LTC6410CUD-6-PBF [Linear]

Low Distortion, Low Noise Differential IF Amplifi er with Confi gurable Input Impedance; 低失真,低噪声差分IF功率放大器儿与置信可配置输入阻抗
LTC6410CUD-6-PBF
型号: LTC6410CUD-6-PBF
厂家: Linear    Linear
描述:

Low Distortion, Low Noise Differential IF Amplifi er with Confi gurable Input Impedance
低失真,低噪声差分IF功率放大器儿与置信可配置输入阻抗

放大器 功率放大器
文件: 总16页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6410-6  
Low Distortion, Low Noise  
Differential IF Amplifier with  
Configurable Input Impedance  
DESCRIPTION  
FEATURES  
The LTC®6410-6 is a low distortion, low noise differential  
IF amplifier with configurable input impedance designed  
for use in applications from DC to 1.4GHz. The LTC6410-6  
has 6dB of voltage gain. The LTC6410-6 is an excellent  
choice for interfacing active mixers to SAW filters. It fea-  
tures an active input termination that allows a customized  
input impedance for an optimum interface to differential  
active mixers. This feature provides additional power gain  
becauseoftheimpedanceconversionandimprovednoise  
performance when compared to traditional 50Ω interface  
circuits. The LTC6410-6 drives a differential 50Ω load  
directly with low distortion, which is suitable for driving  
SAW filters and other 50Ω signal chain blocks.  
n
1.4GHz –3dB Bandwidth  
n
Fixed Voltage Gain of 6dB (50Ω System)  
n
Configurable Input Impedance Allows:  
Simple Interface to Active Mixers  
Improved Noise Performance  
n
Wide 2.8V to 5.25V Supply Range  
n
Low Distortion:  
36dBm OIP3 (70MHz)  
33dBm OIP3 (140MHz)  
31dBm OIP3 (300MHz)  
n
Low Noise:  
11dB NF (50Ω Z )  
8dB NF (200Ω Z )  
IN  
IN  
n
n
n
n
n
Differential Inputs and Outputs  
The LTC6410-6 operates on 3V or 5V supplies. It comes in  
acompact16-lead3mm×3mmQFNpackageandoperates  
over a –40°C to 85°C temperature range.  
Self-Biasing Inputs/Outputs  
Shutdown Mode  
Minimal Support Circuitry Required  
16-Lead 3mm × 3mm × 0.8mm QFN Package  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIONS  
n
Post-Mixer Gain Block  
n
SAW Filter Interface/Buffering  
n
Differential IF Signal Chain Gain Block  
Differential Line Driver/Receiver  
n
TYPICAL APPLICATION  
2-Tone Spectrum Analyzer Plot  
Post Mixer Gain Block (140MHz IF)  
5V  
0
5V  
–10  
–20  
82nH  
82nH  
12pF  
680pF  
0.1μF  
–TERM  
–IN  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
24nH  
18pF  
+
V
SHDN  
–OUT  
+OUT  
LTC6410-6  
24nH  
18pF  
V
BIAS  
+IN  
V
64106 TA01a  
+TERM  
12pF  
0.1μF  
1760MHz  
LO  
130 132 134 136 138 140 142 144 146 148 150  
FREQUENCY (MHz)  
LT5527  
MIXER  
SYSTEM OIP3 = 29dBm AT 1900MHz  
SYSTEM NF = 15dB AT 1900MHz  
64106 TA01b  
64106fa  
1
LTC6410-6  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
+
TOP VIEW  
Total Supply Voltage (V to V )................................5.5V  
Amplifier Input Current (DC)  
(+IN, –IN, +TERM, –TERM) ............................. 10mA  
Amplifier Input Power (AC)  
16 15 14 13  
V
1
2
3
4
12 V  
V
11 SHDN  
BIAS  
(+IN, –IN, +TERM, –TERM) .............................18dBm  
17  
+
+
V
V
V
10  
9
Input Current (V  
, SHDN)................................ 10mA  
BIAS  
V
Output Current (+OUT, OUT) .............................. 50mA  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Specified Temperature Range (Note 3) .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Junction Temperature .......................................... 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6410CUD-6#PBF  
LTC6410IUD-6#PBF  
TAPE AND REEL  
PART MARKING*  
LDBG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (Notes 2, 3)  
LTC6410CUD-6#TRPBF  
LTC6410IUD-6#TRPBF  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
–40°C to 85°C  
–40°C to 85°C  
LDBG  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full  
3V DC ELECTRICAL CHARACTERISTICS  
operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, SHDN = 2V, +IN is shorted to +TERM, –IN is  
shorted to –TERM, VBIAS = 1.5V, +IN = –IN = 1.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL = 50Ω from  
+OUT to –OUT, unless otherwise noted. VBIAS is defined as the voltage on the VBIAS pin. VOUTCM is defined as (+OUT + –OUT)/2. VINCM  
is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
G
Differential Gain  
V
= 0.2V  
INDIFF  
5.0  
4.7  
6.0  
6.7  
7.0  
dB  
dB  
DIFF  
l
l
(Low Frequency S21)  
TC G  
Differential Gain Temperature  
Coefficient  
0.003  
2.8  
0.7  
2.1  
42  
dB/°C  
DIFF  
SWINGDIFF  
SWINGMIN  
SWINGMAX  
OUT  
V
V
V
Differential Output Voltage Swing  
V
V
= 2V  
2.2  
2.0  
V
V
OUTDIFF, INDIFF  
P-P  
P-P  
l
l
l
l
l
Output Swing Low  
Single-Ended +OUT, OUT, V  
= 2V  
= 2V  
0.9  
1.0  
V
V
INDIFF  
INDIFF  
Output Swing High  
Single-Ended +OUT, OUT, V  
1.9  
1.8  
V
V
I
Output Current Drive  
Input Offset Voltage  
Short +OUT to –OUT, V  
= 2V (Note 4)  
38  
36  
mA  
mA  
INDIFF  
V
OS  
–2.0  
–3.0  
0.4  
2.0  
3.0  
mV  
mV  
64106fa  
2
LTC6410-6  
3V DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, SHDN = 2V, +IN is shorted to +TERM, –IN is  
shorted to –TERM, VBIAS = 1.5V, +IN = –IN = 1.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL = 50Ω from  
+OUT to –OUT, unless otherwise noted. VBIAS is defined as the voltage on the VBIAS pin. VOUTCM is defined as (+OUT + –OUT)/2. VINCM  
is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.3  
13  
MAX  
UNITS  
l
l
TC V  
Input Offset Voltage Drift  
Common Mode Offset Voltage  
μV/°C  
OS  
V
V
– V  
INCM  
–40  
–50  
40  
50  
mV  
mV  
OSINCM  
OUTCM  
A
Internal Voltage Gain  
2.7  
V/V  
V
V
l
l
I
Input Common Mode Voltage Range,  
(Min)  
1.0  
VRMIN  
I
Input Common Mode Voltage Range,  
(Max)  
2.0  
V
VRMAX  
R
Differential Input Resistance  
V = 100mV (Note 4)  
INDIFF  
40  
30  
58  
80  
100  
Ω
Ω
INDIFF  
l
X
Differential Input Reactance  
Input Common Mode Resistance  
Common Mode Rejection Ratio  
Differential Output Resistance  
f = 100MHz  
1
1000  
60  
pF  
Ω
INDIFF  
R
INCM  
l
l
CMRR  
V
V
= 1.5V, +IN = –IN = 1V to 2V, (ΔV  
/Gain)  
OUTDIFF  
45  
dB  
BIAS  
R
= 100mV (Note 4)  
17  
13  
22  
38  
47  
Ω
Ω
ODIFF  
OUTDIFF  
X
Differential Output Reactance  
f = 100MHz  
10  
7
nH  
Ω
OUTDIFF  
R
Common Mode Output Resistance  
OUTCM  
Bias Voltage Control (V  
Pin)  
BIAS  
G
Common Mode Gain  
V
= 1.2V to 1.8V (+IN and –IN floating),  
OUTCM  
0.7  
0.6  
0.86  
1.0  
2.0  
100  
3.0  
3
1.0  
1.0  
V/V  
V/V  
CM  
BIAS  
ΔV  
/(0.6V)  
l
l
V
V
V
Output Common Mode Voltage  
Adjustment Range, (Min)  
1.2  
V
OCMMIN  
OCMMAX  
OSCM  
l
Output Common Mode Voltage  
Adjustment Range, (Max)  
1.8  
V
Output Common Mode Offset Voltage  
V
– V  
–200  
–400  
300  
400  
mV  
mV  
OUTCM  
BIAS  
l
l
R
VOCM  
V
V
Input Resistance  
Input Capacitance  
2.4  
2.0  
3.6  
4.0  
kΩ  
kΩ  
BIAS  
C
pF  
VBIAS  
BIAS  
SHDN Pin  
l
l
l
l
V
V
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Low Current  
SHDN Input High Current  
0.8  
1.0  
1.8  
V
V
IL  
2
0
0
IH  
I
IL  
I
IH  
SHDN = 0.8V  
SHDN = 2V  
–200  
–150  
–85  
–30  
μA  
μA  
Power Supply  
l
V
Operating Range  
Supply Current  
2.8  
5.25  
V
S
I
104  
130  
140  
mA  
mA  
S
l
l
l
I
Supply Current in Shutdown  
Power Supply Rejection Ratio  
SHDN = 0.8V  
3
5
mA  
dB  
SSHDN  
+
+
PSRR  
V = 2.8V to 5.25V, V  
= +IN = –IN = V /2  
73  
100  
BIAS  
64106fa  
3
LTC6410-6  
5V DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, SHDN = 3V, +IN is shorted to +TERM, –IN is  
shorted to –TERM, VINCM = VBIAS = 2.5V, +IN = –IN = 2.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL =  
50Ω from +OUT to –OUT, unless otherwise noted. VBIAS is defined as the voltage on theVBIAS pin. VOUTCM is defined as (+OUT + –OUT)/2.  
VINCM is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
G
Differential Gain (Low Frequency S21)  
V
= 0.2V  
IN  
5
6.1  
6.7  
7.0  
dB  
dB  
DIFF  
l
l
l
l
l
4.7  
V
V
V
Differential Output Voltage Swing  
Output Swing Low  
V
, V = 4V  
4.1  
3.5  
4.8  
1.1  
3.5  
125  
V
V
SWINGDIFF  
SWINGMIN  
SWINGMAX  
OUTDIFF IN  
P-P  
P-P  
Single-Ended +OUT, OUT, V = 4V  
1.4  
1.6  
V
V
IN  
Output Swing High  
Single-Ended +OUT, OUT, V = 4V  
3.2  
3.0  
V
V
IN  
I
S
Supply Current  
150  
160  
mA  
mA  
SHDN Pin  
l
l
l
l
V
V
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Low Current  
SHDN Input High Current  
1.8  
2.0  
2.8  
V
V
IL  
3
0
0
IH  
I
IL  
I
IH  
SHDN = 1.8V  
SHDN = 3V  
–300  
–200  
–110  
–60  
μA  
μA  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, SHDN = 2V, +IN is shorted to +TERM, –IN is shorted to  
–TERM, VINCM = VBIAS = 1.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL = 50Ω from +OUT to –OUT, +IN  
and –IN are AC-coupled, unless otherwise noted. VBIAS is defined as the voltage on theVBIAS pin. VOUTCM is defined as  
(+OUT + –OUT)/2. VINCM is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT).  
SYMBOL  
–3dBBW  
0.1dBBW  
0.5dBBW  
SR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.4  
150  
300  
1.5  
3
MAX  
UNITS  
GHz  
MHz  
MHz  
V/ns  
ns  
–3dB Bandwidth  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
Slew Rate  
V
INDIFF  
V
INDIFF  
V
INDIFF  
= –10dBm  
= –10dBm  
= –10dBm  
1
t
t
t
1% Settling Time  
Turn-On Time  
1% Settling for a 1V  
V
Step  
s
P-P OUTDIFF  
SHDN = 0V to 3V, +OUT and –OUT Within 10% of Final Values  
SHDN = 3V to 0V, +OUT and –OUT Within 10% of Final Values  
30  
ns  
ON  
OFF  
Turn-Off Time  
30  
ns  
Common Mode Voltage Control (V  
Pin)  
BIAS  
–3dBBWCM Common Mode Small-Signal  
–3dB Bandwidth  
0.2V at V  
, Measured V  
BIAS OUTCM  
1
GHz  
V/μs  
P-P  
SRCM  
Common Mode Slew Rate  
100  
Noise/Harmonic Performance Input/Output Characteristics  
10MHz Signal  
HD2  
HD3  
Second Harmonic Distortion  
Third Harmonic Distortion  
V
V
= 0dBm  
–85  
–71  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
= 0dBm  
64106fa  
4
LTC6410-6  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, SHDN = 2V, +IN is shorted to +TERM, –IN is shorted to  
–TERM, VINCM = VBIAS = 1.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL = 50Ω from +OUT to –OUT, +IN  
and –IN are AC-coupled, unless otherwise noted. VBIAS is defined as the voltage on theVBIAS pin. VOUTCM is defined as  
(+OUT + –OUT)/2. VINCM is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IM3  
Third Order Intermodulated  
Distortion  
F1 = 9.5MHz, F2 = 10.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
–72  
dBc  
OUTDIFF  
OUTDIFF  
OUTDIFF  
F1 = 9.5MHz, F2 = 10.5MHz, V  
F1 = 9.5MHz, F2 = 10.5MHz, V  
–81  
–66  
dBc  
dBc  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
OIP3  
Output Third-Order Intercept  
F1 = 9.5MHz, F2 = 10.5MHz, V  
F1 = 9.5MHz, F2 = 10.5MHz, V  
F1 = 9.5MHz, F2 = 10.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
36  
36  
33  
dBm  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
P1dB  
NF  
Output 1dB Compression Point  
Noise Figure  
12.8  
dBm  
Z
IN  
Z
IN  
= 50Ω (Note 5)  
= 200Ω  
11  
8
dB  
dB  
70MHz Signal  
HD2  
Second Harmonic Distortion  
Third Harmonic Distortion  
V
V
= 0dBm  
= 0dBm  
–85  
–69  
–72  
–79  
–72  
dBc  
dBc  
dBc  
dBc  
dBc  
OUTDIFF  
HD3  
OUTDIFF  
IM3  
Third Order Intermodulated  
Distortion  
F1 = 69.5MHz, F2 = 70.5MHz, V  
F1 = 69.5MHz, F2 = 70.5MHz, V  
F1 = 69.5MHz, F2 = 70.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
OIP3  
Output Third-Order Intercept  
F1 = 69.5MHz, F2 = 70.5MHz, V  
F1 = 69.5MHz, F2 = 70.5MHz, V  
F1 = 69.5MHz, F2 = 70.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
36  
35  
36  
dBm  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
P1dB  
NF  
Output 1dB Compression Point  
Noise Figure  
12.8  
dBm  
Z
IN  
Z
IN  
= 50Ω (Note 5)  
= 200Ω  
11  
8
dB  
dB  
140MHz Signal  
HD2  
HD3  
IM3  
Second Harmonic Distortion  
V
V
= 0dBm  
= 0dBm  
–80  
–62  
–62  
–70  
–66  
dBc  
dBc  
dBc  
dBc  
dBc  
OUTDIFF  
Third Harmonic Distortion  
OUTDIFF  
Third Order Intermodulated  
Distortion  
F1 = 139.5MHz, F2 = 140.5MHz, V  
F1 = 139.5MHz, F2 = 140.5MHz, V  
F1 = 139.5MHz, F2 = 140.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
F1 = 130MHz, F2 = 150MHz, V  
CC  
= 0dBm/Tone,  
–66  
–56  
dBc  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
OIP3  
P1dB  
Output Third-Order Intercept  
Output 1dB Compression Point  
F1 = 139.5MHz, F2 = 140.5MHz, V  
F1 = 139.5MHz, F2 = 140.5MHz, V  
F1 = 139.5MHz, F2 = 140.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
31  
30  
33  
dBm  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
F1 = 130MHz, F2 = 150MHz, V  
CC  
= 0dBm/Tone,  
28  
33  
dBm  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
12.8  
dBm  
64106fa  
5
LTC6410-6  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, SHDN = 2V, +IN is shorted to +TERM, –IN is shorted to  
–TERM, VINCM = VBIAS = 1.5V, input source resistance (RS) is 25Ω on each input (50Ω differential), RL = 50Ω from +OUT to –OUT, +IN  
and –IN are AC-coupled, unless otherwise noted. VBIAS is defined as the voltage on theVBIAS pin. VOUTCM is defined as  
(+OUT + –OUT)/2. VINCM is defined as (+IN + –IN)/2. VINDIFF is defined as (+IN – –IN). VOUTDIFF is defined as (+OUT – –OUT).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NF  
Noise Figure  
Z
IN  
Z
IN  
= 50Ω (Note 5)  
= 200Ω  
11  
7
dB  
dB  
240MHz Signal  
HD2  
HD3  
IM3  
Second Harmonic Distortion  
V
V
= 0dBm  
= 0dBm  
–66  
–52  
–54  
–63  
–64  
dBc  
dBc  
dBc  
dBc  
dBc  
OUTDIFF  
Third Harmonic Distortion  
OUTDIFF  
Third Order Intermodulated  
Distortion  
F1 = 239.5MHz, F2 = 240.5MHz, V  
F1 = 239.5MHz, F2 = 240.5MHz, V  
F1 = 239.5MHz, F2 = 240.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
OIP3  
Output Third-Order Intercept  
F1 = 239.5MHz, F2 = 240.5MHz, V  
F1 = 239.5MHz, F2 = 240.5MHz, V  
F1 = 239.5MHz, F2 = 240.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
27  
27  
32  
dBm  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
P1dB  
NF  
Output 1dB Compression Point  
Noise Figure  
12.8  
dBm  
Z
IN  
Z
IN  
= 50Ω (Note 5)  
= 200Ω  
11  
8
dB  
dB  
380MHz Signal  
HD2  
HD3  
IM3  
Second Harmonic Distortion  
V
V
= 0dBm  
= 0dBm  
–57  
–45  
–51  
–64  
–60  
dBc  
dBc  
dBc  
dBc  
dBc  
OUTDIFF  
Third Harmonic Distortion  
OUTDIFF  
Third Order Intermodulated  
Distortion  
F1 = 379.5MHz, F2 = 380.5MHz, V  
F1 = 379.5MHz, F2 = 380.5MHz, V  
F1 = 379.5MHz, F2 = 380.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
OIP3  
Output Third-Order Intercept  
F1 = 379.5MHz, F2 = 380.5MHz, V  
F1 = 379.5MHz, F2 = 380.5MHz, V  
F1 = 379.5MHz, F2 = 380.5MHz, V  
= 0dBm/Tone  
= –5dBm/Tone  
= 0dBm/Tone,  
26  
27  
30  
dBm  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
OUTDIFF  
V
= 5V, V  
= 2.5V, SHDN = 3V  
BIAS  
CC  
P1dB  
NF  
Output 1dB Compression Point  
Noise Figure  
10.8  
dBm  
Z
IN  
Z
IN  
= 50Ω (Note 5)  
= 200Ω  
12  
8
dB  
dB  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC6410C-6/LTC6410I-6 is guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 3: The LTC6410C-6 is guaranteed to meet specified performance  
from 0°C to 70°C. It is designed, characterized and expected to meet  
specified performance from –40°C and 85°C but is not tested or QA  
sampled at these temperatures. The LT6410I-6 is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 4: This parameter is pulse tested.  
Note 5: e can be calculated from Z = 50Ω NF with the formula:  
n
IN  
NF  
en = (1010 1)4kT50  
where  
k = Boltzmann’s constant and  
T = absolute temperature  
64106fa  
6
LTC6410-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Third Order Intercept  
vs Frequency  
Output Third Order Intercept  
Third Order Intermodulation  
vs Frequency (ZIN = 200Ω)  
Distortion vs Frequency vs Power  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
38  
36  
34  
32  
30  
28  
26  
24  
22  
+
+
+
V
V
Z
= 3V  
V
V
Z
= 3V  
V
V
Z
= 3V  
= 0V  
= 0V  
= 0V  
= 50Ω  
= 50Ω  
= 50Ω  
= 50Ω  
= 200Ω  
= 50Ω  
= 1.5V  
IN  
IN  
IN  
R
L
R
R
L
L
V
BIAS  
P
OUT  
= 1.5V  
V
P
BIAS  
OUT  
= 0dBm  
= 0dBm  
380MHz  
240MHz  
30MHz  
140MHz  
10MHz  
70MHz  
200 250  
0
50 100 150  
300 350 400  
200 250  
–5  
–2.5  
0
5
0
50 100 150  
300 350 400  
2.5  
OUTPUT POWER (dBm)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64106 G01  
64106 G03  
64106 G02  
Third Order Intermodulation  
Distortion vs Frequency  
vs Power (ZIN = 200Ω)  
Third Order Intermodulation  
Distortion vs Temperature  
Output 1dB Compression  
vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–50.0  
–52.5  
–55.0  
–57.5  
–60.0  
–62.5  
–65.0  
–67.5  
–70.0  
+
V
V
Z
= 3V  
Z
= 50Ω  
= 3V  
IN  
+
= 0V  
V
V
V
= 200Ω  
= 50Ω  
= 1.5V  
= 0V  
IN  
R
= 1.5V  
L
BIAS  
380MHz  
V
BIAS  
240MHz  
140MHz  
+
V
V
= 3V  
= 0V  
Z
= 50Ω  
= 50Ω  
IN  
R
L
70MHz  
10MHz  
FREQ = 139.5MHz, 140.5MHz  
30MHz  
P
V
= 0dBm  
= 1.5V  
OUT  
BIAS  
–5  
–2.5  
0
2.5  
5
50 75  
TEMPERATURE (°C)  
200 250  
300 350 400  
–50 –25  
0
25  
100 125 150  
0
50 100 150  
OUTPUT POWER (dBm)  
FREQUENCY (MHz)  
64106 G04  
64106 G05  
64106 G06  
Output Third Order Intercept  
vs Frequency  
Output 1dB Compression  
vs Frequency  
Distortion  
vs Common Mode Voltage  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
40  
38  
40  
35  
30  
25  
+
V
V
= 5V  
= 0V  
Z
= 50Ω  
= 50Ω  
= 2.5V  
= 0dBm  
IN  
R
L
36  
V
BIAS  
P
OUT  
34  
32  
30  
28  
20  
15  
+
V
V
= 3V  
= 0V  
10  
5
Z
= 50Ω  
= 50Ω  
IN  
+
R
L
V
V
V
= 5V  
= 0V  
FREQ = 139.5MHz, 140MHz  
= 0dBm  
P
OUT  
= 2.5V  
BIAS  
26  
0
200 250  
1.3  
1.4  
1.6  
0
50 100 150  
300 350 400  
1.2  
1.7  
1.8  
100 150 200 250  
FREQUENCY (MHz)  
400  
0
50  
300 350  
1.5  
FREQUENCY (MHz)  
V
(V)  
BIAS  
64106 G08  
64106 G09  
64106 G07  
64106fa  
7
LTC6410-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Gain  
vs Frequency (S21)  
Differential Input Return Loss  
vs Frequency (S11)  
Differential Output Return Loss  
vs Frequency (S22)  
0
–5  
10  
8
0
–5  
+
+
V
V
Z
= 3V  
V
V
Z
= 3V  
= 0V  
= 0V  
= 50Ω  
= 50Ω  
IN  
IN  
6
4
–10  
–15  
–20  
–25  
2
–10  
–15  
–20  
–25  
0
–2  
–4  
–6  
–8  
–10  
+
V
V
= 3V  
= 0V  
Z
= 50Ω  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64106 G12  
64106 G10  
64106 G11  
Differential Reverse Isolation  
vs Frequency (S12)  
Differential Input Return Loss  
Differential Output Return Loss  
vs Frequency on a Smith Chart (S11)  
vs Frequency on a Smith Chart (S22)  
0
–5  
+
FREQ = 1MHz TO 2GHz  
FREQ = 1MHz TO 2GHz  
V
V
Z
= 3V  
= 0V  
+
+
V
V
= 3V  
= 0V  
V
V
= 3V  
= 0V  
= 50Ω  
IN  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
100MHz  
100MHz  
1GHz  
1MHz  
1MHz  
1GHz  
1
10  
100  
1000  
64106 G14  
64106 G15  
FREQUENCY (MHz)  
64106 G13  
Small-Signal Transient  
Large-Signal Transient  
Overdrive Recovery  
1.9  
2.3  
1.9  
1.5  
1.58  
1.54  
1.50  
1.7  
1.5  
1.3  
1.1  
1.1  
0.7  
1.46  
1.42  
0
2.5  
5
7.5  
10  
15  
64106 G17  
0
5
10  
TIME (ns)  
15  
20  
25  
64106 G18  
0
2.5  
5
7.5  
10  
15  
64106 G16  
TIME (ns)  
TIME (ns)  
64106fa  
8
LTC6410-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Figure vs Frequency vs ZIN  
Turn-On Time  
Turn-Off Time  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
+
V
V
= 3V  
= 0V  
–OUT  
+OUT  
+OUT  
–OUT  
Z
= 100ꢀ  
IN  
Z
= 50ꢀ  
IN  
SHDN  
SHDN  
2
0
2
0
5.0  
Z
= 400ꢀ  
Z
= 200ꢀ  
100  
IN  
IN  
2.5  
0
–2  
–2  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
TIME (ns)  
400  
500  
10  
1000  
64106 G20  
64106 G21  
TIME (ns)  
FREQUENCY (MHz)  
64106 G19  
Group Delay and Phase  
vs Frequency  
Spectrum Analyzer 2-Tone  
CMRR vs Frequency  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+
+
V
V
Z
= 3V  
V
V
Z
= 3V  
45  
= 0V  
= 0V  
= 50ꢀ  
= 50Ω  
IN  
IN  
0
–45  
–90  
–135  
–180  
–225  
–270  
–315  
–360  
PHASE  
GROUP DELAY  
67.5  
68.5  
69.5  
70.5  
71.5  
72.5  
64106 G22  
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64106 G24  
64106 G23  
DC TEST CIRCUIT SCHEMATIC  
+
V
3
+
5
+
V
8
V
10  
+
V
V
BIAS  
BIAS  
V
2
13  
14  
15  
16  
+
V
–TERM  
–IN  
7
6
25Ω  
–OUT  
–OUT  
V
V
= +IN – –IN  
V
= +OUT – –OUT  
OUTDIFF  
INDIFF  
–IN  
+IN  
LTC6410-6  
R
= 50Ω  
+OUT  
L
+IN + –IN  
2
+OUT + –OUT  
2
+IN  
=
V
=
OUTCM  
INCM  
+OUT  
12  
25Ω  
+TERM  
V
V
SHDN  
SHDN  
64106 TC  
11  
V
9
V
4
1
V
64106fa  
9
LTC6410-6  
PIN FUNCTIONS  
V (Pins1,4,9,12,17):NegativePowerSupply(Normally  
SHDN (Pin 11): This pin is internally pulled high by a typi-  
+
TiedtoGround).All5pinsmustbetiedtothesamevoltage.  
cally 30k resistor to V . By pulling this pin low the supply  
V maybetiedtoavoltageotherthangroundaslongasthe  
current will be reduced to typically 3mA. See DC Electrical  
Characteristics table for the specific logic levels.  
+
voltage between V and V is 2.8V to 5.5V. If the V pins  
are not tied to ground, bypass each with 680pF and 0.1μF  
capacitors as close to the package as possible.  
–TERM (Pin 13): Negative Input Termination. When tied  
directly to –IN, it provides an active 50Ω differential ter-  
mination when +TERM is also tied directly to +IN.  
V
(Pin 2): This pin sets the input and output com-  
BIAS  
mon mode voltage by driving the +IN and –IN through a  
–IN (Pin 14): Negative Input. This pin is normally tied to  
buffer with a high output resistance of 1k. If the part is  
AC-coupled at the input, the V  
therefore the V  
the input, V  
bias V  
–TERM, the input termination pin. If AC-coupled, this pin  
will set the V  
and  
BIAS  
INCM  
will self bias by V  
.
BIAS  
voltage. If the part is DC-coupled at  
OUTCM  
+IN (Pin 15): Positive Input. This pin is normally tied to  
should be left floating. Internal resistors  
BIAS  
+TERM, the input termination pin. If AC-coupled, this pin  
to 1.4V on a 3V supply.  
BIAS  
will self bias by V  
.
BIAS  
+
V (Pins 3, 5, 8, 10): Positive Power Supply. All 4 pins  
+TERM (Pin 16): Positive Input Termination. When tied  
directly to +IN, it provides an active 50Ω differential ter-  
mination when –TERM is also tied directly to –IN.  
must be tied to the same voltage. Split supplies are pos-  
+
sible as long as the voltage between V and V is 2.8V to  
5.5V. Bypass capacitors of 680pF and 0.1μF as close to the  
part as possible should be used between supplies.  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
soldered to the PCB metal.  
+OUT, OUT (Pins 6, 7): Outputs. These pins each have  
internal series termination resistors forming a differential  
output resistance.  
BLOCK DIAGRAM  
C
EXT  
R
R
T
110ꢀ  
EXT  
(OPT)  
(OPT)  
–TERM  
–IN  
–IN  
+IN  
+
V
R
O
–OUT  
+OUT  
11ꢀ  
1k  
1k  
6.4k  
+1  
5.7k  
– –  
V
BIAS  
R
11ꢀ  
O
A
= 2.7V/V  
V
0.1μF  
+ +  
V
+IN  
R
T
110ꢀ  
+TERM  
R
EXT  
C
EXT  
(OPT)  
64106 BD  
(OPT)  
64106fa  
10  
LTC6410-6  
APPLICATIONS INFORMATION  
Introduction  
output will have approximately the same common mode  
voltage as the input.  
The LTC6410-6 is a low noise differential high speed  
amplifier. By default, the LTC6410-6 has 6dB voltage gain  
and is designed to operate with 50Ω differential input and  
In the case of a DC-coupled input connection, the input  
DC common mode voltage will also set the output com-  
mon mode voltage. Note that a voltage divider is formed  
output impedances. By changing (R ), alternative con-  
EXT  
between the V  
impedance.  
buffer output and the DC input source  
figurations provide input resistances of up to 400Ω, with  
correspondinglylowernoisegureandhigherpowergain.  
The Block Diagram shows the basic circuit along with key  
external components while Table 1 provides configuration  
BIAS  
The V  
pin has an internal voltage divider which will  
BIAS  
self bias to approximately 1.4V on a 3V supply (0.47 •  
). An external capacitor of 0.1ꢁF to ground is  
information. If the input is AC-coupled, the V  
pin sets  
BIAS  
V
SUPPLY  
the input common mode voltage and therefore the output  
common mode voltage.  
recommended to bypass the pin. The resistance of the pin  
is 3k. See Distortion vs Common Mode graph.  
For increased common mode accuracy, the +TERM and  
–TERM pins can be AC-coupled to the inputs with capaci-  
Input Impedance  
LTC6410-6 has been designed with very flexible input  
termination circuitry. By default, with the termination pins  
connected directly to the inputs, the input impedance is  
58Ω, see the Block Diagram. Internally, there is 110Ω  
tors (C ). This coupling prevents the feedback from the  
EXT  
termination resistance from creating additional DC com-  
mon mode voltage error. The G and V  
of the DC  
CM  
OSCM  
Electrical Characteristics table reflect the less accurate  
between each input and the opposite output (R ). Divid-  
T
DC-coupled scenario.  
ing the resistor by the internal noise gain of 2.7 + 1 = 3.7,  
29.5Ω input impedance is created (59Ω differential ). In  
parallel with the 2k common mode resistance, a total of  
58Ωdifferentialinputimpedanceisachieved. Thismethod  
ofterminationisusedtoprovidelowernoisegurethrough  
the use of feedback which reduces the effective noise of  
the termination resistor. By adding additional resistance in  
series with the termination pins, higher input impedances  
can be obtained (see Table 1). The optimum impedance  
for minimizing the noise figure of the LTC6410-6 is close  
to 400Ω. Because the amplifier is inherently a voltage  
amplifier, the difference between the impedance at the  
input and the output adds additional power gain as can  
be seen in Table 1. These higher impedance levels can be  
useful in interfacing with active mixers which can have  
output impedance of 400Ω and beyond.  
The termination inputs are part of a high speed feedback  
loop. The physical length of the termination loop (R  
EXT  
and C ) must be minimized to maintain stability and  
EXT  
minimize gain peaking.  
Gain  
Internally, the LTC6410-6 has a voltage gain of 2.7V/V.  
The default source and load resistances in most of the  
data sheet are assumed to be 50Ω differential. Due to the  
input and output resistance of the LTC6410-6 being 58Ω  
and 22Ω respectively, the overall voltage gain in a 50Ω  
system is 6dB (2V/V). Other source and load resistances  
will produce different gains due to the resistive dividers.  
Figure 1 is a system diagram for calculating gain.  
Input and Output Common Mode Bias  
R
S
R
OUT  
R
LOAD  
R
LTC6410-6  
IN  
The LTC6410-6 is internally self-biased through the V  
22ꢀ  
BIAS  
V
S
pin (see the Block Diagram). Therefore the LTC6410-6  
64106 F01  
can be AC-coupled with no external biasing circuitry. The  
Figure 1  
64106fa  
11  
LTC6410-6  
APPLICATIONS INFORMATION  
Output Impedance  
Therefore the differential voltage gain can be calculated  
as follows:  
The LTC6410-6 is designed to drive a differential load of  
50Ω with a total differential output resistance of 22Ω.  
While the LTC6410-6 can source and sink approximately  
50mA, large DC output current should be avoided. To test  
the part on traditional 50Ω test equipment, AC coupling  
or balun transformers (or both) may be necessary at the  
input and output.  
RIN  
RIN +RS  
RL  
RL +ROUT  
Voltage Gain = 2•  
2.7 •  
The following is an example of the 50Ω gain calculation:  
58  
58+50  
50  
Voltage Gain = 2•  
2.7 •  
50+ 22  
= 2.0V/V = 6.0dB  
Supply Rails  
Inductance in the supply path can severely effect the per-  
formance of the LTC6410-6. Therefore it is recommended  
that low inductance bypass capacitors are installed very  
close to the part. 680pF and 0.1ꢁF sized capacitors are  
recommended. Additionally, the exposed pad of the part  
The part also can be used with different input impedances  
providing no additional voltage gain, but a higher power  
gain.  
For example, the calculation for a 100Ω input impedance  
shows the effect of an impedance conversion. The voltage  
gain is calculated as follows:  
must be connected to V for low inductance and low  
thermal resistance. Failure to provide a low impedance  
supply at high frequencies can cause oscillations and  
increased distortion.  
83  
83+100  
50  
50+ 22  
Voltage Gain = 2•  
2.7 •  
=1.7V/V = 4.6dB  
However the power gain is:  
SHDN  
+
The SHDN pin self-biases to V through a 30k resistor.  
The pin must be pulled below 0.8V in order to shut down  
the part.  
2  
83  
83+100  
50  
50+ 22  
Power Gain = 2•  
2.7 •  
• 2  
Applications Circuits  
= 5.8mW/mW = 7.6dB  
The graphs on the following page are examples of the  
four differential input resistances used on the DC1103A  
demo board with balun transformers for interfacing with  
the 50Ω single-ended measurement equipment.  
Table 1. Input Impedance  
EXTERNAL  
TERMINATION  
RESISTOR (Ω)  
EFFECTIVE  
DIFFERENTIAL  
INPUT  
VOLTAGE GAIN  
(SOURCE AND  
LOAD RESISTANCE  
AS STATED (V/V)  
DIFFERENTIAL  
SOURCE  
DIFFERENTIAL  
LOAD  
OUTPUT  
POWER  
GAIN (dB)  
NF AT 10MHz  
(dB)  
RESISTANCE (Ω)  
(R  
)
IMPEDANCE (Ω) RESISTANCE (Ω) RESISTANCE (Ω)  
EXT  
(R )  
S
(R )  
IN  
50  
100  
200  
400  
2000  
0
58  
83  
50  
50  
50  
50  
50  
22  
22  
22  
22  
22  
6.0  
7.6  
2.0  
1.7  
1.8  
1.8  
1.9  
11  
9
49.9  
249  
750  
177  
377  
2000  
10.9  
14.2  
21.5  
7
6
Open  
64106fa  
12  
LTC6410-6  
APPLICATIONS INFORMATION  
ZIN = 50Ω, T1 = ETC1-1-13, T2 = ETC1-1-13  
ZIN = 100Ω, T1 = WBC2-1TL, T2 = ETC1-1-13  
49.9Ω  
0.1μF  
–TERM  
–IN  
0.1μF  
–TERM  
–IN  
T1  
T2  
T1  
1:2  
T2  
–OUT  
+OUT  
–OUT  
+OUT  
LTC6410-6  
LTC6410-6  
1:1  
1:1  
1:1  
Z
IN  
= 50Ω  
Z
= 100Ω  
49.9Ω  
IN  
+IN  
+IN  
IN  
OUT  
IN  
OUT  
0.1μF  
0.1μF  
+TERM  
+TERM  
64106 TA03a  
64106 TA03a  
25  
15  
25  
15  
Z
= 50Ω  
Z
= 100Ω  
IN  
CC  
IN  
CC  
V
= 3V  
V
= 3V  
NOISE FIGURE  
NOISE FIGURE  
S21  
5
5
S21  
S22  
–5  
–5  
S22  
S11  
–15  
–25  
–35  
–45  
–15  
–25  
–35  
–45  
S11  
S12  
S12  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64106 TA02b  
64106 TA03b  
ZIN = 200Ω, T1 = WBC4-14L, T2 = ETC1-1-13  
ZIN = 400Ω, T1 = WBC8-1L, T2 = ETC1-1-13  
750ꢀ  
249Ω  
0.1μF  
–TERM  
–IN  
0.1μF  
–TERM  
–IN  
T1  
T2  
T1  
T2  
–OUT  
+OUT  
–OUT  
+OUT  
LTC6410-6  
LTC6410-6  
1:8  
1:1  
1:4  
1:1  
Z
= 400ꢀ  
750ꢀ  
Z
= 200Ω  
249Ω  
IN  
IN  
+IN  
IN  
OUT  
+IN  
IN  
OUT  
0.1μF  
0.1μF  
+TERM  
+TERM  
64106 TA05a  
64106 TA04a  
25  
15  
25  
15  
Z
V
V
= 200Ω  
= 3V  
= 0V  
Z
V
V
= 400Ω  
= 3V  
= 0V  
IN  
IN  
+
+
S21  
S21  
NOISE FIGURE  
5
5
NOISE FIGURE  
S22  
–5  
–5  
S22  
S11  
–15  
–25  
–35  
–45  
–15  
–25  
–35  
–45  
S11  
S12  
S12  
100  
10  
100  
1000  
10000  
10  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64106 TA04b  
64106 TA05b  
64106fa  
13  
LTC6410-6  
APPLICATIONS INFORMATION  
Demoboard DC1103A Top Silkscreen  
TYPICAL APPLICATION  
SAW Filter Application  
ThedifferentialoutputoftheLTC6410-6allowsdifferential  
drivingoftheSAWlterwithouttheneedforatransformer.  
The differential nature of the LTC6410-6 allows for ease  
of use in differential signal chains, and may reduce the  
need for transformers.  
3V  
0.1μF  
47nH  
12.4Ω  
12.4Ω  
SAWTEK  
854923  
LTC6410-6  
15pF  
47nH*  
120nH*  
64106 TA07  
15pF  
SAW Filter Application  
0
0.1μF  
*COILCRAFT 0805CS  
–10  
–20  
–30  
–40  
–50  
–60  
The schematic above shows a typical signal chain applica-  
tion with the LTC6410-6 in combination with a 140MHz  
centerfrequency24MHzbandwidthSAWlter.Withoutthe  
LTC6410-6, theattenuationoftheSAWwouldbe11.5dB.  
The networks between the LTC6410-6 and the SAW filter,  
andaftertheSAWlterareforproperimpedancematching.  
–70  
90 100 110 120 130 140 150 160 170 180 190  
FREQUENCY (MHz)  
64106 TA08  
64106fa  
14  
LTC6410-6  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
64106fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6410-6  
TYPICAL APPLICATION  
Demoboard DC1103A Schematic  
V
TP1  
SHDN  
CC  
R16 10Ω  
JP1  
EN  
C17  
680pF  
C18  
0.1μF  
DS  
C31  
C26  
C30  
J4  
C2  
12 11  
10  
9
J1  
0.1μF  
(1)  
0.1μF  
–OUT  
0.1μF  
+
–IN  
T1  
V
SHDN  
V
V
T2  
C11  
(1)  
R6 0Ω  
R8 0Ω  
R7 0Ω  
R5 0Ω  
13  
14  
15  
16  
17  
8
7
6
5
MABA-007159-  
000000  
+
MABA-007159-  
000000  
–TERM  
V
C25 OPT  
C3  
(1)  
–IN  
–OUT  
R15  
(1)  
LTC6410-6  
J2  
+IN  
J5  
+OUT  
+IN  
+OUT  
+
C16  
(1)  
C22  
OPT  
+TERM  
V
C33  
+
C34  
(1)  
C32  
0.1μF  
V
C1  
0.1μF  
V
V
V
V
V
C4  
0.1μF  
CC  
BIAS  
2
(1)  
1
3
4
TP4  
BIAS  
R19  
OPT  
V
CC  
V
C7  
0.1μF  
C12  
680pF  
C13  
0.1μF  
TP5  
GND  
R20  
OPT  
C28  
0.1μF  
C6  
0.1μF  
J7  
J6  
TEST OUT  
TEST IN  
T3  
T4  
R23 0Ω  
MABA-007159-  
000000  
MABA-007159-  
000000  
C19 OPT  
C20 OPT  
64106 TA06  
R21  
(1)  
R24 0Ω  
R22  
(1)  
TP2  
V
V
CC  
CC  
C29  
C5  
0.1μF  
2.8V TO 5.5V  
0.1μF  
C14  
4.7μF  
C15  
1μF  
NOTE: UNLESS OTHERWISE SPECIFIED  
(1) NOT POPULATED  
TP3  
GND  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
A = 2V/V, NF = 12.3dB, OIP3 = 38dBm at 70MHz  
LT1993-2  
LT1993-4  
LT1993-10  
LT5514  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Ultralow Distortion IF Amplifier/ADC Driver  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
V
A = 4V/V, NF = 14.5dB, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, NF = 12.7dB, OIP3 = 40dBm at 70MHz  
V
Digitally Controlled Gain Output IP3 47dBm at 100MHz  
LT5522  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50ꢀ Single-Ended RF and LO Ports, R  
= 400ꢀ  
OUT  
LT5524  
LT5525  
LT5526  
LT5527  
LT5557  
Low Power, Low Distortion ADC Driver with Digitally  
Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50ꢀ RF and LO Ports, 17.6dBm IIP3 at 1900MHz,  
I
CC  
= 28mA  
High Linearity, Low Power Downconverting Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB,  
= 28mA, –65dBm LO-RF Leakage  
I
CC  
400MHz to 3.7GHz High Signal Level Downconverting Mixer  
400MHz to 3.8GHz High Signal Level Downconverting Mixer  
CG = 2.3dB at 1900MHz, IIP3 = 23.5dBm at 1900MHz, 440mW,  
= 415ꢀ  
R
OUT  
CG = 2.9dB at 1950MHz, IIP3 = 24.7dBm at 1950MHz, 300mW,  
= 560ꢀ  
R
OUT  
LTC6400-20  
LTC6401-20  
LT6402-6  
1.8GHz Low Noise, Low Distortion ADC Driver for 300MHz IF  
1.4GHz Low Noise, Low Distortion ADC Driver for 140MHz IF  
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Z = 200ꢀ, I  
= 105mA at 25°C  
= 62mA at 25°C  
V
IN  
S(MAX)  
S(MAX)  
A = 20dB, Z = 200ꢀ, I  
V
IN  
A = 6dB, e = 3.8nV/√Hz at 20MHz, 150mW  
V
n
LT6402-12  
LT6402-20  
LT6411  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, e = 2.6nV/√Hz at 20MHz, 150mW  
V n  
300MHz Differential Amplifier/ADC Driver  
A = 20dB, e = 1.9nV/√Hz at 20MHz, 150mW  
V n  
650MHz Differential ADC Driver/Dual Selectable Gain Amplifier  
3300V/μs Slew Rate, 16mA Current Consumption,  
Selectable Gain: A = –1, 1, 2  
V
64106fa  
LT 0908 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6410CUD-6-TRPBF

Low Distortion, Low Noise Differential IF Amplifi er with Confi gurable Input Impedance
Linear

LTC6410IUD-6#PBF

LTC6410-6 - Low Distortion, Low Noise Differential IF Amplifier with Configurable Input Impedance; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC6410IUD-6#TRPBF

LTC6410-6 - Low Distortion, Low Noise Differential IF Amplifier with Configurable Input Impedance; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC6410IUD-6-PBF

Low Distortion, Low Noise Differential IF Amplifi er with Confi gurable Input Impedance
Linear

LTC6410IUD-6-TRPBF

Low Distortion, Low Noise Differential IF Amplifi er with Confi gurable Input Impedance
Linear

LTC6411

2.7GHz, 5V, Low Noise,Rail-to-Rail Input Differential Amplifier/Driver
Linear

LTC6412

800MHz, 31dB Range Analog-Controlled VGA
Linear

LTC6412CUF

800MHz, 31dB Range Analog-Controlled VGA
Linear

LTC6412CUFPBF

800MHz, 31dB Range Analog-Controlled VGA
Linear

LTC6412CUFTRPBF

800MHz, 31dB Range Analog-Controlled VGA
Linear

LTC6412IUF

800MHz, 31dB Range Analog-Controlled VGA
Linear

LTC6412IUF#TRPBF

LTC6412 - 800MHz, 31dB Range Analog-Controlled VGA; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
Linear