  
Update Rate (Temperature and  
Supply Conversion Time)  
t
16  
ms  
FRAME  
2
I CꢀACꢀELECTRICALꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, T = -40NC to +100NC, timing referenced to V  
and V  
, unless otherwise noted.) (See Figure 1.)  
CC  
A
IL(MAX)  
IH(MIN)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SCL Clock Frequency  
f
(Note 6)  
0
400  
kHz  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
0.6  
Fs  
Fs  
BUF  
Hold Time (Repeated) START  
Condition  
t
HD:STA  
Low Period of SCL  
High Period of SCL  
Data Hold Time  
t
1.3  
0.6  
Fs  
Fs  
Fs  
ns  
Fs  
ns  
ns  
Fs  
LOW  
t
HIGH  
t
0
0.9  
HD:DAT  
Data Setup Time  
t
100  
SU:DAT  
START Set-Up Time  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
STOP Set-Up Time  
t
0.6  
SU:STA  
t
(Note 7)  
(Note 7)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
R
B
t
F
B
t
SU:STO  
SDA and SCL Capacitive  
Loading  
C
(Note 7)  
400  
20  
pF  
B
EEPROM Write Time  
A0, A1 Setup Time  
A0, A1 Hold Time  
t
(Note 8)  
10  
5
ms  
Fs  
Fs  
W
t
Before START  
After STOP  
0.6  
0.6  
SU:A  
HD:A  
t
Input Capacitance on A0, A1,  
SDA, or SCL  
C
10  
2
pF  
I
Startup time  
t
ms  
ST  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 4  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
NONVOLATILEꢀMEMORYꢀCHARACTERISTICS  
(V  
= +2.8V to +5.5V, unless otherwise noted.)  
CC  
PARAMETER  
EEPROM Write Cycles (Note 9)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
T
= +85NC  
= +25NC  
10,000  
50,000  
A
A
Writes  
Noteꢀ1:ꢀ All voltages are referenced to ground. Currents entering the device are specified as positive, and currents exiting the  
device are specified as negative.  
Noteꢀ2:ꢀ I  
Noteꢀ3:ꢀ This is the minimum V  
Noteꢀ4:ꢀ This is the time from V  
Noteꢀ5:ꢀ Guaranteed by design.  
is specified with SCL = SDA = V , and EN bit = 1. Typical values are at V  
= 3.3V and T = +25NC.  
CC  
CC  
CC A  
voltage that causes NV memory to be recalled.  
CC  
> V  
until initial memory recall is complete.  
CC  
POR  
2
2
Noteꢀ6:ꢀ I C interface timing shown is for fast-mode (400kHz) operation. This device is also backward compatible with I C stan-  
dard-mode timing.  
Noteꢀ7:ꢀ C = total capacitance of one bus line in pF.  
B
Noteꢀ8:ꢀ EEPROM write time begins after a STOP condition occurs.  
Noteꢀ9:ꢀ Guaranteed by characterization.  
SDA  
t
BUF  
t
F
t
SP  
t
HD:STA  
t
LOW  
SCL  
t
HIGH  
t
SU:STA  
t
t
R
HD:STA  
t
SU:STO  
t
t
SU:DAT  
HD:DAT  
STOP  
START  
REPEATED  
START  
NOTE: TIMING IS REFERENCED TO V  
AND V  
.
IH(MIN)  
IL(MAX)  
2
Figure 1. I C Timing Diagram  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 5  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
INL vs. OUTPUT CODE (VOLTAGE OUTPUT FILTER)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.5  
0.4  
0.3  
0.2  
V
= 3.3V  
T = +25°C  
A
0.1  
DD  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
0
200  
400  
600  
800  
1000  
V
(V)  
DAC VALUE  
DD  
FILTERED DAC0 VOLTAGE VARIATION FROM IDEAL  
vs. DAC2 CODE SWEEP  
DAC1 DEVIATION FROM AVERAGE CURRENT  
vs. DAC3 CODE SWEEP  
INL vs. OUTPUT CODE  
(CURRENT SINK FILTER)  
(BOTH VOLTAGE OUTPUT FILTERS)  
(BOTH CURRENT SINK FILTERS)  
14  
12  
10  
8
6
4
1200  
600  
1000  
800  
400  
200  
0
600  
DAC1 VALUE = 0000h  
400  
200  
DAC0 VALUE = 0000h  
DAC0 VALUE = FFC0h  
2
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-200  
-400  
-600  
-800  
-1000  
-1200  
-200  
-400  
-600  
DAC0 VALUE = 8000h  
DAC1 VALUE = FFC0h  
DAC0 VALUE = 8000h  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
DAC VALUE  
DAC2 VALUE  
DAC3 VALUE  
V
REF  
CURRENT vs. DAC0 CODE SWEEP  
(VOLTAGE OUTPUT FILTER)  
V
REF  
CURRENT vs. DAC1 CODE SWEEP  
(CURRENT SINK FILTER)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
DAC0 VALUE  
DAC1 VALUE  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 6  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Multiple Device Connection Diagram  
3.3V  
R
PU  
DS3911  
DS3911  
SDA  
SCL  
SDA  
2
I C  
SCL  
MASTER  
2
2
TEMP  
SENSOR  
TEMP  
SENSOR  
I C  
I C  
3.3V  
SLAVE  
SLAVE  
A1  
A0  
A1  
A0  
2
2
I C  
I C  
ADDRESS  
ADDRESS  
3.3V  
V
V
CC  
CC  
3.3V  
0.1µF  
0.1µF  
EEPROM  
LUT LUT  
EEPROM  
LUT  
LUT  
LUT  
LUT  
LUT  
LUT  
63  
V
REF  
V
REF  
2.5V  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
LASER  
DRIVER  
LASER  
DRIVER  
LASER  
DRIVER  
LASER  
DRIVER  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 7  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Pin Configuration  
TOP VIEW  
DAC0  
DAC1  
1
2
3
4
5
6
7
14  
V
CC  
+
13 SCL  
12 SDA  
11 A0  
10 A1  
V
REF  
GND  
DAC2  
DAC3  
N.C.  
DS3911  
9
8
GND  
N.C.  
EP  
TDFN  
(3mm x 5mm)  
Pin Description  
PIN  
1
NAME  
DAC0  
DAC1  
TYPE  
Output  
Output  
Input  
Supply  
Output  
Output  
FUNCTION  
Delta-Sigma DAC Output  
Delta-Sigma DAC Output  
DAC Reference Voltage Input  
Ground  
2
3
V
REF  
4
GND  
DAC2  
DAC3  
N.C.  
GND  
A1  
5
Delta-Sigma DAC Output  
Delta-Sigma DAC Output  
No Internal Connection  
Ground  
6
7, 8  
9
Supply  
Input  
Input  
I/O  
2
10  
11  
12  
13  
14  
I C Slave Address Input  
2
A0  
I C Slave Address Input  
SDA  
SCL  
2-Wire Serial Data  
2-Wire Clock  
Input  
Supply  
V
Positive Supply  
CC  
EP  
Exposed Pad. Connect to ground.  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 8  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Delta-Sigma DAC Output and Control  
Four delta-sigma DAC outputs are provided, DAC0 to  
Detailed Description  
The DS3911 operates in one of two modes: lookup table  
DAC3. With the addition of an external RC filter, these  
outputs provide four 10-bit resolution-analog outputs  
(LUT) mode or digital-to-analog converter (DAC) mode.  
In LUT mode, the DAC’s output is controlled as a func-  
tion of the temperature measured by the device’s internal  
temperature sensor and the pulse-density modulation  
profile stored in the associated DAC’s LUT. In DAC mode,  
the DAC’s output is controlled by the specific DAC’s DAC  
VALUE register (DAC0 VALUE, DAC1 VALUE, DAC2  
with the full-scale range set by the input V  
pin. Each  
REF  
output is either manually controlled or controlled using a  
temperature-indexed LUT. A delta-sigma converter pro-  
duces a digital output using pulse-density modulation.  
It provides much lower output ripple than a standard  
digital PWM output, given the same clock rate and filter  
components.  
2
VALUE, and DAC3 VALUE) using the I C interface.  
Detailed descriptions of these modes as well as additional  
device features are discussed in subsequent sections.  
Figure 2 shows two recommended filters. These external  
RC filter components are chosen to greatly reduce the  
output ripple while maintaining the desired response  
time. Using resistors smaller than the recommended val-  
ues can degrade the output accuracy.  
1k  
1kΩ  
0.1µF  
DAC  
DAC  
VOLTAGE OUTPUT  
0.1µF  
The device’s delta-sigma outputs are 10 bits. For illus-  
trative purposes, a 3-bit example is provided. Figure 3  
shows each possible output of this 3-bit delta-sigma DAC.  
DS3911  
The reference input voltage, V , is the supply voltage  
REF  
1kΩ  
1kΩ  
0.1µF  
for the output buffer of all DACs. The power supply con-  
nected to V must be able to support the edge-rate  
CURRENT SINK  
REF  
0.1µF  
2k  
requirements of the delta-sigma outputs. In a typical  
application, a 0.1FF capacitor should be connected  
DS3911  
between the V  
and GND pins.  
REF  
Figure 2. Recommended RC Filter for DAC Outputs  
0
1
2
3
4
5
6
7
DAC OUPUT  
Figure 3. 3-Bit (8-Position) Delta-Sigma Example  
                         
����������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 9  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
DAC Power-On Values  
Each 10-bit DAC is controlled directly by the value in its  
corresponding DAC VALUE register. Each DAC also has  
a DAC POR register that contains the power-on-reset  
(POR) value for the associated DAC, along with two con-  
trol bits: enable (EN) and polarity (POL). See the Lower  
Memory Register Descriptions section for complete lower  
memory descriptions.  
Lookup Table Mode  
The device has four nonvolatile memory tables, one for each  
of the four DACs. Each memory table is associated with an  
individual DAC as follows: Table 04h (DAC0), Table 05h  
(DAC1), Table 06h (DAC2), Table 07h (DAC3), and selected  
by setting the table select bits, TS[3:0], in the CTRL regis-  
ter. Each DAC memory table consists of a DAC LUT table  
(addresses 80h–AFh) (DAC0 LUT, DAC1 LUT, DAC2 LUT,  
and DAC3 LUT) and a DAC OFFSET table (addresses  
F8h–FFh) (DAC0 OFFSET, DAC1 OFFSET, DAC2 OFFSET,  
and DAC3 OFFSET). Because these four memory tables all  
share the same address and register mapping, the TS[3:0]  
bits must be used to select among them.  
The DAC POR (DAC0 POR, DAC1 POR, DAC2 POR, and  
DAC3 POR) registers are shadowed EEPROM with func-  
tionality controlled by the shadow EEPROM bit (SEE). If  
the SEE bit is high, the DAC POR registers function as  
SRAM only. If the SEE bit is low, the registers are shad-  
owed EEPROM and EEPROM write timing, t , must be  
observed.  
Each LUT address represents as little as a 2N change  
in temperature. Table 1 shows the full temperature-to-  
register mapping.  
W
On power-up, the initial DAC settings are always trans-  
ferred from the DAC POR registers to the corresponding  
DAC VALUE registers.  
The first DAC OFFSET address corresponds to 32N of  
temperature. After this, every 16N of temperature con-  
verts into one DAC OFFSET address slot. Table 2 shows  
the full temperature-to-register mapping.  
Manual Control Mode  
On power-up, the device starts performing temperature  
conversions and the DAC VALUE register whose corre-  
sponding EN bit is set is updated by the LUT controller as  
described in the Lookup Table Mode section. Clearing the  
The TINDEX register points to a LUT address slot. The  
TINDEX register can operate in two modes, as defined  
2
by the AEN bit. When the AEN bit is cleared, I C writes  
2
to the TINDEX register are enabled, and updates from  
the LUT controller are blocked. The register can be used  
to force DAC updates to be based on the user-selected  
index. The TINDEX register directly addresses the LUT  
EN bit enables I C writes to the corresponding DAC VALUE  
and disables LUT controller updates. This allows the indi-  
vidual DACs whose EN bit is cleared to be controlled by  
writing the corresponding DAC VALUE register directly.  
Tableꢀ1.ꢀLUTꢀTemperatureꢀMapping  
ROW  
(HEX)  
BYTEꢀ0  
BYTEꢀ1  
BYTEꢀ2  
BYTEꢀ3  
BYTEꢀ4  
BYTEꢀ5  
BYTEꢀ6  
BYTEꢀ7  
4NCꢀLUTꢀ  
-28N  
80h  
88h  
90h  
< -36N  
-8N  
-36N  
-4N  
-32N  
0N  
-24N  
+8N  
-20N  
+12N  
+44N  
-16N  
+16N  
+48N  
-12N  
+20N  
+52N  
+4N  
+24N  
+28N  
+32N  
+36N  
+40N  
2NCꢀLUT  
+62N  
98h  
A0h  
A8h  
+56N  
+72N  
+88N  
+58N  
+74N  
+90N  
+60N  
+76N  
+92N  
+64N  
+80N  
+96N  
+66N  
+82N  
+98N  
+68N  
+84N  
+70N  
+86N  
+78N  
+94N  
+100N  
R +102N  
Tableꢀ2.ꢀOffsetꢀTemperatureꢀMapping  
ROW  
(HEX)  
BYTEꢀ0  
BYTEꢀ1  
BYTEꢀ2  
BYTEꢀ3  
BYTEꢀ4  
BYTEꢀ5  
BYTEꢀ6  
BYTEꢀ7  
F8h  
< -8N  
-8N  
+8N  
+24N  
+40N  
+56N  
+72N  
R +88N  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 10  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
memory locations by dropping TINDEX[7] and forcing  
where the DAC[9:0] DAC control value is left-justified in  
the 16-bit DAC VALUE register.  
it high. When AEN = 0, any address between 80h and  
FFh can be addressed. To get known results in the DAC  
VALUE register, TINDEX should be kept between 80h  
and AFh.  
DAC VALUE[15:0] = DAC[9:0] x 64  
ExampleꢀCalculationꢀforꢀDAC1:  
Assumptions:  
The device monitors the internal temperature by repeat-  
edly polling the temperature sensor’s result at a rate of  
1) Temperature is 43NC.  
t
. Each cycle, for the DAC whose corresponding  
FRAME  
2) DAC1 OFFSET index associated with 43NC is memory  
EN bit is set, the device reads the internal temperature  
once, and, based on that temperature, calculates the  
TINDEX register. The TINDEX value corresponds directly  
to the LUT memory address for the given temperature  
ranges. The DAC OFFSET address is calculated based  
on the TINDEX value so only one pointer is necessary.  
These two locations provide the values that eventually  
become the 10-bit DAC input, DAC VALUE. This data  
that gets loaded into the DAC VALUE register is a math  
function of the temperature-indexed LUT value and the  
temperature-indexed OFFSET value, as follows:  
table location FCh and contains data = 2Ah.  
3) DAC1 LUT index associated with 43NC is memory  
table location 94h and contains data = 7Bh.  
DAC1 = 7Bh + 4 x 2Ah = 123h = 291  
DAC1 VALUE = 291 x 64  
Note:ꢀLoss of information occurs if the result of the DAC  
VALUE math function described above is greater than  
10 bits. It is important to set the DAC VALUE and DAC  
OFFSET values to ensure this overflow does not occur.  
The eight DAC OFFSET registers can be independ-  
ently set to achieve any desired temperature coefficient  
(tempco) on its associated DAC. Figure 4 demonstrates  
DAC[9:0] = LUT Setting + 4 x OFFSET Setting  
DAC OFFSET LUTs  
DAC OFFSET LUTs  
EIGHT REGISTERS PER DAC  
EIGHT REGISTERS PER DAC  
EACH OFFSET REGISTER CAN BE INDEPENDENTLY  
FFh  
EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN  
0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE  
AND NEGATVE TEMPCO.  
1023  
767  
511  
255  
0
1023  
767  
511  
255  
0
SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS  
EXAMPLE ILLUSTRATES POSITIVE TEMPCO.  
DAC  
LUT  
BITS  
7:0  
FEh  
DAC  
LUT  
BITS  
7:0  
FDh  
FDh  
FCh  
FEh  
DAC  
LUT  
DAC  
LUT  
BITS  
7:0  
FFh  
FBh  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
FCh  
DAC  
LUT  
BITS  
7:0  
FAh  
DAC  
LUT  
BITS  
7:0  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
FBh  
DAC  
LUT  
BITS  
7:0  
F9h  
FAh  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
F9h  
F8h  
F8h  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
OFFSET MEMORY  
LOCATIONS FOR  
THE GIVEN  
TEMPERATURE  
-40°C -8°C +8°C +24°C +40°C +56°C +70°C +88°C +104°C  
-40°C -8°C +8°C +24°C +40°C +56°C +70°C +88°C +104°C  
Figure 4. DAC OFFSET LUT Examples  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 11  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
DONETEMP bit located in the CTRL register indicates  
whether a temperature conversion has been completed  
since the bit was last cleared.  
9D  
9C  
9B  
9A  
99  
98  
Supply Voltage Monitoring  
The device also features an internal 13-bit supply voltage  
DECREASING  
TEMPERATURE  
(V ) monitor. A left-justified value of the supply voltage  
CC  
2
measurement can be read over I C at memory address-  
es 06h–07h. To calculate the supply voltage, simply  
convert the hexadecimal result into decimal and then  
multiply it by the LSB as shown in the Analog Voltage  
Monitoring Characteristics electrical specifications table.  
The DONEVCC bit located in the CTRL register indicates  
INCREASING  
TEMPERATURE  
1°C HYSTERESIS  
WINDOW  
whether a V  
bit was last cleared.  
conversion has been completed since the  
CC  
56  
58  
60  
62  
64  
66  
TEMPERATURE (°C)  
Slave Address Byte and Address Pins  
The slave address byte consists of a 7-bit slave address  
plus a R/W bit, as shown in Figure 6. The device’s slave  
address is determined by the state of the A0 and A1  
address pins. These pins allow up to four devices to  
reside on the same I C bus. Address pins connected to  
GND result in a 0 in the corresponding bit position in the  
slave address. Conversely, address pins connected to  
Figure 5. LUT Hysteresis  
LSB  
R/W  
MSB  
2
1
0
1
1
0
A1  
A0  
SLAVE ADDRESS*  
READ/WRITE BIT  
V
result in a 1 in the corresponding bit positions. For  
CC  
example, the device’s slave address byte is B0h when  
A0 and A1 are grounded. See the I C Serial Interface  
*THE SLAVE ADDRESS IS DETERMINED BY ADDRESS PINS A0 AND A1.  
2
section for more information.  
Figure 6. DS3911 Slave Address Byte  
2
I C Serial Interface  
how a positive and negative tempco can be achieved by  
adjusting DAC OFFSET values. The DACs are updated  
after each temperature conversion.  
2
I C Definitions  
The following terminology is commonly used to describe  
I C data transfers. See the timing diagram (Figure 1) and  
the I C AC Electrical Characteristics table for additional  
2
The LUT features 1NC hysteresis to prevent chatter-  
ing if the measured temperature falls on the boundary  
between two windows (Figure 5). This 1NC hysteresis is  
implemented in the TINDEX register value calculation by  
adding 1NC to temperature changes of negative slope.  
2
information.  
MasterDevice:The master device controls the slave  
devices on the bus. The master device generates SCL  
clock pulses and START and STOP conditions.  
Temperature Conversion and  
Supply Voltage Monitoring  
SlaveꢀDevices: Slave devices send and receive data  
at the master’s request.  
Temperature Conversion  
The device features an internal 12-bit temperature sensor  
that can drive the LUT and provide a measurement of the  
Busꢀ Idleꢀ orꢀ Notꢀ Busy:ꢀ Time between STOP and  
START conditions when both SDA and SCL are inac-  
tive and in their logic-high states.  
2
ambient temperature over I C by reading the value stored  
in memory addresses 04h–05h. The sensor is functional  
over the entire operating temperature range, and the results  
are stored in signed two’s-complement format with a 1/16NC  
resolution. See the Lower Memory, Register 04h–05h: TEMP  
VALUE section for the temperature sensor’s bit weights. The  
STARTꢀCondition:ꢀA START condition is generated by  
the master to initiate a new data transfer with a slave.  
Transitioning SDA from high to low while SCL remains  
high generates a START condition.  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 12  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
STOPꢀ Condition:ꢀ A STOP condition is generated  
that are transferred (most significant bit first) from the  
slave to the master are read by the master using the bit  
read definition, and the master transmits an ACK using  
the bit write definition to receive additional data bytes.  
The master must NACK the last byte read to terminate  
communication so the slave returns control of SDA to  
the master.  
by the master to end a data transfer with a slave.  
Transitioning SDA from low to high while SCL remains  
high generates a STOP condition.  
Repeatedꢀ STARTꢀ Condition:ꢀ The master can use a  
repeated START condition at the end of one data trans-  
fer to indicate that it will immediately initiate a new data  
transfer following the current one. Repeated STARTs  
are commonly used during read operations to identify  
a specific memory address to begin a data transfer.  
A repeated START condition is issued identically to a  
normal START condition.  
2
Slaveꢀ Addressꢀ Byte:ꢀ Each slave on the I C bus  
responds to a slave address byte sent immediately  
following a START condition. The slave address byte  
contains the slave address in the most significant 7 bits  
and the R/W bit in the least significant bit.  
BitꢀWrite:ꢀTransitions of SDA must occur during the low  
state of SCL. The data on SDA must remain valid and  
unchanged during the entire high pulse of SCL plus the  
setup and hold time requirements. Data is shifted into  
the device during the rising edge of the SCL.  
The device’s slave address is determined by the state  
of the A0 and A1 address pins as shown in Figure 6.  
Address pins connected to GND result in a 0 in the corre-  
sponding bit position in the slave address. Conversely,  
address pins connected to V  
result in a 1 in the  
CC  
corresponding bit positions. When the R/W bit is 0  
(such as in B0h), the master is indicating it will write  
data to the slave. If R/W is set to 1 (B1h in this case),  
the master is indicating it wants to read from the slave.  
If an incorrect (nonmatching) slave address is written,  
the device assumes the master is communicating with  
BitRead:At the end of a write operation, the master  
must release the SDA bus line for the proper amount of  
setup time before the next rising edge of SCL during a  
bit read. The device shifts out each bit of data on SDA  
at the falling edge of the previous SCL pulse and the  
data bit is valid at the rising edge of the current SCL  
pulse. Remember that the master generates all SCL  
clock pulses including when it is reading bits from the  
slave.  
2
another I C device and ignores the communication  
until the next START condition is sent.  
2
MemoryꢀAddress:ꢀDuring an I C write operation to the  
device, the master must transmit a memory address to  
identify the memory location where the slave is to store  
the data. The memory address is always the second  
byte transmitted during a write operation following the  
slave address byte.  
Acknowledgeꢀ (ACKꢀ andꢀ NACK):ꢀ An acknowledge  
(ACK) or not-acknowledge (NACK) is always the 9th bit  
transmitted during a byte transfer. The device receiv-  
ing data (the master during a read or the slave during  
a write operation) performs an ACK by transmitting a  
zero during the 9th bit. A device performs a NACK by  
transmitting a one (done by releasing SDA) during the  
9th bit. Timing for the ACK and NACK is identical to all  
other bit writes. An ACK is the acknowledgment that  
the device is properly receiving data (see Figure 7). A  
NACK is used to terminate a read sequence, or used  
as an indication that the device is not receiving data.  
2
I C Communication  
2
See Figure 7 for I C communication examples.  
Writingꢀ aꢀ Singleꢀ Byteꢀ toꢀ aꢀ Slave:ꢀ The master must  
generate a START condition, write the slave address  
byte (R/W = 0), write the memory address, write the  
byte of data, and generate a STOP condition. The mas-  
ter must read the slave’s acknowledgement during all  
byte write operations.  
ByteꢀWrite: A byte write consists of 8 bits of informa-  
tion transferred from the master to the slave (most sig-  
nificant bit first) plus a 1-bit acknowledgment from the  
slave to the master. The 8 bits transmitted by the mas-  
ter are done according to the bit write definition and the  
acknowledgment is read using the bit read definition.  
When writing to the device, the DAC’s output adjusts  
to the new setting once it has acknowledged the new  
data that is being written, and writes to the EEPROM  
are written following the STOP condition at the end of  
the write command.  
ByteꢀRead:ꢀA byte read is an 8-bit information transfer  
from the slave to the master plus a 1-bit ACK or NACK  
from the master to the slave. The 8 bits of information  
2
Writingꢀ Multipleꢀ Bytesꢀ toꢀ aꢀ Slave: I C write opera-  
tions of multiple bytes can also be performed. During  
a single write sequence, up to 8 bytes in one page  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 13  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
can be written at one time. If more than 8 bytes are  
with a NACK to indicate the end of the transfer, and  
generates a STOP condition. However, since requiring  
the master to keep track of the memory address coun-  
ter is impractical, the next method should be used to  
perform reads from a specified memory location.  
transmitted in the sequence, only the last 8 transmit-  
ted bytes are stored. After the last physical memory  
location in a particular page (8-byte page write), the  
address counter automatically wraps back to the first  
location in the same page for subsequent byte write  
operations.  
Manipulatingꢀ theꢀ Addressꢀ Counterꢀ forꢀ Reads: A  
dummy write cycle can be used to force the address  
counter to a particular value. To do this, the master  
generates a START condition, writes the slave address  
byte (R/W = 0), writes the memory address where it  
desires to read, generates a repeated START condi-  
tion, writes the slave address byte (R/W = 1), reads  
data with ACK or NACK as applicable, and generates  
a STOP condition. Recall that the master must NACK  
the last byte to inform the slave that no additional bytes  
Acknowledgeꢀ Polling: Any time a EEPROM byte is  
written, the device requires the EEPROM write time  
(t ) after the STOP condition to write the contents of  
W
the byte to EEPROM. During the EEPROM write time,  
the device does not acknowledge its slave address  
because it is busy. It is possible to take advantage  
of this phenomenon by repeatedly addressing the  
device, which allows communication to continue as  
soon as the device is ready. The alternative to acknowl-  
2
are to be read. See Figure 7 for I C communication  
edge polling is to wait for a maximum period of t to  
elapse before attempting to access the device.  
examples.  
W
Readingꢀ Multipleꢀ Bytesꢀ fromꢀ aꢀ Slave:ꢀ The read  
operation can be used to read multiple bytes with a  
single transfer. When reading bytes from the slave,  
the master simply ACKs the data byte if it desires to  
read another byte before terminating the transaction.  
After the master reads the last byte, it must NACK to  
indicate the end of the transfer and generates a STOP  
condition. During a single read sequence of multiple  
ReadingꢀaꢀSingleꢀByteꢀfromꢀaꢀSlave:ꢀUnlike the write  
operation that uses the specified memory address  
byte to define where the data is to be written, the read  
operation occurs at the present value of the memory  
address counter. To read a single byte from the slave,  
the master generates a START condition, writes the  
slave address byte with R/W = 1, reads the data byte  
2
TYPICAL I C WRITE TRANSACTION  
MSB  
1
LSB  
MSB  
LSB  
MSB  
LSB  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START  
0
1
1
0
A1 A0 R/W  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
STOP  
SLAVE  
ADDRESS*  
READ/  
WRITE  
REGISTER ADDRESS  
DATA  
*THE SLAVE ADDRESS IS DETERMINED BY ADDRESS PINS A0 AND A1.  
2
EXAMPLE I C TRANSACTIONS WITH B0h AS THE DEVICE ADDRESS (WHEN A0 AND A1 ARE CONNECTED TO GND)  
B0h  
00h  
DATA  
A) SINGLE-BYTE WRITE  
-WRITE CONTROL REGISTER (00h)  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START 1 0 1 1 0 0 0 0  
0 0 0 0 0 0 0 0  
DATA INTO 00h  
STOP  
B0h  
01h  
B1h  
DATA  
B) SINGLE-BYTE READ  
-READ MODE REGISTER (01h)  
SLAVE  
ACK  
SLAVE  
ACK  
REPEATED  
START  
SLAVE  
ACK  
MASTER  
NACK  
START 1 0 1 1 0 0 0 0  
0 0 0 0 0 0 0 1  
1 0 1 1 0 0 0 1  
DATA IN 01h  
STOP  
B0h  
80h  
DATA  
DATA  
C) 2-BYTE WRITE  
-WRITE LUT VALUES FOR REGISTERS  
(80h−81h)  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START 1 0 1 1 0 0 0 0  
1 0 0 0 0 0 0 0  
DATA INTO 80h  
DATA INTO 81h  
STOP  
B0h  
04h  
B1h  
DATA  
DATA IN 04h  
DATA  
DATA IN 05h  
D) 2-BYTE READ  
-READ TEMPERATURE REGISTER  
(04h−05h)  
SLAVE  
ACK  
SLAVE  
ACK  
REPEATED  
START  
SLAVE  
ACK  
MASTER  
ACK  
MASTER  
NACK  
START 1 0 1 1 0 0 0 0  
0 0 0 0 0 1 0 0  
1 0 1 1 0 0 0 1  
STOP  
2
Figure 7. I C Communication Examples  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 14  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
bytes, after the last address counter position of FFh  
The LowerꢀMemory is addressed from 00h–7Fh. Lower  
Memory contains temperature reading, V reading,  
status bits, control registers, table select bits, and all four  
DAC VALUE and DAC POR registers.  
is accessed, the address counter automatically wraps  
back to the first location, 00h. Read operations can  
continue indefinitely.  
CC  
The UpperꢀMemory consists of the following four memory  
2
I C LUT Lockout  
tables. The table select bits, TS[3:0], determine which  
2
Both the I C port and the LUT controller have access to  
the LUTs. To prevent bus/data contention, the LUT con-  
troller goes into a wait state instead of accessing the LUT  
2
table is currently accessible through I C at memory loca-  
tion 80h–FFh.  
2
if the I C port is active. Register updates and memory  
Tableꢀ04h contains a nonvolatile temperature-indexed  
DAC0 LUT and DAC0 OFFSET register designed to  
hold the pulse-density modulation profile for DAC0.  
access are briefly described below.  
• After a voltage or temperature conversion completes  
or the TINDEX register is calculated, the results are  
loaded into a shadow SRAM for the associated regis-  
Tableꢀ05h contains a nonvolatile temperature-indexed  
DAC1 LUT and DAC1 OFFSET register designed to  
hold the pulse-density modulation profile for DAC1.  
2
ter by a backdoor that is not seen by the I C port. The  
value is pushed forward to the SRAM cell seen by the  
I C port at a later state. It is not pushed if the I C port  
is active.  
Tableꢀ06h contains a nonvolatile temperature-indexed  
DAC2 LUT and DAC2 OFFSET registers designed to  
hold the pulse-density modulation profile for DAC2.  
2
2
• After TINDEX is calculated and loaded into the shad-  
ow SRAM, the LUT controller goes into a round-robin  
loop where it updates the VCC VALUE, TEMP VALUE,  
and TINDEX registers, reads the DAC OFFSET and  
DAC LUT, performs the calculation, and loads the  
result into the DAC VALUE register. This process is  
where contention could occur. As such, the state  
Tableꢀ07h contains a nonvolatile temperature-indexed  
DAC3 LUT and DAC3 OFFSET registers designed to  
hold the pulse-density modulation profile for DAC3.  
Shadowed EEPROM  
The DAC POR memory locations are actually shadowed  
EEPROM and are controlled by the shadowed EEPROM  
bit, SEE. By default, SEE is not set and these locations  
act as ordinary EEPROM. By setting SEE these loca-  
tions function like SRAM cells, which allow an infinite  
number of write cycles without concern of wearing out  
the EEPROM. This also eliminates the requirement for  
2
2
machine waits until I C is inactive before performing  
this process. If the I C port were to become active  
for a long time period, the temperature compensation  
does not run.  
Memory Description  
the EEPROM write time, t . Because changes made with  
W
SEE enabled do not affect the EEPROM, these changes  
are not retained through power cycles. The power-on  
value is the last value written with SEE disabled. This  
function can be used to speed up calibration and mini-  
mize the number of EEPROM write cycles.  
The device’s internal memory consists of both volatile  
and nonvolatile registers located in Lower Memory and  
four separate memory tables (Upper Memory), as shown  
in Figure 8.  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 15  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
TS[3:0] ARE THE TABLE SELECT BITS. THESE BITS  
DETERMINE THE CURRENTLY SELECTED/ADDRESSABLE  
UPPER MEMORY TABLE.  
00h  
02h  
04h  
06h  
08h  
10h  
CTRL  
SRAM  
TEMP VALUE  
VCC VALUE  
EMPTY  
MODE  
TINDEX  
NOTE: TABLES 00h–03h AND 08h–0Fh DO NOT EXIST.  
LOWER  
MEMORY  
DAC VALUES  
(8 BYTES)  
17h  
78h  
EMPTY  
TS[3:0] = 0100b  
TABLE 04h  
TS[3:0] = 0101b  
TABLE 05h  
TS[3:0] = 0110b  
TABLE 06h  
TS[3:0] = 0111b  
TABLE 07h  
DAC POR  
(8 BYTES)  
7Fh  
80h  
DAC0  
LUT  
DAC1  
LUT  
DAC2  
LUT  
DAC3  
LUT  
(48 BYTES)  
(48 BYTES)  
(48 BYTES)  
(48 BYTES)  
UPPER  
MEMORY  
(TABLES)  
AFh  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
F8h  
FFh  
DAC0 OFFSET  
(8 BYTES)  
DAC1 OFFSET  
(8 BYTES)  
DAC2 OFFSET  
(8 BYTES)  
DAC3 OFFSET  
(8 BYTES)  
Figure 8. Memory Map  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 16  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Register Description  
This register map shows each byte/word (2-byte) in terms of its row and byte/word placement in the memory. The first  
byte in the row is located in memory at the row address (hexadecimal) in the leftmost column. Each subsequent byte/  
word on the row is one/two memory locations beyond the previous byte/word’s address. A total of 8 bytes are present  
on each row. See the Lower Memory Register Descriptions section for more information about each of these bytes.  
Lower Memory Register Map  
LOWERꢀMEMORY  
WORDꢀ0  
WORDꢀ1  
WORDꢀ2  
BYTEꢀ4 BYTEꢀ5  
WORDꢀ3  
BYTEꢀ6 BYTEꢀ7  
ADDR  
(HEX)  
BYTEꢀ0  
CTRL  
BYTEꢀ1  
BYTEꢀ2  
SRAM  
BYTEꢀ3  
00h  
08h  
10h  
78h  
MODE  
TINDEX  
TEMP VALUE  
VCC VALUE  
DAC3 VALUE  
DAC3 POR  
DAC2 VALUE  
DAC2 POR  
DAC1 VALUE  
DAC1 POR  
DAC0 VALUE  
DAC0 POR  
Lower Memory Register Descriptions  
LowerꢀMemory,ꢀRegisterꢀ00h:ꢀCTRL  
POWER-ON VALUE  
ACCESS  
00h  
R/W  
MEMORY TYPE  
Volatile  
00h  
DONETEMP  
BIT 7  
DONEVCC  
SRAM  
SRAM  
TS3  
TS2  
TS1  
TS0  
BIT 0  
DONETEMP: Done Temp Status  
0 = Temperature conversion in progress.  
1 = Temperature conversion completed since this bit was last cleared.  
BIT 7  
DONEVCC: Done V Status  
CC  
BIT 6  
0 = V  
1 = V  
conversion in progress.  
conversion completed since this bit was last cleared.  
CC  
CC  
BITS 5:4  
SRAM: General-Purpose SRAM. These bits have no affect on device operation.  
TS[3:0]: Table Select. The device’s memory tables are accessed by writing the desired table  
value in this bit field. The device only contains four addressable memory tables, 04h–07h, and  
therefore the values listed below are the only usable options.  
TS[3:0]  
0100b  
0101b  
0110b  
0111b  
TABLEꢀSELECTED  
CORRESPONDINGꢀDACꢀLUT  
BITS 3:0  
04h  
05h  
06h  
07h  
0
1
2
3
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 17  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
LowerꢀMemory,ꢀRegisterꢀ01h:ꢀMODE  
POWER-ON VALUE  
40h  
ACCESS  
R/W  
MEMORY TYPE  
Volatile  
01h  
AEN  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SOFTTXD  
BIT 0  
SEE  
BIT 7  
SEE: Shadowed EEPROM Disable  
0 = Enables EEPROM writes to the shadowed EEPROM bytes.  
1 = Disables EEPROM writes to shadowed EPPROM bytes during configuration, so that the  
configuration of the device is not delayed by the EEPROM cycle time. Once the values are known,  
write this bit to a 0 and write the shadowed EEPROM locations again for data to be written to the  
EEPROM.  
BIT 7  
AEN: Automatic Enable  
0 = The temperature-calculated index value TINDEX is writable by the user and the automatic  
updates of calculated indexes are disabled. This allows users to interactively test their modules by  
controlling the indexing for the LUTs. The recalled values from the LUTs appear in the DAC VALUE  
registers after the next completion of a temperature conversion.  
BIT 6  
BITS 5:1  
BIT 0  
1 = The internal temperature sensor determines the value of TINDEX.  
SRAM: General-Purpose SRAM. These bits have no affect on device operation.  
SOFTTXD:ꢀSoft Transmit Disable  
0 = DACs operate normally.  
1 = The DAC outputs are forced to the bit value of the POL bit, which is located in the DAC’s  
associate DAC POR register.  
For example, when SOFTTXD is set and POL = 1 in the DAC0 POR register, DAC0 is forced to full-  
scale output, but if POL = 0, DAC0 is forced to a zero output. This applies to all four DACs.  
LowerꢀMemory,ꢀRegisterꢀ02h:ꢀSRAM  
POWER-ON VALUE  
ACCESS  
00h  
R/W  
MEMORY TYPE  
Volatile  
02h  
SRAM  
BIT 7  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
BIT 0  
These general-purpose SRAM bits have no affect on device operation.  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 18  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
LowerꢀMemory,ꢀRegisterꢀ03h:ꢀTINDEX  
POWER-ON VALUE  
00h  
ACCESS  
When AEN = 1: R  
When AEN = 0: R/W  
Volatile  
ACCESS  
MEMORY TYPE  
7
6
5
4
3
2
1
0
03h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The TINDEX register is the temperature indexed address pointer. The TINDEX value corresponds directly to the  
LUT memory address for the given temperature ranges. The DAC OFFSET address is calculated based on the  
TINDEX value, so only one pointer is necessary.  
The pointer value is calculated based on the current temperature reading (see the below equation). The calculation  
uses different math depending on which LUT range (2NC or 4NC) the current temperature measurement resides in.  
Temperature + 40  
Temperature 8  
TINDEX =  
+128 =  
+128  
temp<56  
temp56  
4
2
A 1NC hysteresis is implemented in the TINDEX value calculation by adding 1NC to temperature changes of nega-  
tive slope.  
When the AEN bit is high, the TINDEX register is read-only and the pointer is updated after the temperature and  
2
voltage conversions have completed. When the AEN bit is cleared, I C writes to the TINDEX register are enabled  
and updates from the LUT controller are blocked. The register can be used to force DAC updates to be based  
on the user-selected index. The TINDEX register directly addresses the LUT memory locations by dropping  
TINDEX[7] and forcing it high. When AEN = 0, any address between 80h and FFh can be addressed. To obtain  
known results in the DAC VALUE register, TINDEX should be kept between 80h and AFh.  
TINDEX value is clamped for temperatures below -40NC and above 102NC.  
LowerꢀMemory,ꢀRegisterꢀ04h–05h:ꢀTEMPꢀVALUE  
POWER-ON VALUE  
ACCESS  
0000h  
R
MEMORY TYPE  
Volatile  
6
5
4
3
2
1
0
04h  
05h  
S
2
2
2
2
2
2
2
-1  
-2  
-3  
-4  
2
2
2
2
0
0
0
0
BIT 7  
BIT 0  
Left-justified signed two’s complement direct-to-temperature measurement. The lower 4 bits always return zero.  
The temperature reading is clamped to -128NC and +127.9375NC.  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 19  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
LowerꢀMemory,ꢀRegisterꢀ06h–07h:ꢀVCCꢀVALUE  
POWER-ON VALUE  
ACCESS  
0000h  
R
MEMORY TYPE  
Volatile  
12  
2
11  
3
10  
2
9
1
8
0
7
6
5
06h  
07h  
2
2
2
2
2
2
2
2
2
4
2
2
2
0
0
0
BIT 7  
BIT 0  
Left-justified unsigned voltage measurement. To calculate the supply voltage, simply convert the hexadecimal  
result into decimal and then multiply it by the LSB as shown in the Analog Voltage Monitoring Characteristics  
electrical characteristics table. The lower 3 bits always return zero.  
LowerꢀMemory,ꢀRegisterꢀ10h–11h:ꢀDAC3ꢀVALUE  
LowerꢀMemory,ꢀRegisterꢀ12h–13h:ꢀDAC2ꢀVALUE  
LowerꢀMemory,ꢀRegisterꢀ14h–15h:ꢀDAC1ꢀVALUE  
LowerꢀMemory,ꢀRegisterꢀ16h–17h:ꢀDAC0ꢀVALUE  
POWER-ON VALUE  
ACCESS  
0000h  
When EN = 1: R  
When EN = 0: R/W  
Volatile  
ACCESS  
MEMORY TYPE  
10h, 12h,  
14h, 16h  
9
8
0
7
6
5
4
3
2
2
2
2
2
2
2
2
2
2
11h, 13h,  
15h, 17h  
1
2
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
BIT 0  
BIT 7  
These registers are the left- justified digital 10-bit value used for their associated DAC output. The lower 6 bits  
have no effect on device operation. At POR these registers are updated to the EEPROM value DAC POR. When  
the EN bit in DAC POR is set, this register is updated at the end of each temperature conversion, with the calcu-  
lated result of values recalled from LUT and OFFSET LUT pointed to by TINDEX.  
V
REF  
V
=
×DAC VALUE  
DAC  
1024  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 20  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
LowerꢀMemory,ꢀRegisterꢀ78h–79h:ꢀDAC3ꢀPOR  
LowerꢀMemory,ꢀRegisterꢀ7Ah–7Bh:ꢀDAC2ꢀPOR  
LowerꢀMemory,ꢀRegisterꢀ7Ch–7Dh:ꢀDAC1ꢀPOR  
LowerꢀMemory,ꢀRegisterꢀ7Eh–7Fh:ꢀDAC0ꢀPOR  
POWER-ON VALUE  
ACCESS  
Recalled from EEPROM  
R/W  
MEMORY TYPE  
Nonvolatile (SEE)  
78h, 7Ah,  
7Ch, 7Eh  
9
8
0
7
6
5
4
3
2
2
2
2
2
2
2
2
2
2
79h, 7Bh,  
7Dh, 7Fh  
1
2
SEE  
SEE  
SEE  
SEE  
POL  
EN  
BIT 7  
BIT 0  
A left-justified, digital, 10-bit initial DAC value. During a POR these 10 bits are used to fill the  
corresponding DAC VALUE register.  
BITS 15:6  
BITS 5:2  
SEE: These bits have no effect on device operation.  
POL: Polarity Select  
BIT 1  
0 = Normal DAC mode, DAC VALUE = 3FFh results in full-scale output.  
1 = Inverted DAC mode, DAC VALUE = 3FFh results in zero output.  
EN:ꢀLUT Enable  
0 = DAC mode: At power-on, the corresponding DAC VALUE register is loaded with the value  
stored in the corresponding DAC POR register. Updates from the temperature-referenced LUT  
and LUT OFFSET are disabled. The user can write to the DAC VALUE register to set the value for  
the DAC. The DAC VALUE register is R/W.  
BIT 0  
1 = LUT mode: At power-on, the corresponding DAC VALUE register is loaded with the value  
stored in the corresponding DAC POR register. After the first valid temperature conversion, the  
DAC VALUE register is loaded with the value calculated from the LUT and LUT OFFSET that  
correspond to the measured temperature. The DAC VALUE register is read-only.  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 21  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Upper Memory Register Descriptions  
Tableꢀ04h,ꢀRegisterꢀ80h–AFh:ꢀDAC0ꢀLUT  
Tableꢀ05h,ꢀRegisterꢀ80h–AFh:ꢀDAC1ꢀLUT  
Tableꢀ06h,ꢀRegisterꢀ80h–AFh:ꢀDAC2ꢀLUT  
Tableꢀ07h,ꢀRegisterꢀ80h–AFh:ꢀDAC3ꢀLUT  
FACTORY DEFAULT  
ACCESS  
00h  
R/W  
MEMORY TYPE  
Nonvolatile  
7
6
5
4
3
2
1
0
80h–AFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The DAC LUT is a set of registers assigned to hold the pulse-density modulation profile for the associated DAC.  
The values in this table are added to four times the corresponding value in the DAC OFFSET table to determine  
the set point for the associated DAC. In all four DAC tables, the DAC LUT registers are formatted the same.  
Beginning at -40NC, the LUT increments in 4NC steps per address until the temperature reaches 56NC, then it  
increments in 2NC steps until it clamps at 102NC. See the LUT Temperature Mapping table for full register-to-  
temperature mapping. Register 80h defines the -40NC to -36NC DAC LUT value, register 81h defines the -36NC to  
-32NC DAC LUT value, and so on.  
LUTꢀTEMPERATUREꢀMAPPING  
ROW  
(HEX)  
BYTEꢀ0  
BYTEꢀ1  
BYTEꢀ2  
BYTEꢀ3  
BYTEꢀ4  
BYTEꢀ5  
BYTEꢀ6  
BYTEꢀ7  
4NCꢀLUTꢀ  
-28N  
80h  
88h  
90h  
< -36N  
-8N  
-36N  
-4N  
-32N  
0N  
-24N  
+8N  
-20N  
+12N  
+44N  
-16N  
+16N  
+48N  
-12N  
+20N  
+52N  
+4N  
+24N  
+28N  
+32N  
+36N  
+40N  
2NCꢀLUT  
+62N  
98h  
A0h  
A8h  
+56N  
+72N  
+88N  
+58N  
+74N  
+90N  
+60N  
+76N  
+92N  
+64N  
+80N  
+96N  
+66N  
+82N  
+98N  
+68N  
+84N  
+70N  
+86N  
+78N  
+94N  
+100N  
R +102N  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 22  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Tableꢀ04h,ꢀRegisterꢀF8h–FFh:ꢀDAC0ꢀOFFSET  
Tableꢀ05h,ꢀRegisterꢀF8h–FFh:ꢀDAC1ꢀOFFSET  
Tableꢀ06h,ꢀRegisterꢀF8h–FFh:ꢀDAC2ꢀOFFSET  
Tableꢀ07h,ꢀRegisterꢀF8h–FFh:ꢀDAC3ꢀOFFSET  
FACTORY DEFAULT  
ACCESS  
00h  
R/W  
MEMORY TYPE  
Nonvolatile  
7
6
5
4
3
2
1
0
F8h–FFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The DAC OFFSET is a set of registers assigned to hold the pulse-density modulation profile for the associated DAC.  
The values in this table are multiplied by four and added to the corresponding value in the LUT table to determine  
the set point for the associated DAC. In all four DAC tables, the DAC OFFSET registers are formatted the same. The  
OFFSET registers increase in 16NC steps from -8NC to +88NC. Below -8NC the DAC OFFSET is indexed at 0xF8. See  
the Offset Temperature Mapping table for full register to temperature mapping. Register F8h defines the -40NC to  
-8NC DAC OFFSET value, register F9h defines the -8NC to +8NC DAC OFFSET value, and so on.  
OFFSETꢀTEMPERATUREꢀMAPPING  
ROW  
(HEX)  
BYTEꢀ0  
BYTEꢀ1  
BYTEꢀ2  
BYTEꢀ3  
BYTEꢀ4  
BYTEꢀ5  
BYTEꢀ6  
BYTEꢀ7  
F8h  
< -8N  
-8N  
+8N  
+24N  
+40N  
+56N  
+72N  
R +88N  
SDA and SCL Pullup Resistors  
Applications Information  
SDA is an I/O with an open-collector output that requires  
a pullup resistor to realize high-logic levels. A master  
using either an open-collector output with a pullup resis-  
tor or a push-pull output driver can be used for SCL.  
Pullup resistor values should be chosen to ensure that  
Power-Supply Decoupling  
To achieve the best results when using the DS3911,  
decouple the power supply with a 0.01FF or 0.1FF capac-  
itor. Use a high-quality ceramic surface-mount capacitor  
if possible. Surface-mount components minimize lead  
inductance, which improves performance, and ceram-  
ic capacitors tend to have adequate high-frequency  
response for decoupling applications. Likewise, a decou-  
2
the rise and fall times listed in the I C AC Electrical  
Characteristics table are within specification. A typical  
value for the pullup resistors is 4.7kI.  
pling capacitor should be placed from V  
to GND.  
REF  
                         
���������������������������������������������������������������� ꢀMaxim Integrated Productsꢀ ꢀ 23  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
DS3911T+  
DS3911T+T  
TEMPꢀRANGE  
-40NC to +100NC  
-40NC to +100NC  
PIN-PACKAGE  
14 TDFN-EP*  
14 TDFN-EP*  
Note: Contact the factory about CSBGA version availability.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
PACKAGEꢀ  
TYPE  
PACKAGEꢀ  
CODE  
OUTLINEꢀ  
NO.  
LANDꢀ  
PATTERNꢀNO.  
*EP = Exposed pad.  
14 TDFN-EP  
T1435N+1  
21-0253  
90-0246  
DS3911  
Temperature-Controlled, Nonvolatile,  
2
I C Quad DAC  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/11  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
24  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY