LTM4644IY-1#PBF [Linear]

LTM4644 - Quad DC/DC µModule (Power Module) Regulator with Configurable 4A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C;
LTM4644IY-1#PBF
型号: LTM4644IY-1#PBF
厂家: Linear    Linear
描述:

LTM4644 - Quad DC/DC µModule (Power Module) Regulator with Configurable 4A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C

文件: 总36页 (文件大小:1041K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4644/LTM4644-1  
Quad DC/DC µModule  
Regulator with Configurable 4A Output Array  
FEATURES  
DESCRIPTION  
Quad Output Step-Down µModule® Regulator with 4A  
per Output  
The LTM®4644/LTM4644-1 is a quad DC/DC step-down  
µModule (micromodule) regulator with 4A per output.  
Outputs can be paralleled in an array for up to 16A capabil-  
ity. Included in the package are the switching controllers,  
powerFETs,inductorsandsupportcomponents.Operating  
over an input voltage range of 4V to 14V or 2.375V to 14V  
with an external bias supply, the LTM4644/LTM4644-1  
supports an output voltage range of 0.6V to 5.5V. Its  
high efficiency design delivers 4A continuous (5A peak)  
output current per channel. Only bulk input and output  
capacitors are needed.  
n
n
Wide Input Voltage Range: 4V to 14V  
n
2.375V to 14V with External Bias  
n
n
n
0.6V to 5.5V Output Voltage  
4A DC, 5A Peak Output Current Each Channel  
Up to 5.5W Power Dissipation (T = 60°C, 200 LFM,  
A
No Heat Sink)  
n
n
n
n
n
n
n
n
1.5ꢀ Total Output Voltage Regulation  
Current Mode Control, Fast Transient Response  
Parallelable for Higher Output Current  
Output Voltage Tracking  
Internal Temperature Sensing Diode Output  
External Frequency Synchronization  
Overvoltage, Current and Temperature Protection  
9mm × 15mm × 5.01mm BGA Package  
LTM4644  
LTM4644-1  
Top Feedback Resistor  
from V -to-V  
Integrated  
60.4k 0.5ꢀ  
External (to be added on  
PCB)  
OUT  
FB  
(one resistor per channel) Resistor  
Application  
General  
Applications  
To Interface with  
PMBus power system  
management supervisory  
ICs such as the LTC2975  
APPLICATIONS  
n
Multirail Point of Load Regulation  
FPGAs, DSPs and ASICs Applications  
Configurable Output Array*  
n
4A  
4A  
8A  
All registered trademarks and trademarks are the property of their respective owners.  
12A  
16A  
4A  
4A  
4A  
4A  
4A  
* Note 4  
Click to view associated TechClip Videos.  
TYPICAL APPLICATION  
4V to 14V Input, Quad 0.9V, 1V, 1.2V and 1.5V Output DC/DC µModule Regulator*  
1.5V Output Efficiency and  
Power Loss (Each Channel)  
ꢑꢏꢒꢆꢇ  
ꢑꢏꢒꢖꢊꢀ  
ꢗꢍ  
ꢗꢌ  
ꢖꢍ  
ꢖꢌ  
ꢕꢍ  
ꢕꢌ  
6ꢍ  
6ꢌ  
ꢍꢍ  
4ꢅ ꢞꢟ ꢃ4ꢅ  
ꢃꢛꢜꢅꢝ4ꢁ  
ꢆꢇꢃ  
ꢖꢊꢀꢃ  
ꢔꢙꢃ  
ꢋꢋꢓꢔ  
ꢕꢋ  
ꢃ6ꢅ  
ꢈꢅꢆꢇꢃ  
ꢉꢊꢇꢃ  
4ꢚꢓꢔ  
4ꢅ  
ꢘꢍꢖꢖꢎꢃ  
4ꢂꢛꢋꢠ  
6ꢂꢛ4ꢠ  
ꢐ4644  
ꢘꢚꢍ  
ꢆꢇꢋ  
ꢃꢛꢋꢅꢝ4ꢁ  
ꢖꢊꢀꢋ  
ꢈꢅꢆꢇꢋ  
ꢉꢊꢇꢋ  
ꢔꢙꢋ  
4ꢚꢓꢔ  
4ꢅ  
ꢘꢍꢖꢖꢎꢋ  
ꢆꢇꢌ  
ꢃꢅꢝ4ꢁ  
ꢖꢊꢀꢌ  
ꢈꢅꢆꢇꢌ  
ꢉꢊꢇꢌ  
ꢔꢙꢌ  
4ꢚꢓꢔ  
4ꢅ  
ꢌꢚꢍ  
ꢘꢍꢖꢖꢎꢌ  
ꢡꢂꢛꢡꢠ  
ꢃꢋꢃꢠ  
ꢞ ꢍꢝ  
ꢏꢈ  
ꢏꢈ  
ꢆꢇ4  
ꢂꢛꢡꢅꢝ4ꢁ  
ꢞ ꢘꢛꢝ  
ꢖꢊꢀ4  
ꢈꢅꢆꢇ4  
ꢉꢊꢇ4  
ꢔꢙ4  
4ꢚꢓꢔ  
4ꢅ  
4
ꢘꢍꢖꢖꢎ4  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢗꢐꢘ ꢈꢍꢇꢎ ꢍꢇꢎ  
4644 ꢉꢂꢌꢘꢙ  
4644 ꢀꢁꢂꢃꢄ  
ꢢꢀ ꢣ 6ꢂꢤꢑꢥ ꢋꢂꢂꢏꢔꢐꢥ ꢇꢖ ꢦꢗꢁꢀ ꢈꢆꢇꢒ  
4644fe  
1
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢙꢚꢃ ꢛꢜꢆꢝ  
V , SV (Per Channel).............................. –0.3V to 15V  
IN  
IN  
ꢜꢠꢏ  
ꢙꢢꢂꢄꢅꢣꢟꢟꢏ  
4
6
V
(Per Channel) (Note 3) ............–0.3V to SV or 6V  
OUT  
IN  
ꢁꢠꢊ  
ꢖꢀꢏ  
ꢚꢞꢙꢏ  
RUN (Per Channel)..................................... –0.3V to 15V  
ꢟꢛ  
ꢜꢠꢏ  
ꢁꢠꢊ  
ꢡꢚꢊꢆꢏ  
INTV (Per Channel) ............................... –0.3V to 3.6V  
CC  
ꢄꢚꢡꢃꢏ  
ꢄꢉꢅꢜꢠ  
ꢖꢀꢔ  
ꢢꢞꢠꢏ  
PGOOD, MODE, TRACK/SS,  
ꢃꢁꢚꢚꢊꢔ ꢃꢁꢚꢚꢊꢏ ꢜꢠꢙꢛ  
ꢄꢄꢏ  
FB (Per Channel)...................................–0.3V to INTV  
ꢚꢞꢙꢔ  
ꢙꢢꢂꢄꢅꢣꢟꢟꢔ  
CC  
ꢟꢛ  
ꢜꢠꢔ  
ꢡꢚꢊꢆꢔ  
CLKOUT (Note 3), CLKIN.......................–0.3V to INTV  
ꢁꢠꢊ  
CC  
ꢄꢚꢡꢃꢔ  
ꢟꢁꢠꢊ  
Internal Operating Temperature Range  
ꢢꢞꢠꢔ  
ꢜꢠꢔ  
(Notes 2, 5)............................................ –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Solder Reflow Body Temperature ................. 245°C  
ꢃꢁꢚꢚꢊꢕ ꢙꢆꢡꢃ ꢜꢠꢙꢛ  
ꢄꢄꢔ  
ꢚꢞꢙꢕ  
ꢁꢠꢊ  
ꢙꢢꢂꢄꢅꢣꢟꢟꢕ  
ꢖꢀꢕ  
ꢟꢛ  
ꢜꢠꢕ  
ꢡꢚꢊꢆꢕ  
ꢄꢚꢡꢃꢕ  
ꢖꢀ4  
ꢜꢠꢕ  
ꢜꢠꢙꢛ  
ꢢꢞꢠꢕ  
ꢄꢄꢕ  
ꢃꢁꢚꢚꢊ4 ꢄꢉꢅꢚꢞꢙ  
ꢚꢞꢙ4  
ꢁꢠꢊ  
ꢙꢢꢂꢄꢅꢣꢟꢟ4  
ꢢꢞꢠ4  
ꢜꢠꢙꢛ  
ꢄꢄ4  
ꢄꢚꢡꢃ4  
ꢜꢠ4  
ꢟꢛ  
ꢡꢚꢊꢆ4  
ꢜꢠ4  
ꢀꢁꢂ ꢃꢂꢄꢅꢂꢁꢆ  
ꢇꢇꢈꢉꢆꢂꢊ ꢋꢌꢍꢍ ꢎ ꢏꢐꢍꢍ ꢎ ꢐꢑꢒꢏꢍꢍꢓ  
T
= 125°C, θ = 17°C/W, θ = 2.75°C/W,  
JMAX  
JCtop  
JCbottom  
θ
+ θ = 11°C/W, θ = 10°C/W  
JB  
BA JA  
θ VALUES PER JESD 51-12  
WEIGHT = 1.9g  
http://www.linear.com/product/LTM4644#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
RATING  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4644EY#PBF  
LTM4644IY#PBF  
LTM4644MPY#PBF  
LTM4644IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
LTM4644Y  
LTM4644Y  
LTM4644Y  
LTM4644Y  
LTM4644Y  
LTM4644Y-1  
LTM4644Y-1  
LTM4644Y-1  
e1  
e1  
e1  
e0  
e0  
e1  
e1  
e0  
3
3
3
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTM4644MPY  
SnPb (63/37)  
LTM4644EY-1#PBF  
LTM4644IY-1#PBF  
LTM4644IY-1  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
Note: The LTM4644-1 does not include the internal top feedback resistor.  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Markings:  
www.linear.com/leadfree  
4644fe  
2
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 12V, per the typical application.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Switching Regulator Section: per Channel  
l
l
V , SV  
Input DC Voltage  
SV = V  
IN  
4
14  
V
V
IN  
IN  
IN  
V
V
Output Voltage Range  
0.6  
5.5  
OUT(RANGE)  
OUT(DC)  
Output Voltage, Total Variation  
with Line and Load  
C
= 22µF, C  
= 100µF Ceramic,  
IN  
OUT  
l
MODE = INTV ,V = 4V to 14V, I  
= 0A to 4A (Note 4)  
1.477  
1.1  
1.50 1.523  
V
CC IN  
FB(BOT)  
OUT  
LTM4644: R  
LTM4644-1: R  
= 40.2k  
= 60.4k, R  
= 40.2k  
FB(TOP)  
FB(BOT)  
V
RUN  
RUN Pin On Threshold  
V
Rising  
RUN  
1.2  
1.3  
V
I
Input Supply Bias Current  
V
V
= 12V, V  
= 12V, V  
= 1.5V, MODE = INTV  
= 1.5V, MODE = GND  
6
2
11  
mA  
mA  
µA  
Q(SVIN)  
IN  
IN  
OUT  
OUT  
CC  
Shutdown, RUN = 0, V = 12V  
IN  
I
I
Input Supply Current  
V
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, I = 4A  
OUT  
0.62  
A
A
S(VIN)  
IN  
OUT  
OUT  
Output Continuous Current Range  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
= 1.5V (Note 4)  
0
4
0.15  
1
OUT(DC)  
IN  
l
l
ΔV  
ΔV  
(Line)/V  
= 1.5V, V = 4V to 14V, I = 0A  
OUT  
0.04  
0.5  
5
ꢀ/V  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
(Load)/V  
= 1.5V, I  
= 0A to 4A  
OUT  
OUT  
OUT  
V
I
V
= 0A, C  
= 1.5V  
= 100µF Ceramic, V = 12V,  
mV  
OUT(AC)  
OUT  
IN  
OUT  
ΔV  
Turn-On Overshoot  
Turn-On Time  
I
= 0A, C  
= 1.5V  
= 100µF Ceramic, V = 12V,  
30  
2.5  
160  
40  
7
mV  
ms  
mV  
µs  
OUT(START)  
OUT  
OUT  
OUT  
IN  
V
t
C
V
= 100µF Ceramic, No Load, TRACK/SS = 0.01µF,  
= 1.5V  
START  
OUT  
= 12V, V  
IN  
OUT  
ΔV  
OUTLS  
Peak Deviation for Dynamic Load Load: 0ꢀ to 50ꢀ to 0ꢀ of Full Load, C  
= 47µF  
OUT  
Ceramic, V = 12V, V  
= 1.5V  
IN  
OUT  
t
Settling Time for Dynamic Load  
Step  
Load: 0ꢀ to 50ꢀ to 0ꢀ of Full Load, C  
Ceramic, V = 12V, V = 1.5V  
= 47µF  
SETTLE  
OUT  
IN  
OUT  
I
Output Current Limit  
Voltage at FB Pin  
V
= 12V, V  
= 1.5V  
6
A
OUTPK  
IN  
OUT  
V
FB  
I
I
= 0A, V  
= 0A, V  
= 1.5V, 0°C to 125°C  
= 1.5V, –40°C to 125°C  
0.594  
0.592  
0.60 0.606  
0.60 0.608  
V
V
OUT  
OUT  
OUT  
OUT  
l
I
FB  
Current at FB Pin  
(Note 3)  
30  
nA  
R
FBHI  
Resistor Between V  
and FB  
OUT  
LTM4644 Only  
60.05 60.40 60.75  
kΩ  
Pins  
I
Track Pin Soft-Start Pull-Up  
Current  
TRACK/SS = 0V  
2.5  
4
µA  
TRACK/SS  
V
V
Undervoltage Lockout  
V
IN  
V
IN  
Falling  
Hysteresis  
2.4  
2.6  
350  
2.8  
V
mV  
IN(UVLO)  
IN  
t
t
Minimum On-Time  
Minimum Off-Time  
PGOOD Trip Level  
(Note 3)  
(Note 3)  
40  
70  
ns  
ns  
ON(MIN)  
OFF(MIN)  
V
V
With Respect to Set Output  
Ramping Negative  
Ramping Positive  
PGOOD  
FB  
V
V
–13  
7
–10  
10  
–7  
13  
FB  
FB  
I
PGOOD Leakage  
2
µA  
V
PGOOD  
V
V
V
PGOOD Voltage Low  
I
= 1mA  
PGOOD  
0.02  
3.3  
0.5  
1
0.1  
3.4  
PGL  
Internal V Voltage  
SV = 4V to 14V  
3.2  
V
INTVCC  
INTVCC  
OSC  
CC  
IN  
Load Reg INTV Load Regulation  
I
= 0mA to 20mA  
CC  
CC  
f
Oscillator Frequency  
CLKIN Threshold  
MHz  
V
CLKIN  
0.7  
4644fe  
3
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
and guaranteed over full –55°C to 125°C internal operating temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 2: The LTM4644E/LTM4644E-1 is tested under pulsed load  
conditions such that T ≈ T . The LTM4644E/LTM4644-1 is guaranteed to  
Note 3: 100ꢀ tested at wafer level.  
J
A
meet performance specifications over the 0°C to 125°C internal operating  
temperature range. Specifications over the full –40°C to 125°C internal  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTM4644I/LTM4644I-1  
is guaranteed to meet specifications over the full –40°C to 125°C internal  
operating temperature range. The LTM4644MP/LTM4644MP-1 is tested  
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Per Channel)  
Efficiency vs Load Current from  
5VIN (One Channel Operating)  
Efficiency vs Load Current from  
12VIN (One Channel Operating)  
DCM Mode Efficiency from  
1.5VOUT  
ꢕꢌꢌ  
ꢔꢒ  
ꢔꢌ  
ꢓꢒ  
ꢓꢌ  
ꢍꢒ  
ꢍꢌ  
ꢔꢍ  
ꢔꢌ  
ꢓꢍ  
ꢓꢌ  
ꢒꢍ  
ꢒꢌ  
6ꢍ  
ꢎꢌꢌ  
ꢙꢌ  
ꢘꢌ  
ꢗꢌ  
6ꢌ  
ꢖꢌ  
4ꢌ  
ꢔꢌ  
ꢓꢌ  
ꢎꢌ  
ꢍꢙ  
ꢁꢅꢉ  
ꢘꢚꢘꢙ  
ꢗꢚꢍꢙ  
ꢕꢚꢓꢙ  
ꢕꢚꢍꢙ  
ꢕꢚꢗꢙ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢘꢙꢘꢚ  
ꢗꢙꢒꢚ  
ꢕꢙꢓꢚ  
ꢕꢙꢒꢚ  
ꢕꢙꢗꢚ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢁꢅꢉ  
ꢖꢚ  
ꢐꢈ  
ꢐꢈ  
ꢎꢓꢚ  
4
4
ꢌꢍꢌꢌꢎ  
ꢌꢍꢌꢎ  
ꢌꢍꢎ  
ꢎꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
4644 ꢖꢌꢕ  
4644 ꢖꢌꢗ  
4644 ꢕꢌꢔ  
1.0V Output Transient Response  
1.5V Output Transient Response  
2.5V Output Transient Response  
ꢉꢑꢌ  
ꢉꢑꢌ  
ꢉꢒꢌ  
ꢒꢁꢓꢇꢄꢅꢆꢇ  
ꢑꢁꢓꢇꢄꢅꢆꢇ  
ꢒꢁꢓꢇꢄꢅꢆꢇ  
ꢊꢔꢕꢔꢉꢑꢎꢈꢍꢅ  
ꢊꢔꢕꢔꢉꢒꢎꢈꢍꢅ  
ꢊꢔꢕꢔꢉꢑꢎꢈꢍꢅ  
ꢈꢉꢊꢅ ꢋꢌꢍꢎ  
ꢏꢊꢄꢅꢆꢇ  
ꢈꢉꢊꢅ ꢋꢌꢍꢎ  
ꢏꢊꢄꢅꢆꢇ  
ꢈꢉꢊꢅ ꢋꢌꢍꢎ  
ꢏꢊꢄꢅꢆꢇ  
4644 ꢐꢁ4  
4644 ꢐꢁꢑ  
4644 ꢐꢁ6  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢗ ꢏꢇꢘ ꢆ ꢗ ꢙꢊ ꢌꢉ 4ꢊꢘ ꢏꢊꢄꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢗ ꢏꢙꢑꢇꢘ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢗ ꢀꢙꢒꢇꢘ ꢆ ꢗ ꢚꢊ ꢌꢉ 4ꢊꢘ ꢏꢊꢄꢂꢃ  
ꢉꢑꢌ  
ꢗ ꢏꢀꢇꢘ ꢇ  
ꢗ ꢏꢁꢛꢚ  
ꢗ ꢏꢀꢇꢘ ꢇ  
ꢗ ꢏꢁꢜꢛ  
ꢗ ꢚꢊ ꢌꢉ 4ꢊꢘ ꢏꢊꢄꢂꢃ  
ꢗ ꢏꢀꢇꢘ ꢇ  
ꢗ ꢏꢁꢜꢛ  
ꢆꢖ  
ꢚꢚ  
ꢉꢑꢌ  
ꢉꢑꢌ  
ꢆꢖ  
ꢛꢛ  
ꢉꢒꢌ  
ꢉꢒꢌ  
ꢆꢖ  
ꢛꢛ  
ꢉꢑꢌ  
OUTPUT CAPACITOR = 1 • 47µF CERAMIC  
OUTPUT CAPACITOR = 1 • 47µF CERAMIC  
OUTPUT CAPACITOR = 1 • 47µF CERAMIC  
4644fe  
4
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.3V Output Transient Response  
5V Output Transient Response  
Start-Up with No Load  
ꢉꢒꢌ  
ꢉꢒꢌ  
ꢅꢊ  
ꢓꢁꢔꢇꢄꢅꢆꢇ  
ꢓꢁꢔꢇꢄꢅꢆꢇ  
ꢈꢋꢌꢍꢃꢄꢅꢆ  
ꢊꢕꢖꢕꢉꢒꢎꢈꢍꢅ  
ꢊꢕꢖꢕꢉꢒꢎꢈꢍꢅ  
ꢈꢉꢊꢅ ꢋꢌꢍꢎ  
ꢏꢊꢄꢅꢆꢇ  
ꢈꢉꢊꢅ ꢋꢌꢍꢎ  
ꢏꢊꢄꢅꢆꢇ  
ꢎꢏꢐ  
ꢈꢋꢀꢆꢃꢄꢅꢆ  
4644 ꢐꢁꢑ  
4644 ꢐꢁꢑ  
4644 ꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢘ ꢚꢛꢚꢇꢙ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢑ ꢌꢋꢀꢆ  
ꢘ ꢏꢀꢇꢙ ꢇ  
ꢘ ꢚꢊ ꢌꢉ 4ꢊꢙ ꢏꢊꢄꢂꢃ  
ꢘ ꢏꢀꢇꢙ ꢇ  
ꢘ ꢓꢇꢙ ꢆ  
ꢘ ꢚꢊ ꢌꢉ 4ꢊꢙ ꢏꢊꢄꢂꢃ  
ꢑ ꢌꢒꢆꢓ ꢆ  
ꢅꢊ ꢎꢏꢐ  
ꢆꢗ  
ꢉꢒꢌ  
ꢉꢒꢌ  
ꢆꢗ  
ꢉꢒꢌ  
ꢉꢒꢌ  
ꢉꢒꢌꢎꢒꢌ ꢕꢊꢎꢊꢕꢆꢌꢉꢜ ꢘ 4ꢑꢂꢝ ꢕꢍꢜꢊꢞꢆꢕ  
ꢉꢒꢌꢎꢒꢌ ꢕꢊꢎꢊꢕꢆꢌꢉꢛ ꢘ 4ꢜꢂꢝ ꢕꢍꢛꢊꢞꢆꢕ  
ꢅꢊꢔꢏꢐ ꢕꢍꢔꢍꢕꢅꢐꢎꢖ ꢑ ꢌꢀꢈꢗꢘ ꢙꢍꢊꢚꢎ ꢛꢜꢛꢕꢐꢖꢎꢜꢚꢐꢅꢕ  
ꢕꢍꢔꢍꢕꢅꢐꢎꢖ ꢝꢎꢔꢐꢅꢎꢊꢍꢜꢞ ꢟ ꢒꢒꢗꢘ ꢕꢛꢖꢍꢠꢅꢕ ꢕꢍꢔꢍꢕꢅꢐꢎꢖ  
ꢎꢏꢐꢔꢏꢐ ꢕꢍꢔꢍꢕꢅꢐꢎꢖ ꢑ 4ꢡꢗꢘ ꢕꢛꢖꢍꢠꢅꢕ ꢕꢍꢔꢍꢕꢅꢐꢎꢖ  
ꢙꢎꢘꢐꢢꢙꢐꢍꢖꢐ ꢕꢍꢔꢍꢕꢅꢐꢎꢖ ꢑ ꢈꢋꢌꢗꢘ  
Start-Up with 4A Load  
Short-Circuit with No Load  
Short-Circuit with 4A Load  
ꢆꢊ  
ꢁꢋꢌꢍꢄꢅꢆꢇ  
ꢅꢊ  
ꢆꢊ  
ꢉꢋꢌꢍꢃꢄꢅꢆ  
ꢁꢋꢌꢍꢄꢅꢆꢇ  
ꢎꢏꢐ  
ꢁꢋꢌꢇꢄꢅꢆꢇ  
ꢎꢏꢐ  
ꢎꢏꢐ  
ꢉꢋꢀꢆꢃꢄꢅꢆ  
ꢁꢋꢌꢇꢄꢅꢆꢇ  
4644 ꢇꢈꢉ  
4644 ꢈꢉꢉ  
4644 ꢈꢉꢀ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢑ ꢈꢌꢆꢒ ꢆ  
ꢑ ꢈꢋꢀꢆ  
ꢑ ꢉꢀꢇꢒ ꢇ  
ꢑ ꢉꢋꢌꢇ  
ꢑ ꢉꢀꢇꢒ ꢇ  
ꢑ ꢉꢋꢌꢇ  
ꢅꢊ  
ꢎꢏꢐ  
ꢆꢊ  
ꢎꢏꢐ  
ꢆꢊ  
ꢎꢏꢐ  
ꢅꢊꢓꢏꢐ ꢔꢍꢓꢍꢔꢅꢐꢎꢕ ꢑ ꢈꢀꢉꢖꢗ ꢘꢍꢊꢙꢎ ꢚꢛꢚꢔꢐꢕꢎꢛꢙꢐꢅꢔ  
ꢔꢍꢓꢍꢔꢅꢐꢎꢕ ꢜꢎꢓꢐꢅꢎꢊꢍꢛꢝ ꢞ ꢌꢌꢖꢗ ꢔꢚꢕꢍꢟꢅꢔ ꢔꢍꢓꢍꢔꢅꢐꢎꢕ  
ꢎꢏꢐꢓꢏꢐ ꢔꢍꢓꢍꢔꢅꢐꢎꢕ ꢑ 4ꢠꢖꢗ ꢔꢚꢕꢍꢟꢅꢔ ꢔꢍꢓꢍꢔꢅꢐꢎꢕ  
ꢘꢎꢗꢐꢡꢘꢐꢍꢕꢐ ꢔꢍꢓꢍꢔꢅꢐꢎꢕ ꢑ ꢉꢋꢈꢖꢗ  
ꢆꢊꢓꢏꢐ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢑ ꢉꢌꢁꢂꢖ ꢗꢍꢊꢘꢎ ꢙꢚꢙꢔꢐꢕꢎꢚꢘꢐꢆꢔ  
ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢛꢎꢓꢐꢆꢎꢊꢍꢚꢜ ꢝ ꢀꢀꢂꢖ ꢔꢙꢕꢍꢞꢆꢔ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ  
ꢎꢏꢐꢓꢏꢐ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢑ 4ꢟꢂꢖ ꢔꢙꢕꢍꢞꢆꢔ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ  
ꢆꢊꢓꢏꢐ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢑ ꢉꢌꢁꢂꢖ ꢗꢍꢊꢘꢎ ꢙꢚꢙꢔꢐꢕꢎꢚꢘꢐꢆꢔ  
ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢛꢎꢓꢐꢆꢎꢊꢍꢚꢜ ꢝ ꢀꢀꢂꢖ ꢔꢙꢕꢍꢞꢆꢔ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ  
ꢎꢏꢐꢓꢏꢐ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ ꢑ 4ꢟꢂꢖ ꢔꢙꢕꢍꢞꢆꢔ ꢔꢍꢓꢍꢔꢆꢐꢎꢕ  
Recovery to No Load from  
Short-Circuit  
Output Ripple  
Start Into Pre-Biased Output  
ꢁꢂ  
ꢃꢀꢄꢅꢁꢀ  
ꢆꢇꢈ  
ꢉꢀꢄꢅꢁꢀ  
ꢁꢂꢃ  
ꢄꢅꢅꢊꢉꢇꢈꢀꢉ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢆꢇꢈꢇꢉꢊꢋꢌꢍꢄ  
ꢁꢂꢃ  
ꢄꢅꢆꢇꢈꢀꢉ  
4644 ꢤꢐ4  
4644 ꢟꢉꢋ  
4644 ꢠꢍꢡ  
ꢏ ꢐꢑꢂ  
ꢀꢞꢞꢕꢣꢃꢄꢅꢂ  
ꢊ ꢉꢃꢀ  
ꢊ ꢋꢀ  
ꢉꢐꢞꢄꢅꢁꢀ  
ꢌ ꢍꢄꢉ  
ꢌ ꢍꢉ  
ꢞꢑꢟꢇꢈꢀꢉ  
ꢅꢎ  
ꢉꢊꢒ  
ꢁꢂ  
ꢆꢇꢈ  
ꢀꢋ  
ꢁꢂꢃ  
ꢏ ꢐꢓꢀꢂ  
ꢅꢎꢋꢊꢒ ꢇꢆꢋꢆꢇꢅꢒꢉꢔ ꢏ ꢑꢑꢕꢖ ꢗꢆꢎꢘꢉ ꢍꢌꢍꢇꢒꢔꢉꢒꢅꢇ  
ꢇꢆꢋꢆꢇꢅꢒꢉꢔ ꢙꢉꢋꢒꢅꢉꢎꢆꢌꢚ ꢛ ꢑ× ꢑꢑꢕꢖ ꢇꢍꢔꢆꢜꢅꢇ ꢇꢆ ꢓ  
ꢉꢊꢒꢋꢊꢒ ꢇꢆꢋꢆꢇꢅꢒꢉꢔ ꢏ ꢑ× 4ꢝꢕꢖ ꢇꢍꢔꢆꢜꢅꢇ ꢇꢆ ꢓ  
ꢗꢉꢖꢗꢒꢆꢔꢒ ꢇꢆꢋꢆꢇꢅꢒꢉꢔ ꢏ ꢞꢓꢐꢕꢖ  
ꢁꢂꢌꢇꢈ ꢍꢎꢌꢎꢍꢁꢈꢆꢏ ꢊ ꢃꢃꢐꢑ ꢒꢎꢂꢓꢆ ꢔꢕꢔꢍꢈꢏꢆꢈꢁꢍ  
ꢍꢎꢌꢎꢍꢁꢈꢆꢏ ꢖꢆꢌꢈꢁꢆꢂꢎꢕꢗ ꢘ ꢃ× ꢃꢃꢐꢑ ꢍꢔꢏꢎꢙꢁꢍ ꢍꢎ ꢚ  
ꢆꢇꢈꢌꢇꢈ ꢍꢎꢌꢎꢍꢁꢈꢆꢏ ꢊ ꢃ× 4ꢛꢐꢑ ꢍꢔꢏꢎꢙꢁꢍ ꢍꢎ ꢚ  
ꢒꢆꢑꢒꢈꢎꢏꢈ ꢍꢎꢌꢎꢍꢁꢈꢆꢏ ꢊ ꢝꢚꢉꢐꢑ  
ꢀꢋꢎꢂꢃ ꢏꢆꢎꢆꢏꢀꢃꢁꢐ ꢌ ꢄꢄꢑꢒ ꢓꢆꢋꢔꢁ ꢕꢖꢕꢏꢃꢐꢁꢃꢀꢏ  
ꢏꢆꢎꢆꢏꢀꢃꢁꢐ ꢗꢁꢎꢃꢀꢁꢋꢆꢖꢘ ꢙ ꢄ× ꢄꢄꢑꢒ ꢏꢕꢐꢆꢚꢀꢏ ꢏꢆ ꢛ  
ꢁꢂꢃꢎꢂꢃ ꢏꢆꢎꢆꢏꢀꢃꢁꢐ ꢌ ꢄ× 4ꢜꢑꢒ ꢏꢕꢐꢆꢚꢀꢏ ꢏꢆ ꢛ  
ꢓꢁꢒꢓꢃꢆꢐꢃ ꢏꢆꢎꢆꢏꢀꢃꢁꢐ ꢌ ꢅꢛꢍꢑꢒ  
ꢑꢞꢜꢟꢠ ꢜꢍꢆꢗꢊꢔꢍꢜꢍꢎꢒ ꢡꢆꢎꢄꢢꢅꢄꢒꢟ  
4644fe  
5
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
SV , SV , SV , SV (B5, E5, H5, L5): Signal V .  
IN1  
IN2  
IN  
IN4  
IN  
Filtered input voltage to the internal 3.3V regulator for  
the control circuitry of each Switching mode Regulator  
Channel. Tie this pin to the V pin respectively in most  
V
(A1, A2, A3), V  
(C1, D1, D2), V  
(F1,  
IN  
OUT1  
G1, G2), V  
OUT2  
OUT3  
applications. Connect SV to an external voltage supply  
(J1, K1, K2): Power Output Pins of Each  
IN  
OUT4  
of at least 4V which must also be greater than V  
.
Switching Mode Regulator Channel. Apply output load  
between these pins and GND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and GND pins. See the Applications Information section  
for paralleling outputs.  
OUT  
TRACK/SS1, TRACK/SS2, TRACK/SS3, TRACK/SS4 (A6,  
D6, G6, K6): Output Tracking and Soft-Start Pin of Each  
Switching Mode Regulator Channel. Allows the user to  
control the rise time of the output voltage. Putting a volt-  
age below 0.6V on this pin bypasses the internal reference  
input to the error amplifier, instead it servos the FB pin  
to match the TRACK voltage. Above 0.6V, the tracking  
function stops and the internal reference resumes control  
of the error amplifier. There’s an internal 2.5µA pull-up  
GND (A4-A5, B1-B2, C5, D3-D5, E1-E2, F5, G3-G5,  
H1-H2, J5, K3-K4, L1-L2): Power Ground Pins for Both  
Input and Output Returns. Use large PCB copper areas to  
connect all GND together.  
V
IN1  
(B3, B4), V (E3, E4), V (H3, H4), V (L3, L4):  
IN2 IN3 IN4  
current from INTV on this pin, so putting a capacitor  
CC  
Power input pins connect to the drain of the internal top  
MOSFET for each switching mode regulator channel.  
Apply input voltages between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
here provides soft-start function.  
MODE1, MODE2, MODE3, MODE4 (B6, E6, H6, L6):  
Operation Mode Select for Each Switching Mode Regula-  
tor Channel. Tie this pin to INTV to force continuous  
between each of V pins and GND pins.  
CC  
IN  
synchronous operation at all output loads. Tying it to  
SGND enables discontinuous current mode operation at  
light loads. Do not leave floating.  
PGOOD1, PGOOD2, PGOOD3, PGOOD4 (C3, C2, F2,  
J2): Output Power Good with Open-Drain Logic of Each  
Switching Mode Regulator Channel. PGOOD is pulled to  
ground when the voltage on the FB pin is not within 10ꢀ  
of the internal 0.6V reference.  
RUN1, RUN2, RUN3, RUN4(C6, F6, J6, K7):RunControl  
Input of Each Switching Mode Regulator Channel. Enable  
regulator operation by tying the specific RUN pin above  
1.2V. Pulling it below 1.1V shuts down the respective  
regulator channel. Do not leave floating.  
CLKOUT (J3): Output Clock Signal for PolyPhase® Opera-  
tion of the Module. The phase of CLKOUT with respect to  
CLKIN is set to 180°. CLKOUT’s peak-to-peak amplitude  
FB1, FB2, FB3, FB4 (A7, D7, G7, J7): The Negative Input  
of the Error Amplifier for Each Switching Mode Regulator  
Channel. Internally, in LTM4644, this pin is connected to  
is INTV to GND. See the Application Information section  
CC  
for details. Strictly output; do not drive this pin.  
INTV , INTV , INTV , INTV (C4, F4, J4, K5):  
CC4  
CC1  
CC2  
CC3  
V
of each channel with a 60.4kΩ precision resistor.  
OUT  
Internal 3.3V Regulator Output of Each Switching Mode  
Regulator Channel. The internal power drivers and con-  
trol circuits are powered from this voltage. Each pin is  
internally decoupled to GND with 1µF low ESR ceramic  
capacitor already.  
Different output voltages can be programmed with an  
additional resistor between the FB and GND pins for the  
LTM4644, and two resistors between the V , FB and  
OUT  
GNDpinsfortheLTM4644-1.InPolyPhaseoperation,tying  
the FB pins together allows for parallel operation. See the  
Applications Information section for details.  
4644fe  
6
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
PIN FUNCTIONS  
COMP1, COMP2, COMP3, COMP4 (B7, E7, H7, L7): Cur-  
rent Control Threshold and Error Amplifier Compensation  
Point of Each Switching Mode Regulator Channel. The  
internal current comparator threshold is proportional to  
thisvoltage. Tie theCOMPpinstogetherforparallelopera-  
tion. The device is internally compensated.  
SGND(F7):SignalGroundConnection.SGNDisconnected  
to GND internally through single point. Use a separated  
SGND ground copper area for the ground of the feedback  
resistor and other components connected to signal pins.  
A second connection between the PGND plane and SGND  
plane is recommended on the backside of the PCB under-  
neath the module.  
CLKIN (C7): External Synchronization Input to Phase  
Detector of the Module. This pin is internally terminated  
to SGND with 20kΩ. The phase-locked loop will force  
the channel 1 turn-on signal to be synchronized with the  
rising edge of the CLKIN signal. Channel 2, channel 3 and  
channel 4 will also be synchronized with the rising edge of  
the CLKIN signal with a pre-determined phase shift. See  
the Applications Information section for details.  
TEMP (F3): Onboard Temperature Diode for Monitoring  
the VBE Junction Voltage Change with Temperature. See  
the Applications Information section.  
4644fe  
7
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
BLOCK DIAGRAM  
ꢇꢊꢋꢏꢈ  
ꢃꢌꢉꢎ  
ꢎꢖꢖꢚ  
ꢎꢖꢖꢚ  
ꢎꢖꢖꢚ  
ꢎꢖꢖꢚ  
ꢂꢡꢃꢃꢁꢎ  
ꢏꢈꢉꢔ  
ꢇꢇꢎ  
6ꢖꢗ4ꢚ  
ꢝꢞꢐ4644 ꢃꢈꢠ  
ꢓꢔ  
ꢏꢈꢎ  
ꢏꢈꢎ  
ꢍꢀꢎ  
ꢏꢈꢉꢔ  
ꢇꢇꢎ  
ꢏꢈ  
6ꢖꢗ4ꢚ  
4ꢔ ꢉꢃ ꢎ4ꢔ  
ꢖꢗꢘꢘꢕꢍ  
ꢎꢕꢍ  
ꢎꢖꢕꢍ  
4ꢛꢕꢍ  
ꢎꢕꢍ  
ꢎꢕꢙ  
ꢐꢃꢁꢅꢎ  
ꢎꢗꢘꢔ  
4ꢑ  
ꢃꢌꢉꢎ  
ꢃꢌꢉꢎ  
ꢡꢈꢁ  
ꢂꢃꢄꢅꢆ ꢇꢃꢈꢉꢆꢃꢊ  
ꢇꢊꢋꢃꢌꢉ  
ꢉꢆꢑꢇꢋꢒꢓꢓꢎ  
ꢆꢌꢈꢎ  
ꢖꢗꢎꢕꢍ  
ꢇꢃꢐꢂꢎ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢇꢃꢐꢂ  
ꢓꢡꢈꢁ  
ꢡꢈꢁ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢍꢏꢅꢆ  
ꢍꢆꢅꢜꢎ  
ꢎ6ꢘꢚ  
ꢃꢌꢉꢘ  
ꢂꢡꢃꢃꢁꢘ  
ꢏꢈꢉꢔ  
ꢇꢇꢘ  
6ꢖꢗ4ꢚ  
ꢓꢔ  
ꢏꢈꢘ  
ꢏꢈꢘ  
ꢝꢞꢐ4644 ꢃꢈꢠ  
ꢎꢕꢍ  
ꢍꢀꢘ  
ꢏꢈꢉꢔ  
ꢇꢇꢘ  
ꢏꢈ  
4ꢖꢗꢘꢚ  
ꢖꢗꢘꢘꢕꢍ  
ꢎꢕꢍ  
ꢎꢖꢕꢍ  
4ꢛꢕꢍ  
ꢇꢊꢋꢏꢈ  
ꢎꢕꢙ  
ꢐꢃꢁꢅꢘ  
ꢉꢆꢑꢇꢋꢒꢓꢓꢘ  
ꢆꢌꢈꢘ  
ꢎꢗꢢꢔ  
4ꢑ  
ꢃꢌꢉꢘ  
ꢃꢌꢉꢘ  
ꢡꢈꢁ  
ꢂꢃꢄꢅꢆ ꢇꢃꢈꢉꢆꢃꢊ  
ꢖꢗꢎꢕꢍ  
ꢇꢃꢐꢂꢘ  
ꢇꢊꢋꢃꢌꢉ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢇꢃꢐꢂ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢍꢏꢅꢆ  
ꢍꢆꢅꢜꢘ  
ꢎ6ꢘꢚ  
ꢃꢌꢉꢣ  
ꢂꢡꢃꢃꢁꢣ  
ꢏꢈꢉꢔ  
ꢇꢇꢣ  
6ꢖꢗ4ꢚ  
ꢓꢔ  
ꢏꢈꢣ  
ꢏꢈꢣ  
ꢝꢞꢐ4644 ꢃꢈꢠ  
ꢎꢕꢍ  
ꢍꢀꢣ  
ꢏꢈꢉꢔ  
ꢇꢇꢣ  
ꢏꢈ  
ꢣꢖꢗꢎꢚ  
ꢖꢗꢘꢘꢕꢍ  
ꢎꢕꢍ  
ꢎꢖꢕꢍ  
4ꢛꢕꢍ  
ꢇꢊꢋꢏꢈ  
ꢎꢕꢙ  
ꢐꢃꢁꢅꢣ  
ꢉꢆꢑꢇꢋꢒꢓꢓꢣ  
ꢆꢌꢈꢣ  
ꢎꢗꢤꢔ  
4ꢑ  
ꢃꢌꢉꢣ  
ꢃꢌꢉꢣ  
ꢡꢈꢁ  
ꢂꢃꢄꢅꢆ ꢇꢃꢈꢉꢆꢃꢊ  
ꢖꢗꢎꢕꢍ  
ꢇꢃꢐꢂꢣ  
ꢇꢊꢋꢃꢌꢉ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢇꢃꢐꢂ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢍꢏꢅꢆ  
ꢍꢆꢅꢜꢣ  
ꢎ6ꢘꢚ  
ꢃꢌꢉ4  
ꢂꢡꢃꢃꢁ4  
ꢏꢈꢉꢔ  
ꢇꢇ4  
6ꢖꢗ4ꢚ  
ꢓꢔ  
ꢏꢈ4  
ꢏꢈ4  
ꢝꢞꢐ4644 ꢃꢈꢠ  
ꢎꢕꢍ  
ꢍꢀ4  
ꢏꢈꢉꢔ  
ꢇꢇ4  
ꢏꢈ  
ꢥꢖꢗꢥꢚ  
ꢖꢗꢘꢘꢕꢍ  
ꢎꢕꢍ  
ꢎꢖꢕꢍ  
4ꢛꢕꢍ  
ꢇꢊꢋꢏꢈ  
ꢎꢕꢙ  
ꢐꢃꢁꢅ4  
ꢎꢔ  
4ꢑ  
ꢃꢌꢉ4  
ꢃꢌꢉ4  
ꢡꢈꢁ  
ꢂꢃꢄꢅꢆ ꢇꢃꢈꢉꢆꢃꢊ  
ꢉꢆꢑꢇꢋꢒꢓꢓ4  
ꢆꢌꢈ4  
ꢖꢗꢎꢕꢍ  
ꢇꢃꢐꢂ4  
ꢇꢊꢋꢃꢌꢉ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢇꢃꢐꢂ  
ꢏꢈꢉꢅꢆꢈꢑꢊ  
ꢍꢏꢅꢆ  
ꢉꢅꢐꢂ  
ꢍꢆꢅꢜ4  
ꢎ6ꢘꢚ  
ꢇꢊꢋꢃꢌꢉ  
4644 ꢀꢁ  
ꢐ4644ꢦꢎ ꢁꢃꢅꢓ ꢈꢃꢉ ꢏꢈꢇꢊꢌꢁꢅ 6ꢖꢗ4ꢚ ꢆꢅꢓꢏꢓꢉꢃꢆ  
4644fe  
8
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
DECOUPLING REQUIREMENTS (per Channel)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 4A  
= 4A  
4.7  
10  
µF  
IN  
OUT  
(V = 4V to 14V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4V to 14V, V = 1.5V)  
I
22  
47  
µF  
OUT  
OUT  
IN  
OUT  
OPERATION  
The LTM4644 is a quad output standalone non-isolated  
switch mode DC/DC power supply. It has four separate  
regulatorchannelswitheachofthemcapableofdelivering  
upto4Acontinuousoutputcurrentwithfewexternalinput  
and output capacitors. Each regulator provides precisely  
regulatedoutputvoltageprogrammablefrom0.6Vto5.5V  
viaasingleexternalresistor(tworesistorsforLTM4644-1)  
over 4V to 14V input voltage range. With an external bias  
voltage, this module can operate from an input voltage  
as low as 2.375V. The typical application schematic is  
shown in Figure 33.  
employ a 2+2, 3+1 or 4 channels parallel operation which  
is more than flexible in a multirail POL application like  
FPGA. Furthermore, the LTM4644 has CLKIN and CLK-  
OUT pins for frequency synchronization or polyphasing  
multiple devices which allow up to 8 phases cascaded to  
run simultaneously.  
Current mode control also provides cycle-by-cycle fast  
current monitoring. Foldback current limiting is provided  
in an overcurrent condition to reduce the inductor valley  
current to approximately 40ꢀ of the original value when  
V
FB  
drops. An internal overvoltage and undervoltage  
TheLTM4644integratesfourseparateconstantfrequency  
controlled on-time valley current mode regulators, power  
MOSFETs, inductors, and other supporting discrete com-  
ponents. The typical switching frequency is set to 1MHz.  
For switching noise-sensitive applications, the µModule  
regulator can be externally synchronized to a clock from  
700kHz to 1.3MHz. See the Applications Information  
section.  
comparators pull the open-drain PGOOD output low if  
the output feedback voltage exits a 10ꢀ window around  
the regulation point. Continuous conduction mode (CCM)  
operation is forced during OV and UV conditions except  
duringstart-upwhentheTRACKpinisrampingupto0.6V.  
Pulling the RUN pin below 1.1V forces the controller into  
its shutdown state, turning off both power MOSFETs and  
most of the internal control circuitry. At light load cur-  
rents, discontinuous conduction mode (DCM) operation  
can be enabled to achieve higher efficiency compared to  
continuous conduction mode (CCM) by setting the MODE  
pin to SGND. The TRACK/SS pin is used for power supply  
trackingandsoft-startprogramming.SeetheApplications  
Information section.  
With current mode control and internal feedback loop  
compensation, the LTM4644 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
Current mode control provides the flexibility of paralleling  
any of the separate regulator channels with accurate cur-  
rent sharing. With a built-in clock interleaving between  
each two regulator channels, the LTM4644 could easily  
Atemperaturediodeisincludedinsidethemoduletomoni-  
tor the temperature of the module. See the Applications  
Information section for details.  
4644fe  
9
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
The typical LTM4644 application circuit is shown in  
Figure 33. External component selection is primarily  
determined by the input voltage, the output voltage and  
the maximum load current. Refer to Table 7 for specific  
externalcapacitorrequirementsforaparticularapplication.  
For parallel operation of N channels, use the following  
equation can be used to solve for R . Tie the V  
FB(BOT)  
OUT  
and the FB and COMP pins together for each paralleled  
output with a single resistor to GND as determined by:  
60.4k  
N
V to V  
Step-Down Ratios  
IN  
OUT  
RFB(BOT)  
=
VOUT  
0.6  
1  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
down ratio that can be achieved for a given input voltage  
due to the minimum off-time and minimum on-time limits  
of each regulator. The minimum off-time limit imposes a  
maximum duty cycle which can be calculated as:  
OUTPUT VOLTAGE PROGRAMMING (LTM4644-1)  
ThePWM controllerhasaninternal0.6Vreferencevoltage.  
Adding two resistors R  
FB(BOT)  
from V  
to FB pin and  
FB(TOP)  
OUT  
D
MAX  
= 1 – t  
• f  
R
from FB pin to GND programs the output voltage:  
OFF(MIN) SW  
where t  
is the minimum off-time, 70ns typical for  
SW  
OFF(MIN)  
RFB(TOP)  
RFB(BOT)  
=
LTM4644, and f is the switching frequency. Conversely  
VOUT  
0.6  
theminimumon-timelimitimposesaminimumdutycycle  
of the converter which can be calculated as:  
–1  
For parallel operation of N Channels, only one set of  
and R is needed while tying the V , FB  
D
= t  
• f  
MIN  
ON(MIN) SW  
R
FB(TOP)  
FB(BOT)  
OUT  
where t  
is the minimum on-time, 40ns typical for  
and COMP pins from different channels together. See  
ON(MIN)  
LTM4644. In the rare cases where the minimum duty  
cycle is surpassed, the output voltage will still remain  
in regulation, but the switching frequency will decrease  
from its programmed value. Note that additional thermal  
derating may be applied. See the Thermal Considerations  
and Output Current Derating section in this data sheet.  
Figure 1 for example.  
ꢈꢐꢄꢂ  
ꢀꢌꢍꢄꢈꢉꢎ  
ꢀꢌꢂ  
ꢅ4644ꢆꢂ  
ꢀꢌꢍꢌꢈꢄꢎ  
ꢇꢈꢅꢉꢂ  
ꢈꢐꢄꢑ  
ꢀꢌꢑ  
Output Voltage Programming (LTM4644)  
ꢇꢈꢅꢉꢑ  
ꢈꢐꢄꢊ  
ꢀꢌꢊ  
ThePWM controllerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
ꢇꢈꢅꢉꢊ  
resistor connects each regulator channel from V  
pin  
4644 ꢀꢁꢂ  
OUT  
to FB pin. Adding a resistor R  
programs the output voltage:  
from FB pin to GND  
FB(BOT)  
Figure 1. LTM4644-1 Feedback Resistor  
for Paralleling Application  
60.4k  
LTM4644  
LTM4644-1  
RFB(BOT)  
=
VOUT  
Top Feedback Resistor  
from V -to-V  
Integrated  
60.4k 0.5ꢀ  
(one resistor per channel) Resistor  
External (to be added on  
PCB)  
1  
0.6  
OUT  
FB  
Application  
General  
Applications  
To Interface with  
Table 1. VFB Resistor Table vs Various Output Voltages  
(V) 0.6 1.0 1.2 1.5 1.8 2.5 3.3  
(k) Open 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
PMBus power system  
management supervisory  
ICs such as the LTC2975  
V
5.0  
OUT  
R
FB(BOT)  
4644fe  
10  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Input Decoupling Capacitors  
comparator may remain tripped for several cycles and  
force the top MOSFET to stay off for several cycles, thus  
skipping cycles. The inductor current does not reverse  
in this mode.  
The LTM4644 module should be connected to a low ac-  
impedance DC source. For each regulator channel, a 10µF  
input ceramic capacitor is recommended for RMS ripple  
current decoupling. A bulk input capacitor is only needed  
whentheinputsourceimpedanceiscompromisedbylong  
inductive leads, traces or not enough source capacitance.  
Thebulkcapacitorcanbeanelectrolyticaluminumcapaci-  
tor or polymer capacitor.  
Force Continuous Conduction Mode (CCM)  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous conduction  
modeoperationshouldbeused.Forcedcontinuousopera-  
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
tion can be enabled by tying the MODE pin to INTV . In  
CC  
this mode, inductor current is allowed to reverse during  
low output loads, the COMP voltage is in control of the  
current comparator threshold throughout, and the top  
MOSFETalwaysturnsonwitheachoscillatorpulse.During  
start-up, forcedcontinuousmodeisdisabledandinductor  
current is prevented from reversing until the LTM4644’s  
output voltage is in regulation.  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
η%  
whereηistheestimatedefficiencyofthepowermodule.  
Output Decoupling Capacitors  
Withanoptimizedhighfrequency,highbandwidthdesign,  
only single piece of low ESR output ceramic capacitor is  
required for each regulator channel to achieve low output  
voltagerippleandverygoodtransientresponse.Additional  
output filtering may be required by the system designer,  
if further reduction of output ripples or dynamic transient  
spikes is required. Table 7 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 2A load step tran-  
sient. Multiphase operation will reduce effective output  
ripple as a function of the number of phases. Application  
Note77discussesthisnoisereductionversusoutputripple  
current cancellation, but the output capacitance will be  
more a function of stability and transient response. The  
LTpowerCADDesignToolisavailabletodownloadonline  
for output ripple, stability and transient response analysis  
and calculating the output ripple reduction as the number  
of phases implemented increases by N times.  
Operating Frequency  
The operating frequency of the LTM4644 is optimized to  
achievethecompactpackagesizeandtheminimumoutput  
ripplevoltagewhilestillkeepinghighefficiency.Thedefault  
operating frequency is internally set to 1MHz. In most ap-  
plications, no additional frequency adjusting is required.  
If any operating frequency other than 1MHz is required  
by application, the µModule regulator can be externally  
synchronized to a clock from 700kHz to 1.3MHz.  
Frequency Synchronization and Clock In  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows all internal top MOSFET turn-on to  
be locked to the rising edge of the same external clock.  
The external clock frequency range must be within 30ꢀ  
around the 1MHz set frequency. A pulse detection circuit  
is used to detect a clock on the CLKIN pin to turn on the  
phase-locked loop. The pulse width of the clock has to  
be at least 400ns. The clock high level must be above 2V  
and clock low level below 0.3V. During the start-up of  
the regulator, the phase-locked loop function is disabled.  
Discontinuous Conduction Mode (DCM)  
Inapplicationswherelowoutputrippleandhighefficiency  
at intermediate current are desired, discontinuous con-  
duction mode (DCM) should be used by connecting the  
MODE pin to SGND. At light loads the internal current  
4644fe  
11  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Multichannel Parallel Operation  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used when all of the outputs are tied together  
to achieve a single high output current design.  
For loads that demand more than 4A of output current,  
the LTM4644 multiple regulator channels can be easily  
paralleled to provide more output current without increas-  
ing input and output voltage ripples. The LTM4644 has  
preset built-in phase shift between each two of the four  
regulator channels which is suitable to employ a 2+2, 3+1  
or 4 channels parallel operation. Table 2 gives the phase  
difference between regulator channels.  
The LTM4644 device is an inherently current mode con-  
trolled device, so parallel modules will have very good  
current sharing. This will balance the thermals on the  
design. Please tie the RUN, TRACK/SS, FB and COMP  
pins of each paralleling channel together. Figure 35 and  
Figure 36 shows an example of parallel operation and pin  
connection.  
Table 2. Phase Difference Between Regulator Channels  
CHANNEL  
CH1  
CH2  
CH3  
CH4  
Phase Difference  
180°  
90°  
180°  
Figure 2 shows a 2+2 and a 4-channels parallel concept  
schematic for clock phasing.  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 3 shows this graph.  
ꢄꢗꢁꢔ  
ꢄꢗꢁꢔ  
ꢈꢒꢄ  
ꢓꢁꢔꢕ  
ꢈꢒꢂ  
ꢓꢄꢗꢁꢔꢕ  
ꢈꢒꢘ  
ꢓꢁꢔꢕ  
ꢈꢒ4  
ꢓꢄꢗꢁꢔꢕ  
ꢌꢏꢅꢄ  
ꢌꢏꢅꢂ  
ꢌꢏꢅꢘ  
ꢌꢏꢅ4  
Soft-Start and Output Voltage Tracking  
ꢍ4644  
The TRACK/SS pin provides a means to either soft-start  
of each regulator channel or track it to a different power  
supply. A capacitor on the TRACK/SS pin will program the  
ramp rate of the output voltage. An internal 2.5µA current  
source will charge up the external soft-start capacitor  
ꢗꢇ  
ꢗꢇ  
towards the INTV voltage. When the TRACK/SS voltage  
CC  
is below 0.6V, it will take over the internal 0.6V reference  
voltage to control the output voltage. The total soft-start  
time can be calculated as:  
ꢄꢗꢁꢔ  
ꢚꢁꢔ  
ꢄꢗꢁꢔ  
ꢈꢒꢄ  
ꢓꢁꢔꢕ  
ꢈꢒꢂ  
ꢓꢄꢗꢁꢔꢕ  
ꢈꢒꢘ  
ꢓꢂꢙꢁꢔꢕ  
ꢈꢒ4  
ꢓꢚꢁꢔꢕ  
CSS  
t
SS = 0.6 •  
2.5µA  
ꢌꢏꢅꢄ  
ꢌꢏꢅꢂ  
ꢌꢏꢅꢘ  
ꢌꢏꢅ4  
where C is the capacitance on the TRACK/SS pin. Cur-  
rent foldback and forced continuous mode are disabled  
during the soft-start process.  
SS  
ꢍ4644  
ꢄ6ꢇ  
4644 ꢀꢁꢂ  
Figure 2. 2+2 and 4 Channels Parallel Concept Schematic  
4644fe  
12  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
ꢎꢏ6ꢎ  
ꢐꢝꢛꢞꢜꢚꢆ  
ꢒꢝꢛꢞꢜꢚꢆ  
4ꢝꢛꢞꢜꢚꢆ  
ꢎꢏꢑꢑ  
ꢎꢏꢑꢎ  
ꢎꢏ4ꢑ  
ꢎꢏ4ꢎ  
ꢎꢏꢓꢑ  
ꢎꢏꢓꢎ  
ꢎꢏꢒꢑ  
ꢎꢏꢒꢎ  
ꢎꢏꢐꢑ  
ꢎꢏꢐꢎ  
ꢎꢏꢎꢑ  
ꢎꢏꢐ ꢎꢏꢐꢑ ꢎꢏꢒ ꢎꢏꢒꢑ ꢎꢏꢓ ꢎꢏꢓꢑ ꢎꢏ4 ꢎꢏ4ꢑ ꢎꢏꢑ ꢎꢏꢑꢑ ꢎꢏ6 ꢎꢏ6ꢑ ꢎꢏꢔ ꢎꢏꢔꢑ ꢎꢏꢕ ꢎꢏꢕꢑ ꢎꢏꢖ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈ ꢊꢈ  
ꢉꢁꢂ ꢋꢌ  
4644 ꢗꢎꢓ  
Figure 3. Normalized RMS Ripple Current for Single Phase or Polyphase Applications  
Outputvoltagetrackingcanalsobeprogrammedexternally  
Where the 60.4k is the integrated top feedback resistor  
and the R is the external bottom feedback resistor  
TR(TOP) TR(BOT)  
divider on the TRACK/SS pin of the slave regulator, as  
shown in Figure 5.  
using the TRACK/SS pin of each regulator channel. The  
output can be tracked up and down with another regula-  
tor. Figure 4 and Figure 5 show an example waveform  
and schematic of a ratiometric tracking where the slave  
FB(SL)  
of the LTM4644. The R  
/R  
is the resistor  
regulator’s (V  
, V  
and V  
) output slew rate is  
OUT2 OUT3  
proportional to the master’s (V  
OUT4  
Following the upper equation, the master’s output slew  
rate (MR) and the slave’s output slew rate (SR) in volts/  
time is determined by:  
).  
OUT1  
Since the slave regulator’s TRACK/SS is connected to  
the master’s output through a R /R resistor  
TR(TOP) TR(BOT)  
RFB(SL)  
divider and its voltage used to regulate the slave output  
voltage when TRACK/SS voltage is below 0.6V, the slave  
outputvoltageandthemasteroutputvoltageshouldsatisfy  
the following equation during the start-up.  
R
FB(SL) +60.4k  
RTR(BOT)  
MR  
SR  
=
R
TR(TOP) +RTR(BOT)  
RFB(SL)  
VOUT(SL)  
R
FB(SL) +60.4k  
RTR(BOT)  
= VOUT(MA)  
R
TR(TOP) +RTR(BOT)  
4644fe  
13  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
The TRACK pins will have the 2.5µA current source on  
when a resistive divider is used to implement tracking on  
that specific channel. This will impose an offset on the  
TRACK pin input. Smaller value resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 60.4k is  
used then a 6.04k can be used to reduce the TRACK pin  
offset to a negligible value.  
ꢍ ꢑꢏꢑꢉ  
ꢍ ꢐꢏꢓꢉ  
ꢍ ꢎꢏꢒꢉ  
ꢍ ꢎꢏꢐꢉ  
ꢆꢇꢂꢎ  
ꢆꢇꢂꢐ  
ꢆꢇꢂꢑ  
ꢆꢇꢂ4  
The coincident output tracking can be recognized as a  
special ratiometric output tracking which the master’s  
output slew rate (MR) is the same as the slave’s output  
slew rate (SR), as waveform shown in Figure 6.  
4644 ꢀꢁ4  
ꢂꢃꢄꢅ  
Figure 4. Output Ratiometric Tracking Waveform  
From the equation we could easily find out that, in the  
coincident tracking, the slave regulator’s TRACK/SS pin  
resistor divider is always the same as its output voltage  
divider.  
Forexample,V  
=3.3V,MR=3.3V/24msandV  
OUT(SL)  
OUT(MA)  
= 1.2V, SR = 1.2V/24ms as V  
and V  
shown in  
OUT1  
OUT4  
Figure 5. From the equation, we could solve out that  
R
= 60.4k and R  
= 13.3k is a good com-  
TR4(TOP)  
TR4(BOT)  
RFB(SL)  
RTR(BOT)  
bination. Follow the same equation, we can get the same  
=
R
/R  
resistor divider value for V  
and  
TR(TOP) TR(BOT)  
OUT2  
R
FB(SL) +60.4k  
R
TR(TOP) +RTR(BOT)  
V
.
OUT3  
ꢄꢅ  
4ꢃ ꢊꢍ ꢆ4ꢃ  
ꢋꢖꢆ  
ꢋꢖꢝ  
ꢋꢖꢙ  
ꢋꢖ4  
6ꢁꢗ4ꢚ  
6ꢁꢗ4ꢚ  
6ꢁꢗ4ꢚ  
6ꢁꢗ4ꢚ  
4644 ꢀꢁꢂ  
ꢇꢇ  
ꢀꢐꢛꢇꢟꢜ4  
6ꢁꢗ4ꢚ  
ꢀꢐꢛꢇꢟꢜꢝ  
ꢀꢐꢛꢇꢟꢜꢙ  
ꢁꢗꢆꢘꢀ  
ꢆꢠꢗꢆꢚ  
ꢙꢁꢗꢆꢚ  
ꢀꢐꢆ  
ꢆꢙꢗꢙꢚ  
ꢊꢈꢛꢊꢍꢑꢜꢝ  
6ꢁꢗ4ꢚ  
ꢊꢈꢛꢐꢍꢊꢜꢝ  
ꢆꢙꢗꢙꢚ  
ꢊꢈꢛꢐꢍꢊꢜꢙ  
ꢆꢙꢗꢙꢚ  
ꢊꢈꢛꢊꢍꢑꢜꢙ  
6ꢁꢗ4ꢚ  
ꢊꢈꢛꢊꢍꢑꢜ4  
6ꢁꢗ4ꢚ  
ꢊꢈꢛꢐꢍꢊꢜ4  
ꢆꢙꢗꢙꢚ  
Figure 5. Output Ratiometric Tracking Schematic  
4644fe  
14  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
For example, R  
= 60.4k and R  
= 60.4k is  
reference only, while still keeping the power MOSFETs  
off. Further increasing the RUN pin voltage above 1.2V  
will turn on the entire regulator channel.  
TR4(TOP)  
TR4(BOT)  
a good combination for coincident tracking for V  
OUT(MA)  
= 3.3V and V  
= 1.2V application.  
OUT(SL)  
Pre-Biased Output Start-Up  
ꢍ ꢑꢏꢑꢉ  
ꢍ ꢐꢏꢓꢉ  
ꢍ ꢎꢏꢒꢉ  
ꢍ ꢎꢏꢐꢉ  
ꢆꢇꢂꢎ  
ꢆꢇꢂꢐ  
ꢆꢇꢂꢑ  
ꢆꢇꢂ4  
There may be situations that require the power supply to  
start up with some charge on the output capacitors. The  
LTM4644 can safely power up into a pre-biased output  
without discharging it.  
TheLTM4644accomplishesthisbyforcingdiscontinuous  
mode (DCM) operation until the TRACK/SS pin voltage  
reaches 0.6V reference voltage. This will prevent the BG  
from turning on during the pre-biased output start-up  
which would discharge the output.  
4644 ꢀꢁ6  
ꢂꢃꢄꢅ  
Figure 6. Output Coincident Tracking Waveform  
Do not pre-bias LTM4644 with an output voltage higher  
than INTV (3.3V).  
CC  
Power Good  
Overtemperature Protection  
The PGOOD pins are open drain pins that can be used  
to monitor each valid output voltage regulation. This pin  
monitors a 10ꢀ window around the regulation point. A  
resistor can be pulled up to a particular supply voltage for  
monitoring. To prevent unwanted PGOOD glitches dur-  
Theinternalovertemperatureprotectionmonitorsthejunc-  
tiontemperatureofthemodule.Ifthejunctiontemperature  
reachesapproximately160°C,bothpowerswitcheswillbe  
turned off until the temperature drops about 15°C cooler.  
ing transients or dynamic V  
changes, the LTM4644’s  
OUT  
Low Input Application  
PGOOD falling edge includes a blanking delay of approxi-  
mately 52 switching cycles.  
The LTM4644 module has a separate SV pin for each  
IN  
regulator channel which makes it compatible with opera-  
Stability Compensation  
tion from an input voltage as low as 2.375V. The SV pin  
IN  
The LTM4644 module internal compensation loop of each  
regulator channel is designed and optimized for low ESR  
ceramic output capacitors only application. Table 6 is  
provided for most application requirements. In case of  
bulk output capacitors is required for output ripples or  
dynamic transient spike reduction, an additional 10pF to  
is the signal input of the regulator control circuitry while  
the V pin is the power input which directly connected  
IN  
to the drain of the top MOSFET. In most application with  
input voltage ranges from 4V to 14V, connect the SV  
IN  
pin directly to the V pin of each regulator channel. An  
IN  
optional filter, consisting of a resistor (1Ω to 10Ω) be-  
tween SV and V ground, can be placed for additional  
15pF phase boost capacitor is required between the V  
OUT  
IN  
IN  
and FB pins. The LTpowerCAD Design Tool is available to  
noise immunity. This filter is not necessary in most cases  
if good PCB layout practices are followed (see Figure 32).  
In a low input voltage (2.375V to 4V) application, or to  
reducepowerdissipationbytheinternalbiasLDO,connect  
download for control loop optimization.  
RUN Enable  
SV to an external voltage higher than 4V with a 0.1µF  
IN  
Pulling the RUN pin of each regulator channel to ground  
forcestheregulatorintoitsshutdownstate,turningoffboth  
power MOSFETs and most of its internal control circuitry.  
Bringing the RUN pin above 0.7V turns on the internal  
local bypass capacitor. Figure 34 shows an example of a  
low input voltage application. Please note, SV voltage  
IN  
cannot go below V  
voltage.  
OUT  
4644fe  
15  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Temperature Monitoring  
Solving for T, T = –(V – V )/(dV /dT) provides the  
G0 D D  
temperature.  
A diode connected PNP transistor is used for the TEMP  
monitor function by monitoring its voltage over tempera-  
ture. The temperature dependence of this diode voltage  
can be understood in the equation:  
1st Example: Figure 7 for 27°C, or 300K the diode  
voltage is 0.598V, thus, 300K = –(1200mV – 598mV)/  
–2.0 mV/K)  
⎛ ⎞  
ID  
2nd Example: Figure 7 for 75°C, or 350K the diode  
voltage is 0.50V, thus, 350K = –(1200mV – 500mV)/  
–2.0mV/K)  
V =nV ln  
⎜ ⎟  
D
T
I
⎝ ⎠  
S
where V is the thermal voltage (kT/q), and n, the ideality  
Converting the Kelvin scale to Celsius is simply taking the  
Kelvin temp and subtracting 273 from it.  
T
factor, is 1 for the diode connected PNP transistor be-  
ing used in the LTM4644. I is expressed by the typical  
S
A typical forward voltage is given in the electrical charac-  
teristics section of the data sheet, and Figure 7 is the plot  
of this forward voltage. Measure this forward voltage at  
27°C to establish a reference point. Then using the above  
expression while measuring the forward voltage over  
temperature will provide a general temperature monitor.  
empirical equation:  
VG0  
VT  
I =I exp  
0
S
where I is a process and geometry dependent current, (I  
0
0
Connect a resistor between TEMP and V to set the cur-  
IN  
is typically around 20k orders of magnitude larger than I  
S
rent to 100µA. See Figure 35 for an example.  
at room temperature) and V is the band gap voltage of  
G0  
1.2V extrapolated to absolute zero or –273°C.  
ꢍꢏꢗ  
ꢛ ꢙꢍꢍꢜꢅ  
If we take the I equation and substitute into the V equa-  
S
D
ꢍꢏꢘ  
ꢍꢏ6  
ꢍꢏꢌ  
ꢍꢏ4  
ꢍꢏꢐ  
tion, then we get:  
⎛ ⎞  
kT  
q
I0  
kT  
q
V = V –  
ln  
, V =  
⎜ ⎟  
D
T
G0  
I
⎝ ⎠  
D
The expression shows that the diode voltage decreases  
(linearly if I were constant) with increasing temperature  
0
and constant diode current. Figure 6 shows a plot of V  
D
ꢋꢌꢍ ꢋꢎꢌ  
ꢎꢌ  
ꢌꢍ  
ꢘꢌ ꢙꢍꢍ ꢙꢎꢌ  
vs Temperature over the operating temperature range of  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
46ꢐꢘ ꢚꢍꢘ  
the LTM4644.  
Figure 7. Diode Voltage VD vs Temperature T(°C)  
If we take this equation and differentiate it with respect to  
temperature T, then:  
Thermal Considerations and Output Current Derating  
dV  
D = –  
dT  
VG0 VD  
T
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD 51-12 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formed on a µModule package mounted to a hardware  
test board: defined by JESD 51-9 (“Test Boards for Area  
This dV /dT term is the temperature coefficient equal to  
about –2mV/K or –2mV/°C. The equation is simplified for  
the first order derivation.  
D
4644fe  
16  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
Array Surface Mount Package Thermal Measurements”).  
The motivation for providing these thermal coefficients in  
foundinJESD51-12(“GuidelinesforReportingandUsing  
Electronic Package Thermal Information”).  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in this data sheet can be used  
in a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
4. θ , the thermal resistance from junction to the printed  
JB  
circuitboard,isthejunction-to-boardthermalresistance  
wherealmostalloftheheatflowsthroughthebottomof  
the µModule regulator and into the board, and is really  
the sum of the θ  
and the thermal resistance of  
JCbottom  
the bottom of the part through the solder joints and  
through a portion of the board. The board temperature  
is measured a specified distance from the package.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 8; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the µModule package.  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD 51-12; these coef-  
ficients are quoted or paraphrased below:  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaμModuleregulator. Forexample,  
in normal board-mounted applications, never does 100ꢀ  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
1. θ , the thermal resistance from junction to ambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move.Thisvalueisdeterminedwiththepartmountedto  
a JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
for θ  
and θ , respectively. In practice, power  
JCbottom  
JCtop  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottom of the page. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Within the LTM4644, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also, not ignoring practical realities—an approach  
has been taken using FEA software modeling along with  
laboratory testing in a controlled-environment chamber  
to reasonably define and correlate the thermal resistance  
valuessuppliedinthisdatasheet:(1)Initially,FEAsoftware  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
4644fe  
17  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
is used to accurately build the mechanical geometry of  
the LTM4644 and the specified PCB with all of the cor-  
rect material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD 51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the LTM4644 with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamberwhileoperatingthedeviceatthesamepowerloss  
as that which was simulated. An outcome of this process  
and due diligence yields the set of derating curves shown  
in this data sheet.  
for correlating the thermal resistance. Thermal models  
are derived from several temperature measurements in a  
controlled temperature chamber along with thermal mod-  
eling analysis. The junction temperatures are monitored  
while ambient temperature is increased with and without  
airflow.Thepowerlossincreasewithambienttemperature  
change is factored into the derating curves. The junctions  
are maintained at 120°C maximum while lowering output  
currentorpowerwithincreasingambienttemperature.The  
decreasedoutputcurrentwilldecreasetheinternalmodule  
loss as ambient temperature is increased. The monitored  
junction temperature of 120°C minus the ambient operat-  
ing temperature specifies how much module temperature  
rise can be allowed. As an example in Figure 16 the load  
current is derated to 9.6A at ~90°C with 400LFM of airflow  
and no heat sink and the power loss for the 12V to 1.0V  
at 9.5A output is about 3.2W. The 3.2W loss is calculated  
with 4 times the 0.6W room temperature loss from the  
12V to 1.0V power loss curve each channel at 2.4A, and  
the 1.35 multiplying factor at 120°C junction. If the 90°C  
ambient temperature is subtracted from the 120°C junc-  
tion temperature, then the difference of 30°C divided by  
The 1V to 5V power loss curves in Figures 9 to 15 can  
be used in coordination with the load current derating  
curves in Figures 16 to 29 for calculating an approximate  
θ thermal resistance for the LTM4644 with various heat  
JA  
3.2W equals ~9.4°C/W θ thermal resistance. Table 3  
JA  
sinking and airflow conditions. The power loss curves  
are taken at room temperature, and are increased with a  
multiplicativefactoraccordingtothejunctiontemperature.  
This approximate factor is 1.35 for 120°C. The derating  
curves are plotted with the output current starting at 16A  
and the ambient temperature at 30°C. These are chosen  
to include the lower and higher output voltage ranges  
specifies a 10°C/W value which is very close. Tables 3 to  
6 provide equivalent thermal resistances for the different  
outputs with and without airflow and heat sinking. The  
derived thermal resistances in Tables 3 to 6 for the various  
conditions can be multiplied by the calculated power loss  
asafunctionofambienttemperaturetoderivetemperature  
ꢍꢇꢎꢌꢏꢋꢅꢎꢐꢏꢅꢐꢑꢄꢗꢋꢉꢎꢏ ꢏꢘꢉꢖꢄꢑꢈ ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ ꢌꢅꢄꢔꢅꢎꢉꢎꢏꢒ  
ꢍꢇꢎꢌꢏꢋꢅꢎꢐꢏꢅꢐꢌꢑꢒꢉ ꢓꢏꢅꢔꢕ  
ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
ꢌꢑꢒꢉ ꢓꢏꢅꢔꢕꢐꢏꢅꢐꢑꢄꢗꢋꢉꢎꢏ  
ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
ꢍꢇꢎꢌꢏꢋꢅꢎꢐꢏꢅꢐꢗꢅꢑꢖꢆ ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
ꢍꢇꢎꢌꢏꢋꢅꢎ  
ꢑꢄꢗꢋꢉꢎꢏ  
ꢍꢇꢎꢌꢏꢋꢅꢎꢐꢏꢅꢐꢌꢑꢒꢉ  
ꢓꢗꢅꢏꢏꢅꢄꢕ ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
ꢌꢑꢒꢉ ꢓꢗꢅꢏꢏꢅꢄꢕꢐꢏꢅꢐꢗꢅꢑꢖꢆ  
ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
ꢗꢅꢑꢖꢆꢐꢏꢅꢐꢑꢄꢗꢋꢉꢎꢏ  
ꢖꢉꢒꢋꢒꢏꢑꢎꢌꢉ  
4644 ꢀꢁꢂ  
ꢃꢄꢅꢆꢇꢈꢉ ꢆꢉꢊꢋꢌꢉ  
Figure 8. Graphical Representation of JESD 51-12 Thermal Coefficients  
4644fe  
18  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
rise above ambient, thus maximum junction temperature.  
Room temperature power loss can be derived from the ef-  
ficiencycurvesintheTypicalPerformanceCharacteristics  
section and adjusted with the above junction temperature  
multiplicative factor. The printed circuit board is a 1.6mm  
thick four layer board with two ounce copper for the two  
outerlayersandoneouncecopperforthetwoinnerlayers.  
The PCB dimensions are 95mm × 76mm.  
For example, to determine the maximum ambient tem-  
perature when V  
= 2.5V at 0.6A, V  
= 3.3V at 3A,  
OUT1  
OUT2  
V
= 1.8V at 1A, V  
= 1.2V at 3A, without a heat sink  
OUT3  
OUT4  
and 400LFM airflow, simply add up the total power loss  
for each channel read from Figure 9 to Figure 15 which in  
this example equals 2.5W, then multiply by the 1.35 coef-  
ficient for 120°C junction temperature and compare the  
total power loss number, 3.4W with Figure 30. Figure 30  
indicates with a 3.4W total power loss, the maximum am-  
bient temperature for this particular application is around  
86°C. For reference, the actual thermal derating test in the  
chamber resulted in a maximum ambient temperature  
of 86.3°C, very close to the calculated value. Also from  
Figure 30, it is easy to determine with a 3.4W total power  
loss, the maximum ambient temperature is around 77°C  
with no airflow and 81°C with 200LFM airflow.  
The 16A represents all four channels in parallel at 4A each.  
The four parallel channels have their currents reduced at  
the same rate to develop an equivalent θ circuit evalu-  
JA  
ation with thermal couples or IR camera used to validate  
the thermal resistance values.  
Maximum Operating Ambient Temperature  
Figures 30 and 31 display the Maximum Power Loss  
Allowance Curves vs ambient temperature with various  
heatsinkingandairflowconditions. Thisdatawasderived  
from the thermal impedance generated by various ther-  
mal derating examinations with the junction temperature  
measured at 120°C. This maximum power loss limitation  
serves as a guideline when designing multiple output  
rails with different voltages and currents by calculating  
the total power loss.  
Safety Considerations  
The LTM4644 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support thermal  
shutdown and overcurrent protection.  
4644fe  
19  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
ꢎꢍꢒ  
ꢎꢍꢒ  
ꢎꢍ4  
ꢎꢍꢔ  
ꢎꢍꢕ  
ꢎꢍꢎ  
ꢎꢍꢌ  
ꢌꢍꢗ  
ꢌꢍꢘ  
ꢌꢍꢖ  
ꢌꢍ6  
ꢌꢍꢒ  
ꢌꢍ4  
ꢌꢍꢔ  
ꢌꢍꢕ  
ꢌꢍꢎ  
ꢎꢖꢙ  
ꢚꢈ  
ꢎꢕꢙ  
ꢚꢈ  
ꢎꢍ4  
ꢎꢍꢕ  
ꢎꢍꢖ  
ꢎꢍꢎ  
ꢎꢍꢌ  
ꢌꢍꢔ  
ꢌꢍꢘ  
ꢌꢍꢗ  
ꢌꢍ6  
ꢌꢍꢒ  
ꢌꢍ4  
ꢌꢍꢕ  
ꢌꢍꢖ  
ꢌꢍꢎ  
ꢚꢈ  
ꢒꢙ  
ꢒꢙ  
ꢚꢈ  
ꢖꢍꢒ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢕꢍꢒ  
4
ꢕꢍꢒ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢔꢍꢒ  
4
ꢌꢍꢒ  
ꢎꢍꢒ  
ꢌꢍꢒ  
ꢎꢍꢒ  
464ꢎ ꢓꢌꢔ  
Figure 9. Power Loss at 1.0V  
Output, (Each Channel, 25°C)  
Figure 10. Power Loss at 1.2V 464ꢎ ꢓꢎꢌ  
Output, (Each Channel, 25°C)  
ꢎꢍꢒ  
ꢎꢍ4  
ꢎꢍꢕ  
ꢎꢍꢔ  
ꢎꢍꢎ  
ꢎꢍꢌ  
ꢌꢍꢗ  
ꢌꢍꢘ  
ꢌꢍꢖ  
ꢌꢍ6  
ꢌꢍꢒ  
ꢌꢍ4  
ꢌꢍꢕ  
ꢌꢍꢔ  
ꢌꢍꢎ  
ꢎꢍꢒ  
ꢎꢍ4  
ꢎꢍꢔ  
ꢎꢍꢕ  
ꢎꢍꢎ  
ꢎꢍꢌ  
ꢌꢍꢗ  
ꢌꢍꢘ  
ꢌꢍꢖ  
ꢌꢍ6  
ꢌꢍꢒ  
ꢌꢍ4  
ꢌꢍꢔ  
ꢌꢍꢕ  
ꢌꢍꢎ  
ꢎꢔꢙ  
ꢚꢈ  
ꢎꢕꢙ  
ꢚꢈ  
ꢒꢙ  
ꢚꢈ  
ꢒꢙ  
ꢚꢈ  
ꢔꢍꢒ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢕꢍꢒ  
4
ꢕꢍꢒ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢔꢍꢒ  
4
ꢌꢍꢒ  
ꢎꢍꢒ  
ꢌꢍꢒ  
ꢎꢍꢒ  
464ꢎ ꢓꢎꢔ  
464ꢎ ꢓꢎꢎ  
Figure 12. Power Loss at 1.8V  
Output, (Each Channel, 25°C)  
Figure 11. Power Loss at 1.5V  
Output, (Each Channel, 25°C)  
ꢑꢐ6  
ꢑꢐ4  
ꢑꢐꢔ  
ꢑꢐꢌ  
ꢌꢐꢕ  
ꢌꢐ6  
ꢌꢐ4  
ꢌꢐꢔ  
ꢑꢐꢒ  
ꢑꢐ6  
ꢑꢐ4  
ꢑꢐꢔ  
ꢑꢐꢌ  
ꢌꢐꢒ  
ꢌꢐ6  
ꢌꢐ4  
ꢌꢐꢔ  
ꢑꢔꢗ  
ꢘꢈ  
ꢑꢔꢗ  
ꢘꢈ  
ꢘꢈ  
ꢖꢗ  
ꢖꢗ  
ꢘꢈ  
ꢔꢐꢖ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢓꢐꢖ  
4
ꢔꢐꢖ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢕꢐꢖ  
4
ꢌꢐꢖ  
ꢑꢐꢖ  
ꢌꢐꢖ  
ꢑꢐꢖ  
464ꢑ ꢒꢑꢓ  
464ꢑ ꢓꢑ4  
Figure 13. Power Loss at 2.5V  
Output, (Each Channel, 25°C)  
Figure 14.Power Loss at 3.3V  
Output, (Each Channel, 25°C)  
4644fe  
20  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
ꢑꢐꢒ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢑꢕꢗ  
ꢘꢈ  
ꢑꢐ6  
ꢑꢐ4  
ꢑꢐꢕ  
ꢑꢐꢌ  
ꢌꢐꢒ  
ꢌꢐ6  
ꢌꢐ4  
ꢌꢐꢕ  
6
4
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢕꢐꢔ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢖꢐꢔ  
4
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢌꢐꢔ  
ꢑꢐꢔ  
464ꢑ ꢓꢑꢔ  
464ꢐ ꢓꢐ6  
Figure 15. Power Loss at 5V  
Output, (Each Channel, 25°C)  
Figure 16. 5VIN to 1.0VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
4
4
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢔꢏ ꢑꢏ ꢖꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢕꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢐꢔ  
464ꢐ ꢓꢐꢑ  
Figure 17. 12VIN to 1.0VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
Figure 18. 5VIN to 1.0VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
4
4
ꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢔꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢕꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢐꢔ  
464ꢐ ꢓꢒꢏ  
Figure 19. 12VIN to 1.0VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
Figure 20. 5VIN to 1.5VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
4644fe  
21  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
4
4
ꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢒꢐ  
464ꢐ ꢓꢒꢒ  
Figure 21. 12VIN to 1.5VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
Figure 22. 5VIN to 1.5VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
4
4
ꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢒꢎ  
464ꢐ ꢓꢒ4  
Figure 23. 12VIN to 1.5VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
Figure 24. 5VIN to 3.3VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
4
4
ꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢒꢔ  
464ꢐ ꢓꢒ6  
Figure 25. 12VIN to 3.3VOUT  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
Figure 26. 5VIN to 3.3VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
4644fe  
22  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
ꢐꢑ  
ꢐ6  
ꢐ4  
ꢐꢒ  
ꢐꢏ  
6
6
6
4
4
4
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢏꢗꢓꢁ  
ꢒꢏꢏꢗꢓꢁ  
4ꢏꢏꢗꢓꢁ  
ꢎꢏ  
6ꢏ ꢔꢏ ꢑꢏ ꢖꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢕꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢕꢏ ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢔꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢖꢏ ꢑꢏ ꢔꢏ  
ꢐꢏꢏ ꢐꢐꢏ ꢐꢒꢏ  
4ꢏ ꢕꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
464ꢐ ꢓꢒꢔ  
464ꢐ ꢓꢒꢑ  
464ꢐ ꢓꢒꢔ  
Figure 27. 12VIN to 3.3VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
ꢔꢏ  
Figure 28. 12VIN to 5VOUT  
Figure 29. 12VIN to 5VOUT  
Derating Curve 4-Channel  
Paralleled, BGA Heat Sink  
Derating Curve 4-Channel  
Paralleled, No Heat Sink  
ꢔꢕ  
ꢔꢔ  
ꢔꢏ  
6
4
6
4
ꢏꢒꢖꢁ  
ꢏꢒꢖꢁ  
ꢕꢏꢏꢒꢖꢁ  
4ꢏꢏꢒꢖꢁ  
ꢗꢏꢏꢒꢖꢁ  
4ꢏꢏꢒꢖꢁ  
ꢎꢏ  
6ꢏ ꢙꢏ ꢘꢏ ꢕꢏ ꢔꢏꢏ ꢔꢔꢏ ꢔꢗꢏ  
4ꢏ ꢚꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢎꢏ  
6ꢏ ꢚꢏ ꢗꢏ ꢙꢏ ꢔꢏꢏ ꢔꢔꢏ ꢔꢕꢏ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4ꢏ ꢘꢏ  
464ꢔ ꢖꢎꢏ  
464ꢔ ꢖꢎꢔ  
Figure 30. Power Loss Allowance  
vs. Ambient Temperature No Heat  
Sink  
Figure 31. Power Loss Allowance  
vs. Ambient Temperature BGA  
Heat Sink  
4644fe  
23  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Table 3. 1.0V Output  
DERATING CURVE  
Figures 16, 17  
Figures 16, 17  
Figures 16, 17  
Figures 18, 19  
Figures 18, 19  
Figures 18, 19  
V
(V)  
POWER LOSS CURVE  
AIR FLOW (LFM)  
HEAT SINK  
None  
Θ
Θ
Θ
Θ
(°C/W)  
IN  
JA  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
Figure 9  
0
12.5  
11  
10  
11  
9
Figure 9  
200  
400  
0
None  
Figure 9  
None  
Figure 9  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 9  
200  
400  
Figure 9  
8
Table 4. 1.5V Output  
DERATING CURVE  
Figures 20, 21  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 11  
AIR FLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
JA  
5, 12  
0
12.5  
11  
10  
11  
9
Figures 20, 21  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
Figure 11  
200  
400  
0
None  
Figures 20, 21  
Figure 11  
None  
Figures 22, 23  
Figure 11  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 22, 23  
Figure 11  
200  
400  
Figures 22, 23  
Figure 11  
8
Table 5. 3.3V Output  
DERATING CURVE  
Figures 24, 25  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 14  
AIR FLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
JA  
5, 12  
0
12.5  
11  
10  
11  
9
Figures 24, 25  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
Figure 14  
200  
400  
0
None  
Figures 24, 25  
Figure 14  
None  
Figures 26, 27  
Figure 14  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 26, 27  
Figure 14  
200  
400  
Figures 26, 27  
Figure 14  
8
Table 6. 5V Output  
DERATING CURVE  
Figures 26, 27  
Figures 26, 27  
Figures 26, 27  
Figures 28, 29  
Figures 28, 29  
Figures 28, 29  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 15  
AIR FLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
JA  
12  
0
12.5  
11  
10  
11  
9
12  
12  
12  
12  
12  
Figure 15  
200  
400  
0
None  
Figure 15  
None  
Figure 15  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 15  
200  
400  
Figure 15  
8
4644fe  
24  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Table 7  
C
PART NUMBER  
VALUE  
C
PART NUMBER  
VALUE  
C
PART NUMBER VALUE  
Sanyo 4TPE100MZB 4V 100µF  
IN  
OUT1  
OUT2  
Murata  
GRM21BR61C106KE15L 10µF, 16V,  
0805, X5R  
Murata  
GRM21BR60J476ME15 47µF, 6.3V,  
0805, X5R  
Taiyo Yuden EMK212BJ106KG-T  
10µF, 16V,  
0805, X5R  
Taiyo Yuden JMK212BJ476MG-T  
47µF, 6.3V,  
0805, X5R  
Murata  
GRM31CR61C226ME15L 22µF, 16V,  
1206, X5R  
Taiyo Yuden EMK316BJ226ML-T  
22µF, 16V,  
1206, X5R  
C
C
C
OUT2  
P-P  
DROOP DERIVATION RECOVERY  
LOAD  
STEP  
(A)  
LOAD STEP  
SLEW RATE  
(A/µs)  
IN  
OUT1  
(CERAMIC)  
(µF)  
C
(CERAMIC) (BULK)  
C
FF  
V
R
FB  
IN  
IN  
V
(V)  
(BULK)  
(µF)  
(µF)  
(pF)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
(V)  
(mv)  
(mV)  
TIME (µs)  
(kΩ)  
90.9  
90.9  
90.9  
90.9  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
OUT  
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
47  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5
72  
40  
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
5
60  
40  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
47  
5
127  
90  
40  
5
40  
1.2  
5
76  
40  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
5
5
65  
40  
5
145  
103  
80  
40  
5
40  
5
40  
5
70  
40  
5
161  
115  
95  
40  
5
40  
5
40  
5
80  
40  
5
177  
128  
125  
100  
225  
161  
155  
122  
285  
198  
220  
420  
40  
5
40  
5
40  
5
50  
5
40  
5
50  
5
40  
5
60  
5
40  
10  
10  
10  
5
60  
5
40  
5
5
40  
4644fe  
25  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
APPLICATIONS INFORMATION  
Layout Checklist/Example  
• To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
The high integration of LTM4644 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
• Do not put via directly on the pad, unless they are  
capped or plated over.  
• Use large PCB copper areas for high current paths,  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
including V to V , GND, V  
to V  
. It helps to  
IN1  
IN4  
OUT1  
OUT4  
minimize the PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
• For parallel modules, tie the V , V , and COMP pins  
OUT FB  
tors next to the V , GND and V  
pins to minimize  
OUT  
together. Use an internal layer to closely connect these  
pinstogether. TheTRACK/SSpincanbetiedacommon  
capacitor for regulator soft-start.  
IN  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
• Bring out test points on the signal pins for monitoring.  
Figure32givesagoodexampleoftherecommendedlayout.  
COUT  
COUT  
COUT  
CIN  
Figure 32. Recommended PCB Layout  
4644fe  
26  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
ꢉꢑꢒꢃꢄ  
ꢉꢑꢒꢋꢇꢈ  
4ꢂ ꢞꢟ ꢁ4ꢂ  
ꢏꢛꢏꢂꢙ4ꢘ  
ꢃꢄꢁ  
ꢋꢇꢈꢁ  
ꢀꢗꢁ  
ꢁꢓꢔꢀ  
ꢕ4  
ꢁ6ꢂ  
ꢁꢎꢓ6  
4ꢚꢔꢀ  
6ꢛꢏꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄꢁ  
ꢆꢇꢄꢁ  
ꢃꢄꢈꢂ  
ꢊ4644  
ꢉꢋꢊꢖꢁ  
ꢈꢆꢘꢉꢒꢙꢅꢅꢁ  
ꢖꢐꢋꢋꢌꢁ  
ꢁꢏꢛꢏꢠ  
ꢉꢉꢁ  
ꢓꢛꢁꢔꢀ  
ꢊꢋꢌꢍꢁ  
ꢎꢛꢝꢂꢙ4ꢘ  
ꢃꢄꢎ  
ꢋꢇꢈꢎ  
ꢀꢗꢎ  
4ꢚꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄꢎ  
ꢆꢇꢄꢎ  
ꢃꢄꢈꢂ  
ꢉꢋꢊꢖꢎ  
ꢈꢆꢘꢉꢒꢙꢅꢅꢎ  
ꢖꢐꢋꢋꢌꢎ  
ꢁꢡꢛꢁꢠ  
ꢉꢉꢎ  
6ꢓꢛ4ꢠ  
ꢁꢏꢛꢏꢠ  
ꢊꢋꢌꢍꢎ  
ꢁꢛꢝꢂꢙ4ꢘ  
ꢃꢄꢏ  
ꢋꢇꢈꢏ  
4ꢚꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄꢏ  
ꢆꢇꢄꢏ  
ꢃꢄꢈꢂ  
ꢀꢗꢏ  
ꢉꢋꢊꢖꢏ  
ꢈꢆꢘꢉꢒꢙꢅꢅꢏ  
ꢖꢐꢋꢋꢌꢏ  
4ꢓꢛꢎꢠ  
ꢡꢓꢛꢡꢠ  
ꢉꢉꢏ  
6ꢓꢛ4ꢠ  
ꢊꢋꢌꢍꢏ  
ꢁꢂꢙ4ꢘ  
ꢁꢏꢛꢏꢠ  
ꢃꢄ4  
ꢋꢇꢈ4  
4ꢚꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄ4  
ꢆꢇꢄ4  
ꢃꢄꢈꢂ  
ꢀꢗ4  
ꢉꢋꢊꢖ4  
ꢈꢆꢘꢉꢒꢙꢅꢅ4  
ꢖꢐꢋꢋꢌ4  
ꢉꢉ4  
6ꢓꢛ4ꢠ  
ꢊꢋꢌꢍ4  
ꢈꢍꢊꢖ ꢅꢐꢄꢌ ꢐꢄꢌ  
4644 ꢀ4ꢁ  
ꢁꢏꢛꢏꢠ  
Figure 33. 4V to 14V Input, Quad 1.2V, 1.5V, 2.5V and 3.3V Output with Tracking  
4644fe  
27  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
ꢉꢑꢒꢃꢄ  
ꢉꢑꢒꢋꢇꢈ  
ꢎꢖꢏꢛꢝꢂ ꢞꢟ ꢝꢂ  
ꢁꢓꢔꢀ  
ꢁꢖꢜꢂꢚ4ꢙ  
ꢁꢖꢝꢂꢚ4ꢙ  
ꢃꢄꢁ  
ꢋꢇꢈꢁ  
ꢀꢘꢁ  
4ꢛꢔꢀ  
4ꢂ  
ꢅꢂꢃꢄꢁ  
ꢆꢇꢄꢁ  
ꢃꢄꢈꢂ  
ꢕ4  
ꢊ4644  
ꢉꢋꢊꢗꢁ  
ꢈꢆꢙꢉꢒꢚꢅꢅꢁ  
ꢗꢐꢋꢋꢌꢁ  
6ꢖꢏꢂ  
ꢁꢎꢓ6  
ꢏꢓꢖꢁꢠ  
4ꢓꢖꢎꢠ  
6ꢓꢖ4ꢠ  
ꢡꢓꢖꢡꢠ  
ꢓꢜꢓꢝ  
ꢉꢉꢁ  
ꢓꢖꢁꢔꢀ  
ꢓꢖꢁꢔꢀ  
ꢊꢋꢌꢍꢁ  
ꢃꢄꢎ  
ꢋꢇꢈꢎ  
ꢀꢘꢎ  
4ꢛꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄꢎ  
ꢆꢇꢄꢎ  
ꢃꢄꢈꢂ  
ꢉꢉꢎ  
ꢝꢂ ꢘꢃꢙꢅ  
ꢉꢋꢊꢗꢎ  
ꢈꢆꢙꢉꢒꢚꢅꢅꢎ  
ꢗꢐꢋꢋꢌꢎ  
ꢁꢔꢀ  
6ꢖꢏꢂ  
ꢊꢋꢌꢍꢎ  
ꢁꢖꢎꢂꢚ4ꢙ  
ꢁꢂꢚ4ꢙ  
ꢃꢄꢏ  
ꢋꢇꢈꢏ  
ꢀꢘꢏ  
4ꢛꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄꢏ  
ꢆꢇꢄꢏ  
ꢃꢄꢈꢂ  
ꢉꢋꢊꢗꢏ  
ꢈꢆꢙꢉꢒꢚꢅꢅꢏ  
ꢗꢐꢋꢋꢌꢏ  
ꢉꢉꢏ  
ꢊꢋꢌꢍꢏ  
ꢓꢖꢁꢔꢀ  
ꢓꢖꢁꢔꢀ  
ꢃꢄ4  
ꢋꢇꢈ4  
ꢀꢘ4  
4ꢛꢔꢀ  
4ꢂ  
ꢓꢜꢓꢝ  
ꢅꢂꢃꢄ4  
ꢆꢇꢄ4  
ꢃꢄꢈꢂ  
ꢉꢋꢊꢗ4  
ꢈꢆꢙꢉꢒꢚꢅꢅ4  
ꢗꢐꢋꢋꢌ4  
ꢉꢉ4  
ꢊꢋꢌꢍ4  
ꢈꢍꢊꢗ ꢅꢐꢄꢌ ꢐꢄꢌ  
4644 ꢀ4ꢁ  
Figure 34. 2.375V to 5V Input, Quad 1V, 1.2V, 1.5V, 1.8V Output  
4644fe  
28  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
ꢋꢒꢓꢄꢅ  
ꢋꢒꢓꢍꢉꢊ  
ꢄꢅ  
ꢆꢝꢐꢃꢚꢆ6ꢙ  
4ꢛꢔꢀ  
ꢄꢅꢆ  
ꢍꢉꢊꢆ  
ꢀꢘꢆ  
4ꢃ ꢞꢟ ꢆ4ꢃ  
ꢐꢐꢔꢀ  
ꢕꢐ  
ꢆ6ꢃ  
ꢆꢐꢖ6  
ꢇꢃꢄꢅꢆ  
ꢈꢉꢅꢆ  
ꢄꢅꢊꢃ  
ꢕꢁ  
4ꢃ  
ꢌ4644  
ꢋꢍꢌꢗꢆ  
ꢆꢂꢝꢆꢠ  
ꢖꢜꢖꢂ  
ꢊꢈꢙꢋꢓꢚꢇꢇꢆ  
ꢗꢑꢍꢍꢎꢆ  
ꢋꢋꢆ  
ꢌꢍꢎꢏꢆ  
ꢖꢝꢆꢔꢀ  
ꢄꢅꢐ  
ꢍꢉꢊꢐ  
ꢀꢘꢐ  
ꢇꢃꢄꢅꢐ  
ꢈꢉꢅꢐ  
ꢄꢅꢊꢃ  
ꢋꢍꢌꢗꢐ  
ꢊꢈꢙꢋꢓꢚꢇꢇꢐ  
ꢗꢑꢍꢍꢎꢐ  
ꢋꢋꢐ  
ꢌꢍꢎꢏꢐ  
ꢄꢅꢁ  
ꢍꢉꢊꢁ  
ꢀꢘꢁ  
ꢇꢃꢄꢅꢁ  
ꢈꢉꢅꢁ  
ꢄꢅꢊꢃ  
ꢋꢍꢌꢗꢁ  
ꢊꢈꢙꢋꢓꢚꢇꢇꢁ  
ꢗꢑꢍꢍꢎꢁ  
ꢋꢋꢁ  
ꢌꢍꢎꢏꢁ  
ꢄꢅ4  
ꢍꢉꢊ4  
ꢀꢘ4  
ꢇꢃꢄꢅ4  
ꢈꢉꢅ4  
ꢄꢅꢊꢃ  
ꢋꢍꢌꢗ4  
ꢊꢈꢙꢋꢓꢚꢇꢇ4  
ꢗꢑꢍꢍꢎ4  
ꢋꢋ4  
ꢄꢅ  
ꢌꢍꢎꢏ4  
ꢢ ꢖꢝ6ꢃ  
ꢆꢖꢖꢔꢙ  
ꢄꢅ  
ꢊꢏꢌꢗ ꢇꢑꢅꢎ ꢑꢅꢎ  
4644 ꢀꢁꢂ  
ꢙꢚꢎ  
Figure 35. 4V to 14V Input, 4-Phase, 1.2V at 16A Design with Temperature Monitoring  
4644fe  
29  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
ꢊꢑꢓꢃꢄ  
ꢊꢑꢓꢌꢈꢉ  
ꢅꢞꢏꢂꢚꢅ6ꢙ  
ꢌꢈꢉꢅ  
4ꢛꢔꢀ  
ꢕꢁ  
6ꢖꢞ4ꢡ  
6ꢖꢞ4ꢡ  
ꢃꢄ  
ꢃꢄꢅ  
4ꢂ ꢟꢠ ꢅ4ꢂ  
4ꢂ  
ꢏꢏꢔꢀ  
ꢕꢏ  
ꢅ6ꢂ  
ꢅꢏꢖ6  
ꢀꢘꢅ  
ꢆꢂꢃꢄꢅ  
ꢇꢈꢄꢅ  
ꢃꢄꢉꢂ  
ꢖꢜꢖꢝ  
ꢋ4644ꢒꢅ  
ꢊꢌꢋꢗꢅ  
ꢉꢇꢙꢊꢓꢚꢆꢆꢅ  
ꢗꢐꢌꢌꢍꢅ  
ꢊꢊꢅ  
ꢋꢌꢍꢎꢅ  
ꢖꢞꢅꢔꢀ  
ꢌꢈꢉꢏ  
ꢃꢄꢏ  
ꢀꢘꢏ  
ꢊꢌꢋꢗꢏ  
ꢆꢂꢃꢄꢏ  
ꢇꢈꢄꢏ  
ꢉꢇꢙꢊꢓꢚꢆꢆꢏ  
ꢗꢐꢌꢌꢍꢏ  
ꢃꢄꢉꢂ  
ꢋꢌꢍꢎꢏ  
ꢊꢊꢏ  
ꢌꢈꢉꢁ  
ꢃꢄꢁ  
ꢀꢘꢁ  
ꢊꢌꢋꢗꢁ  
ꢆꢂꢃꢄꢁ  
ꢇꢈꢄꢁ  
ꢉꢇꢙꢊꢓꢚꢆꢆꢁ  
ꢗꢐꢌꢌꢍꢁ  
ꢃꢄꢉꢂ  
ꢋꢌꢍꢎꢁ  
ꢊꢊꢁ  
ꢌꢈꢉ4  
ꢃꢄ4  
ꢀꢘ4  
ꢊꢌꢋꢗ4  
ꢆꢂꢃꢄ4  
ꢇꢈꢄ4  
ꢉꢇꢙꢊꢓꢚꢆꢆ4  
ꢗꢐꢌꢌꢍ4  
ꢃꢄꢉꢂ  
ꢋꢌꢍꢎ4  
ꢊꢊ4  
ꢃꢄ  
ꢣ ꢖꢞ6ꢂ  
ꢅꢖꢖꢔꢙ  
ꢃꢄ  
ꢉꢎꢋꢗ ꢆꢐꢄꢍ ꢐꢄꢍ  
4644 ꢀꢁ6  
ꢙꢚꢍ  
Figure 36. 4V to 14V Input, 4-Phase, 1.2V at 16A Design with Temperature Monitoring  
4644fe  
30  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
ꢊꢑꢒꢃꢄ  
ꢊꢑꢒꢌꢈꢉ  
ꢜꢂ  
ꢅꢝꢏꢂꢙꢛꢘ  
4ꢚꢓꢀ  
ꢃꢄꢅ  
ꢌꢈꢉꢅ  
ꢀꢗꢅ  
ꢏꢏꢓꢀ  
ꢔꢏ  
ꢅ6ꢂ  
ꢅꢏꢕ6  
ꢆꢂꢃꢄꢅ  
ꢇꢈꢄꢅ  
ꢃꢄꢉꢂ  
ꢔꢏ  
4ꢂ  
ꢋ4644  
ꢊꢌꢋꢖꢅ  
ꢉꢇꢘꢊꢒꢙꢆꢆꢅ  
ꢖꢐꢌꢌꢍꢅ  
ꢁꢕꢝꢏꢞ  
ꢕꢛꢕꢜ  
ꢊꢊꢅ  
ꢋꢌꢍꢎꢅ  
ꢕꢝꢅꢓꢀ  
ꢃꢄꢏ  
ꢌꢈꢉꢏ  
ꢀꢗꢏ  
ꢆꢂꢃꢄꢏ  
ꢇꢈꢄꢏ  
ꢃꢄꢉꢂ  
ꢊꢌꢋꢖꢏ  
ꢉꢇꢘꢊꢒꢙꢆꢆꢏ  
ꢖꢐꢌꢌꢍꢏ  
ꢊꢊꢏ  
ꢋꢌꢍꢎꢏ  
ꢅꢏꢂ  
ꢏꢏꢓꢀ  
ꢔꢏ  
ꢁꢝꢁꢂꢙꢛꢘ  
4ꢚꢓꢀ  
ꢃꢄꢁ  
ꢌꢈꢉꢁ  
ꢀꢗꢁ  
ꢆꢂꢃꢄꢁ  
ꢇꢈꢄꢁ  
ꢃꢄꢉꢂ  
ꢔꢏ  
ꢊꢌꢋꢖꢁ  
ꢉꢇꢘꢊꢒꢙꢆꢆꢁ  
ꢖꢐꢌꢌꢍꢁ  
6ꢝꢁꢂ  
ꢅ6ꢂ  
ꢅꢏꢕ6  
6ꢝ6ꢜꢞ  
ꢕꢛꢕꢜ  
ꢊꢊꢁ  
ꢋꢌꢍꢎꢁ  
ꢕꢝꢅꢓꢀ  
ꢃꢄ4  
ꢌꢈꢉ4  
ꢀꢗ4  
ꢆꢂꢃꢄ4  
ꢇꢈꢄ4  
ꢃꢄꢉꢂ  
ꢊꢌꢋꢖ4  
ꢉꢇꢘꢊꢒꢙꢆꢆ4  
ꢖꢐꢌꢌꢍ4  
ꢊꢊ4  
ꢋꢌꢍꢎ4  
ꢉꢎꢋꢖ ꢆꢐꢄꢍ ꢐꢄꢍ  
4644 ꢀꢁ6  
Figure 37. 12V and 5V Two Separate Input Rails, 1.2V at 8A and 3.3V at 8A Output  
4644fe  
31  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
TYPICAL APPLICATIONS  
W R V P  
V I N _ S N S  
I I N _ S N S P  
I I N _ S N S M  
C H A N N E L 0  
C H A N N E L 1  
C H A N N E L 2  
C H A N N E L 3  
4644fe  
32  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
LTM4644/LTM4644-1 Component BGA Pinout  
PIN  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
NAME  
PIN  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
NAME  
GND  
PIN  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
NAME  
PIN  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAME  
PIN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
NAME  
GND  
PIN  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
NAME  
V
V
V
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT3  
OUT1  
OUT1  
OUT1  
GND  
PGOOD2  
PGOOD1  
GND  
PGOOD3  
TEMP  
V
V
GND  
GND  
V
V
IN1  
IN1  
IN2  
IN2  
GND  
GND  
INTV  
INTV  
CC2  
CC1  
SV  
GND  
GND  
SV  
GND  
IN1  
IN2  
TRACK/SS1  
FB1  
MODE1  
COMP1  
RUN1  
CLKIN  
TRACK/SS2  
FB2  
MODE2  
COMP2  
RUN2  
SGND  
PIN  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
NAME  
PIN  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
NAME  
GND  
PIN  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
NAME  
PIN  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
NAME  
PIN  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
NAME  
GND  
V
V
V
OUT4  
V
V
OUT3  
OUT3  
OUT4  
OUT4  
GND  
PGOOD4  
CLKOUT  
GND  
GND  
GND  
V
IN3  
V
IN3  
GND  
GND  
V
IN4  
V
IN4  
INTV  
CC3  
GND  
SV  
IN3  
GND  
INTV  
SV  
IN4  
CC4  
TRACK/SS3  
FB3  
MODE3  
COMP3  
RUN3  
FB4  
TRACK/SS4  
RUN4  
MODE4  
COMP4  
4644fe  
33  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4644#packaging for the most recent package drawings.  
BGA Package  
77-Lead (9mm × 15mm × 5.01mm)  
(Reference LTC DWG # 05-08-1900 Rev D)  
ꢫ ꢫ ꢳ ꢳ ꢳ  
ꢬ ꢤ ꢞ ꢍ ꢛ  
ꢦ ꢤ ꢜ 4 ꢛ  
ꢍ ꢤ ꢦ ꢴ ꢛ  
ꢛ ꢤ ꢬ ꢍ ꢴ ꢜ  
ꢛ ꢤ ꢬ ꢍ ꢴ ꢜ  
ꢍ ꢤ ꢦ ꢴ ꢛ  
ꢛ ꢤ ꢛ ꢛ ꢛ  
ꢦ ꢤ ꢜ 4 ꢛ  
ꢬ ꢤ ꢞ ꢍ ꢛ  
4644fe  
34  
For more information www.linear.com/LTM4644  
LTM4644/LTM4644-1  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/14 Add SnPb BGA package option  
1, 2  
B
06/14 Add Tech Clip video link  
Update Order Information  
1
2
Update Run Threshold  
3
Update Figure 5  
13  
14  
2
Update Soft-Start and Output Voltage Tracking Section  
05/16 Added MP-grade (–55°C to 125°C)  
C
D
12/16 Added LTM4644-1  
1 ,2, 4, 9, 10, 33  
Added Comparison Table between LTM4644 and LTM4644-1  
Added Output Voltage Programing (LTM4644-1)  
Added Figure 36  
1
10  
30  
32  
3
Added Figure 38  
E
01/18 Changed I  
(MIN) from 5A to 6A  
OUTPK  
4644fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
35  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4644/LTM4644-1  
PACKAGE PHOTO  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
Design:  
• Selector Guides  
µModule Design and Manufacturing Resources  
Manufacturing:  
• Quick Start Guide  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4624  
LTM4619  
LTM4618  
LTM4628  
14V , 4A Step-Down µModule Regulator in Tiny  
4V ≤ V ≤ 14V, 0.6V ≤ V  
≤ 5.5V, V  
Tracking, PGOOD, Light Load Mode,  
IN  
IN  
OUT  
2
OUT  
6.25mm × 6.25mm × 5.01mm BGA  
Complete Solution in 1cm (Single-Sided PCB)  
Dual 26V, 4A Step-Down µModule Regulator  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V  
≤ 5V, PLL Input, V  
≤ 5V, PLL Input, V  
OUT  
Tracking, PGOOD,  
Tracking,  
IN  
OUT  
OUT  
15mm × 15mm × 2.82mm LGA  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V  
26V, 6A Step-Down µModule Regulator  
IN  
OUT  
9mm × 15mm × 4.32mm LGA  
4.5V ≤ V ≤ 26.5V, 0.6V ≤ V  
Dual 26V, 8A Step-Down µModule Regulator  
≤ 5.5V, Remote Sense Amplifier, Internal  
OUT  
IN  
Temperature Sensing Output, 15mm × 15mm × 4.32mm LGA  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V ≤ 5V, 15mm × 15mm × 2.82mm LGA  
LTM4614  
Dual 5V, 4A µModule Regulator  
IN  
OUT  
LTM4608A  
5V, 8A Step-Down µModule Regulator with  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
≤ 5V, PLL input, Clock Output, V  
Tracking and  
IN  
OUT  
OUT  
Tracking, Margining and Frequency Synchronization Margining, PGOOD, 9mm × 15mm × 2.82mm LGA  
LTM4616  
LTM8045  
LTM8001  
Dual 5V, 8A Step-Down µModule Regulator with  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
≤ 5V, PLL input, Clock Output, V  
Tracking and  
IN  
OUT  
OUT  
Tracking, Margining and Frequency Synchronization Margining, PGOOD, 15mm × 15mm × 2.82mm LGA  
Inverting or SEPIC µModule DC/DC Converter with 2.8V ≤ V ≤ 18V, 2.5V ≤ V  
Up to 700mA Output Current  
36V, 5A Step-Down µModule Regulator with  
Configurable Array of Five 1A LDOs  
15V, Synchronizable, No Derating or Logic-  
IN  
OUT  
Level Shift for Control Inputs when Inverting, 6.25mm × 11.25mm × 4.92mm BGA  
6V ≤ V ≤ 36V, 0V ≤ V  
≤ 24V, Five Parallelable 1.1A 90µV  
Output Noise  
IN  
OUT  
RMS  
LDOs, Synchronizable, Adjustable Switcher Output Current Limit, 15mm × 15mm  
× 4.92mm BGA  
2
LTC®2978  
LTC2974  
Octal Digital Power Supply Manager with EEPROM I C/PMBus Interface, Configuration EEPROM, Fault Logging, 16-Bit ADC with  
0.25ꢀ TUE, 3.3V to 15V Operation  
Quad Digital Power Supply Manager with EEPROM I C/PMBus Interface, Configuration EEPROM, Fault Logging, Per Channel Voltage,  
2
Current and Temperature Measurements  
4644fe  
LT 0118 REV E • PRINTED IN USA  
www.linear.com/LTM4644  
36  
ANALOG DEVICES, INC. 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY