LTM2881_12 [Linear]

Complete Isolated RS485/RS422 μModule; 完整的隔离型RS485 / RS422微型模块
LTM2881_12
型号: LTM2881_12
厂家: Linear    Linear
描述:

Complete Isolated RS485/RS422 μModule
完整的隔离型RS485 / RS422微型模块

文件: 总24页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2881  
Complete Isolated  
RS485/RS422 µModule  
Transceiver + Power  
FEATURES  
DESCRIPTION  
n
UL Rated RS485/RS422 Transceiver: 2500V  
The LTM®2881 is a complete galvanically isolated full-  
duplex RS485/RS422 μModule® transceiver. No external  
components are required. A single supply powers both  
sides of the interface through an integrated, isolated, low  
noise, efficient 5V output DC/DC converter.  
RMS  
UL Recognized  
File #E151738  
®
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Isolated DC Power: 5V at Up to 200mA  
No External Components Required  
20Mbps or Low EMI 250kbps Data Rate  
High ESD: 15kV HꢀM on Transceiver Interface  
High Common Mode Transient Immunity: 30kV/μs  
Integrated Selectable 120Ω Termination  
3.3V ꢁLTM2881-3ꢂ or 5.0V ꢁLTM2881-5ꢂ Operation  
1.62V to 5.5V Logic Supply Pin for Flexible Digital Interface  
Common Mode Working Voltage: 560V  
High Input Impedance Failsafe RS485 Receiver  
Current Limited Drivers and Thermal Shutdown  
Compatible with TIA/EIA-485-A and PROFIBUS  
High Impedance Output During Internal Fault Condition  
Low Current Shutdown Mode ꢁ< 10μAꢂ  
General Purpose CMOS Isolated Channel  
Small, Low Profile ꢁ15mm × 11.25mmꢂ  
Coupled inductors and an isolation power transformer  
provide2500V  
ofisolationbetweenthelinetransceiver  
RMS  
and the logic interface. This device is ideal for systems  
where the ground loop is broken allowing for large com-  
mon mode voltage variation. Uninterrupted communica-  
tion is guaranteed for common mode transients greater  
than 30kV/ꢀs.  
PEAK  
Maximum data rates are 20Mbps or 250kbps in slew  
limited mode. Transmit data, DI and receive data, RO, are  
implemented with event driven low jitter processing. The  
receiver has a one-eighth unit load supporting up to 256  
nodes per bus. A logic supply pin allows easy interfacing  
with different logic levels from 1.62V to 5.5V, independent  
of the main supply.  
Surface Mount BGA and LGA Packages  
APPLICATIONS  
Enhanced ESD protection allows this part to withstand up  
to 15kVhumanbodymodelonthetransceiverinterface  
pins to isolated supplies and 10kV through the isolation  
barrier to logic supplies without latch-up or damage.  
n
Isolated RS485/RS422 Interface  
n
Industrial Networks  
Breaking RS485 Ground Loops  
n
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and μModule are registered trademarks of  
Isolated PROFIBUS-DP Networks  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Isolated Half-Duplex RS485 μModule Transceiver  
LTM2881 Operating Through 35kV/μs CM Transients  
3.3V ꢁLTM2881-3ꢂ  
5V ꢁLTM2881-5ꢂ  
MULTIPLE SWEEPS  
OF COMMON MODE  
TRANSIENTS  
V
CC  
LTM2881  
AVAILABLE CURRENT:  
150mA ꢁLTM2881-5ꢂ  
100mA ꢁLTM2881-3ꢂ  
V
5V  
500V/DIV  
CC2  
A
PWR  
V
L
RO  
DI  
B
RE  
RO  
TWISTED-PAIR  
CABLE  
1V/DIV  
1V/DIV  
TE  
DE  
Y
Z
DI  
2881 TA01a  
50ns/DIV  
GND  
GND2  
2881 TA01  
2881fe  
1
LTM2881  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
V
to GND ..................................................0.3V to 6V  
CC2  
V to GND ....................................................0.3V to 6V  
CC  
1
2
3
4
5
6
7
8
to GND2...............................................0.3V to 6V  
D
TE DI DE RE RO  
V
ON  
OUT  
L
L
A
B
C
D
E
F
Interface Voltages  
ꢁA, B, Y, Zꢂ to GND2........................ V  
–15V to 15V  
V
CC2  
GND  
CC  
ꢁA-Bꢂ with Terminator Enabled.............................. 6V  
Signal Voltages ON, RO, DI, DE,  
RE, TE, D  
to GND......................... 0.3V to V +0.3V  
L
OUT  
Signal Voltages SLO,  
G
H
J
D to GND2....................................0.3V to V  
+0.3V  
IN  
CC2  
Operating Temperature Range  
GND2  
K
L
LTM2881C ............................................... 0°C to 70°C  
LTM2881I.............................................40°C to 85°C  
LTM2881H ......................................... –40°C to 105°C  
LTM2881MP ...................................... –55°C to 105°C  
Maximum Internal Operating Temperature ....... 125°C  
Storage Temperature Range ..................55°C to 125°C  
Peak Package Body Reflow Temperature.............. 245°C  
D
IN  
SLO  
Y
Z
B
A
V
CC2  
BGA PACKAGE  
LGA PACKAGE  
32-PIN ꢁ15mm s 11.25mm s 3.42mmꢂ  
32-PIN ꢁ15mm s 11.25mm s 2.8mmꢂ  
T
JA  
JCTOP  
JCBOTTOM  
Q
= 125°C,  
T
= 125°C,  
JMAX  
JMAX  
= 31.1°C/W,  
Q
= 32.2°C/W,  
Q
JA  
Q
= 27.2°C/W,  
Q
= 27.3°C/W,  
JCTOP  
Q
= 20.9°C/W,  
Q
= 19.5°C/W,  
JCBOTTOM  
= 26.4°C/W,  
Q
= 25.1°C/W,  
JB  
WEIGHT = 1g  
JB  
WEIGHT = 1g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM2881CY-3#PBF  
LTM2881IY-3#PBF  
LTM2881HY-3#PBF  
LTM2881MPY-3#PBF  
LTM2881CY-5#PBF  
LTM2881IY-5#PBF  
LTM2881HY-5#PBF  
LTM2881MPY-5#PBF  
LTM2881CV-3#PBF  
LTM2881IV-3#PBF  
LTM2881HV-3#PBF  
LTM2881CV-5#PBF  
LTM2881IV-5#PBF  
LTM2881HV-5#PBF  
TRAY  
PART MARKING*  
LTM2881Y-3  
LTM2881Y-3  
LTM2881Y-3  
LTM2881Y-3  
LTM2881Y-5  
LTM2881Y-5  
LTM2881Y-5  
LTM2881Y-5  
LTM2881V-3  
LTM2881V-3  
LTM2881V-3  
LTM2881V-5  
LTM2881V-5  
LTM2881V-5  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM2881CY-3#PBF  
LTM2881IY-3#PBF  
LTM2881HY-3#PBF  
LTM2881MPY-3#PBF  
LTM2881CY-5#PBF  
LTM2881IY-5#PBF  
LTM2881HY-5#PBF  
LTM2881MPY-5#PBF  
LTM2881CV-3#PBF  
LTM2881IV-3#PBF  
LTM2881HV-3#PBF  
LTM2881CV-5#PBF  
LTM2881IV-5#PBF  
LTM2881HV-5#PBF  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 3.42mmꢂ BGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
40°C to 85°C  
–40°C to 105°C  
–55°C to 105°C  
0°C to 70°C  
40°C to 85°C  
–40°C to 105°C  
–55°C to 105°C  
0°C to 70°C  
40°C to 85°C  
–40°C to 105°C  
0°C to 70°C  
40°C to 85°C  
–40°C to 105°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
2881fe  
2
LTM2881  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢀOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
Power Supply  
l
l
V
V
Supply Voltage  
CC  
LTM2881-3  
LTM2881-5  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
V
V
CC  
l
l
V
V Supply Voltage  
1.62  
5.5  
10  
V
L
L
I
I
V
V
Supply Current in Off Mode  
Supply Current in On Mode  
ON = 0V  
0
μA  
CCPOFF  
CC  
CC  
l
l
l
LTM2881-3 DE = 0V, RE = V , No Load  
20  
15  
25  
19  
20  
mA  
mA  
mA  
CCS  
L
L
LTM2881-5 DE = 0V, RE = V , No Load  
LTM2881-5, H/MP-Grade  
l
l
l
V
V
Regulated V  
Loaded  
Output Voltage,  
Output Voltage,  
LTM2881-3 DE = 0V, RE = V , I  
= 100mA  
= 150mA  
4.75  
4.75  
4.75  
5.0  
5.0  
V
V
V
CC2  
CC2  
L
LOAD  
LOAD  
LTM2881-5 DE = 0V, RE = V , I  
L
LTM2881-3, H/MP-Grade, I  
= 90mA  
LOAD  
Regulated V  
No Load  
DE = 0V, RE = V , No Load  
4.8  
5.0  
62  
5.35  
250  
V
CC2NOLOAD  
CC2  
L
Efficiency  
I
= 100mA, LTM2881-5 ꢁNote 2ꢂ  
%
CC2  
l
I
V
Short-Circuit Current  
DE = 0V, RE = V , V = 0V  
CC2  
mA  
CC2S  
CC2  
L
Driver  
l
l
l
|V  
|
OD  
Differential Driver Output Voltage R = ∞ ꢁFigure 1ꢂ  
V
V
V
V
V
V
CC2  
CC2  
CC2  
R = 27Ω ꢁRS485ꢂ ꢁFigure 1ꢂ  
R = 50Ω ꢁRS422ꢂ ꢁFigure 1ꢂ  
2.1  
2.1  
l
Δ|V  
|
OD  
Difference in Magnitude of Driver R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
Differential Output Voltage for  
Complementary Output States  
0.2  
V
l
l
V
Driver Common Mode Output  
Voltage  
R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
3
V
V
OC  
Δ|V  
|
Difference in Magnitude of Driver R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
Common Mode Output Voltage  
for Complementary Output States  
0.2  
OC  
l
l
I
Driver Three-State ꢁHigh  
Impedanceꢂ Output Current on  
Y and Z  
DE = 0V, ꢁY or Zꢂ = –7V, +12V  
DE = 0V, ꢁY or Zꢂ = –7V, +12V, H/MP-Grade  
10  
50  
μA  
μA  
OZD  
l
I
Maximum Driver Short-Circuit  
Current  
7V ≤ ꢁY or Zꢂ ≤ 12V ꢁFigure 2ꢂ  
250  
250  
mA  
OSD  
Receiver  
l
l
R
Receiver Input Resistance  
RE = 0V or V , V = –7V, –3V, 3V, 7V, 12V ꢁFigure 3ꢂ  
96  
48  
125  
125  
kΩ  
kΩ  
IN  
L
IN  
RE = 0V or V , V = –7V, –3V, 3V, 7V, 12V ꢁFigure 3ꢂ,  
L
IN  
H/MP-Grade  
l
R
Receiver Termination Resistance TE = V , V = 2V, V = 7V, 0V, 10V ꢁFigure 8ꢂ  
108  
120  
156  
Ω
μA  
μA  
V
TE  
L
AB  
B
Enabled  
l
l
I
Receiver Input Current ꢁA, Bꢂ  
ON = 0V V = 0V or 5V, V = 12V ꢁFigure 3ꢂ  
125  
250  
IN  
CC2  
IN  
ON = 0V V = 0V or 5V, V = 12V ꢁFigure 3ꢂ, H/MP-Grade  
CC2  
IN  
l
l
ON = 0V V = 0V or 5V, V = –7V ꢁFigure 3ꢂ  
100  
–145  
CC2  
IN  
ON = 0V V = 0V or 5V, V = –7V ꢁFigure 3ꢂ, H/MP-Grade  
CC2  
IN  
l
V
TH  
Receiver Differential Input  
Threshold Voltage ꢁA-Bꢂ  
–7V ≤ B ≤ 12V  
0.2  
0.2  
0
ΔV  
Receiver Input Failsafe Hysteresis B = 0V  
Receiver Input Failsafe Threshold B = 0V  
25  
mV  
V
TH  
0.2  
–0.05  
2881fe  
3
LTM2881  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢀOL  
Logic  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
l
V
V
Logic Input Low Voltage  
1.62V ≤ V ≤ 5.5V  
0.4  
V
IL  
L
l
l
D
0.67•V  
2
V
V
IH  
IN  
CC2  
SLO  
Logic Input High Voltage  
DI, TE, DE, ON, RE:  
l
l
V ≥ 2.35V  
0.67•V  
0.75•V  
V
V
L
L
L
1.62V ≤ V < 2.35V  
L
l
I
Logic Input Current  
Logic Input Hysteresis  
Output High Voltage  
0
1
μA  
mV  
V
INL  
V
V
ꢁNote 2ꢂ  
Output High, I  
150  
HYS  
l
l
= –4mA  
V –0.4  
L
OH  
LOAD  
ꢁSourcingꢂ, 5.5V ≥ V ≥ 3V  
L
Output High, I  
= –1mA  
V –0.4  
L
V
LOAD  
ꢁSourcingꢂ, 1.62V ≤ V < 3V  
L
l
l
V
Output Low Voltage  
Output Low, I  
= 4mA  
0.4  
0.4  
V
V
OL  
LO AD  
ꢁSinkingꢂ, 5.5V ≥ V ≥ 3V  
L
Output High, I  
ꢁSinkingꢂ, 1.62V ≤ V < 3V  
= 1mA  
LOAD  
L
l
l
I
I
Three-State ꢁHigh Impedanceꢂ  
Output Current on RO  
RE = V , 0V ≤ RO ≤ V  
L
1
μA  
OZR  
L
Short-Circuit Current  
0V ≤ ꢁRO or D ꢂ ≤ V  
85  
mA  
OSR  
OUT  
L
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢀOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
Driver SLO = V  
CC2  
f
Maximum Data Rate  
Driver Input to Output  
ꢁNote 3ꢂ  
20  
Mbps  
MAX  
l
l
l
l
l
t
t
R
= 54Ω, C = 100pF  
60  
1
85  
8
ns  
ns  
ns  
ns  
ns  
PLHD  
PHLD  
DIFF  
L
ꢁFigure 4ꢂ  
R = 54Ω, C = 100pF  
DIFF  
Δt  
Driver Input to Output Difference  
PD  
L
|t  
– t  
|
PHLD  
ꢁFigure 4ꢂ  
PLHD  
t
Driver Output Y to Output Z  
R
= 54Ω, C = 100pF  
1
8
SKEWD  
DIFF  
L
ꢁFigure 4ꢂ  
t
t
Driver Rise or Fall Time  
R
= 54Ω, C = 100pF  
4
12.5  
170  
RD  
FD  
DIFF  
L
ꢁFigure 4ꢂ  
t
t
, t  
,
Driver Output Enable or Disable  
Time  
R = 500Ω, C = 50pF  
ZLD ZHD  
L
L
, t  
ꢁFigure 5ꢂ  
LZD HZD  
Driver SLO = GND2  
f
Maximum Data Rate  
Driver Input to Output  
ꢁNote 3ꢂ  
250  
kbps  
μs  
MAX  
t
t
R
= 54Ω, C = 100pF  
1
1.55  
500  
500  
PLHD  
PHLD  
DIFF  
L
ꢁFigure 4ꢂ  
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF  
50  
200  
ns  
ns  
PD  
DIFF  
L
|t  
– t  
|
PHLD  
ꢁFigure 4ꢂ  
PLHD  
t
Driver Output Y to Output Z  
R
DIFF  
= 54Ω, C = 100pF  
SKEWD  
L
ꢁFigure 4ꢂ  
2881fe  
4
LTM2881  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢀOL  
PARAMETER  
CONDITIONS  
= 54Ω, C = 100pF  
MIN  
TYP MAX UNITS  
l
l
t
t
Driver Rise or Fall Time  
R
0.9  
1.5  
μs  
RD  
FD  
DIFF  
L
ꢁFigure 4ꢂ  
t
t
, t  
,
Driver Output Enable or Disable  
Time  
R = 500Ω, C = 50pF  
400  
ns  
ZLD ZHD  
L
L
, t  
ꢁFigure 5ꢂ  
LZD HZD  
Receiver  
l
l
l
l
l
t
t
Receiver Input to Output  
Differential Receiver Skew  
C = 15pF, V = 2.5V, |V | = 1.4V,  
100  
1
140  
8
ns  
ns  
ns  
ns  
μs  
PLHR  
PHLR  
L
CM  
AB  
t and t < 4ns, ꢁFigure 6ꢂ  
R
F
t
C = 15pF  
SKEWR  
L
|t  
- t  
|
ꢁFigure 6ꢂ  
PLHR PHLR  
t
t
Receiver Output Rise or Fall Time C = 15pF  
3
12.5  
50  
RR  
FR  
L
ꢁFigure 6ꢂ  
t
t
, t  
,
Receiver Output Enable Time  
R =1kΩ, C = 15pF  
ZLR ZHR  
L
L
, t  
ꢁFigure 7ꢂ  
LZR HZR  
t
, t  
Termination Enable or Disable  
Time  
RE = 0V, DE = 0V, V = 2V, V = 0V ꢁFigure 8ꢂ  
100  
RTEN RTZ  
AB  
B
Generic Logic Input  
l
l
t
t
D
to D  
Input to Output  
C = 15pF,  
60  
100  
800  
ns  
μs  
PLHL1  
PHLL1  
IN  
OUT  
L
t and t < 4ns  
R
F
Power Supply Generator  
–GND2 Supply Start-Up  
V
CC2  
325  
ON  
V , No Load  
L
Time  
ꢁ0V to 4.5Vꢂ  
ISOLATION CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V unless  
otherwise noted.  
SYMꢀOL  
PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
1 Minute ꢁDerived from 1 Second Testꢂ  
1 Second ꢁNote 5ꢂ  
V
RMS  
ISO  
V
DC  
Common Mode Transient Immunity  
Maximum Working Insulation Voltage  
LTM2881-3 V = 3.3V, LTM2881-5 V = 5V,  
kV/μs  
CC  
CC  
V = ON = 3.3V, V = 1kV, Δt = 33ns ꢁNote 2ꢂ  
L
CM  
V
ꢁNotes 2, 5ꢂ  
560  
400  
V
PEAK  
IORM  
V
RMS  
Partial Discharge  
V
= 1050 V  
ꢁNote 2ꢂ  
PEAK  
5
pC  
PR  
9
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
ꢁNotes 2, 5ꢂ  
ꢁNotes 2, 5ꢂ  
ꢁNotes 2, 5ꢂ  
10  
Ω
pF  
6
9.48  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: This μModule transceiver includes overtemperature protection that  
is intended to protect the device during momentary overload conditions.  
Junction temperature will exceed 125°C when overtemperature protection  
is active. Continuous operation above specified maximum operating  
junction temperature may result in device degradation or failure.  
Note 2: Guaranteed by design and not subject to production test.  
Note 5: Device considered a 2-terminal device. Pin group A1 through B8  
shorted together and pin group K1 through L8 shorted together.  
Note 3: Maximum Data rate is guaranteed by other measured parameters  
and is not tested directly.  
2881fe  
5
LTM2881  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5  
V
CC = 5.0V, VL = 3.3V unless otherwise noted.  
Driver Propagation Delay  
vs Temperature  
Receiver Skew vs Temperature  
Driver Skew vs Temperature  
2.0  
1.5  
80  
75  
70  
65  
60  
55  
50  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
2881 G02  
2881 G03  
2881 G01  
Driver Output Low/High Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
RTERM vs Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
6
5
4
OUTPUT HIGH  
R = ∞  
R = 100Ω  
R = 54Ω  
3
2
OUTPUT LOW  
1
0
0
10  
20  
30  
40  
50  
60  
70  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
OUTPUT CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
2881 G05  
2881 G04  
2881 G06  
Receiver Output Voltage vs  
Output Current (Source and Sink)  
Receiver Propagation Delay  
vs Temperature  
Supply Current vs Data Rate  
4
3
2
1
0
120  
115  
110  
105  
100  
95  
200  
180  
160  
140  
120  
100  
80  
SOURCE  
R = 54ꢃ ꢁLTM2881-3ꢂ  
R = 100ꢃ ꢁLTM2881-3ꢂ  
R = 54ꢃ ꢁLTM2881-5ꢂ  
R = 100ꢃ ꢁLTM2881-5ꢂ  
60  
40  
R = ∞ ꢁLTM2881-3ꢂ  
R = ∞ ꢁLTM2881-5ꢂ  
20  
SINK  
90  
0
0.1  
0
1
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
1
10  
OUTPUT CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
DATA RATE ꢁMbpsꢂ  
2881 G07  
2881 G08  
2881 G09  
2881fe  
6
LTM2881  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5  
V
CC = 5.0V, VL = 3.3V unless otherwise noted.  
VCC2 Surplus Current  
vs Temperature  
VCC Supply Current vs Temperature  
VCC2 vs Load Current  
at ILOAD = 100mA on VCC2  
350  
250  
200  
150  
100  
50  
6
LTM2881-3, V = 3.3V  
CC  
300  
250  
200  
150  
100  
50  
LTM2881-5  
LTM2881-5 ꢁRS485 60mAꢂ  
5
4
LTM2881-3  
LTM2881-5, V = 5V  
CC  
LTM2881-5 ꢁRS485 90mAꢂ  
LTM2881-3 ꢁRS485 60mAꢂ  
3
2
LTM2881-3 ꢁRS485 90mAꢂ  
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10 20 40 60 80 100 120 140 160 180  
LOAD CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
V
CC2  
2881 G10  
2881 G11  
2881 G12  
VCC2 Power Efficiency  
VCC2 Load Step (100mA)  
VCC2 Noise  
70  
60  
50  
40  
30  
20  
10  
LTM2881-5  
V
CC2  
100mV/DIV  
LTM2881-3  
10mV/DIV  
I
LOAD  
50mA/DIV  
2881 G14  
2881 G15  
100μs/DIV  
200μs/DIV  
0
50  
100  
150  
200  
I
OUTPUT CURRENT ꢁmAꢂ  
CC2  
2881 G13  
2881fe  
7
LTM2881  
PIN FUNCTIONS  
LOGIC SIDE (V , V , GND)  
ISOLATED SIDE (V , GND2)  
CC2  
CC  
L
D
(Pin A1): General Purpose Logic Output. Logic  
D (Pin L1): General Purpose Isolated Logic Input. Logic  
IN  
OUT  
output connected through isolation path to D . Under  
input on the isolated side relative to V  
and GND2. A  
IN  
CC2  
the condition of an isolation communication failure D  
is in a high impedance state.  
logic high on D will generate a logic high on D . A  
OUT  
IN OUT  
logic low on D will generate a logic low on D  
.
IN  
OUT  
TE (Pin A2): Terminator Enable. A logic high enables a  
SLO (Pin L2): Driver Slew Rate Control. A low input, rela-  
tive to GND2, will force the driver into a reduced slew rate  
mode for reduced EMI. A high input, relative to GND2,  
puts the driver into full speed mode to support maximum  
data rates.  
terminationresistortypically120ΩbetweenpinsAandB.  
DI (Pin A3): Driver Input. If the driver outputs are enabled  
ꢁDE highꢂ, then a low on DI forces the driver noninverting  
output ꢁYꢂ low and the inverting output ꢁZꢂ high. A high  
on DI, with the driver outputs enabled, forces the driver  
noninverting output ꢁYꢂ high and inverting output ꢁZꢂ low.  
Y (Pin L3): Non Inverting Driver Output. High impedance  
when the driver is disabled.  
DE (Pin A4): Driver Enable. A logic low disables the driver  
leaving the outputs Y and Z in a high impedance state. A  
logic high enables the driver.  
Z (Pin L4): Inverting Driver Output. High impedance when  
the driver is disabled.  
ꢀ (Pin L5): Inverting Receiver Input. Impedance is > 96kΩ  
in receive mode with TE low or unpowered.  
RE (Pin A5): Receiver Enable. A logic low enables the  
receiver output. A logic high disables RO to a high imped-  
ance state.  
A (Pin L6): Non Inverting Receiver Input. Impedance is  
> 96kΩ in receive mode with TE low or unpowered.  
RO (Pin A6): Receiver Output. If the receiver output is  
enabled ꢁRE lowꢂ and if A – B is > 200mV, RO is a logic  
high, if A – B is < –200mV RO is a logic low. If the receiver  
inputs are open, shorted, or terminated without a valid  
signal, RO will be high. Under the condition of an isolation  
communication failure RO is in a high impedance state.  
V
(Pins L7-L8): Isolated Supply Voltage. Internally  
CC2  
generated from V by an isolated DC/DC converter and  
CC  
regulated to 5V. Internally bypassed to GND2 with 2.2μF.  
GND2 (Pins K1-K8): Isolated Side Circuit Ground. The  
pads should be connected to the isolated ground and/or  
cable shield.  
V (Pin A7): Logic Supply. Interface supply voltage for  
L
pins RO, RE, TE, DI, DE, D , and ON. Recommended  
OUT  
operating voltage is 1.62V to 5.5V. Internally bypassed  
to GND with 2.2μF.  
ON(PinA8):Enable. Enablespoweranddatacommunica-  
tion through the isolation barrier. If ON is high the part is  
enabled and power and communications are functional  
to the isolated side. If ON is low the logic side is held in  
reset and the isolated side is unpowered.  
GND (Pins ꢀ1-ꢀ5): Circuit Ground.  
V
(Pins6-ꢀ8):SupplyVoltage. Recommendedoperat-  
CC  
ing voltage is 3V to 3.6V for LTM2881-3 and 4.5V to 5.5V  
for LTM2881-5. Internally bypassed to GND with 2.2μF.  
2881fe  
8
LTM2881  
BLOCK DIAGRAM  
V
2.2μF  
CC  
V
CC2  
5V  
REG  
ISOLATED  
DC/DC  
CONVERTER  
2.2μF  
V
L
2.2μF  
A
B
RO  
RX  
RE  
DE  
DI  
ISOLATED  
ISOLATED  
COMM  
INTERFACE  
120Ω  
COMM  
INTERFACE  
Y
Z
DX  
ON  
TE  
SLO  
D
IN  
D
OUT  
GND  
GND2  
2881 BD  
= LOGIC SIDE COMMON  
= ISOLATED SIDE COMMON  
TEST CIRCUITS  
Y
Z
Y
Z
R
I
OSD  
GND  
DI  
GND  
DI  
+
OR  
DRIVER  
OR  
DRIVER  
V
OD  
V
V
L
L
R
+
+
–7V TO 12V  
V
OC  
2881 F01  
2881 F02  
Figure 1. Driver DC Characteristics  
Figure 2. Driver Output Short-Circuit Current  
I
IN  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
2881 F03  
V
I
IN  
IN  
R
=
IN  
Figure 3. Receiver Input Current and Input Resistance  
2881fe  
9
LTM2881  
TEST CIRCUITS  
V
L
t
t
DI  
Y, Z  
PLHD  
PHLD  
Y
Z
0V  
t
C
C
SKEWD  
L
L
DI  
DRIVER  
R
DIFF  
V
1/2 V  
OD  
OD  
2881 F04a  
90%  
90%  
0
0
ꢁY-Zꢂ  
10%  
10%  
2881 F04b  
t
t
FD  
RD  
Figure 4. Driver Timing Measurement  
V
L
GND  
OR  
CC2  
R
R
L
DE  
Y OR Z  
Z OR Y  
1/2 V  
L
Y
Z
0V  
V
C
C
t
L
L
ZLD  
t
V
LZD  
L
DI  
V
CC2  
OR  
DRIVER  
DE  
1/2 V  
1/2 V  
GND  
CC2  
0.5V  
V
CC2  
L
OR  
GND  
0.5V  
2881 F05a  
CC2  
0V  
2881 F05b  
t
t
HZD  
ZHD  
Figure 5. Driver Enable and Disable Timing Measurements  
t
t
F
R
V
90%  
10%  
AB  
90%  
A-B  
0
A
B
10%  
V
/2  
/2  
AB  
–V  
AB  
RO  
t
t
PHLR  
PLHR  
V
RECEIVER  
CM  
V
L
90%  
10%  
C
90%  
10%  
L
V
AB  
1/2 V  
1/2 V  
RO  
L
L
2881 F06a  
0
2881 F06b  
t
t
RR  
FR  
Figure 6. Receiver Propagation Delay Measurements  
2881fe  
10  
LTM2881  
TEST CIRCUITS  
V
L
RE  
RO  
RO  
1/2 V  
L
0V  
A
0V OR V  
CC2  
t
t
t
ZLR  
LZR  
R
V
L
L
RO  
V
L
OR  
RECEIVER  
RE  
1/2 V  
1/2 V  
L
L
GND  
B
0.5V  
0.5V  
C
V
OR 0V  
L
V
CC2  
OL  
V
OH  
2881 F07a  
0V  
2881 F07b  
t
ZHR  
HZR  
Figure 7. Receiver Enable/Disable Time Measurements  
V
AB  
I
R
=
A
TE  
I
A
V
L
A
B
TE  
1/2 V  
L
RO  
+
RECEIVER  
V
V
0V  
AB  
t
RTEN  
t
RTZ  
90%  
I
A
10%  
+
TE  
B
2881 F08  
Figure 8. Termination Resistance and Timing Measurements  
FUNCTIONAL TABLE  
DC/DC  
CONVERTER  
LOGIC INPUTS  
MODE  
A, ꢀ  
Y, Z  
RO  
TERMINATOR  
ON  
1
RE  
0
TE  
0
DE  
0
Receive  
Transceiver  
Transmit  
R
R
R
Hi-Z  
Driven  
Driven  
Hi-Z  
Enabled  
Enabled  
Hi-Z  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
On  
Off  
IN  
IN  
IN  
TE  
1
0
0
1
1
1
0
1
1
0
1
0
Receive + Term On  
Off  
R
Enabled  
Hi-Z  
0
X
X
X
R
Hi-Z  
IN  
2881fe  
11  
LTM2881  
APPLICATIONS INFORMATION  
Overview  
rate, and external pins are supplied for extra decoupling  
ꢁoptionalandheatdissipation.Thelogicsupplies,V and  
L
CC  
TheLTM2881μModuletransceiverprovidesagalvanically-  
isolated robust RS485/RS422 interface, powered by an  
integrated, regulated DC/DC converter, complete with  
decoupling capacitors. A switchable termination resistor  
is integrated at the receiver input to provide proper termi-  
nation to the RS485 bus. The LTM2881 is ideal for use in  
networks where grounds can take on different voltages.  
Isolation in the LTM2881 blocks high voltage differences  
and eliminates ground loops and is extremely tolerant of  
commonmodetransientsbetweengroundpotentials.Error  
freeoperationismaintainedthroughcommonmodeevents  
greater than 30kV/ꢀs providing excellent noise isolation.  
V have a 2.2μF decoupling capacitance to GND and the  
isolated supply V has a 2.2μF decoupling capacitance  
CC2  
to GND2 within the μModule package.  
V
CC2  
Output  
Theon-boardDC/DCconverterprovidesisolated5Vpower  
to output V . V is capable of suppling up to 1W of  
CC2 CC2  
power at 5V in the LTM2881-5 option and up to 600mW  
of power in the LTM2881-3 option. This surplus current is  
available to external applications. The amount of surplus  
currentisdependentupontheimplementationandcurrent  
delivered to the RS485 driver and line load. An example  
of available surplus current is shown in the Typical Per-  
ꢁModule Technology  
formance Characteristics graph, V  
Surplus Current vs  
CC2  
The LTM2881 utilizes isolator μModule technology to  
translate signals and power across an isolation barrier.  
Signals on either side of the barrier are encoded into  
pulses and translated across the isolation boundary using  
coreless transformers formed in the μModule substrate.  
This system, complete with data refresh, error checking,  
safe shutdown on fail, and extremely high common mode  
immunity, provides a robust solution for bidirectional  
signal isolation. The μModule technology provides the  
means to combine the isolated signaling with our RS485  
transceiver and powerful isolated DC/DC converter in one  
small package.  
Temperature. Figure 19 demonstrates a method of using  
the V  
output directly and with a switched power path  
CC2  
that is controlled with the isolated RS485 data channel.  
Driver  
The driver provides full RS485 and RS422 compatibility.  
When enabled, if DI is high, Y–Z is positive. When the  
driver is disabled, both outputs are high impedance with  
less than 10μA of leakage current over the entire common  
mode range of –7V to 12V, with respect to GND2.  
Driver Overvoltage and Overcurrent Protection  
DC/DC Converter  
The driver outputs are protected from short circuits to  
any voltage within the absolute maximum range of ꢁV  
The LTM2881 contains a fully integrated isolated DC/DC  
converter, including the transformer, so that no external  
components are necessary. The logic side contains a full-  
bridge driver, running about 2MHz, and is AC-coupled  
to a single transformer primary. A series DC blocking  
capacitor prevents transformer saturation due to driver  
duty cycle imbalance. The transformer scales the primary  
voltage, and is rectified by a full-wave voltage doubler.  
This topology eliminates transformer saturation caused  
by secondary imbalances.  
CC2  
cur-  
–15Vꢂ to ꢁGND2 +15Vꢂ levels. The maximum V  
CC2  
rent in this condition is 250mA. If the pin voltage exceeds  
about 10V, current limit folds back to about half of the  
peak value to reduce overall power dissipation and avoid  
damaging the part.  
The device also features thermal shutdown protection  
that disables the driver and receiver output in case of  
excessive power dissipation ꢁSee Note 4 in the Electrical  
Characteristics sectionꢂ.  
The DC/DC converter is connected to a low dropout reg-  
ulator ꢁLDOꢂ to provide a regulated low noise 5V output.  
SLO Mode  
TheLTM2881featuresalogic-selectablereducedslewrate  
mode ꢁSLO modeꢂ that softens the driver output edges to  
2881fe  
The internal power solution is sufficient to support the  
transceiverinterfaceatitsmaximumspecifiedloadanddata  
12  
LTM2881  
APPLICATIONS INFORMATION  
0
6.25  
12.5  
0
6.25  
12.5  
FREQUENCY ꢁMHzꢂ  
FREQUENCY ꢁMHzꢂ  
2881 F09b  
2881 F09a  
Figure 9a. Frequency Spectrum SLO Mode 125kHz Input  
Figure 9b. Normal Mode Frequency Spectrum 125kHz Input  
reduce EMI emissions from equipment and data cables.  
The reduced slew rate mode is entered by taking the SLO  
pin low to GND2, where the data rate is limited to about  
250kbps. Slew limiting also mitigates the adverse effects  
ofimperfecttransmissionlineterminationcausedbystubs  
or mismatched cables.  
of the bus when A-B is above the input failsafe threshold  
for longer than about 3μs with a hysteresis of 25mV. This  
failsafe feature is guaranteed to work for inputs spanning  
the entire common mode range of –7V to 12V.  
The receiver output is internally driven high ꢁto V ꢂ or  
L
low ꢁto GNDꢂ with no external pull-up needed. When the  
receiver is disabled the RO pin becomes Hi-Z with leakage  
of less than 1μA for voltages within the supply range.  
Figures 9a and 9b show the frequency spectrums of the  
LTM2881 driver outputs in normal and SLO mode operat-  
ing at 250kbps. SLO mode significantly reduces the high  
frequency harmonics.  
Receiver Input Resistance  
The receiver input resistance from A or B to GND2 is  
greater than 96k permitting up to a total of 256 receivers  
per system without exceeding the RS485 receiver loading  
specification. High temperature H-/MP-Grade operation  
reduces the input resistance to 48k permitting 128 re-  
ceivers on the bus. The input resistance of the receiver is  
unaffected by enabling/disabling the receiver or by power-  
ing/unpowering the part. The equivalent input resistance  
looking into A and B is shown in Figure 10.  
Receiver and Failsafe  
With the receiver enabled, when the absolute value of the  
differentialvoltagebetweentheAandBpinsisgreaterthan  
200mV, the state of RO will reflect the polarity of ꢁA-Bꢂ.  
During data communication the receiver detects the state  
of the input with symmetric thresholds around 0V. The  
symmetric thresholds preserve duty cycle for attenu-  
ated signals with slow transition rates on high capacitive  
busses, or long cable lengths. The receiver incorporates  
a failsafe feature that guarantees the receiver output to  
be a logic-high during an idle bus, when the inputs are  
shorted,leftopenorterminated,butnotdriven.Thefailsafe  
feature eliminates the need for system level integration of  
network pre-biasing by guaranteeing a logic-high on RO  
under the conditions of an idle bus. Further network bias-  
ing constructed to condition transient noise during an idle  
state is unnecessary due to the common mode transient  
rejection of the LTM2881. The failsafe detector monitors  
A and B in parallel with the receiver and detects the state  
A
>96k  
60ꢃ  
TE  
60ꢃ  
B
2881 F10  
>96k  
Figure 10. Equivalent Input Resistance into A and ꢀ  
2881fe  
13  
LTM2881  
APPLICATIONS INFORMATION  
Switchable Termination  
phase of the termination impedance versus frequency.  
The termination resistor cannot be enabled by TE if the  
device is unpowered, ON is low or the LTM2881 is in  
thermal shutdown.  
Proper cable termination is very important for signal fi-  
delity. If the cable is not terminated with its characteristic  
impedance, reflections will distort the signal waveforms.  
Supply Current  
The integrated switchable termination resistor provides  
logic control of the line termination for optimal perfor-  
mance when configuring transceiver networks.  
Thestaticsupplycurrentisdominatedbypowerdeliveredto  
theterminationresistance.Powersupplycurrentincreases  
with data rate due to capacitive loading. Figure 14 shows  
supply current versus data rate for three different loads  
for the circuit configuration of Figure 4. Supply current  
increases with additional external applications drawing  
WhentheTEpinishigh,theterminationresistorisenabled  
and the differential resistance from A to B is 120Ω. Figure  
11 shows the I/V characteristics between pins A and B  
with the termination resistor enabled and disabled. The  
resistance is maintained over the entire RS485 common  
mode range of –7V to 12V as shown in Figure 12. The  
integrated termination resistor has a high frequency re-  
sponsewhichdoesnotlimitperformanceatthemaximum  
specified data rate. Figure 13 shows the magnitude and  
current from V  
.
CC2  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
–10  
–5  
0
5
10  
15  
COMMON MODE VOLTAGE ꢁVꢂ  
2881 G11  
2881 F11  
Figure 11. Curve Trace ꢀetween A and ꢀ with Termination  
Enabled and Disabled  
Figure 12. Termination Resistance vs Common Mode Voltage  
250  
230  
150  
140  
130  
120  
10  
PHASE  
210  
0
LTM2881-3  
190  
170  
150  
130  
110  
90  
R=54 CL=1000p  
R=54 CL=100p  
R=54 CL=0  
–10  
–20  
MAGNITUDE  
LTM2881-5  
R=54 CL=1000p  
R=54 CL=100p  
R=54 CL=0  
110  
100  
–30  
–40  
70  
50  
0.1  
1
10  
0.1  
1
10  
FREQUENCY ꢁMHzꢂ  
DATA RATE ꢁMbpsꢂ  
2881 F13  
2881 F14  
Figure 13. Termination Magnitude and Phase vs Frequency  
Figure 14. Supply Current vs Data Rate  
2881fe  
14  
LTM2881  
APPLICATIONS INFORMATION  
PROFIꢀUS Applications  
• InputandOutputdecouplingisnotrequired,sincethese  
components are integrated within the package. An ad-  
ditional bulk capacitor with a value of 6.8μF to 22μF is  
recommended. The high ESR of this capacitor reduces  
boardresonancesandminimizesvoltagespikescaused  
by hot plugging of the supply voltage. For EMI sensitive  
applications,anadditionallowESLceramiccapacitorof  
1μF to 4.7μF, placed as close to the power and ground  
terminals as possible, is recommended. Alternatively, a  
numberofsmallervalueparallelcapacitorsmaybeused  
to reduce ESL and achieve the same net capacitance.  
The LTM2881 can be used in PROFIBUS-DP networks  
where isolation is required. The standard PROFIBUS  
termination differs from RS485 termination and is shown  
in Figure 15. If used in this way, the internal termination  
should remain disabled ꢁTE lowꢂ. The 390Ω resistors in  
Figure 15 pre-bias the bus so that when the line is not  
driven, the receiver delivers a high output. Since the  
LTM2881usesafail-safereceiver,thepre-biasingresistors  
are not necessary and standard RS485 termination can  
be used with control from TE.  
• Do not place copper on the PCB between the inner col-  
umnsofpads. Thisareamustremainopentowithstand  
the rated isolation voltage.  
V
, provides an isolated source for the external termina-  
CC2  
tion resistor as shown in the Figure 15. When using the  
LTM2881 in PROFIBUS applications, it is recommended  
that no additional loads are connected to V  
maintain the specified driver output swing.  
in order to  
• The use of solid ground planes for GND and GND2  
is recommended for non-EMI critical applications to  
optimize signal fidelity, thermal performance, and to  
minimize RF emissions due to uncoupled PCB trace  
conduction. The drawback of using ground planes,  
where EMI is of concern, is the creation of a dipole  
antennastructurewhichcanradiatedifferentialvoltages  
formed between GND and GND2. If ground planes are  
used it is recommended to minimize their area, and  
use contiguous planes as any openings or splits can  
exacerbate RF emissions.  
CC2  
3.3V ꢁLTM2881-3ꢂ  
5V ꢁLTM2881-5ꢂ  
V
CC  
V
390Ω  
CC2  
A
PWR  
V
L
PROFIBUS CABLE  
TYPE A  
RO  
B
Y
DE  
220Ω  
390Ω  
DI  
SHIELD  
Z
TE  
LTM2881  
GND  
GND2  
• For large ground planes a small capacitance ꢁ≤ 330pFꢂ  
from GND to GND2, either discrete or embedded within  
the substrate, provides a low impedance current return  
path for the module parasitic capacitance, minimizing  
anyhighfrequencydifferentialvoltagesandsubstantially  
reducing radiated emissions. Discrete capacitance will  
notbeaseffectiveduetoparasiticESL.Inaddition,volt-  
age rating, leakage, and clearance must be considered  
for component selection. Embedding the capacitance  
withinthePCBsubstrateprovidesanearidealcapacitor  
and eliminates component selection issues; however,  
the PCB must be 4 layers. Care must be exercised in  
applying either technique to insure the voltage rating  
of the barrier is not compromised.  
2881 F15  
Figure 15. PROFIꢀUS-DP Connections with Termination  
PCꢀ Layout Considerations  
The high integration of the LTM2881 makes PCB layout  
very simple. However, to optimize its electrical isolation  
characteristics, EMI, and thermal performance, some  
layout considerations are necessary.  
• Under heavily loaded conditions V and GND current  
CC  
can exceed 300mA. Sufficient copper must be used  
on the PCB to insure resistive losses do not cause the  
supply voltage to drop below the minimum allowed  
level. Similarly, the V  
and GND2 conductors must  
CC2  
be sized to support any external load current. These  
heavy copper traces will also help to reduce thermal  
stress and improve the thermal conductivity.  
2881fe  
15  
LTM2881  
APPLICATIONS INFORMATION  
TECHNOLOGY  
Figure 16a. Low EMI Demo ꢀoard Layout  
Figure 16b. Low EMI Demo ꢀoard Layout (DC1746A), Top Layer  
Figure 16c. Low EMI Demo ꢀoard Layout (DC1746A), Inner Layer 1  
2881fe  
16  
LTM2881  
APPLICATIONS INFORMATION  
Figure 16d. Low EMI Demo ꢀoard Layout (DC1746A), Inner Layer 2  
Figure 16e. Low EMI Demo ꢀoard Layout (DC1746A), ꢀottom Layer  
60  
DETECTOR = QuasiPeak  
R
= 120kHz, V = 300kHz  
BW  
BW  
50  
40  
SWEEP TIME = 17sec  
# OF POINTS = 501  
30  
20  
10  
0
–10  
–20  
–30  
DC1746A-B  
CISPR 22 CLASS 8 LIMIT  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY ꢁMHzꢂ  
2881 F17  
Figure 17. Low EMI Demo ꢀoard Emissions  
2881fe  
17  
LTM2881  
APPLICATIONS INFORMATION  
The PCB layout in Figures 16a to 16e show the low EMI  
demo board for the LTM2881. The demo board uses a  
combination of EMI mitigation techniques, including both  
embedded PCB bridge capacitance and discrete GND to  
GND2 capacitors. Two safety rated type Y2 capacitors  
are used in series, manufactured by Murata, part number  
GA342QR7GF471KW01L. The embedded capacitor ef-  
fectively suppresses emissions above 400MHz, whereas  
the discrete capacitors are more effective below 400MHz.  
RF, Magnetic Field Immunity  
The LTM2881 has been independently evaluated and has  
successfully passed the RF and magnetic field immunity  
testing requirements per European Standard EN 55024,  
in accordance with the following test standards:  
EN 61000-4-3 Radiated, Radio-Frequency,  
Electromagnetic Field Immunity  
EN 61000-4-8 Power Frequency Magnetic Field  
Immunity  
EMI performance is shown in Figure 17, measured using  
a Gigahertz Transverse Electromagnetic ꢁGTEMꢂ cell and  
method detailed in IEC 61000-4-20, “Testing and Mea-  
surement Techniques – Emission and Immunity Testing  
in Transverse Electromagnetic Waveguides.”  
EN 61000-4-9 Pulsed Magnetic Field Immunity  
Tests were performed using an unshielded test card de-  
signed per the data sheet PCB layout recommendations.  
Specific limits per test are detailed in Table 1.  
Cable Length versus Data Rate  
Table 1  
TEST  
FREQUENCY  
80MHz to 1GHz  
1.4MHz to 2GHz  
2GHz to 2.7GHz  
50Hz and 60Hz  
60Hz  
FIELD STRENGTH  
10V/m  
For a given data rate, the maximum transmission distance  
is bounded by the cable properties. A typical curve of  
cable length versus data rate compliant with the RS485  
standard is shown in Figure 18. Three regions of this  
curve reflect different performance limiting factors in data  
transmission. In the flat region of the curve, maximum  
distance is determined by resistive loss in the cable. The  
downwardslopingregionrepresentslimitsindistanceand  
rate due to the AC losses in the cable. The solid vertical  
line represents the specified maximum data rate in the  
RS485 standard. The dashed line at 250kbps shows the  
maximum data rate when SLO is low. The dashed line at  
20Mbps shows the maximum data rate when SLO is high.  
EN 61000-4-3, Annex D  
3V/m  
1V/m  
EN 61000-4-8, Level 4  
EN 61000-4-8, Level 5  
EN 61000-4-9, Level 5  
*Non IEC Method  
30A/m  
100A/m*  
1000A/m  
Pulse  
10k  
LOW-EMI MODE  
MAX DATA RATE  
1k  
100  
10  
NORMAL  
MODE MAX  
DATA RATE  
RS485 MAX  
DATA RATE  
10k  
100k  
1M  
10M  
100M  
DATA RATE ꢁbpsꢂ  
2881 F18  
Figure 18. Cable Length vs Data Rate  
2881fe  
18  
LTM2881  
TYPICAL APPLICATIONS  
V
V
CC  
CC  
LTM2881  
V
L
A
B
RO  
RE  
TE  
DE  
Y
DI  
Z
330k  
D
D
OUT  
IN  
GND  
GND2  
FAULT  
2881 F19  
Figure 19. Isolated System Fault Detection  
V
V
CC  
CC  
LTM2881  
PWR  
V
L
A
B
RO  
RE  
TE  
DE  
DI  
Y
Z
GND  
GND2  
2881 F20  
Figure 20. Full-Duplex RS485 Connection  
2881fe  
19  
LTM2881  
TYPICAL APPLICATIONS  
V
V
CC  
REGULATED 5V  
SWITCHED 5V  
1.8V  
V
CC  
CC2  
A
PWR  
V
L
RO  
IRLML6402  
B
RE  
LTM2881  
TE  
DE  
330k  
DI  
D
OFF ON  
Z
D
OUT  
IN  
GND  
GND2  
CMOS OUTPUT  
CMOS INPUT  
2881 F21  
Figure 21. Switched 5V Power with Isolated CMOS Logic Connection with Low Voltage Interface  
V
V
V
CCB  
CC  
V
CC  
CC  
LTM2881  
LTM2881  
V
DE  
L
PWR  
PWR  
V
L
A
B
Y
51Ω  
51Ω  
RO  
DI  
Z
RE  
10nF  
DE  
DI  
RE  
Y
Z
A
B
51Ω  
51Ω  
RO  
10nF  
GND  
GND2  
GND2  
GND  
2881 F22  
BUS INHERITED  
B
Figure 22. 4-Wire Full Duplex Self ꢀiasing for Unshielded CAT5 Connection  
2881fe  
20  
LTM2881  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2881fe  
21  
LTM2881  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
2881fe  
22  
LTM2881  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMꢀER  
A
3/10  
Changes to Features, Description and Typical Application  
Add BGA Package to Pin Configuration, Order Information and Package Description Sections  
Changes to LGA Package in Pin Configuration Section  
Changes to Electrical Characteristics Section  
Changes to Graphs G09, G13, G14  
1
2, 19  
2
3
6, 7  
8
Update to Pin Functions  
Update to Applications Information  
12  
13  
14  
15  
16  
22  
1-22  
Change to X-Axis on Figures 9a and 9b  
Update to Supply Current Section  
“PCB Layout Isolation Considerations” Section Replaced  
RF, Magnetic Field Immunity Section Added  
Changes to Related Parts  
B
C
8/10  
5/11  
H-Grade parts added. Reflected throughout the data sheet.  
HV-Grade parts removed. Reflected throughout the data sheet.  
Updated the PCB Layout section.  
1-24  
15, 16, 17  
24  
Updated the Related Parts.  
D
E
1/12  
4/12  
HV and MPY parts added. Reflected throughout the data sheet.  
1-24  
Added H/MP-Grade condition for I  
Corrected Figure 15  
3
OZD  
15  
2881fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM2881  
TYPICAL APPLICATION  
V
CCC  
V
CCA  
V
CC  
V
CC  
LTM2881  
LTM2881  
PWR  
PWR  
V
V
L
L
A
A
RO  
RO  
B
B
RE  
RE  
TE  
TE  
V
CC2  
V
CC1  
CABLE SHIELD  
OR GROUND RETURN  
DE  
DI  
DE  
DI  
Y
Z
Y
Z
GND  
GND2  
GND2  
GND  
A
C
ISOLATION BARRIER  
LTM2881  
B
2881 F23  
B
Figure 23. Multi-Node Network with End Termination  
and Single Ground Connection on Isolation ꢀus  
RELATED PARTS  
PART NUMꢀER  
LTM2882  
DESCRIPTION  
COMMENTS  
1Mbps, 10kV HBM ESD, 2500V  
Dual Isolated RS232 μModule Transceiver + Power  
Isolated RS485 Transceiver  
RMS  
LTC1535  
2500V  
Isolation in Surface Mount Package  
RMS  
LT1785  
60V Fault-Protected Transceiver  
Half Duplex  
Full Duplex  
LT1791  
60V Fault-Protected Transceiver  
LTC2861  
20Mbps RS485 Transceivers with Integrated Switchable Termination  
RS232/RS485 Multiprotocol Transceivers with Integrated Termination  
Full Duplex 15kV ESD  
LTC2870/LTC2871  
20Mbps RS485 and 500kbps RS232,  
26kV ESD, 3V to 5V Operation  
LTC2862/LTC2863/  
LTC2864/LTC2865  
60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers  
20Mbps or 250kbps, 15kV HBM ESD,  
25V Common Mode Range  
2881fe  
LT 0412 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2009  
ꢁ408ꢂ 432-1900 FAX: ꢁ408ꢂ 434-0507 www.linear.com  

相关型号:

LTM2882

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882

RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination
Linear System

LTM2882CV-3

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CV-3#PBF

LTM2882 - Dual Isolated RS232 uModule Transceiver + Power; Package: LGA; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM2882CV-3-PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CV-3PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CV-5

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CV-5-PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CV-5PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CY-3-PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882CY-5-PBF

Dual Isolated RS232 μModule Transceiver + Power
Linear

LTM2882IV-3

Dual Isolated RS232 μModule Transceiver + Power
Linear