LTG2 [Linear]

Micropower Boost Converter with Schottky and Output Disconnect in ThinSOT™; 微功率升压转换器与肖特基和输出断接采用ThinSOT ™
LTG2
型号: LTG2
厂家: Linear    Linear
描述:

Micropower Boost Converter with Schottky and Output Disconnect in ThinSOT™
微功率升压转换器与肖特基和输出断接采用ThinSOT ™

转换器 升压转换器
文件: 总16页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3464  
Micropower Boost  
Converter with Schottky and  
Output Disconnect in ThinSOT™  
U
DESCRIPTIO  
FEATURES  
The LT®3464 is a micropower step-up DC/DC converter  
with integrated Schottky diode and output disconnect  
packaged in an 8-lead low profile (1mm) SOT-23. The  
small package size, high level of integration, and the use  
of tiny SMT components yield a solution size of less than  
40mm2. The LT3464 has a typical current limit of 115mA  
as well as fast switching speed to allow the use of a chip  
inductor and small ceramic capacitors. The internal PNP  
disconnects the output load from the input during shut-  
down, and also provides output short-circuit protection.  
An auxiliary reference input allows the user to override the  
internal 1.25V feedback reference with any lower value,  
allowing full control of the output voltage during opera-  
tion. This device features a low 25µA quiescent current,  
which is further reduced to less than 0.5µA in shutdown.  
A current limited fixed off-time control scheme conserves  
operating current, resulting in high efficiency over a broad  
range of operating current. The rugged 36V switch and  
output disconnect circuitry allow outputs up to 34V to be  
easily generated in a simple boost topology.  
Tiny Solution Size  
Low Quiescent Current  
25µA in Active Mode  
0.5µA in Shutdown Mode  
Internal 115mA, 36V Switch  
Integrated Schottky Diode  
Integrated PNP Output Disconnect with  
Short-Circuit Protection  
Internal Reference Override Pin  
16V at 8mA from 3.6V Input  
12V at 20mA from 5V Input  
Input Range: 2.3V to 10V  
High Output Voltage: Up to 34V  
Low Profile (1mm) SOT-23 Package  
U
APPLICATIO S  
OEL Panel Bias  
LCD Bias  
Handheld Computers  
Battery Backup  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technolgy Corporation  
Digital Cameras  
Cellular Phones  
U
TYPICAL APPLICATIO  
Efficiency  
22µH  
90  
V
IN  
2.3V TO 10V  
V
IN  
= 8.4V  
80  
70  
60  
50  
40  
30  
V
SW  
IN  
V
= 4.2V  
IN  
V
OUT  
OUT  
16V  
0.22µF  
0.33µF  
CTRL  
1µF  
LT3464 CAP  
3.48M  
294k  
SHDN  
FB  
GND  
3464 TA01a  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
3634 TA01b  
3464f  
1
LT3464  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN, SHDN, CTRL Voltage ........................................ 10V  
OUT, CAP Voltage .................................................... 36V  
SW Voltage .............................................................. 36V  
FB Voltage ................................................................. 6V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
CTRL 1  
FB 2  
OUT 3  
GND 4  
8 SHDN  
7 V  
6 SW  
LT3464ETS8  
IN  
5 CAP  
TS8 PART MARKING  
LTG2  
TS8 PACKAGE  
8-LEAD PLASTIC SOT-23  
TJMAX = 125°C, θJA = 140°C/W, θJC = 85°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current  
2.0  
2.3  
V
Not Switching  
25  
0.01  
36  
0.5  
µA  
µA  
V
= 0.2V  
SHDN  
FB Comparator Trip Voltage  
FB Comparator Hysteresis  
FB Pin Bias Current  
V
Falling, V  
= 3.6V  
1.215  
1.250  
10  
1.275  
V
mV  
nA  
FB  
CTRL  
V
= 1.25V, V  
= 3.6V  
3
30  
FB  
CTRL  
FB Voltage Line Regulation  
Switch Off Time  
2.3V < V < 10V  
0.05  
0.1  
%/V  
IN  
V
V
-V = 5V  
250  
1.0  
ns  
µs  
CAP IN  
-V = 0V  
CAP IN  
Switch Leakage Current  
V
= 36V  
0.02  
190  
115  
600  
1
1
µA  
mV  
mA  
mV  
µA  
SW  
Switch V  
I
= 80mA  
SW  
300  
140  
750  
10  
CESAT  
Switch Current Limit  
85  
Schottky Forward Voltage  
Schottky Reverse Leakage  
I
= 110mA  
= 36V  
SCHOTTKY  
V
CAP-SW  
PNP Disconnect V  
I
I
= 200µA  
= 10mA  
100  
190  
mV  
mV  
CAP-OUT  
OUT  
OUT  
PNP Disconnect Q Current  
PNP Disconnect Leakage  
PNP Disconnect Current Limit  
SHDN Pin Current  
I
= 0, V  
= 36V (Note 3)  
CAP  
1.5  
0.1  
45  
5
5
5
µA  
µA  
mA  
µA  
V
OUT  
SHDN = 0.2, V  
= 10V, V  
= 0V  
= 0V  
OUT  
CAP  
OUT  
V
V
= 10V, V  
25  
75  
10  
CAP  
= 3.6V  
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
CTRL Pin Bias Current  
CTRL to FB Offset  
2.3  
0.2  
80  
7
V
V
V
= 0.5V, V = 1V  
6
2
nA  
mV  
CTRL  
CTRL  
FB  
= 0.5V (Note 4)  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Current consumed by Disconnect PNP when there is no load on  
the OUT pin.  
Note 2: The LT3464E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: This figure is computed according to ((V falling + V rising)/2)  
FB FB  
–V  
CONTROL  
.
3464f  
2
LT3464  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage  
ISW = 80mA  
Switch Off-Time, VCAP – VIN = 5V  
Switch Current Limit  
220  
200  
180  
160  
140  
120  
100  
140  
120  
100  
80  
400  
350  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
–50  
0
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
100  
30  
–25  
–25  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3464 G01  
3464 G02  
3464 G03  
Output Disconnect Voltage Drop  
Minimum Switch On-Time  
Switch Off-Time, VCAP – VIN = 0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
I
= 10mA  
OUT  
I
= 200µA  
OUT  
0
–50  
0
25  
50  
75  
–25  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3464 G05  
3464 G06  
3464 G04  
Output Disconnect Quiescent  
Current  
Output Disconnect Voltage Drop  
Output Disconnect Current Limit  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
0
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
0
10  
20  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COLLECTOR CURRENT (mA)  
3464 G07  
3464 G08  
3464 G09  
3464f  
3
LT3464  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Schottky Forward Drop  
at ID = 110mA  
Schottky Reverse Leakage  
Schottky Forward Voltage  
20  
16  
12  
8
250  
200  
150  
100  
50  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
V
– SW = 36V  
CAP  
4
0
0
–50  
0
25  
50  
75  
75  
75  
100  
200  
400  
500  
600  
700  
800  
–25  
300  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
FORWARD VOLTAGE (mV)  
TEMPERATURE (°C)  
3464 G11  
3464 G20  
3464 G10  
Shutdown Pin Current  
VSHDN = 3.6V  
Quiescent Current in  
Shutdown Mode  
Quiescent Current  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
–50  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
100  
–25  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3464 G14  
3464 G13  
3464 G12  
Quiescent Current in  
Regulation with No Load  
FB Pin Voltage  
SHDN Pin Threshold Voltage  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
V
= 5V  
IN  
FRONT PAGE SCHEMATIC  
–50  
0
25  
50  
100  
–25  
6
8
10  
12  
14  
16  
18  
20  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
OUT  
(V)  
3464 G16  
3464 G18  
3464 G15  
3464f  
4
LT3464  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
FB Pin Voltage vs  
CTRL Pin Voltage  
FB and CTRL Pin  
Bias Currents  
FB Pin Hysteresis  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
12  
10  
8
8
7
6
5
4
3
2
1
0
CTRL PIN  
6
FEEDBACK PIN  
4
2
0
0
0.5 0.75 1.0 1.25 1.5 1.75  
0.25  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
CONTROL PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3464 G17  
3464 G18  
3464 G19  
U
U
U
PI FU CTIO S  
CTRL(Pin 1): Internal ReferenceOverride Pin. This allows GND (Pin 4): Ground. Tie this pin directly to the ground  
the FB voltage to be externally set between 0V and 1.25V. plane.  
Tie this pin to above 1.5V (VIN for example) to use the  
CAP (Pin 5): PNP Emitter and Schottky Cathode. This pin  
internal 1.25V reference.  
connects to the output capacitor, and optionally to the  
external phase-lead capacitor.  
R2  
R1  
VOUT = VCTRL  
+1  
SW (Pin 6): Switch Pin and Schottky Anode. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
when VCTRL is less than 1.25V (see Figure 4)  
VIN (Pin 7): Input Supply Pin: Bypass this pin with a  
FB (Pin 2): Feedback Pin. The LT3464 regulates its feed-  
back pin to 1.25V if the internal reference is used or to  
VCTRL if the CTRL pin is between 0V and 1.25V. Connect  
the feedback resistor divider tap to this pin. Set the output  
voltage by selecting R1 and R2 (see Figure 4).  
capacitor located as close to the device as possible.  
SHDN (Pin 8): Shutdown Pin. This pin is used to put the  
deviceinshutdownmode. Tiethepinlowtoshutdownthe  
LT3464. Tie high for normal operation See the electrical  
specifications for the required voltages.  
VOUT  
R2 = R1  
– 1  
VREF  
OUT (Pin 3): PNP Collector. This is the output of the  
Output Disconnect circuit. Bypass this pin with at least a  
0.1µF capacitor connected to the CAP pin or to ground.  
3464f  
5
LT3464  
W
BLOCK DIAGRA  
V
IN  
SW  
6
CAP  
5
OUT  
3
7
DELAY  
C
PL  
S
R
Q
Q
FB  
2
1
+
CTRL  
OUT  
ANTI  
SAT  
+
1.25V  
OUT  
12mV  
0.1Ω  
8
SHDN  
V
REF  
4
3464 BD  
GND  
U
OPERATIO  
The LT3464 uses a constant off-time control scheme in  
conjunction with Burst Mode® operation to provide high  
efficiency over a wide range of output current. Operation  
can best be understood by studying the Block Diagram.  
When the FB pin voltage is lower than the 1.25V reference,  
the hysteretic comparator enables the power section,  
causing the chip to start switching, thus charging the  
output capacitor. When the output voltage increases  
enough to overcome the hysteresis, the feedback com-  
paratorshutsoffthepowersectionleavingonlylowpower  
circuitry running until the output voltage falls again. This  
cycle repeats, keeping the output voltage within a small  
window. The switching action is as follows: The switch  
turns on, and current through it starts to ramp up until the  
point where the current limit is reached, at which point the  
switch turns off for a fixed amount of time. While the  
switch is off the inductor is delivering current to the load.  
When the off time expires, the switch turns on again until  
the current limit is reached, and the cycle repeats.  
This chip includes an internal power Schottky diode and a  
PNP transistor for output disconnect. The PNP transistor  
disconnects the load from the input during shutdown. The  
PNP control circuitry is designed to keep the PNP out of  
saturation across a wide range of current, to keep quies-  
cent current to a minimum and to provide current limiting  
to protect the chip during short-circuit conditions.  
Burst Mode is a registered a trademark of Linear Technolgy Corporation.  
3464f  
6
LT3464  
U W  
W
SWITCHI G TI E WAVEFOR S  
Operating Waveforms  
Start up Waveforms  
IL  
IL  
0.1A/DIV  
0.1A/DIV  
VOUT  
50mV/DIV  
VOUT  
10V/DIV  
50µs/DIV  
5µs/DIV  
VIN = 5V  
VOUT = 20V  
ILOAD = 1mA  
L = 22µH  
Shutdown Waveforms  
SHDN  
5V/DIV  
VIN = 5V  
GND  
CAP PIN VOLTAGE  
V
OUT: THE OUTPUT DISCONNECT  
ALLOWS VOUT TO BE AT  
GROUND DURING SHUTDOWN  
1ms/DIV  
3464f  
7
LT3464  
U
W U U  
APPLICATIO S I FOR ATIO  
Choosing an Inductor  
in discontinuous mode. If the left hand side of inequality 1  
evaluatestolessthantOFF, thenuseEquation3tocalculate  
maximum output current. Otherwise, use Equation 2.  
The low current limit and fast switching of the LT3464  
allow the use of very small surface mount inductors. The  
minimum inductor size that may be used in a given  
application depends on required efficiency and output  
current. Some inductors that work with the LT3464 are  
listed in Table 1, although there are many other manufac-  
turers and devices that can be used. Consult each manu-  
facturer for more detailed information and for their entire  
selection of related parts. Many different sizes and shapes  
are available.  
This inequality is true when the LT3464 is operating in  
discontinuous mode.  
LILIM  
< tOFF  
(INEQUALITY 1)  
(VOUT – V + VF)  
IN  
Usethisequationtocalculatethemaximumoutputcurrent  
when the LT3464 is operating in continuous mode.  
Table 1. Recommended Inductors  
IOUT(CM)  
=
PART NUMBER  
µH  
DCR  
()  
CURRENT  
(mA)  
MANUFACTURER  
(2LILIM + tOFF(V – VOUT VF))(V – VCESAT  
)
IN  
IN  
(2)  
LQH32CN680K53  
LQH32CN470K53  
LQH32CN220K53  
68  
47  
22  
2.2  
1.3  
0.71  
130  
170  
250  
Murata  
814-237-1431  
www.murata.com  
2L(VOUT VCESAT + VF)  
Usethisequationtocalculatethemaximumoutputcurrent  
when the LT3464 is operating in discontinuous mode.  
ELJPC220KF  
ELJPA470KF  
22  
47  
4.0  
2.25  
160  
135  
Panasonic  
714-373-7334  
www.panasonic.com  
CMD4D11-47  
47  
2.2  
180  
Sumida  
847-956-0666  
IOUT(DCM)  
=
LILIM2(V – VCESAT  
)
www.Sumida.com  
(3)  
IN  
LB2016-220  
22  
22  
33  
22  
33  
22  
68  
100  
1.0  
5.5  
7.1  
2.7  
4.8  
1.2  
3.3  
4.3  
105  
125  
110  
160  
120  
105  
120  
100  
Taiyo Yuden  
2(LILIM + VIN tOFF – tOFF VCESAT)(–V + VOUT + VF)  
LEM2520-220  
LEM2520-330  
LEMC2520-220  
LEMC2520-330  
LEMF2520-220  
LEMC3225-680  
LEMC3225-101  
408-573-4150  
www.t-yuden.com  
IN  
WhereVF istheSchottkyforwardvoltage, ILIM istheswitch  
current limit, tOFF is the switch off time, and VCESAT is the  
switchsaturationvoltage.SeetheElectricalSpecifications.  
Figures1through3showtheworst-casemaximumoutput  
current as given by Equations 2 and 3 using 20% inductor  
derating and worst-case LT3464 specifications. Also note  
that for some applications the maximum output current is  
limited to 25mA by the output disconnect circuitry.  
The following set of formulas can be used to calculate  
maximum output current given VIN, VOUT and L values.  
Inequality1isusedtodetermineiftheLT3464isoperating  
25  
25  
17.5  
15.0  
12.5  
10.0  
7.5  
5.0  
2.5  
0
L = 47µH  
20  
20  
15  
10  
5
L = 47µH  
L = 47µH  
L = 22µH  
15  
L = 22µH  
L = 22µH  
L = 10µH  
L = 10µH  
L = 10µH  
10  
5
L = 4.7µH  
L = 4.7µH  
L = 4.7µH  
0
0
15  
20  
25  
30  
35  
10  
15  
20  
25  
30  
35  
10  
15  
20  
25  
30  
35  
V
(V)  
OUT  
V
(V)  
3464 F03  
OUT  
3464 F02  
V
OUT  
(V)  
3464 F01  
Figure 3. Maximum Output Current  
Figure 1. Maximum Output Current  
VIN = 3.6V  
Figure 2. Maximum Output Current  
VIN = 5V  
VIN = 8.4V  
3464f  
8
LT3464  
W U U  
APPLICATIO S I FOR ATIO  
U
user to select between using the built-in reference, and  
supplying an external reference voltage. The voltage at the  
CTRL pin can be adjusted while the chip is operating to  
alter the output voltage of the LT3464 for purposes such  
as display dimming or contrast adjustment. To use the  
internal1.25Vreference,theCTRLpinmustbeheldhigher  
than 1.5V, which can be done by tying it to VIN. When the  
CTRL pin is held between 0V and 1.2V the LT3464 will  
regulate the output such that the FB pin voltage is equal to  
the CTRL pin voltage.  
Capacitor Selection  
The small size and low ESR of ceramic capacitors makes  
themsuitableforLT3464applications.X5RandX7Rtypes  
are recommended because they retain their capacitance  
over wider voltage and temperature ranges than other  
types such as Y5V or Z5U. A 1µF input capacitor and a  
0.22µF to 0.47µF output capacitor are sufficient for most  
LT3464 applications. Always use a capacitor with a suffi-  
cient voltage rating. Table 2 shows a list of several capaci-  
tor manufacturers. Consult the manufacturers for more  
detailedinformationandfortheirentireselectionofrelated  
parts.  
To set the output voltage, select the values of R1 and R2  
according to the following equation (see Figure 4).  
Table 2. Recommended Ceramic Capacitor Manufacturers  
VOUT  
VREF  
MANUFACTURER  
Taiyo Yuden  
AVX  
PHONE  
URL  
R2 = R1  
– 1  
408-573-4150  
843-448-9411  
814-237-1431  
408-986-0424  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
www.kemet.com  
Where VREF =1.25V if the internal reference is used, or  
VREF = VCTRL if VCTRL is between 0V and 1.2V.  
Murata  
Kemet  
Choosing a Feedback Node  
Output Voltage Ripple  
The top of the feedback divider may be connected to the  
OUT pin or to the CAP pin (see Figure 4). Regulating the  
OUT pin eliminates the output offset resulting from the  
voltage drop across the output disconnect. However, in  
the case of a short-circuit fault at the OUT pin, the LT3464  
will switch continuously because the FB pin is low. While  
operating in this open-loop condition, the rising voltage at  
theCAPpin islimitedonlybythecurrentlimitoftheoutput  
disconnect. Given worst-case parameters this voltage  
may reach 25V. When the short-circuit is removed, the  
OUT pin will bounce up to the voltage on the CAP pin,  
potentially exceeding the set output voltage until the  
capacitor voltages fall back into regulation. While this is  
harmless to the LT3464, this should be considered in the  
context of the external circuitry if short-circuit events are  
expected.  
Using low ESR capacitors will help minimize the output  
ripple voltage, but proper selection of the inductor and the  
output capacitor also plays a big role. The LT3464 pro-  
vides energy to the load in bursts by ramping up the  
inductor current, then delivering that current to the load.  
If too large an inductor value or too small a capacitor value  
is used, the output ripple voltage will increase because the  
capacitor will be slightly overcharged each burst cycle. To  
reduce this effect, a larger output capacitor may be used.  
TheLT3464alsoincludesanon-chipphase-leadcapacitor  
between the CAP pin and the FB pin to greatly reduce  
ripple; however, certain applications can benefit from  
additional capacitance in parallel with the integrated ca-  
pacitor, which may be added externally between the CAP  
and FB pins. Typical effective values range from 4.7pF to  
20pF. Since the FB pin sits at a low voltage, be sure the  
chosen capacitor has a sufficient voltage rating.  
Regulating the CAP pin ensures that the voltage on the  
OUTpinneverexceedsthesetoutputvoltageafterashort-  
circuit event. However, this setup does not compensate  
for the voltage drop across the output disconnect, result-  
ing in an output voltage that is slightly lower than the  
voltage set by the resistor divider. The next section dis-  
cusses how to compensate for this drop.  
Setting Output Voltage and the  
Auxiliary Reference Input  
The LT3464 is equipped with both an internal 1.25V  
reference and an auxiliary reference input. This allows the  
3464f  
9
LT3464  
W U U  
U
APPLICATIO S I FOR ATIO  
300  
250  
200  
150  
100  
50  
6
6
7
7
V
V
IN  
SW  
OUT  
SW  
OUT  
IN  
3
5
3
5
V
OUT  
V
OUT  
1
8
1
8
CTRL  
LT3464 CAP  
SHDN  
CTRL  
LT3464 CAP  
SHDN  
R2  
R1  
R2  
2
2
FB  
FB  
GND  
4
GND  
4
R1  
0
0
5
10  
15  
20  
25  
30  
3464 F01  
COLLECTOR CURRENT (mA)  
3464 F02  
Figure 4. Feedback Connection Using the CAP Pin and the OUT Pin  
Figure 5: Output Disconnect Voltage Drop (VDROP) vs Current  
indefinite short, but care must be taken to avoid exceeding  
the maximum junction temperature.  
Output Disconnect Considerations  
The LT3464 is equipped with an output disconnect that  
isolates the load from the input during shutdown. See the  
Operation section for a functional diagram. The output  
disconnect uses a pass PNP coupled with circuitry that  
varies the base current such that the transistor is consis-  
tently at the edge of saturation, thus yielding the best  
compromise between VCE(SAT) and low quiescent current.  
To remain stable, this circuit requires a bypass capacitor  
connected between the OUT pin and the CAP pin or  
betweentheOUTpinandground.Aceramiccapacitorwith  
a value of at least 0.1µF is a good choice.  
Inrush Current  
When VIN is stepped from ground to operating voltage  
whiletheoutputcapacitorisdischarged, aninrushcurrent  
will flow through the inductor and integrated Schottky  
diode into the output capacitor. Conditions that increase  
inrush current include a larger more abrupt voltage step at  
VIN, a larger output capacitor tied to the CAP pin, and an  
inductor with a low saturation current.  
Whiletheinternaldiodeisdesignedtohandlesuchevents,  
the inrush current should not be allowed to exceed 1 amp.  
For circuits that use output capacitor values within the  
recommended range and have input voltages of less than  
5V, inrush current remains low, posing no hazard to  
the device. In cases where there are large steps at VIN  
(more than 5V) and/or a large capacitor is used at the CAP  
pin, inrush current should be measured to ensure safe  
operation.  
The PNP VCE(SAT) varies with load current as shown in  
Figure 5. This voltage drop (VDROP) can be accounted for  
when using the CAP pin as the feedback node by setting  
the output voltage according to the following formula:  
VOUT + VDROP  
R2 = R1  
– 1  
VREF  
In addition, the disconnect circuit has a built in current  
limit of 25mA (minimum) to protect the chip during short-  
circuit. This feature allows the LT3464 to tolerate an  
3464f  
10  
LT3464  
W U U  
APPLICATIO S I FOR ATIO  
U
Board Layout Considerations  
pin has sharp rising and falling edges. Minimize the length  
and area of all traces connected to the SW pin and always  
use a ground plane under the switching regulator to  
minimize interplane coupling. In addition, the ground  
connection for the feedback resistor R1 should be tied  
directly to the GND pin and not shared with any other  
component, ensuringaclean, noise-freeconnection. Rec-  
ommended component placement is shown in Figure 6.  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
Tomaximizeefficiency, switchriseandfalltimesaremade  
as short as possible. To prevent electromagnetic interfer-  
ence (EMI) problems, proper layout of the high frequency  
switching path is essential. The voltage signal of the SW  
GND  
GND  
V
IN  
V
OUT  
VIAS TO GROUND PLANE  
VIA TO CONTROL  
VIA TO SHDN  
3464 F07  
Figure 6. Recommended Layout  
3464f  
11  
LT3464  
U
TYPICAL APPLICATIO S  
15V Output Converter with Output Disconnect  
L1  
22µH  
V
IN  
2.3V TO 10V  
6
7
V
SW  
IN  
3
5
V
OUT  
15V  
OUT  
1
8
C3  
CTRL  
C1  
1µF  
0.22µF  
V
(V)  
I
(mA)  
OUT  
LT3464 CAP  
IN  
C2  
0.22µF  
R2  
3.32M  
SHDN  
3.6  
5.0  
8.4  
7.0  
2
FB  
10.0  
19.0  
R1  
301k  
GND  
4
3464 TA02  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN EMK107 BJ224MA-T  
C3: TAIYO YUDEN EMK107 BJ224MA-T  
L1: MURATA LQH32CN220K  
34V Output Converter with Output Disconnect  
L1  
47µH  
V
IN  
2.3V TO 10V  
6
7
V
SW  
IN  
3
5
V
OUT  
34V  
OUT  
1
8
C3  
CTRL  
C1  
1µF  
0.22µF  
LT3464 CAP  
V
(V)  
I
(mA)  
OUT  
IN  
C2  
0.33µF  
R2  
2.61M  
SHDN  
3.6  
3.5  
4.5  
7.5  
2
FB  
5.0  
8.4  
R1  
100k  
GND  
4
3464 TA03  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN GMK212 BJ334MG-T  
C3: TAIYO YUDEN UMK212 BJ224MG-T  
L1: MURATA LQH32CN470K  
20V Output Converter with Output Disconnect Using an 0805  
Inductor and 0603 Capacitors  
L1  
10µH  
V
IN  
2.3V TO 10V  
6
7
V
SW  
IN  
3
5
V
OUT  
20V  
OUT  
1
8
C3  
CTRL  
C1  
0.1µF  
1µF  
LT3464 CAP  
V
(V)  
I
(mA)  
OUT  
IN  
C2  
0.1µF  
R2  
4.53M  
SHDN  
3.6  
5.0  
8.4  
3.0  
4.0  
6.0  
2
FB  
R1  
301k  
GND  
4
3464 TA04  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN TMK107 BJ104MA-T  
C3: TAIYO YUDEN TMK107 BJ104MA-T  
L1: TAIYO YUDEN LB 2012T100MR  
3464f  
12  
LT3464  
U
TYPICAL APPLICATIO S  
20V Output Converter with Output Disconnect  
L1  
47µH  
V
IN  
2.3V TO 10V  
6
7
V
SW  
3
IN  
V
OUT  
OUT  
20V  
1
8
C3  
CTRL  
C1  
1µF  
0.22µF  
V
(V)  
I
(mA)  
OUT  
IN  
5
2
LT3464 CAP  
3.6  
5.0  
8.4  
6.0  
C2  
0.33µF  
R2  
4.53M  
SHDN  
9.0  
FB  
16.5  
R1  
301k  
GND  
4
3464 TA05  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN GMK212 BJ334MG-T  
C3: TAIYO YUDEN UMK212 BJ224MG  
L1: MURATA LQH32CN470K  
20V Output Converter with Soft Start  
L1  
22µH  
V
IN  
2.3V TO 10V  
6
7
OFF ON  
V
SW  
3
IN  
V
OUT  
OUT  
20V  
8
1
C3  
SHDN  
CTRL  
C4  
1µF  
0.22µF  
V
(V)  
I
(mA)  
OUT  
IN  
5
2
R1  
LT3464 CAP  
300k  
3.6  
5.0  
8.4  
5.0  
6.5  
C2  
0.33µF  
R2  
4.53M  
FB  
C4  
11.0  
R1  
301k  
GND  
4
0.1µF  
3464 TA06  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN GMK212 BJ334MG-T  
C3: TAIYO YUDEN EMK107 BJ224MA-T  
L1: MURATA LQH32CN220K  
3464f  
13  
LT3464  
U
TYPICAL APPLICATIO S  
8V Output Converter with Output Disconnect  
L1  
22µH  
V
IN  
2.3V TO 7V  
6
7
V
SW  
3
IN  
V
OUT  
8V  
OUT  
8
1
C3  
SHDN  
CTRL  
C4  
0.47µF  
5
2
1µF  
V
(V)  
I
(mA)  
OUT  
LT3464 CAP  
IN  
R2  
1.62M  
C2  
2.2µF  
C4  
20pF  
3.6  
5.0  
13.5  
20  
FB  
R1  
301k  
GND  
4
3464 TA07  
C1: TAIYO YUDEN CE LMK107 BJ105MA-T  
C2: TAIYO YUDEN CE LMK212 BJ225MG-T  
C3: TAIYO YUDEN CE LMK107 BJ474MA-T  
L1: MURATA LQH32CN220K  
±20V Dual Output Converter with Output Disconnect  
–V  
OUT  
IOUT = 2.5mA AT VIN = 3.6V  
–20V  
C4  
L1  
47µH  
C5  
0.33µF  
D1  
D2  
0.33µF  
V
IN  
2.3V TO 10V  
6
7
V
SW  
OUT  
IN  
3
5
V
OUT  
I
OUT = 2.5mA AT VIN = 3.6V  
20V  
1
8
C3  
CTRL  
C1  
1µF  
0.22µF  
LT3464 CAP  
C2  
0.33µF  
R2  
4.53M  
SHDN  
2
FB  
R1  
301k  
GND  
4
3464 TA08  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2, C4, C5: TAIYO YUDEN GMK212 BJ334MG-T  
C3: TAIYO YUDEN UMK212 BJ224MG-T  
L1: MURATA LQH32CN470K  
D1, D2: CENTRAL CMDSH-3  
3464f  
14  
LT3464  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3464f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3464  
U
TYPICAL APPLICATIO S  
20V Output Converter with Variable Output Voltage  
and Shutdown  
L1  
22µH  
V
IN  
2.3V TO 10V  
C1  
1µF  
6
7
V
SW  
IN  
3
5
V
OUT  
20V  
OUT  
1
8
C3  
DAC  
CTRL  
V
(V)  
I
(mA)  
OUT  
0.22µF  
IN  
LT3464 CAP  
3.6  
5.0  
8.4  
5.0  
C2  
0.33µF  
R2  
4.53M  
SHDN  
µC  
2
6.5  
FB  
R1  
301k  
GND  
4
11.0  
3464 TA09  
C1: TAIYO YUDEN LMK107 BJ105MA-T  
C2: TAIYO YUDEN GMK212 BJ334MG-T  
C3: TAIYO YUDEN GMK212 BJ224MG-T  
L1: MURATA LQH32CN220K  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 0.9V to 10V, V  
LT1613  
550mA (I ), 1.4MHz, High Efficiency  
V
= 34V, I = 3mA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Step-Up DC/DC Converter  
ThinSOT Package  
LT1615/  
LT1615-1  
300mA/80mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
ThinSOT Package  
LT1618  
LT1932  
LT1937  
LT1944  
LT1944-1  
LT1945  
Constant Current, Constant Voltage, 1.4MHz,  
High Efficiency Boost Regulator  
V
= 1.6V to 18V, V  
= 34V, I = 1.8mA, I = <1µA,  
Q SD  
MS Package, Up to 6 White LEDs  
IN  
Constant Current, 1.2MHz, High Efficiency  
White LED Boost Regulator  
V
IN  
= 1V to 10V, V = 34V, I = 1.2mA, I = <1µA,  
OUT(MAX)  
Q
SD  
ThinSOT Package, Up to 8 White LEDs  
Constant Current, 1.2MHz, High Efficiency  
White LED Boost Regulator  
V
IN  
= 2.5V to 10V, V = 34V, I = 1.9mA, I = <1µA,  
OUT(MAX)  
Q
SD  
SC-70, ThinSOT Packages, Up to 4 White LEDs  
Dual Output 350mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
High Efficiency Step-Up DC/DC Converter  
MS Package  
Dual Output 150mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
MS Package  
Dual Output, ±350mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= ±34V, I = 20µA, I = <1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
MS Package  
V = 2.7V to 4.5V, I = 8mA, I = <1µA,  
IN  
MS, ThinSOT Packages, Up to 6 White LEDs  
V = 2.7V to 4.5V, I = 6.5mA, I = <1µA,  
IN  
MS Package, Up to 6 White LEDs  
V = 2.7V to 4.5V, I = 5mA, I = <1µA,  
IN  
MS Package, Up to 8 White LEDs  
V = 0.85V to 5V, V = 5V, I = 19µA/300µA, I = <1µA,  
IN  
LTC3200/  
LTC3200-5  
Low Noise, 2MHz, Regulated Charge Pump  
White LED Driver  
Q
SD  
LTC3201  
LTC3202  
Low Noise, 1.7MHz, Regulated Charge Pump  
White LED Driver  
Q
SD  
Low Noise, 1.5MHz, Regulated Charge Pump  
White LED Driver  
Q
SD  
LTC3400/  
LTC3400B  
600mA (I ), 1.2MHz, Synchronous  
SW  
OUT(MAX)  
Q
SD  
Step-Up DC/DC Converter  
ThinSOT Package  
LTC3401  
1A (I ), 3MHz, Synchronous  
Step-Up DC/DC Converter  
V
= 0.5V to 5V, V  
= 6V, I = 38µA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
MS Package  
LTC3402  
2A (I ), 3MHz, Synchronous  
V
= 0.5V to 5V, V  
= 6V, I = 38µA, I = <1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
MS Package  
3464f  
LT/TP 0204 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTG5AP

Advanced Power TOPLED Plus
OSRAM

LTG5AP-CZEX-36-1

Advanced Power TOPLED Plus
OSRAM

LTG6

Rail-to-Rail Input and Output, Ultralow 1.9n Root Hz Noise, Low Power Op Amps
Linear

LTG6SP

Advanced Power TOPLED Enhanced optical Power LED
OSRAM

LTG6SP-CBEB-25-1

Advanced Power TOPLED Enhanced optical Power LED
OSRAM

LTG6SP-CBEB-36-1

Advanced Power TOPLED
OSRAM

LTG6SP_15

Advanced Power TOPLED
OSRAM

LTGGO501-TB-B-A6V

TG/LTG-Series Rocker Switches
ETC

LTGLO400-TB-B-R/125N

Rocker Switch, DPST, Latched, Solder Terminal, Rocker Actuator, Panel Mount
Carling Techn

LTGLO400-TB-B-R/250N

Rocker Switch, DPST, Latched, Solder Terminal, Rocker Actuator, Panel Mount
Carling Techn

LTGLO400-TB-B-R/28V

Rocker Switch, DPST, Latched, Solder Terminal, Rocker Actuator, Panel Mount
Carling Techn

LTGLO400-TB-B-R/6V

Rocker Switch, DPST, Latched, Solder Terminal, Rocker Actuator, Panel Mount
Carling Techn