LTM2882IV-3-PBF [Linear]

Dual Isolated RS232 μModule Transceiver + Power; 双隔离RS232微型模块收发器+电源
LTM2882IV-3-PBF
型号: LTM2882IV-3-PBF
厂家: Linear    Linear
描述:

Dual Isolated RS232 μModule Transceiver + Power
双隔离RS232微型模块收发器+电源

文件: 总18页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2882  
Dual Isolated RS232  
µModule Transceiver + Power  
FEATURES  
DESCRIPTION  
The LTM®2882 is a complete galvanically isolated dual  
RS232μModule®transceiver. Noexternalcomponentsare  
required. A single 3.3V or 5V supply powers both sides  
of the interface through an integrated, isolated DC/DC  
converter. A logic supply pin allows easy interfacing with  
different logic levels from 1.62V to 5.5V, independent of  
the main supply.  
n
Isolated Dual RS232 Transceiver: 2500V  
RMS  
n
Isolated DC Power: 5V at Up to 200mA  
n
No External Components Required  
n
1.62V to 5.5V Logic Supply for Flexible Digital  
Interface  
n
High Speed Operation  
1Mbps for 250pF/3kΩ Load  
250kbps for 1nF/3kΩ Load  
Coupled inductors and an isolation power transformer  
100kbps for 2.5nF/3kΩ TIA/EIA-232-F Load  
3.3V ꢁLTM2882-3ꢂ or 5V ꢁLTM2882-5ꢂ Operation  
No Damage or Latchup to 10kV ESD ꢃHM on  
Isolated RS232 Interface or Across Isolation Harrier  
ꢃigh Common Mode Transient Immunity: 30kV/ꢀs  
Common Mode Working Voltage: 560V  
True RS232 Compliant Output Levels  
provide2500V  
ofisolationbetweenthelinetransceiver  
RMS  
n
n
and the logic interface. This device is ideal for systems  
with different grounds, allowing for large common mode  
voltages. Uninterrupted communication is guaranteed for  
common mode transients greater than 30kV/ꢀs.  
n
n
n
n
PEAK  
This part is compatible with the TIA/EIA-232-F standard.  
Driver outputs are protected from overload and can be  
shorted to ground or up to 15V without damage. An  
auxiliary isolated digital channel is available. This channel  
allows configuration for half-duplex operation by control-  
ling the DE pin.  
Small Low Profile ꢁ15mm × 11.25mm × 2.8mmꢂ  
Surface Mount HGA and LGA Packages  
APPLICATIONS  
n
Isolated RS232 Interface  
n
Industrial Communication  
Enhanced ESD protection allows this part to withstand up  
to 10kVhumanbodymodelonthetransceiverinterface  
pins to isolated supplies and across the isolation barrier  
to logic supplies without latchup or damage.  
n
Test and Measurement Equipment  
Hreaking RS232 Ground Loops  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and μModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Isolated Dual RS232 μModule Transceiver  
1Mbps Operation  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
TIN  
5V/DIV  
V
V
CC  
LTM2882  
L
V
5V  
CC2  
DE  
AVAILAHLE CURRENT:  
150mA ꢁLTM2882-5ꢂ  
100mA ꢁLTM2882-3ꢂ  
OFF ON  
ON  
T1OUT/R1IN  
10V/DIV  
DIN  
DOUT  
T1OUT  
R1IN  
T2OUT/R2IN  
T1IN  
R1OUT  
5V/DIV  
R2OUT  
R1OUT  
T2IN  
T2OUT  
R2IN  
2882 TA01b  
400ns/DIV  
R2OUT  
DRIVER OUTPUTS TIED TO RECEIVER INPUTS  
TOUT LOAD = 250pF + RIN  
ROUT LOAD = 150pF  
GND  
GND2  
2882 TA01a  
2882fa  
1
LTM2882  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
to GND .................................................. –0.3V to 6V  
CC  
1
2
3
4
5
6
7
8
V to GND .................................................... –0.3V to 6V  
L
V
V
CC  
R2OUT  
T2IN R1OUT  
T1IN DIN ON  
L
V
CC2  
to GND2............................................... –0.3V to 6V  
A
H
C
D
E
F
Logic Inputs  
T1IN, T2IN, ON, DIN to GND .......–0.3V to ꢁV + 0.3Vꢂ  
L
CC2  
GND  
DE to GND2 ............................–0.3V to ꢁV  
Logic Outputs  
+ 0.3Vꢂ  
R1OUT, R2OUT to GND...............–0.3V to ꢁV + 0.3Vꢂ  
L
DOUT to GND2........................–0.3V to ꢁV  
Driver Output Voltage  
+ 0.3Vꢂ  
CC2  
G
I
T1OUT, T2OUT to GND2...........................–15V to 15V  
Receiver Input Voltage  
R1IN, R2IN to GND2 ............................... –25V to 25V  
Operating Temperature Range ꢁNote 4ꢂ  
J
LTM2882C .........................................0°C ≤ T ≤ 70°C  
GND2  
A
K
L
LTM2882I ..................................... –40°C ≤ T ≤ 85°C  
A
Storage Temperature Range .................. –55°C to 125°C  
Peak Reflow Temperature ꢁSoldering, 10 secꢂ....... 245°C  
R2IN  
V
CC2  
T2OUT R1IN T1OUT DOUT DE  
HGA PACKAGE  
32-PIN ꢁ15mm s 11.25mm s 3.42mmꢂ  
LGA PACKAGE  
32-PIN ꢁ15mm s 11.25mm s 2.8mmꢂ  
T
= 125°C,  
T
= 125°C,  
JMAX  
JMAX  
Q
= 30°C/W,  
Q
= 29°C/W,  
JA  
JA  
Q
= 27.8°C/W,  
Q
Q
= 27.9°C/W,  
JCTOP  
JCTOP  
Q
= 19.3°C/W,  
= 24°C/W,  
= 18°C/W,  
JCHOTTOM  
JCHOTTOM  
Q
Q
= 22.7°C/W,  
JH  
JH  
WEIGꢃT = 1.1g  
WEIGꢃT = 1.1g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM2882CY-3#PHF  
LTM2882IY-3#PHF  
LTM2882CY-5#PHF  
LTM2882IY-5#PHF  
LTM2882CV-3#PHF  
LTM2882IV-3#PHF  
LTM2882CV-5#PHF  
LTM2882IV-5#PHF  
TRAY  
PART MARKING*  
LTM2882Y-3  
LTM2882Y-3  
LTM2882Y-5  
LTM2882Y-5  
LTM2882V-3  
LTM2882V-3  
LTM2882V-5  
LTM2882V-5  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM2882CY-3#PHF  
LTM2882IY-3#PHF  
LTM2882CY-5#PHF  
LTM2882IY-5#PHF  
LTM2882CV-3#PHF  
LTM2882IV-3#PHF  
LTM2882CV-5#PHF  
LTM2882IV-5#PHF  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ HGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ HGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ HGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ HGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
2882fa  
2
LTM2882  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
l
l
V
Input Supply Range  
LTM2882-3  
LTM2882-5  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
5.5  
10  
V
V
CC  
V
Logic Supply Range  
Input Supply Current  
1.62  
V
L
I
CC  
ON = 0V  
0
μA  
mA  
mA  
V
LTM2882-3, No Load  
LTM2882-5, No Load  
LTM2882-3 DE = 0V, I  
LTM2882-5 DE = 0V, I  
DE = 0, No Load  
24  
17  
5.0  
5.0  
5.0  
65  
30  
21  
V
V
Regulated Output Voltage, Loaded  
= 100mA  
= 150mA  
4.7  
4.7  
4.8  
CC2  
LOAD  
LOAD  
V
Regulated Output Voltage, No Load  
Efficiency  
5.35  
250  
V
CC2ꢁNOLOADꢂ  
CC2  
I
= 100mA, LTM2882-5 ꢁNote 2ꢂ  
%
mA  
CC2  
l
I
Output Supply Short-Circuit Current  
Driver  
l
l
l
l
V
Driver Output Voltage Low  
Driver Output Voltage ꢃigh  
Driver Short-Circuit Current  
R = 3kΩ  
–5  
5
–5.7  
6.2  
35  
V
V
OLD  
OꢃD  
OSD  
OZD  
L
V
R = 3kΩ  
L
I
I
V
, V  
= 0V, V  
= 5.5V  
15V  
70  
10  
mA  
μA  
T1OUT T2OUT  
CC2  
Driver Three-State ꢁꢃigh Impedanceꢂ  
Output Current  
DE = 0V, V  
, V  
=
0.1  
T1OUT T2OUT  
Receiver  
l
l
l
l
V
Receiver Input Threshold  
Input Low  
Input ꢃigh  
0.8  
1.3  
1.7  
0.4  
5
V
V
IR  
2.5  
1.0  
7
V
Receiver Input ꢃysteresis  
Receiver Input Resistance  
0.1  
3
V
ꢃYSR  
R
–15V ≤ ꢁV  
, V ꢂ ≤ 15V  
kΩ  
IN  
R1IN R2IN  
Logic  
l
l
l
l
V
Logic Input Threshold Voltage  
ON, T1IN, T2IN, DIN = 1.62V ≤ V < 2.35V  
0.25•V  
0.4  
0.75•V  
V
V
ITꢃ  
L
L
L
ON, T1IN, T2IN, DIN = 2.35V ≤ V ≤ 5.5V  
0.67•V  
L
L
DE  
0.4  
0.67•V  
1
V
CC2  
I
INL  
Logic Input Current  
μA  
mV  
V
V
Logic Input ꢃysteresis  
Logic Output ꢃigh Voltage  
T1IN, T2IN, DIN ꢁNote 2ꢂ  
R1OUT, R2OUT  
150  
ꢃYS  
Oꢃ  
l
l
I
I
= –1mA ꢁSourcingꢂ, 1.62V ≤ V < 3.0V  
V – 0.4  
V
V
LOAD  
LOAD  
L
L
= –4mA ꢁSourcingꢂ, 3.0V ≤ V ≤ 5.5V  
V – 0.4  
L
L
l
DOUT, I  
= –4mA ꢁSourcingꢂ  
V
CC2  
– 0.4  
V
LOAD  
V
Logic Output Low Voltage  
R1OUT, R2OUT  
OL  
l
l
I
I
= 1mA ꢁSinkingꢂ, 1.62V ≤ V < 3.0V  
0.4  
0.4  
V
V
LOAD  
LOAD  
L
= 4mA ꢁSinkingꢂ, 3.0V ≤ V ≤ 5.5V  
L
l
DOUT, I  
= 4mA ꢁSinkingꢂ  
0.4  
V
LOAD  
ESD (HBM) ꢁNote 2ꢂ  
RS232 Driver and Receiver Protection  
ꢁT1OUT, T2OUT, R1IN, R2INꢂ to ꢁV , GND2ꢂ  
10  
10  
10  
kV  
kV  
kV  
CC2  
ꢁT1OUT, T2OUT, R1IN, R2INꢂ to ꢁV , V , GNDꢂ  
CC  
L
Isolation Houndary  
ꢁV , GND2ꢂ to ꢁV , V , GNDꢂ  
CC2 CC L  
2882fa  
3
LTM2882  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 3kΩ, C = 2.5nF ꢁNote 3ꢂ  
MIN  
100  
250  
1000  
10  
TYP  
MAX  
UNITS  
kbps  
l
l
l
l
Maximum Data Rate  
ꢁT1IN to T1OUT, T2IN to T2OUTꢂ  
L
L
R = 3kΩ, C = 1nF ꢁNote 3ꢂ  
kbps  
L
L
R = 3kΩ, C = 250pF ꢁNote 3ꢂ  
kbps  
L
L
Maximum Data Rate ꢁDIN to DOUTꢂ  
C = 15pF  
L
Mbps  
Driver  
l
l
Driver Slew Rate ꢁ6V/t  
or t  
TLꢃ  
R = 3kΩ, C = 50pF ꢁFigure 1ꢂ  
150  
0.5  
V/μs  
μs  
TꢃL  
L
L
t
t
t
t
, t  
Driver Propagation Delay  
Driver Skew |t – t  
R = 3kΩ, C = 50pF ꢁFigure 1ꢂ  
0.2  
40  
PꢃLD PLꢃD  
L
L
|
R = 3kΩ, C = 50pF ꢁFigure 1ꢂ  
ns  
SKEWD  
PꢃLD  
PLꢃD  
L
L
l
l
, t  
Driver Output Enable Time  
0.6  
0.3  
2
2
μs  
DE = , R = 3kΩ, C = 50pF ꢁFigure 2ꢂ  
PZꢃD PZLD  
L
L
, t  
Driver Output Disable Time  
μs  
DE = , R = 3kΩ, C = 50pF ꢁFigure 2ꢂ  
PꢃZD PLZD  
L
L
Receiver  
l
l
t
t
t
, t  
Receiver Propagation Delay  
C = 150pF ꢁFigure 3ꢂ  
0.2  
40  
60  
0.4  
μs  
ns  
ns  
PꢃLR PLꢃR  
L
Receiver Skew |t  
– t  
|
C = 150pF ꢁFigure 3ꢂ  
L
SKEWR  
PꢃLR  
PLꢃR  
, t  
Receiver Rise or Fall Time  
C = 150pF ꢁFigure 3ꢂ  
L
200  
RR FR  
Auxiliary Channel  
l
l
t
, t  
Propagation Delay  
Rise or Fall Time  
C = 15pF, t and t < 4ns ꢁFigure 4ꢂ  
60  
60  
100  
200  
ns  
ns  
PꢃLL PLꢃL  
L
R
F
t
, t  
C = 150pF ꢁFigure 4ꢂ  
L
RL FL  
Power Supply  
l
Power-Up Time  
0.2  
2
ms  
ON = to V  
CC2ꢁMINꢂ  
ISOLATION CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2882-3 VCC = 3.3V, LTM2882-5 VCC = 5.0V, VL = VCC, and GND =  
GND2 = 0V, ON = VL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
1 Minute, Derived from 1 Second Test  
V
RMS  
ISO  
1 Second  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
V
Common Mode Transient Immunity  
Maximum Working Insulation Voltage  
Partial Discharge  
kV/μs  
V
IORM  
560  
V
PEAK  
V
PR  
= 1050 V  
ꢁNote 2ꢂ  
<5  
pC  
PEAK  
9
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
>10  
Ω
pF  
6
9.48  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This device includes over-temperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 3: Maximum Data Rate is guaranteed by other measured parameters  
and is not tested directly.  
2882fa  
4
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
CC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC Supply Current vs Load  
Capacitance (Dual Transceiver)  
VCC Supply Current  
vs Temperature  
VCC Supply Current  
vs Temperature  
30  
25  
20  
15  
10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
NO LOAD  
V
= 3.3V  
CC  
LTM2882-3  
250kbps, LTM2882-3  
V
= 3.3V  
CC  
LTM2882-3  
100kbps, LTM2882-3  
19.2kbps, LTM2882-3  
V
= 5.0V  
CC  
LTM2882-5  
V
= 5.0V  
250kbps, LTM2882-5  
100kbps, LTM2882-5  
CC  
LTM2882-5  
T1OUT AND T2OUT  
HAUD = 100kbps  
19.2kbps, LTM2882-5  
R
= 3k, C = 2.5nF  
L
L
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
0.5  
1
1.5  
2
2.5  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
LOAD CAPACITANCE ꢁnFꢂ  
2882 G01  
2882 G02  
2882 G03  
Receiver Input Threshold  
vs Temperature  
VCC Supply Current vs Data Rate  
(Dual Transceiver)  
Driver Slew Rate  
vs Load Capacitance  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
3.3V C = 1nF  
L
INPUT ꢃIGꢃ  
3.3V C = 250pF  
L
INPUT LOW  
FALLING  
RISING  
60  
5.0V C = 1nF  
L
40  
5.0V C = 250pF  
L
20  
0
200  
400  
600  
800  
1000  
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
DATA RATE ꢁkbpsꢂ  
TEMPERATURE ꢁ°Cꢂ  
LOAD CAPACITANCE ꢁnFꢂ  
2882 G04  
2882 G05  
2882 G06  
Driver Disabled Leakage Current  
vs Temperature at 15V  
Driver Short-Circuit Current  
vs Temperature  
Receiver Output Voltage  
vs Load Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
1000  
100  
10  
6
5
4
3
2
1
0
V
= 15V  
TOUT  
V
V
V
= 5.5V  
L
L
L
= 3.3V  
= 1.62V  
SINKING  
1
SOURCING  
0.1  
0.01  
0.001  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
LOAD CURRENTꢁmAꢂ  
2882 G07  
2882 G08  
2882 G09  
2882fa  
5
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
CC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
Logic Input Threshold  
vs VL Supply Voltage  
3.5  
VCC2 Output Voltage  
vs Load Current  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
V
CC  
V
CC  
= 3.0V TO 3.6V, LTM2882-3  
= 4.5V TO 5.5V, LTM2882-5  
3.0  
2.5  
5.5V  
INPUT ꢃIGꢃ  
2.0  
INPUT LOW  
5.0V  
3.3V  
1.5  
1.0  
0.5  
0
3.0V  
3.6V  
4.5V  
0
1
2
3
4
5
6
0
50  
100  
150  
200  
250  
300  
V
SUPPLY VOLTAGE ꢁVꢂ  
LOAD CURRENT ꢁmAꢂ  
L
2882 G10  
2882 G11  
Driver Outputs Exiting Shutdown  
Driver Outputs Enable/Disable  
ON  
T1OUT  
DE = DOUT,  
2V/DIV  
5V/DIV  
DE  
D
= V  
IN  
L
5V/DIV  
T1OUT  
T2OUT  
T1OUT  
DE = V  
CC2  
T2OUT  
T2OUT  
2882 G12  
2882 G13  
100μs/DIV  
2μs/DIV  
Operating Through 35kV/μs  
Common Mode Transients  
T1IN  
T1OUT = R1IN  
R1OUT  
2V/DIV  
2V/DIV  
*
500V/DIV  
2882 G14  
50ns/DIV  
* MULTIPLE SWEEPS OF  
COMMON MODE TRANSIENTS  
2882fa  
6
LTM2882  
TA = 25°C, LTM2882-3 VCC = 3.3V, LTM2882-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
CC = 5V, VL = 3.3V, and GND = GND2 = 0V, ON = VL unless otherwise noted.  
VCC2 Surplus Current  
vs Temperature  
300  
VCC2 Power Efficiency  
70  
60  
50  
40  
30  
20  
10  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
250  
V
= 5.0V  
LTM2882-5  
CC  
LTM2882-5  
200  
150  
100  
50  
LTM2882-3  
V
= 3.3V  
LTM2882-3  
CC  
T1OUT AND T2OUT  
HAUD = 100kbps  
R
= 3k, C = 2.5nF  
L
CC2  
L
V
= 4.8V  
T = 25°C  
A
0
–50 –25  
0
25  
50  
75 100 125  
0
50  
100  
150  
200  
250  
300  
TEMPERATURE ꢁ°Cꢂ  
LOAD CURRENT ꢁmAꢂ  
2882 G15  
2882 G16  
VCC2 Load Step Response  
VCC2 Ripple and Noise  
200mV/DIV  
50mA/DIV  
100mV/DIV  
T1IN = 250kbps  
T1OUT, T2OUT, R = 3k  
L
2882 G17  
2882 G18  
10μs/DIV  
100μs/DIV  
2882fa  
7
LTM2882  
TEST CIRCUITS  
V
L
TIN  
½V  
L
0V  
TOUT  
t
t
PꢃLD  
PLꢃD  
C
TIN  
R
L
V
L
OꢃD  
3V  
TOUT  
0V  
–3V  
V
OLD  
t , t ≤ 40ns  
f
t
t
TLꢃ  
r
TꢃL  
2882 F01  
Figure 1. Driver Slew Rate and Timing Measurement  
V
CC2  
0V  
DE  
TOUT  
TOUT  
½V  
CC2  
t
t
PꢃZD  
PZꢃD  
V
OꢃD  
0 OR V  
TOUT  
L
5V  
V
V
– 0.5V  
– 0.5V  
OꢃD  
OLD  
C
R
L
L
0V  
0V  
t
t
PLZD  
DE  
PZLD  
t , t ≤ 40ns  
r
f
–5V  
V
OLD  
2882 F02  
Figure 2. Driver Enable/Disable Times  
3V  
RIN  
1.5V  
ROUT  
–3V  
t
t
PLꢃR  
PꢃLR  
C
RIN  
t , t ≤ 40ns  
L
V
Oꢃ  
10%  
90%  
10%  
ROUT  
½V  
L
r
f
90%  
V
OL  
t
t
RR  
FR  
2882 F03  
Figure 3. Receiver Timing Measurement  
V
L
DIN  
½V  
L
0V  
DOUT  
t
t
PꢃLL  
PLꢃL  
C
DIN  
L
V
Oꢃ  
10%  
90%  
90%  
10%  
DOUT  
½V  
CC2  
V
OL  
t
RL  
t
FL  
2882 F04  
Figure 4. Auxiliary Channel Timing Measurement  
2882fa  
8
LTM2882  
PIN FUNCTIONS  
LOGIC SIDE  
ISOLATED SIDE  
R2OUT (Pin A1): Channel 2 RS232 Inverting Receiver  
Output. Controlled through isolation barrier from receiver  
input R2IN. Under the condition of an isolation communi-  
cation failure R2OUT is in a high impedance state.  
GND2 (Pins K1-K7): Isolated Side Circuit Ground. These  
pads should be connected to the isolated ground and/or  
cable shield.  
V
(Pins K8, L7-L8): Isolated Supply Voltage Output.  
CC2  
T2IN (Pin A2): Channel 2 RS232 Inverting Driver Input.  
A logic low on this input generates a high on isolated  
output T2OUT. A logic high on this input generates a low  
on isolated output T2OUT. Do not float.  
Internally generated from V by an isolated DC/DC con-  
CC  
verter and regulated to 5V. Supply voltage for pins R1IN,  
R2IN, DE, and DOUT. Internally bypassed to GND2 with  
2.2μF.  
R1OUT (Pin A3): Channel 1 RS232 Inverting Receiver  
Output. Controlled through isolation barrier from receiver  
input R1IN. Under the condition of an isolation communi-  
cation failure R1OUT is in a high impedance state.  
R2IN (Pin L1): Channel 2 RS232 Inverting Receiver Input.  
A low on isolated input R2IN generates a logic high on  
R2OUT. A high on isolated input R2IN generates a logic  
low on R2OUT. Impedance is nominally 5kΩ in receive  
mode or unpowered.  
T1IN (Pin A4): Channel 1 RS232 Inverting Driver Input.  
A logic low on this input generates a high on isolated  
output T1OUT. A logic high on this input generates a low  
on isolated output T1OUT. Do not float.  
T2OUT (Pin L2): Channel 2 RS232 Inverting Driver  
Output. Controlled through isolation barrier from driver  
input T2IN. ꢃigh impedance when the driver is disabled  
ꢁDE pin is lowꢂ.  
DIN (Pin A5): General Purpose Non-Inverting Logic Input.  
A logic high on DIN generates a logic high on isolated  
output DOUT. A logic low on DIN generates a logic low  
on isolated output DOUT. Do not float.  
R1IN (Pin L3): Channel 1 RS232 Inverting Receiver Input.  
A low on isolated input R1IN generates a logic high on  
R1OUT. A high on isolated input R1IN generates a logic  
low on R1OUT. Impedance is nominally 5kΩ in receive  
mode or unpowered.  
ON(PinA6):Enable. Enablespoweranddatacommunica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional to  
the isolated side. If ON is low the logic side is held in reset  
and the isolated side is unpowered. Do not float.  
T1OUT (Pin L4): Channel 1 RS232 Inverting Driver  
Output. Controlled through isolation barrier from driver  
input T1IN. ꢃigh impedance when the driver is disabled  
ꢁDE pin is lowꢂ.  
V (Pin A7): Logic Supply. Interface supply voltage for  
L
pins DIN, R2OUT, T2IN, R1OUT, T1IN, and ON. Operat-  
ing voltage is 1.62V to 5.5V. Internally bypassed to GND  
with 2.2μF.  
DOUT (Pin L5): General Purpose Non-Inverting Logic  
Output. Logic output connected through isolation barrier  
to DIN.  
V
(Pins A8, B7-B8): Supply Voltage. Operating volt-  
DE (Pin L6): Driver Output Enable. A low input forces  
both RS232 driver outputs, T1OUTand T2OUT, into a high  
impedance state. A high input enables both RS232 driver  
outputs. Do not float.  
CC  
age is 3.0V to 3.6V for LTM2882-3, and 4.5V to 5.5V for  
LTM2882-5. Internally bypassed to GND with 2.2μF.  
GND (Pins B1-B6): Circuit Ground.  
2882fa  
9
LTM2882  
BLOCK DIAGRAM  
5V  
REG  
V
V
CC2  
CC  
2.2μF  
2.2μF  
V
GND2  
DE  
L
2.2μF  
GND  
DOUT  
V
DD  
DC/DC  
CONVERTER  
V
EE  
ON  
DIN  
V
V
DD  
T1OUT  
R1IN  
T1IN  
R1OUT  
T2IN  
ISOLATED  
COMMUNI-  
CATIONS  
ISOLATED  
COMMUNI-  
CATIONS  
EE  
5k  
5k  
INTERFACE  
INTERFACE  
V
DD  
T2OUT  
R2IN  
V
EE  
R2OUT  
2882 HD  
2882fa  
10  
LTM2882  
APPLICATIONS INFORMATION  
Overview  
3.0V TO 3.6V LTM2882-3  
4.5V TO 5.5V LTM2882-5  
ANY VOLTAGE FROM  
1.62V TO 5.5V  
The LTM2882 μModule transceiver provides a galvani-  
cally-isolated robust RS232 interface, powered by an  
integrated, regulated DC/DC converter, complete with  
decoupling capacitors. The LTM2882 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2882 blocks high voltage differences,  
eliminates ground loops and is extremely tolerant of com-  
mon mode transients between grounds. Error-free opera-  
tion is maintained through common mode events greater  
than 30kV/ꢀs providing excellent noise isolation.  
V
V
V
CC2  
DE  
LTM2882  
L
CC  
ON  
DIN  
DOUT  
T1OUT  
R1IN  
T1IN  
EXTERNAL  
DEVICE  
R1OUT  
T2IN  
T2OUT  
R2IN  
R2OUT  
GND  
GND2  
μModule Technology  
2882 F05  
The LTM2882 utilizes isolator μModule technology to  
translate signals and power across an isolation barrier.  
Signals on either side of the barrier are encoded into  
pulses and translated across the isolation boundary using  
coreless transformers formed in the μModule substrate.  
This system, complete with data refresh, error checking,  
safe shutdown on fail, and extremely high common mode  
immunity,providesarobustsolutionforbidirectionalsignal  
isolation. The μModule technology provides the means  
to combine the isolated signaling with our advanced dual  
RS232transceiverandpowerfulisolatedDC/DCconverter  
in one small package.  
Figure 5. VCC and VL Are Independent  
The internal power solution is sufficient to support the  
transceiver interface at its maximum specified load and  
data rate, and has the capacity to provide additional 5V  
power on the isolated side V  
and GND2 pins. V and  
CC2  
CC  
V
are each bypassed internally with 2.2μF ceramic  
CC2  
capacitors.  
V Logic Supply  
L
AseparatelogicsupplypinV allowstheLTM2882tointer-  
L
face with any logic signal from 1.62V to 5.5V as shown in  
DC/DC Converter  
Figure 5. Simply connect the desired logic supply to V .  
L
The LTM2882 contains a fully integrated isolated DC/DC  
converter, including the transformer, so that no external  
components are necessary. The logic side contains a full-  
bridge driver, running at about 2Mꢃz, and is AC-coupled  
to a single transformer primary. A series DC blocking  
capacitor prevents transformer saturation due to driver  
duty cycle imbalance. The transformer scales the primary  
voltage, and is rectified by a full-wave voltage doubler.  
This topology eliminates transformer saturation caused  
by secondary imbalances.  
There is no interdependency between V and V ; they  
CC  
L
may simultaneously operate at any voltage within their  
specified operating ranges and sequence in any order. V  
is bypassed internally by a 2.2μF capacitor.  
L
Hot Plugging Safely  
Caution must be exercised in applications where power  
is plugged into the LTM2882’s power supplies, V or V ,  
CC  
L
due to the integrated ceramic decoupling capacitors. The  
parasitic cable inductance along with the high Q char-  
acteristics of ceramic capacitors can cause substantial  
ringing which could exceed the maximum voltage ratings  
and damage the LTM2882. Refer to Linear Technology Ap-  
plication Note 88, entitled “Ceramic Input Capacitors Can  
Cause Overvoltage Transients” for a detailed discussion  
and mitigation of this phenomenon.  
TheDC/DCconverterisconnectedtoalowdropoutregulator  
ꢁLDOꢂ to provide a regulated low noise 5V output, V  
.
CC2  
An integrated boost converter generates a 7V V supply  
DD  
andachargepumped–6.3VV supply.V andV power  
EE  
DD  
EE  
the output stage of the RS232 drivers and are regulated to  
levels that guarantee greater than 5V output swing.  
2882fa  
11  
LTM2882  
APPLICATIONS INFORMATION  
Channel Timing Uncertainty  
Driver Overvoltage and Overcurrent Protection  
Multiplechannelsaresupportedacrosstheisolationbound-  
ary by encoding and decoding of the inputs and outputs.  
ThetechniqueusedassignsT1IN/R1INthehighestpriority  
such that there is no jitter on the associated output chan-  
nels T1OUT/R1OUT, only delay. This preemptive scheme  
willproduceacertainamountofuncertaintyonT2IN/R2IN  
to T2OUT/R2OUT and DIN to DOUT. The resulting pulse  
widthuncertaintyontheselowprioritychannelsistypically  
6ns, but may vary up to about 40ns.  
The driver outputs are protected from short-circuits to  
any voltage within the absolute maximum range of 15V  
relative to GND2. The maximum current is limited to no  
more than 70mA to maintain a safe power dissipation and  
prevent damaging the LTM2882.  
Receiver Overvoltage and Open Circuit  
The receiver inputs are protected from common mode  
voltages of 25V relative to GND2.  
Eachreceiverinputhasanominalinputimpedanceof5kΩ  
relative to GND2. An open circuit condition will generate a  
logic high on each receiver’s respective output pin.  
Half-Duplex Operation  
The DE pin serves as a low-latency driver enable for half-  
duplex operation. The DE pin can be easily driven from  
the logic side by using the uncommitted auxiliary digital  
channel, DIN to DOUT. Each driver is enabled and disabled  
in lessthan 2μs, whileeach receiverremains continuously  
active. This mode of operation is illustrated in Figure 6.  
RF, Magnetic Field Immunity  
The LTM2882 has been independently evaluated and has  
successfully passed the RF and magnetic field immunity  
testing requirements per European Standard EN 55024,  
in accordance with the following test standards:  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
V
ON  
V
V
LTM2882  
L
CC  
CC2  
DE  
EN 61000-4-3  
EN 61000-4-8  
EN 61000-4-9  
Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
DIN  
DOUT  
T1OUT  
R1IN  
R
T
X
X
Power Frequency  
Magnetic Field Immunity  
T1IN  
R1OUT  
T2IN  
Pulsed Magnetic Field Immunity  
T2OUT  
R2IN  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCH layout recommendations.  
Specific limits per test are detailed in Table 1.  
R2OUT  
GND  
GND2  
2882 F06  
Table 1  
Figure 6. Half-Duplex Configuration Using DOUT to Drive DE  
TEST  
FREQUENCY  
80Mꢃz to 1Gꢃz  
1.4Mꢃz to 2Gꢃz  
2Gꢃz to 2.7Gꢃz  
50ꢃz and 60ꢃz  
60ꢃz  
FIELD STRENGTH  
10V/m  
EN 61000-4-3, Annex D  
3V/m  
1V/m  
EN61000-4-8, Level 4  
EN61000-4-8, Level 5  
EN61000-4-9, Level 5  
*Non IEC Method  
30A/m  
100A/m*  
1000A/m  
Pulse  
2882fa  
12  
LTM2882  
APPLICATIONS INFORMATION  
PCB Layout  
• For large ground planes a small capacitance ꢁ≤ 330pFꢂ  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducingradiatedemissions.Discretecapacitanceisnot  
as effective due to parasitic ESL; in addition consider  
voltage rating, leakage, and clearance for component  
selection. Embedding the capacitance within the PCH  
substrateprovidesanearidealcapacitorandeliminates  
theothercomponentselectionissues,howeverthePCH  
must be 4 layers and the use of a slot is not compatible.  
Exercise care in applying either technique to ensure the  
voltage rating of the barrier is not compromised.  
The high integration of the LTM2882 makes PCH layout  
very simple. ꢃowever, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
• Under heavily loaded conditions, V and GND current  
CC  
can exceed 300mA. Use sufficient copper on the PCH to  
ensure resistive losses do not cause the supply voltage  
to drop below the minimum allowed level. Similarly,  
size the V  
and GND2 conductors to support any  
CC2  
external load current. These heavy copper traces will  
also help to reduce thermal stress and improve the  
thermal conductivity.  
• Input and Output decoupling is not required, since  
these components are integrated within the package.  
If an additional bulk capacitor is used a value of 6.8μF  
to 22μF is recommended. The recommendation for  
EMI sensitive applications is to include an additional  
low ESL ceramic capacitor of 1μF to 4.7μF, placed close  
to the power and ground terminals. Alternatively, use a  
number of smaller value parallel capacitors to reduce  
ESL and achieve the same net capacitance.  
The PCH layout in Figure 7 shows a recommended con-  
figuration for a low EMI RS232 application.  
TOP LAYER  
C1  
V
= V  
L
CC  
= ON  
= D  
IN  
DE = V  
CC2  
• Do not place copper on the PCH between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage. Slot the PCH in this area to  
facilitate cleaning and ensure contamination does not  
compromise the isolation voltage.  
T1IN  
T1OUT  
R1IN  
R1OUT  
T2IN  
T2OUT  
R2IN  
R2OUT  
• The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCH trace  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
antennastructure,whichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used, minimize their area, and use contiguous planes,  
any openings or splits can increase RF emissions.  
HOTTOM LAYER  
GND  
GND2  
2882 F07  
Figure 7. Recommended PCB Layout  
2882fa  
13  
LTM2882  
TYPICAL APPLICATIONS  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
V
L
V
CC  
LTM2882  
V
V
LTM2882  
L
CC  
ON  
DE  
ON  
DE  
DIN  
DOUT  
DIN  
DOUT  
R
X
T
X
T1IN  
T1OUT  
R1IN  
T1IN  
T1OUT  
R1IN  
3.3k  
3.3k  
R1OUT  
T2IN  
R1OUT  
T2IN  
3k  
C
L
T2OUT  
R2IN  
T2OUT  
R2IN  
R2OUT  
R2OUT  
DATA RATE  
(kbps)  
C (nF)  
L
GND  
GND2  
GND  
GND2  
2882 F09  
2882 F08  
100  
250  
5
2
1000  
0.5  
Figure 8. Single Line Dual Half-Duplex  
Isolated Transceiver  
Figure 9. Driving Larger Capacitive Loads  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
1.8V  
5V  
REGULATED  
V
L
V
CC  
V
ON  
V
V
CC2  
LTM2882  
LTM2882  
150mA ꢁLTM2882-5ꢂ  
100mA ꢁLTM2882-3ꢂ  
L
CC  
OFF ON  
ON  
DE  
DE  
DIN  
DOUT  
DIN  
DOUT  
T1IN  
T1OUT  
R1IN  
T1IN  
T1OUT  
R1IN  
μP  
R1OUT  
T2IN  
R1OUT  
T2IN  
T2OUT  
R2IN  
T2OUT  
R2IN  
R2OUT  
R2OUT  
GND  
GND2  
GND  
GND2  
2882 F10  
2882 F11  
Figure 10. 1.8V Microprocessor Interface  
Figure 11. Isolated 5V Power Supply  
5V  
3.0V TO 3.6V ꢁLTM2882-3ꢂ  
4.5V TO 5.5V ꢁLTM2882-5ꢂ  
REGULATED  
V
V
V
CC2  
LTM2882  
L
CC  
ON  
DE  
DIN  
DOUT  
OFF ON  
T1IN  
T1OUT  
R1IN  
7V  
SWITCꢃED  
R1OUT  
T2IN  
T2OUT  
R2IN  
–6.3V  
SWITCꢃED  
R2OUT  
GND  
GND2  
2882 F12  
RETURN  
Figure 12. Isolated Multirail Power Supply  
with Switched Outputs  
2882fa  
14  
LTM2882  
PACKAGE DESCRIPTION  
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2882fa  
15  
LTM2882  
PACKAGE DESCRIPTION  
Z
b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2882fa  
16  
LTM2882  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
3/10  
Changes to Features  
1
2, 15  
2
Add HGA Package to Pin Configuration, Order Information and Package Description Sections  
Changes to LGA Package in Pin Configuration Section  
Update to Pin Functions  
9
Update to RF, Magnetic Field Immunity Section  
“PCH Layout Isolation Considerations” Section Replaced  
12  
13  
2882fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
ꢃowever, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTM2882  
TYPICAL APPLICATIONS  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
1.62V TO 5.5V  
OFF ON  
V
ON  
V
V
LTM2882  
V
L
V
CC  
L
CC  
CC2  
DE  
LTM2882  
μC  
PERIPꢃERAL  
ON  
DE  
DIN  
DOUT  
T1OUT  
R1IN  
DIN  
DOUT  
T1IN  
T1IN  
T1OUT  
R1IN  
T D  
X
R
X
R2OUT  
T2IN  
R1OUT  
T2IN  
3V TO 25V  
3V TO 25V  
V
V
L
R D  
T
X
X
0V  
0V  
–25V TO 0V  
–25V TO 0V  
T2OUT  
R2IN  
T2OUT  
R2IN  
P
RTS  
CTS  
Y
R2OUT  
R2OUT  
L
P
Z
GND  
GND2  
GND  
GND2  
2882 F12  
2882 F13  
Figure 13. Isolated RS232 Interface with Handshaking  
Figure 14. Isolated Dual Inverting Level Translator  
3.3V ꢁLTM2882-3ꢂ  
5V ꢁLTM2882-5ꢂ  
1k  
+V  
S
V
ON  
V
CC  
V
LTM2882  
L
CC2  
DE  
DIN  
DOUT  
T1OUT  
R1IN  
RESET  
T1IN  
PWMA  
PWMH  
LOGIC  
LEVEL  
FETS  
R1OUT  
T2IN  
FAULT  
T2OUT  
R2IN  
R2OUT  
IRLML6402  
IRLML2402  
GND  
GND2  
CMPT2369-LTV  
1k  
3k  
3k  
470pF  
47pF  
R
= 0.6/MAX CURRENT  
ILIM  
2882 F14  
Figure 15. Isolated Gate Drive with Overcurrent Detection  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
20Mbps, 15kV ꢃHM ESD, 2500V  
LTM2881  
Isolated RS485/RS422 μModule Transceiver with  
Integrated DC/DC Converter  
Isolation with Power  
RMS  
LTC2804  
LTC1535  
1Mbps RS232 Transceiver  
Isolated RS485 Transceiver  
Dual Channel, Full-Duplex, 10kV ꢃHM ESD  
2500 V Isolation with External Transformer Driver  
RMS  
2882fa  
LT 0310 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Hlvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2010  
ꢁ408ꢂ 432-1900 FAX: ꢁ408ꢂ 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY