LTM2881IV-3PBF [Linear]

Complete Isolated RS485/RS422 μModule Transceiver + Power; 完整的隔离型RS485 / RS422微型模块收发器+电源
LTM2881IV-3PBF
型号: LTM2881IV-3PBF
厂家: Linear    Linear
描述:

Complete Isolated RS485/RS422 μModule Transceiver + Power
完整的隔离型RS485 / RS422微型模块收发器+电源

文件: 总20页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2881  
Complete Isolated  
RS485/RS422 µModule  
Transceiver + Power  
FEATURES  
DESCRIPTION  
n
Isolator ꢀModule Technology  
The LTM®2881 is a complete galvanically isolated full-  
duplex RS485/RS422 μModule® transceiver. No external  
components are required. A single supply powers both  
sides of the interface through an integrated, isolated, low  
noise, efficient 5V output DC/DC converter.  
n
Isolated RS485/RS422 Transceiver: 2500V  
RMS  
n
Integrated Isolated DC/DC Converter: 1W, 62% Efficiency  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
No External Components Required  
20Mbps or Low EMI 250kbps Data Rate  
High ESD: 15kV HꢁM on Transceiver Interface  
High Common Mode Transient Immunity: 30kV/μs  
Integrated Selectable 120Ω Termination  
Coupledinductorsandanisolationpowertransformerprovide  
2500V  
of isolation between the line transceiver and the  
RMS  
logic interface. This device is ideal for systems where the  
ground loop is broken allowing for large common mode  
voltagevariation.Uninterruptedcommunicationisguaranteed  
for common mode transients greater than 30kV/ꢀs.  
3.3V ꢁLTM2881-3ꢂ or 5.0V ꢁLTM2881-5ꢂ Operation  
1.62V to 5.5V Logic Supply Pin for Flexible Digital Interface  
Common Mode Working Voltage: 560V  
PEAK  
High Input Impedance Failsafe RS485 Receiver  
Current Limited Drivers and Thermal Shutdown  
Compatible with TIA/EIA-485-A Specification  
High Impedance Output During Internal Fault Condition  
Low Current Shutdown Mode ꢁ< 10μAꢂ  
Maximum data rates are 20Mbps or 250kbps in slew  
limited mode. Transmit data, DI and receive data, RO, are  
implemented with event driven low jitter processing. The  
receiver has a one-eighth unit load supporting up to 256  
nodes per bus. A logic supply pin allows easy interfacing  
with different logic levels from 1.62V to 5.5V, independent  
of the main supply.  
General Purpose CMOS Isolated Channel  
Small, Low Profile ꢁ15mm × 11.25mm × 2.8mmꢂ  
Surface Mount LGA Package  
Enhanced ESD protection allows this part to withstand up  
to 15kVhumanbodymodelonthetransceiverinterface  
pins to isolated supplies and 10kV through the isolation  
barrier to logic supplies without latch-up or damage.  
APPLICATIONS  
n
Isolated RS485/RS422 Interface  
Industrial Networks  
n
n
Breaking RS485 Ground Loops  
L, LT, LTC, LTM, Linear Technology, μModule and the Linear logo are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Isolated Half-Duplex RS485 μModule Transceiver  
LTM2881 Operating Through 35kV/μs CM Transient  
3.3V  
MULTIPLE SWEEPS  
OF COMMON MODE  
TRANSIENTS  
V
CC  
LTM2881  
PWR  
500V/DIV  
V
L
A
B
RO  
DI  
RE  
RO  
TWISTED-PAIR  
CABLE  
1V/DIV  
1V/DIV  
TE  
DE  
Y
Z
DI  
2881 TA01a  
50ns/DIV  
GND  
GND2  
2881 TA01  
2881f  
1
LTM2881  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
V
to GND ..................................................0.3V to 6V  
CC2  
V to GND ....................................................0.3V to 6V  
CC  
1
2
3
4
5
6
7
8
to GND2...............................................0.3V to 6V  
D
TE DI DE RE RO  
V
L
ON  
OUT  
L
A
B
C
D
E
F
Interface Voltages  
ꢁA, B, Y, Zꢂ to GND2........................V  
–15V to 15V  
V
CC2  
GND  
CC  
Signal Voltages ON, RO, DI, DE,  
RE, TE, D  
to GND......................... 0.3V to V +0.3V  
L
OUT  
Signal Voltages SLO,  
D to GND2....................................0.3V to V +0.3V  
G
H
J
IN  
CC2  
Operating Temperature Range  
LTM2881C................................................ 0°C to 70°C  
LTM2881I.............................................40°C to 85°C  
Storage Temperature Range...................55°C to 125°C  
Peak Reflow Temperature ꢁSoldering, 10 secꢂ ...... 245°C  
GND2  
K
L
D
IN  
SLO  
Y
Z
B
A
V
CC2  
LGA PACKAGE  
32-PIN ꢁ15mm s 11.25mm s 2.8mmꢂ  
= 125°C, θ = 32°C/W WEIGHT = 1  
g
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM2881CV-3#PBF  
LTM2881IV-3#PBF  
LTM2881CV-5#PBF  
LTM2881IV-5#PBF  
TRAY  
PART MARKING*  
LTM2881V-3  
LTM2881V-3  
LTM2881V-5  
LTM2881V-5  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM2881CV-3#PBF  
LTM2881IV-3#PBF  
LTM2881CV-5#PBF  
LTM2881IV-5#PBF  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
32-Pin ꢁ15mm × 11.25mm × 2.8mmꢂ LGA  
40°C to 85°C  
0°C to 70°C  
40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
2881f  
2
LTM2881  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢁOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
l
l
V
V
CC  
Supply Voltage  
LTM2881-3  
LTM2881-5  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
V
V
CC  
l
l
V
V Supply Voltage  
1.62  
5.5  
10  
V
L
L
I
I
V
CC  
V
CC  
Supply Current in Off Mode  
Supply Current in On Mode  
ON = 0V  
0
μA  
CCPOFF  
l
l
LTM2881-3 DE = 0V, RE = V , No Load  
LTM2881-5 DE = 0V, RE = V , No Load  
20  
15  
25  
19  
mA  
mA  
CCS  
L
L
l
V
V
Regulated V  
Output Voltage, Loaded  
Output Voltage, No Load  
LTM2881-3 DE = 0V, RE = V , I  
= 100mA  
= 180mA  
4.7  
4.7  
5.0  
5.0  
V
V
CC2  
CC2  
L
LOAD  
LOAD  
LTM2881-5 DE = 0V, RE = V , I  
L
Regulated V  
Efficiency  
DE = 0V, RE = V , No Load  
4.8  
5.0  
50  
5.35  
250  
V
%
CC2NOLOAD  
CC2  
L
I
= 100mA ꢁNote 2ꢂ  
CC2  
l
I
V
Short-Circuit Current  
DE = 0V, RE = V , V  
= 0V  
mA  
CC2S  
CC2  
L
CC2  
Driver  
l
l
l
|V  
OD  
|
Differential Driver Output Voltage  
R = ∞ ꢁFigure 1ꢂ  
R = 27Ω ꢁRS485ꢂ ꢁFigure 1ꢂ  
R = 50Ω ꢁRS422ꢂ ꢁFigure 1ꢂ  
V
CC2  
V
CC2  
V
CC2  
V
V
V
1.5  
2
l
Δ|V  
|
OD  
Difference in Magnitude of Driver Differential R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
Output Voltage for Complementary Output  
States  
0.2  
V
l
l
V
Driver Common Mode Output Voltage  
R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
R = 27Ω or R = 50Ω ꢁFigure 1ꢂ  
3
V
V
OC  
Δ|V  
|
Difference in Magnitude of Driver  
Common Mode Output Voltage for  
Complementary Output States  
0.2  
OC  
l
l
I
I
Driver Three-State ꢁHigh Impedanceꢂ Output DE = 0V, ꢁY or Zꢂ = –7V, +12V  
Current on Y and Z  
10  
μA  
OZD  
Maximum Driver Short-Circuit Current  
7V ≤ ꢁY or Zꢂ ≤ 12V ꢁFigure 2ꢂ  
250  
250  
mA  
OSD  
Receiver  
l
l
l
l
l
R
Receiver Input Resistance  
RE = 0V or V , V = –7V, –3V, 3V, 7V,  
96  
125  
120  
kΩ  
Ω
IN  
L
IN  
12V ꢁFigure 3ꢂ  
R
TE  
Receiver Termination Resistance Enabled  
Receiver Input Current ꢁA, Bꢂ  
TE = V , V = 2V, V = 7V, 0V, 10V  
108  
156  
125  
L
AB  
B
ꢁFigure 8ꢂ  
I
ON = 0V V = 0V or 5V, V = 12V  
μA  
μA  
V
IN  
CC2  
IN  
ꢁFigure 3ꢂ  
ON = 0V V = 0V or 5V, V = –7V  
100  
0.2  
CC2  
IN  
ꢁFigure 3ꢂ  
V
TH  
Receiver Differential Input Threshold Voltage –7V ≤ B ≤ 12V  
ꢁA-Bꢂ  
0.2  
ΔV  
TH  
Receiver Input Failsafe Hysteresis  
Receiver Input Failsafe Threshold  
B = 0V  
B = 0V  
25  
mV  
V
0.2  
–0.05  
0
Logic  
l
V
V
Logic Input Low Voltage  
Logic Input High Voltage  
1.62V ≤ V ≤ 5.5V  
0.4  
V
IL  
L
l
l
D
IN  
0.67•V  
2
V
V
IH  
CC2  
SLO  
DI, TE, DE, ON, RE:  
l
l
V ≥ 2.35V  
0.67•V  
0.75•V  
V
V
L
L
L
1.62V ≤ V < 2.35V  
L
2881f  
3
LTM2881  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢁOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0
MAX  
UNITS  
μA  
l
I
Logic Input Current  
Logic Input Hysteresis  
Output High Voltage  
1
INL  
V
V
ꢁNote 2ꢂ  
150  
mV  
V
HYS  
l
l
Output High, I  
= –4mA  
V –0.4  
L
OH  
LOAD  
ꢁSourcingꢂ, 5.5V ≥ V ≥ 3V  
L
Output High, I  
= –1mA  
V –0.4  
L
V
LOAD  
ꢁSourcingꢂ, 1.62V ≤ V < 3V  
L
l
l
V
OL  
Output Low Voltage  
Output Low, I  
= 4mA  
0.4  
0.4  
V
V
LO AD  
ꢁSinkingꢂ, 5.5V ≥ V ≥ 3V  
L
Output High, I  
ꢁSinkingꢂ, 1.62V ≤ V < 3V  
= 1mA  
LOAD  
L
l
l
I
I
Three-State ꢁHigh Impedanceꢂ Output Current RE = V , 0V ≤ RO ≤ V  
1
μA  
OZR  
L
L
on RO  
Short-Circuit Current  
0V ≤ ꢁRO or D ꢂ ≤ V  
85  
mA  
OSR  
OUT  
L
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢁOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Driver SLO = V  
CC2  
f
Maximum Data Rate  
Driver Input to Output  
ꢁNote 3ꢂ  
20  
Mbps  
ns  
MAX  
l
l
l
l
l
t
t
R
= 54Ω, C = 100pF  
60  
1
85  
8
PLHD  
PHLD  
DIFF  
L
ꢁFigure 4ꢂ  
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF  
ns  
ns  
ns  
ns  
PD  
DIFF  
L
|t  
PLHD  
– t  
|
PHLD  
ꢁFigure 4ꢂ  
t
Driver Output Y to Output Z  
R
= 54Ω, C = 100pF  
1
8
SKEWD  
DIFF  
L
ꢁFigure 4ꢂ  
t
t
Driver Rise or Fall Time  
R
= 54Ω, C = 100pF  
4
12.5  
170  
RD  
FD  
DIFF  
L
ꢁFigure 4ꢂ  
t
t
, t  
,
Driver Output Enable or Disable Time  
R = 500Ω, C = 50pF  
ZLD ZHD  
L
L
, t  
ꢁFigure 5ꢂ  
LZD HZD  
Driver SLO = GND2  
f
Maximum Data Rate  
Driver Input to Output  
ꢁNote 3ꢂ  
250  
kbps  
μs  
MAX  
t
t
R
= 54Ω, C = 100pF  
1
1.55  
500  
500  
1.5  
PLHD  
PHLD  
DIFF  
L
ꢁFigure 4ꢂ  
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF  
50  
ns  
ns  
μs  
ns  
PD  
DIFF  
L
|t  
PLHD  
– t  
|
PHLD  
ꢁFigure 4ꢂ  
t
Driver Output Y to Output Z  
R
= 54Ω, C = 100pF  
200  
0.9  
SKEWD  
DIFF  
L
ꢁFigure 4ꢂ  
l
l
t
t
Driver Rise or Fall Time  
R
DIFF  
= 54Ω, C = 100pF  
RD  
FD  
L
ꢁFigure 4ꢂ  
t
t
, t  
,
Driver Output Enable or Disable Time  
R = 500Ω, C = 50pF  
400  
ZLD ZHD  
L
L
, t  
ꢁFigure 5ꢂ  
LZD HZD  
2881f  
4
LTM2881  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V, GND = GND2 =  
0V, ON = VL unless otherwise noted.  
SYMꢁOL  
Receiver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
t
t
Receiver Input to Output  
Differential Receiver Skew  
C = 15pF, V = 2.5V, |V | = 1.4V,  
100  
1
140  
8
ns  
ns  
ns  
ns  
μs  
PLHR  
PHLR  
L
CM  
AB  
t and t < 4ns, ꢁFigure 6ꢂ  
R
F
t
C = 15pF  
SKEWR  
L
|t  
- t  
|
ꢁFigure 6ꢂ  
PLHR PHLR  
t
RR  
t
FR  
Receiver Output Rise or Fall Time  
C = 15pF  
3
12.5  
50  
L
ꢁFigure 6ꢂ  
t
t
, t  
, t  
,
Receiver Output Enable Time  
R =1kΩ, C = 15pF  
ZLR ZHR  
LZR HZR  
L
L
ꢁFigure 7ꢂ  
t
, t  
Termination Enable or Disable Time  
RE = 0V, DE = 0V, V = 2V, V = 0V  
100  
RTEN RTZ  
AB  
B
ꢁFigure 8ꢂ  
Generic Logic Input  
l
l
t
t
D
to D  
Input to Output  
C = 15pF,  
60  
100  
800  
ns  
μs  
PLHL1  
PHLL1  
IN  
OUT  
L
t and t < 4ns  
R
F
Power Supply Generator  
–GND2 Supply Start-Up Time  
V
CC2  
325  
ON  
V , No Load  
L
ꢁ0V to 4.5Vꢂ  
ISOLATION CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5 VCC = 5.0V, VL = 3.3V unless  
otherwise noted.  
SYMꢁOL  
PARAMETER  
CONDITIONS  
MIN  
2500  
4400  
30  
TYP  
MAX  
UNITS  
V
Rated Dielectric Insulation Voltage  
1 Minute ꢁDerived from 1 Second Testꢂ  
V
RMS  
ISO  
1 Second  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
V
DC  
Common Mode Transient Immunity  
Maximum Working Insulation Voltage  
Partial Discharge  
kV/μs  
V
IORM  
560  
V
PEAK  
V
= 1050 V  
ꢁNote 2ꢂ  
PEAK  
<5  
pC  
PR  
9
Input to Output Resistance  
Input to Output Capacitance  
Creepage Distance  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
ꢁNote 2ꢂ  
>10  
Ω
pF  
6
9.48  
mm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Guaranteed by design and not subject to production test.  
Note 3: Maximum Data rate is guaranteed by other measured parameters  
Note 4: This μModule transceiver includes over temperature protection  
that is intended to protect the device during momentary overload  
conditions. Junction temperature will exceed 125°C when over  
temperature protection is active. Continuous operation above specified  
maximum operating junction temperature may result in device degradation  
or failure.  
and is not tested directly.  
2881f  
5
LTM2881  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5  
VCC = 5.0V, VL = 3.3V unless otherwise noted.  
Driver Propagation Delay  
vs Temperature  
Receiver Skew vs Temperature  
Driver Skew vs Temperature  
2.0  
2.0  
1.5  
80  
75  
70  
65  
60  
55  
50  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–0.5  
–1.0  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
2881 G01  
2881 G02  
2881 G03  
Driver Output Low/High Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
RTERM vs Temperature  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
OUTPUT HIGH  
R = ∞  
R = 100Ω  
R = 54Ω  
3
2
OUTPUT LOW  
1
0
–50  
–25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
50  
60  
70  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE ꢁ°Cꢂ  
OUTPUT CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
2881 G04  
2881 G05  
2881 G06  
Receiver Output Voltage vs  
Output Current (Source and Sink)  
Receiver Propagation Delay  
vs Temperature  
Supply Current vs Data Rate  
4
3
2
1
0
120  
115  
110  
105  
100  
95  
200  
180  
160  
140  
120  
100  
80  
SOURCE  
R = 54 ꢁ–3ꢂ  
R = 100 ꢁ–3ꢂ  
R = 54 ꢁ–5ꢂ  
R = 100 ꢁ–5ꢂ  
60  
40  
R = ∞ ꢁ–3ꢂ  
R = ∞ ꢁ–5ꢂ  
20  
SINK  
90  
–50  
0
0.1  
0
1
2
3
4
5
–25  
0
25  
50  
75  
100  
1
10  
OUTPUT CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
DATA RATE ꢁMbpsꢂ  
2881 G07  
2881 G08  
2881 G09  
2881f  
6
LTM2881  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, LTM2881-3 VCC = 3.3V, LTM2881-5  
VCC = 5.0V, VL = 3.3V unless otherwise noted.  
VCC2 Surplus Current  
vs Temperature  
VCC Supply Current vs Temperature  
VCC2 vs Load Current  
at ILOAD = 100mA on VCC2  
350  
250  
200  
150  
100  
50  
6
LTM2881-3  
300  
LTM2881-5  
LTM2881-5 ꢁRS485 60mAꢂ  
5
4
250  
LTM2881-3  
200  
LTM2881-5  
LTM2881-5 ꢁRS485 90mAꢂ  
LTM2881-3 ꢁRS485 60mAꢂ  
150  
100  
50  
3
2
LTM2881-3 ꢁRS485 90mAꢂ  
0
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
10 20 40 60 80 100 120 140 160 180  
LOAD CURRENT ꢁmAꢂ  
TEMPERATURE ꢁ°Cꢂ  
TEMPERATURE ꢁ°Cꢂ  
V
CC2  
2881 G10  
2881 G11  
2881 G12  
VCC2 Power Efficiency  
VCC2 Load Step (100mA)  
VCC2 Noise  
70  
60  
50  
40  
30  
20  
10  
LTM2881-5  
V
CC2  
100mV/DIV  
LTM2881-3  
10mV/DIV  
I
LOAD  
50mA/DIV  
2881 G14  
2881 G15  
1000μs/DIV  
200μs/DIV  
0
50  
100  
150  
200  
I
CC  
2 OUTPUT CURRENT ꢁmAꢂ  
2881 G13  
2881f  
7
LTM2881  
PIN FUNCTIONS  
LOGIC SIDE (V , V , GND)  
ISOLATED SIDE (V , GND2)  
CC2  
CC  
L
D
(Pin A1): General Purpose Logic Output. Logic  
D (Pin L1): General Purpose Isolated Logic Input. Logic  
IN  
OUT  
output connected through isolation path to D . Under  
input on the isolated side relative to V  
and GND2. A  
IN  
CC2  
the condition of an isolation communication failure D  
is in a high impedance state.  
logic high on D will generate a logic high on D . A  
OUT  
IN OUT  
logic low on D will generate a logic low on D  
.
IN  
OUT  
TE (Pin A2): Terminator Enable. A logic high enables a  
termination resistor ꢁtypically 120Ωꢂ between pins A  
and B.  
SLO (Pin L2): Driver Slew Rate Control. A low input,  
relative to GND2, will force the driver into a reduced slew  
rate mode for reduced EMI. A high input, relative to GND2,  
puts the driver into full speed mode to support maximum  
data rates.  
DI (Pin A3): Driver Input. If the driver outputs are enabled  
ꢁDE highꢂ, then a low on DI forces the driver noninverting  
output ꢁYꢂ low and the inverting output ꢁZꢂ high. A high  
on DI, with the driver outputs enabled, forces the driver  
noninverting output ꢁYꢂ high and inverting output ꢁZꢂ low.  
Y (Pin L3): Non Inverting Driver Output. High impedance  
when the driver is disabled.  
Z (Pin L4): Inverting Driver Output. High impedance when  
the driver is disabled.  
DE (Pin A4): Driver Enable. A logic low disables the driver  
leaving the outputs Y and Z in a high impedance state. A  
logic high enables the driver.  
ꢁ (Pin L5): Inverting Receiver Input. Impedance is > 96kΩ  
in receive mode with TE low or unpowered.  
RE (Pin A5): Receiver Enable. A logic low enables the  
receiver output. A logic high disables RO to a high  
impedance state.  
A (Pin L6): Non Inverting Receiver Input. Impedance is  
> 96kΩ in receive mode with TE low or unpowered.  
V
(Pins L7-L8): Isolated Supply Voltage. Internally  
CC2  
RO (Pin A6): Receiver Output. If the receiver output is  
enabled ꢁRE lowꢂ and if A – B is > 200mV, RO is a logic  
high, if A – B is < 200mV RO is a logic low. If the receiver  
inputs are open, shorted, or terminated without a valid  
signal, RO will be high. Under the condition of an isolation  
communication failure RO is in a high impedance state.  
generated from V by an isolated DC/DC converter and  
CC  
regulated to 5V.  
GND2 (Pins K1-K8): Isolated Side Circuit Ground. The  
pads should be connected to the isolated ground and/or  
cable shield.  
V (Pin A7): Logic Supply. Interface supply voltage for  
L
pins RO, RE, TE, DI, DE, D , and ON. Recommended  
OUT  
operating voltage is 1.62V to 5.5V.  
ON (Pin A8): Enable. Enables power and data  
communication through the isolation barrier. If ON is high  
the part is enabled and power and communications are  
functional to the isolated side. If ON is low the logic side  
is held in reset and the isolated side is unpowered.  
GND (Pins ꢁ1-ꢁ5): Circuit Ground.  
V
(Pins ꢁ6-ꢁ8): Supply Voltage. Recommended  
CC  
operating voltage is 3V to 3.6V for LTM2881-3 and 4.5V  
to 5.5V for LTM2881-5.  
2881f  
8
LTM2881  
BLOCK DIAGRAM  
V
2.2μF  
CC  
V
CC2  
5V  
REG  
ISOLATED  
2.2μF  
DC/DC  
CONVERTER  
V
L
2.2μF  
A
B
RO  
RX  
RE  
DE  
DI  
ISOLATED  
ISOLATED  
COMM  
INTERFACE  
120Ω  
COMM  
INTERFACE  
Y
Z
DX  
ON  
TE  
SLO  
D
IN  
D
OUT  
GND  
GND2  
2881 B  
D
= LOGIC SIDE COMMON  
= ISOLATED SIDE COMMON  
TEST CIRCUITS  
Y
Z
Y
Z
R
I
OSD  
GND  
DI  
GND  
DI  
+
OR  
DRIVER  
OR  
DRIVER  
V
OD  
V
V
L
L
R
+
+
–7V TO 12V  
V
OC  
2881 F01  
2881 F02  
Figure 1. Driver DC Characteristics  
Figure 2. Driver Output Short-Circuit Current  
I
IN  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
2881 F03  
V
I
IN  
IN  
R
=
IN  
Figure 3. Receiver Input Current and Input Resistance  
2881f  
9
LTM2881  
TEST CIRCUITS  
V
L
t
t
DI  
Y, Z  
PLHD  
PHLD  
Y
Z
0V  
t
C
C
SKEWD  
L
L
DI  
DRIVER  
R
DIFF  
V
1/2 V  
OD  
OD  
2881 F04a  
90%  
90%  
0
0
ꢁY-Zꢂ  
10%  
10%  
2881 F04b  
t
t
FD  
RD  
Figure 4. Driver Timing Measurement  
V
L
GND  
OR  
CC2  
R
R
L
DE  
Y OR Z  
Z OR Y  
1/2 V  
L
Y
Z
0V  
V
C
C
t
L
L
ZLD  
t
V
LZD  
L
DI  
V
CC2  
OR  
DRIVER  
DE  
1/2 V  
1/2 V  
GND  
CC2  
0.5V  
V
CC2  
L
OR  
GND  
0.5V  
2881 F05a  
CC2  
0V  
2881 F05b  
t
t
HZD  
ZHD  
Figure 5. Driver Enable and Disable Timing Measurements  
t
t
F
R
V
90%  
10%  
AB  
90%  
A-B  
0
A
B
10%  
V
/2  
/2  
AB  
–V  
AB  
RO  
t
t
PHLR  
PLHR  
V
RECEIVER  
CM  
V
L
90%  
10%  
C
90%  
10%  
L
V
AB  
1/2 V  
1/2 V  
RO  
L
L
2881 F06a  
0
2881 F06b  
t
t
RR  
FR  
Figure 6. Receiver Propagation Delay Measurements  
2881f  
10  
LTM2881  
TEST CIRCUITS  
V
L
RE  
RO  
RO  
1/2 V  
L
0V  
A
0V OR V  
CC2  
t
t
t
ZLR  
LZR  
R
V
L
L
RO  
V
L
OR  
RECEIVER  
RE  
1/2 V  
1/2 V  
L
L
GND  
B
0.5V  
0.5V  
C
V
OR 0V  
L
V
CC2  
OL  
V
OH  
2881 F07a  
0V  
2881 F07b  
t
ZHR  
HZR  
Figure 7. Receiver Enable/Disable Time Measurements  
V
AB  
I
R
=
A
TE  
I
A
V
L
A
B
TE  
1/2 V  
L
RO  
+
RECEIVER  
V
V
0V  
AB  
t
RTEN  
t
RTZ  
90%  
I
A
10%  
+
TE  
B
2881 F08  
Figure 8. Termination Resistance and Timing Measurements  
FUNCTIONAL TABLE  
DC/DC  
CONVERTER  
LOGIC INPUTS  
MODE  
A, ꢁ  
Y, Z  
RO  
TERMINATOR  
ON  
1
RE  
0
TE  
0
DE  
0
Receive  
Transceiver  
Transmit  
R
R
R
Hi-Z  
Driven  
Driven  
Hi-Z  
Enabled  
Enabled  
Hi-Z  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
On  
Off  
IN  
IN  
IN  
1
0
0
1
1
1
0
1
1
0
1
0
Receive + Term On  
Off  
R
TE  
Enabled  
Hi-Z  
0
X
X
X
R
Hi-Z  
IN  
2881f  
11  
LTM2881  
APPLICATIONS INFORMATION  
Overview  
The DC/DC converter is connected to a low dropout reg-  
ulator ꢁLDOꢂ to provide a regulated low noise 5V output.  
TheLTM2881μModuletransceiverprovidesagalvanically-  
isolated robust RS485/RS422 interface, powered by an  
integrated, regulated DC/DC converter, complete with  
decoupling capacitors. A switchable termination resistor  
is integrated at the receiver input to provide proper  
termination to the RS485 bus. The LTM2881 is ideal for  
use in networks where grounds can take on different  
voltages. Isolation in the LTM2881 blocks high voltage  
differences and eliminates ground loops and is extremely  
tolerant of common mode transients between ground  
potentials. Error free operation is maintained through  
common mode events greater than 30kV/ꢀs providing  
excellent noise isolation.  
The internal power solution is sufficient to support the  
transceiverinterfaceatitsmaximumspecifiedloadanddata  
rate, and external pins are supplied for extra decoupling  
ꢁoptionalꢂ and heat dissipation. The logic supplies, V  
CC  
and V have a 2.2μF decoupling capacitance to GND  
L
and the isolated supply V  
has a 2.2μF decoupling  
CC2  
capacitancetoGND2withintheμModulepackage.Surplus  
current is available to external applications. The amount  
of surplus current is dependent upon the implementation  
and current delivered to the RS485 driver and line load.  
An example of available surplus current is shown in the  
Typical Performance Characteristics graph, V  
Current vs Temperature.  
Surplus  
CC2  
DC/DC Converter  
Driver  
The LTM2881 contains a fully integrated isolated DC/DC  
converter, including the transformer, so that no external  
components are necessary. The logic side contains a full-  
bridge driver, running about 2MHz, and is AC-coupled  
to a single transformer primary. A series DC blocking  
capacitor prevents transformer saturation due to driver  
duty cycle imbalance. The transformer scales the primary  
voltage, and is rectified by a full-wave voltage doubler.  
This topology eliminates transformer saturation caused  
by secondary imbalances.  
The driver provides full RS485 and RS422 compatibility.  
When enabled, if DI is high, Y–Z is positive. When the  
driver is disabled, both outputs are high impedance with  
less than 10μA of leakage current over the entire common  
mode range of –7V to 12V, with respect to GND2.  
2881f  
12  
LTM2881  
APPLICATIONS INFORMATION  
Driver Overvoltage and Overcurrent Protection  
The driver outputs are protected from short circuits to  
the conditions of an idle bus. Further network biasing  
constructed to condition transient noise during an idle  
state is unnecessary due to the common mode transient  
rejection of the LTM2881. The failsafe detector monitors  
A and B in parallel with the receiver and detects the state  
of the bus when A-B is above the input failsafe threshold  
for longer than about 3μs with a hysteresis of 25mV. This  
failsafe feature is guaranteed to work for inputs spanning  
the entire common mode range of –7V to 12V.  
any voltage within the absolute maximum range of ꢁV  
CC2  
current  
–15Vꢂ to ꢁGND2 +15Vꢂ levels. The maximum V  
CC2  
in this condition is 250mA. If the pin voltage exceeds  
about 10V, current limit folds back to about half of the  
peak value to reduce overall power dissipation and avoid  
damaging the part.  
The device also features thermal shutdown protection  
that disables the driver and receiver output in case of  
excessive power dissipation ꢁSee Note 4 in the Electrical  
Characteristics sectionꢂ.  
The receiver output is internally driven high ꢁto V ꢂ or low  
L
ꢁtoGNDwithnoexternalpull-upneeded.Whenthereceiver  
is disabled the RO pin becomes Hi-Z with leakage of less  
than 1μA for voltages within the supply range.  
SLO Mode  
TheLTM2881featuresalogic-selectablereducedslewrate  
mode ꢁSLO modeꢂ that softens the driver output edges to  
reduce EMI emissions from equipment and data cables.  
The reduced slew rate mode is entered by taking the SLO  
pin low to GND2, where the data rate is limited to about  
250kbps. Slew limiting also mitigates the adverse effects  
ofimperfecttransmissionlineterminationcausedbystubs  
or mismatched cables.  
0
6.25  
12.5  
Figures 9a and 9b show the frequency spectrums of the  
LTM2881driveroutputsinnormalandSLOmodeoperating  
at 250kbps. SLO mode significantly reduces the high  
frequency harmonics.  
FREQUENCY 1.25MHz/DIV  
2881 F09a  
Figure 9a. Frequency Spectrum SLO Mode 125kHz Input  
Receiver and Failsafe  
With the receiver enabled, when the absolute value of the  
differentialvoltagebetweentheAandBpinsisgreaterthan  
200mV, the state of RO will reflect the polarity of ꢁA-Bꢂ.  
During data communication the receiver detects the state  
of the input with symmetric thresholds around 0V. The  
symmetric thresholds preserve duty cycle for attenuated  
signalswithslowtransitionratesonhighcapacitivebusses,  
or long cable lengths. The receiver incorporates a failsafe  
feature that guarantees the receiver output to be a logic-  
high during an idle bus, when the inputs are shorted, left  
open or terminated, but not driven. The failsafe feature  
eliminatestheneedforsystemlevelintegrationofnetwork  
pre-biasing by guaranteeing a logic-high on RO under  
0
6.25  
12.5  
FREQUENCY 1.25MHz/DIV  
2881 F09b  
Figure 9b. Normal Mode Frequency Spectrum 125kHz Input  
2881f  
13  
LTM2881  
APPLICATIONS INFORMATION  
Receiver Input Resistance  
ThereceiverinputresistancefromAorBtoGND2isgreater  
than96kpermittinguptoatotalof256receiverspersystem  
withoutexceedingtheRS485receiverloadingspecification.  
The input resistance of the receiver is unaffected by  
enabling/disablingthereceiverorbypowering/unpowering  
thepart. TheequivalentinputresistancelookingintoAand  
B is shown in Figure 10.  
2881 F11  
Figure 11. Curve Trace ꢁetween A and ꢁ with Termination  
Enabled and Disabled  
A
>96k  
60ꢃ  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
TE  
60ꢃ  
B
2881 F10  
>96k  
Figure 10. Equivalent Input Resistance into A and ꢁ  
Switchable Termination  
–10  
–5  
0
5
10  
15  
Proper cable termination is very important for  
signal fidelity. If the cable is not terminated with its  
characteristic impedance, reflections will distort the  
signal waveforms.  
COMMON MODE VOLTAGE ꢁVꢂ  
2881 G11  
Figure 12. Termination Resistance vs Common Mode Voltage  
150  
140  
130  
120  
10  
The integrated switchable termination resistor provides  
logic control of the line termination for optimal perfor-  
mance when configuring transceiver networks.  
PHASE  
0
When the TE pin is high, the termination resistor is  
enabled and the differential resistance from A to B is  
120Ω. Figure 11 shows the I/V characteristics between  
pins A and B with the termination resistor enabled and  
disabled. The resistance is maintained over the entire  
RS485 common mode range of –7V to 12V as shown in  
Figure 12. The integrated termination resistor has a high  
frequency response which does not limit performance at  
the maximum specified data rate. Figure 13 shows the  
magnitudeandphaseoftheterminationimpedanceversus  
frequency. The termination resistor cannot be enabled by  
TE if the device is unpowered, ON is low or the LTM2881  
is in thermal shutdown.  
–10  
–20  
MAGNITUDE  
110  
100  
–30  
–40  
0.1  
1
10  
FREQUENCY ꢁMHzꢂ  
2881 F13  
Figure 13. Termination Magnitude and Phase vs Frequency  
2881f  
14  
LTM2881  
APPLICATIONS INFORMATION  
Supply Current  
• If the LTM2881 voltage supply is hot plugged without  
additionalprotection,damagemayoccur.RefertoLinear  
Technology Application Note 88, entitled “Ceramic  
Capacitors Can Cause Overvoltage Transients” for a  
detailed discussion of this problem. To protect against  
hot plug transients use tantalum for aforementioned  
additional capacitor.  
Thestaticsupplycurrentisdominatedbypowerdeliveredto  
theterminationresistance.Powersupplycurrentincreases  
with data rate due to capacitive loading. Figure 14 shows  
supply current versus data rate for three different loads  
for the circuit configuration of Figure 4.  
250  
230  
• Do not place copper on the PCB between the inner  
rows of pads. This area must remain open to withstand  
the rated isolation voltage. The PCB may also be slotted  
inthisareatoinsurecontaminationdoesnotcompromise  
the isolation voltage.  
210  
LTM2881-3  
190  
170  
150  
130  
110  
90  
R=54 CL=1000p  
R=54 CL=100p  
R=54 CL=0  
LTM2881-5  
R=54 CL=1000p  
R=54 CL=100p  
R=54 CL=0  
70  
V
GND2  
CC  
50  
ON  
V
CC2  
0.1  
1
10  
DATA RATE ꢁMbpsꢂ  
V
L
2881 F14  
RO  
A
B
Z
Y
Figure 14. Supply Current vs Data Rate  
RE  
DE  
DI  
PCꢁ Layout Isolation Considerations  
TE  
SLO  
ThehighintegrationoftheLTM2881makesthePCBboard  
layout very simple. However, to optimize its electrical  
isolation characteristics and thermal performance, some  
layout considerations are still necessary. Figure 15 is a  
suggested layout for good thermal performance and to  
optimize isolation characteristics.  
DO1  
GND  
DL1  
9.48mm  
2881 F15  
Figure 15. PCꢁ Recommended Layout  
• Use large PCB copper areas for high current paths,  
including V , GND, V , and GND2. It helps to  
CC  
CC2  
minimize the PCB conduction loss and thermal stress.  
• The LTM2881 includes 2.2μF ceramic decoupling  
capacitors on V to GND, V to GND, and V to  
CC2  
CC  
L
GND2 supply pins. Further decoupling capacitance  
ꢁ10μFcanbeaddedwithinone-quarterinchawayfrom  
the V , V , and/or V pin.  
CC2  
CC  
L
2881f  
15  
LTM2881  
APPLICATIONS INFORMATION  
Cable Length versus Data Rate  
10k  
1k  
For a given data rate, the maximum transmission distance  
is bounded by the cable properties. A typical curve of  
cable length versus data rate compliant with the RS485  
standard is shown in Figure 16. Three regions of this  
curve reflect different performance limiting factors in data  
transmission. In the flat region of the curve, maximum  
distance is determined by resistive loss in the cable. The  
downwardslopingregionrepresentslimitsindistanceand  
rate due to the AC losses in the cable. The solid vertical  
line represents the specified maximum data rate in the  
RS485 standard. The dashed line at 250kbps shows the  
maximum data rate when SLO is low. The dashed line at  
20Mbps shows the maximum data rate when SLO is high.  
LOW-EMI MODE  
MAX DATA RATE  
NORMAL  
MODE MAX  
DATA RATE  
100  
10  
RS485 MAX  
DATA RATE  
10k  
100k  
1M  
10M  
100M  
2881 F16  
DATA RATE ꢁbpsꢂ  
Figure 16. Cable Length vs Data Rate  
2881f  
16  
LTM2881  
TYPICAL APPLICATIONS  
Full-Duplex RS485 Connection  
V
V
CC  
CC  
LTM2881  
PWR  
V
L
A
RO  
B
RE  
TE  
DE  
DI  
Y
Z
GND  
GND2  
2881 TA02  
Isolated System Fault Detection  
V
CC  
V
CC  
LTM2881  
V
L
A
B
RO  
RE  
TE  
DE  
Y
DI  
Z
330k  
D
D
OUT  
IN  
GND  
GND2  
FAULT  
2881 TA03  
Switched 5V Power with Isolated CMOS Logic Connection with Low Voltage Interface  
V
V
CC  
CC  
REGULATED 5V  
SWITCHED 5V  
1.8V  
V
CC2  
PWR  
V
L
A
RO  
IRLML6402  
B
Z
RE  
LTM2881  
TE  
DE  
330k  
DI  
D
OFF ON  
D
OUT  
IN  
GND  
GND2  
CMOS OUTPUT  
CMOS INPUT  
2881 TA04  
2881f  
17  
LTM2881  
TYPICAL APPLICATIONS  
4-Wire Full Duplex Self ꢁiasing for Unshielded CAT5 Connection  
V
V
V
CCB  
CC  
V
CC  
CC  
LTM2881  
LTM2881  
V
DE  
L
PWR  
PWR  
V
L
A
B
Y
51Ω  
51Ω  
RO  
DI  
Z
RE  
10nF  
DE  
DI  
RE  
Y
Z
A
B
51Ω  
51Ω  
RO  
10nF  
GND  
GND2  
GND2  
GND  
2881 TA04a  
BUS INHERITED  
B
2881f  
18  
LTM2881  
PACKAGE DESCRIPTION  
LGA Package  
32-Lead (15mm × 11.25mm × 2.8mm)  
ꢁReference LTC DWG # 05-08-1773 Rev θꢂ  
DETAIL A  
8
2.69 – 2.95  
7
6
5
4
3
2
1
PAD 1  
aaa  
Z
A
B
C
D
E
F
PAD “A1”  
CORNER  
4
12.70  
BSC  
15.00  
BSC  
MOLD  
CAP  
G
H
J
SUBSTRATE  
0.290 – 0.350  
2.400 – 2.600  
DETAIL B  
K
L
PADS  
1.27  
BSC  
X
Y
SEE NOTES  
11.25  
BSC  
8.89  
BSC  
3
DETAIL B  
PACKAGE TOP VIEW  
PACKAGE BOTTOM VIEW  
0.630 0.025 Ø 32x  
0.630 0.025 Ø 32x  
eee  
S
X
Y
eee S X Y  
DETAIL c  
DETAIL A  
NOTES:  
DETAIL C  
6.350  
5.080  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3
4
LAND DESIGNATION PER JESD MO-222  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE  
0.000  
LTMXXXXXX  
μModule  
COMPONENT  
PIN “A1”  
5. PRIMARY DATUM -Z- IS SEATING PLANE  
6. THE TOTAL NUMBER OF PADS: 32  
TRAY PIN 1  
BEVEL  
SYMꢁOL TOLERANCE  
PACKAGE IN TRAY LOADING ORIENTATION  
5.080  
6.350  
LGA 32 0308 REV Ø  
aaa  
bbb  
eee  
0.10  
0.10  
0.05  
SUGGESTED PCB LAYOUT  
TOP VIEW  
2881f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM2881  
TYPICAL APPLICATION  
Multi-Node Network with End Termination and Single Ground  
Connection on Isolation ꢁus  
V
CCC  
V
CCA  
V
V
CC  
CC  
LTM2881  
LTM2881  
PWR  
PWR  
V
V
L
L
A
A
RO  
RO  
B
B
RE  
RE  
TE  
TE  
V
CC2  
V
CC1  
CABLE SHIELD  
OR GROUND RETURN  
DE  
DI  
DE  
DI  
Y
Z
Y
Z
GND  
GND2  
GND2  
GND  
A
C
ISOLATION BARRIER  
LTM2881  
B
2881 TA05  
B
RELATED PARTS  
PART NUMꢁER  
LTC1535  
LT1785  
DESCRIPTION  
COMMENTS  
2500V Isolation in Surface Mount Package  
Isolated RS485 Transceiver  
RMS  
60V Fault-Protected Transceiver  
60V Fault-Protected Transceiver  
Half Duplex  
Full Duplex  
LT1791  
LTC2861  
20Mbps RS485 Transceivers with Integrated Switchable Termination  
Full Duplex 15kV ESD  
2881f  
LT 1109 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
ꢁ408ꢂ 432-1900 FAX: ꢁ408ꢂ 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY