LTC6247CTS8 [Linear]

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; 180MHz的, 1毫安高效电源轨到轨输入/输出运算放大器
LTC6247CTS8
型号: LTC6247CTS8
厂家: Linear    Linear
描述:

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
180MHz的, 1毫安高效电源轨到轨输入/输出运算放大器

运算放大器
文件: 总24页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6246/LTC6247/LTC6248  
180MHz, 1mA Power  
Efficient Rail-to-Rail  
I/O Op Amps  
FeaTures  
DescripTion  
TheLTC®6246/LTC6247/LTC6248aresingle/dual/quadlow  
power,highspeedunitygainstablerail-to-railinput/output  
operationalamplifiers.Ononly1mAofsupplycurrentthey  
feature an impressive 180MHz gain-bandwidth product,  
90V/µs slew rate and a low 4.2nV/√Hz of input-referred  
noise. The combination of high bandwidth, high slew rate,  
low power consumption and low broadband noise makes  
these amplifiers unique among rail-to-rail input/output op  
ampswithsimilarsupplycurrents. Theyareidealforlower  
supply voltage high speed signal conditioning systems.  
n
Gain Bandwidth Product: 180MHz  
n
–3dB Frequency (A = 1): 120MHz  
V
n
Low Quiescent Current: 1mA Max  
n
High Slew Rate: 90V/µs  
n
Input Common Mode Range Includes Both Rails  
n
Output Swings Rail-to-Rail  
n
Low Broadband Voltage Noise: 4.2nV/√Hz  
n
Power-Down Mode: 42μA  
Fast Output Recovery  
n
n
Supply Voltage Range: 2.5V to 5.25V  
n
Input Offset Voltage: 0.5mV Max  
TheLTC6246familymaintainshighefficiencyperformance  
from supply voltage levels of 2.5V to 5.25V and is fully  
specified at supplies of 2.7V and 5.0V.  
n
Input Bias Current: 100nA  
n
Large Output Current: 50mA  
n
CMRR: 110dB  
n
For applications that require power-down, the LTC6246  
and the LTC6247 in MS10 offer a shutdown pin which  
disables the amplifier and reduces current consumption  
to 42µA.  
Open Loop Gain: 45V/mV  
n
Operating Temperature Range: –40°C to 125°C  
n
Single in 6-Pin TSOT-23  
n
Dual in MS8, 2mm × 2mm Thin DFN,TS0T-23, MS10  
n
Quad in MS16  
The LTC6246 family can be used as a plug-in replacement  
formanycommerciallyavailableopampstoreducepower  
or to improve input/output range and performance.  
applicaTions  
n
Low Voltage, High Frequency Signal Processing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Driving A/D Converters  
n
Rail-to-Rail Buffer Amplifiers  
Active Filters  
Video Amplifiers  
Fast Current Sensing Amplifiers  
Battery Powered Equipment  
n
n
n
n
Typical applicaTion  
350kHz FFT Driving ADC  
0
f
f
= 350.195kHz  
SAMP  
IN  
Low Noise Low Distortion Gain = 2 ADC Driver  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
= 2.2Msps  
SFDR = 82dB  
SNR = 70dB  
1024 POINT FFT  
3.3V 2.5V  
3.3V  
V
DD  
V
REF  
CS  
SDO  
SCK  
V
IN  
+
A
IN  
LTC6246  
LTC2366  
GND  
OV  
DD  
499Ω  
1%  
624678 TA01a  
499Ω  
1%  
10pF  
0
200  
400  
600  
800  
1000  
FREQUENCY (kHz)  
624678 TA01b  
624678fa  
LTC6246/LTC6247/LTC6248  
(Note 1)  
absoluTe MaxiMuM raTings  
+
Total Supply Voltage (V to V )................................5.5V  
Input Current (+IN, –IN, SHDN) (Note 2).............. 10mA  
Output Current (Note 3) ..................................... 100mA  
Operating Temperature Range (Note 4) . –40°C to 125°C  
Specified Temperature Range (Note 5) .. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Junction Temperature ........................................... 150°C  
Lead Temperature (Soldering, 10 sec)  
(MSOP, TSOT Packages Only)...............................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
+
1
2
3
4
5
10  
9
V
OUT A  
–IN A  
+IN A  
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
+
+
+
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
SHDNB  
7 OUT B  
6 –IN B  
5 +IN B  
+
+
8
+
V
7
6
V
V
9
SHDNA  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
KC PACKAGE  
8-LEAD PLASTIC UTDFN (2mm s 2mm)  
T
= 150°C, θ = 163°C/W (NOTE 9)  
JMAX  
JA  
T
= 150°C, θ = 160°C/W (NOTE 9)  
JMAX  
JA  
T
= 125°C, θ = 102°C/W (NOTE 9)  
JMAX  
JA  
EXPOSED PAD (PIN 9) IS V , MUST BE SOLDERED TO PCB  
TOP VIEW  
TOP VIEW  
+
TOP VIEW  
+
1
2
3
4
5
6
7
8
OUT A  
–IN A  
+IN A  
16 OUT D  
15 –IN D  
+
+
OUT A 1  
–IN A 2  
8 V  
OUT 1  
6 V  
14 +IN D  
+
+
7 OUT B  
6 –IN B  
5 +IN B  
V
13 V  
V
2
5 SHDN  
4 –IN  
+
+
+
+
+IN B  
–IN B  
OUT B  
12 +IN C  
11 –IN C  
10 OUT C  
9
+IN A 3  
+IN 3  
V
4
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
= 150°C, θ = 125°C/W (NOTE 9)  
T
= 150°C, θ = 195°C/W (NOTE 9)  
T
= 150°C, θ = 192°C/W (NOTE 9)  
JMAX  
JA  
JMAX  
JA  
T
JMAX  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTDWF  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
8-Lead (2mm × 2mm) UTDFN  
8-Lead (2mm × 2mm) UTDFN  
8-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6246CS6#TRMPBF  
LTC6246IS6#TRMPBF  
LTC6246HS6#TRMPBF  
LTC6247CKC#TRMPBF  
LTC6247IKC#TRMPBF  
LTC6247CMS8#PBF  
LTC6246CS6#TRPBF  
LTC6246IS6#TRPBF  
LTC6246HS6#TRPBF  
LTC6247CKC#TRPBF  
LTC6247IKC#TRPBF  
LTC6247CMS8#TRPBF  
LTC6247IMS8#TRPBF  
LTC6247CTS8#TRPBF  
LTC6247ITS8#TRPBF  
LTC6247HTS8#TRPBF  
LTDWF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTDWF  
DWJT  
DWJT  
–40°C to 85°C  
0°C to 70°C  
LTDWH  
LTDWH  
LTDWK  
LTDWK  
LTDWK  
LTC6247IMS8#PBF  
8-Lead Plastic MSOP  
–40°C to 85°C  
0°C to 70°C  
LTC6247CTS8#TRMPBF  
LTC6247ITS8#TRMPBF  
LTC6247HTS8#TRMPBF  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
624678fa  
LTC6246/LTC6247/LTC6248  
orDer inForMaTion  
LEAD FREE FINISH  
LTC6247CMS#PBF  
LTC6247IMS#PBF  
LTC6248CMS#PBF  
LTC6248IMS#PBF  
LTC6248HMS#PBF  
TAPE AND REEL  
PART MARKING*  
LTDWM  
LTDWM  
6248  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6247CMS#TRPBF  
LTC6247IMS#TRPBF  
LTC6248CMS#TRPBF  
LTC6248IMS#TRPBF  
LTC6248HMS#TRPBF  
–40°C to 85°C  
0°C to 70°C  
6248  
–40°C to 85°C  
6248  
–40°C to 125°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
(V = 5V) The l denotes the specifications which apply across the  
elecTrical characTerisTics  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 5V, 0V; VSHDN = 2V; VCM = VOUT = 2.5V,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= Half Supply  
–500  
50  
500  
µV  
µV  
OS  
CM  
CM  
CM  
CM  
l
l
l
–1000  
1000  
+
= V – 0.5V, NPN Mode  
–2.5  
–3  
0.1  
50  
2.5  
3
mV  
mV  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 8)  
= Half Supply  
–600  
–1000  
600  
1000  
µV  
µV  
V  
OS  
+
= V – 0.5V, NPN Mode  
–3.5  
–4  
0.1  
3.5  
4
mV  
mV  
l
l
V
OS  
T
C
Input Offset Voltage Drift  
Input Bias Current (Note 7)  
–2  
µV/°C  
I
V
CM  
V
CM  
V
CM  
V
CM  
= Half Supply  
–350  
–550  
–30  
350  
550  
nA  
nA  
B
l
l
l
l
+
= V – 0.5V, NPN Mode  
100  
0
400  
–10  
–10  
1000  
1500  
nA  
nA  
I
OS  
Input Offset Current  
= Half Supply  
–250  
–400  
250  
400  
nA  
nA  
+
= V – 0.5V, NPN Mode  
–250  
–400  
250  
400  
nA  
nA  
e
Input Noise Voltage Density  
Input 1/f Noise Voltage  
Input Noise Current Density  
Input Capacitance  
f = 100kHz  
4.2  
1.6  
2.0  
nV/√Hz  
n
f = 0.1Hz to 10Hz  
f = 100kHz  
µV  
P-P  
i
n
pA/√Hz  
C
Differential Mode  
Common Mode  
2
0.8  
pF  
pF  
IN  
R
Input Resistance  
Differential Mode  
Common Mode  
32  
14  
kΩ  
MΩ  
IN  
A
Large Signal Voltage Gain  
R = 1k to Half Supply (Note 10)  
30  
14  
45  
V/mV  
V/mV  
VOL  
L
l
l
l
R = 100Ω to Half Supply (Note 10)  
L
5
2.5  
15  
V/mV  
V/mV  
CMRR  
Common Mode Rejection Ratio  
V
CM  
= 0V to 3.5V  
78  
76  
110  
dB  
dB  
624678fa  
LTC6246/LTC6247/LTC6248  
elecTrical characTerisTics  
(V = 5V) The l denotes the specifications which apply across the  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 5V, 0V; VSHDN = 2V; VCM = VOUT = 2.5V,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
I
Input Common Mode Range  
Power Supply Rejection Ratio  
0
V
V
CMR  
S
PSRR  
V = 2.5V to 5.25V  
CM  
69  
65  
73  
dB  
dB  
S
l
l
V
= 1V  
Supply Voltage Range (Note 6)  
2.5  
5.25  
V
V
Output Swing Low (V  
– V )  
No Load  
25  
70  
40  
55  
mV  
mV  
OL  
OH  
OUT  
l
l
l
l
l
l
l
l
l
l
l
l
I
I
= 5mA  
110  
160  
mV  
mV  
SINK  
= 25mA  
160  
70  
250  
450  
mV  
mV  
SINK  
+
V
Output Swing High (V – V  
)
No Load  
100  
150  
mV  
mV  
OUT  
I
I
= 5mA  
130  
300  
–80  
100  
0.95  
1.25  
42  
175  
225  
mV  
mV  
SOURCE  
= 25mA  
500  
750  
mV  
mV  
SOURCE  
I
I
Output Short-Circuit Current  
Supply Current per Amplifier  
Sourcing  
Sinking  
–35  
–30  
mA  
mA  
SC  
60  
40  
mA  
mA  
V
V
V
V
V
= Half Supply  
1
1.4  
mA  
mA  
S
CM  
+
= V – 0.5V  
1.4  
1.8  
mA  
mA  
CM  
I
I
I
Disable Supply Current per Amplifier  
SHDN Pin Current Low  
= 0.8V  
= 0.8V  
= 2V  
75  
200  
µA  
µA  
SD  
SHDN  
SHDN  
SHDN  
–3  
–4  
–1.6  
35  
0
0
µA  
µA  
SHDNL  
SHDNH  
SHDN Pin Current High  
–300  
–350  
300  
350  
nA  
nA  
l
l
l
V
V
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
0.8  
V
V
L
2
H
I
Output Leakage Current Magnitude in  
Shutdown  
V
= 0.8V, Output Shorted to Either  
100  
nA  
OSD  
SHDN  
Supply  
t
t
Turn-On Time  
V
= 0.8V to 2V  
= 2V to 0.8V  
5
µs  
µs  
ON  
SHDN  
SHDN  
Turn-Off Time  
V
2
OFF  
BW  
–3dB Closed Loop Bandwidth  
Gain-Bandwidth Product  
A = 1, R = 1k to Half Supply  
120  
180  
MHz  
V
L
GBW  
f = 2MHz, R = 1k to Half Supply  
100  
70  
MHz  
MHz  
L
l
t , 0.1%  
Settling Time to 0.1%  
Settling Time to 0.01%  
Slew Rate  
A = –1, V = 2V Step R = 1k  
74  
202  
90  
ns  
ns  
S
V
O
L
t , 0.01%  
S
A = –1, V = 2V Step R = 1k  
V O L  
SR  
A = –3.33, 4.6V Step (Note 11)  
V
60  
50  
V/µs  
V/µs  
l
FPBW  
Full Power Bandwidth  
V
OUT  
= 4V (Note 13)  
4
MHz  
P-P  
624678fa  
LTC6246/LTC6247/LTC6248  
(V = 5V) The l denotes the specifications which apply across the  
elecTrical characTerisTics  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 5V, 0V; VSHDN = 2V; VCM = VOUT = 2.5V,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
f = 100kHz, V = 2V  
P-P  
MIN  
TYP  
MAX  
UNITS  
HD2/HD3  
Harmonic Distortion  
110/90  
88/80  
78/62  
dBc  
dBc  
dBc  
C
O
R = 1k to Half Supply  
f = 1MHz, V = 2V  
L
C O P-P  
f = 2MHz, V = 2V  
P-P  
C
O
R = 100Ω to Half Supply  
L
f = 100kHz, V = 2V  
P-P  
90/79  
66/60  
59/51  
C
O
f = 1MHz, V = 2V  
C
O
P-P  
f = 2MHz, V = 2V  
C
O
P-P  
Differential Gain (Note 14)  
Differential Phase (Note 14)  
Crosstalk  
A = 1, R = 1k, V = 2.5V  
0.2  
0.08  
–90  
%
Deg  
dB  
G  
V
L
S
A = 1, R = 1k, V = 2.5V  
∆θ  
V
L
S
A = –1, R = 1k to Half Supply,  
V
OUT  
L
V
= 2V , f = 1MHz  
P-P  
(V = 2.7V) The l denotes the specifications which apply across the  
elecTrical characTerisTics  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 2.7V, 0V; VSHDN = 2V; VCM = VOUT  
1.35V, unless otherwise noted.  
=
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= Half Supply  
–100  
–300  
500  
1000  
1400  
µV  
µV  
OS  
CM  
CM  
CM  
CM  
l
l
l
+
= V – 0.5V, NPN Mode  
–1.75  
–2.25  
0.75  
–20  
0.1  
3.25  
3.75  
mV  
mV  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 8)  
= Half Supply  
–700  
–1000  
700  
1000  
µV  
µV  
V  
OS  
+
= V – 0.5V, NPN Mode  
–3.5  
–4  
3.5  
4
mV  
mV  
l
l
V
OS  
T
C
Input Offset Voltage Drift  
Input Bias Current (Note 7)  
2
µV/°C  
I
B
V
CM  
V
CM  
V
CM  
V
CM  
= Half Supply  
–450  
–600  
–100  
450  
600  
nA  
nA  
l
l
l
l
+
= V – 0.5V, NPN Mode  
50  
0
350  
–10  
–10  
1000  
1500  
nA  
nA  
I
OS  
Input Offset Current  
= Half Supply  
–250  
–350  
250  
350  
nA  
nA  
+
= V – 0.5V, NPN Mode  
–250  
–350  
250  
350  
nA  
nA  
e
Input Noise Voltage Density  
Input 1/f Noise Voltage  
Input Noise Current Density  
Input Capacitance  
f = 100kHz  
4.6  
1.7  
1.8  
nV/√Hz  
n
f = 0.1Hz to 10Hz  
f = 100kHz  
µV  
P-P  
i
n
pA/√Hz  
C
Differential Mode  
Common Mode  
2
0.8  
pF  
pF  
IN  
R
IN  
Input Resistance  
Differential Mode  
Common Mode  
32  
12  
kΩ  
MΩ  
A
VOL  
Large Signal Voltage Gain  
R = 1k to Half Supply  
15  
25  
V/mV  
V/mV  
L
l
l
(Note 12)  
7.5  
R = 100Ω to Half Supply  
2
1.3  
7.5  
V/mV  
V/mV  
L
(Note 12)  
624678fa  
LTC6246/LTC6247/LTC6248  
elecTrical characTerisTics  
(V = 2.7V) The l denotes the specifications which apply across the  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 2.7V, 0V; VSHDN = 2V; VCM = VOUT  
1.35V, unless otherwise noted.  
=
SYMBOL  
PARAMETER  
CONDITIONS  
= 0V to 1.2V  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection Ratio  
V
80  
78  
100  
dB  
dB  
CM  
l
l
I
Input Common Mode Range  
Power Supply Rejection Ratio  
0
V
S
V
CMR  
PSRR  
V = 2.5V to 5.25V  
69  
65  
73  
dB  
dB  
S
CM  
l
l
V
= 1V  
Supply Voltage Range (Note 6)  
2.5  
5.25  
V
V
Output Swing Low (V  
– V )  
No Load  
20  
80  
40  
55  
mV  
mV  
OL  
OH  
OUT  
l
l
l
l
l
l
l
l
l
l
l
l
I
I
= 5mA  
125  
160  
mV  
mV  
SINK  
= 10mA  
110  
60  
175  
225  
mV  
mV  
SINK  
+
V
Output Swing High (V – V  
Short Circuit Current  
)
No Load  
85  
100  
mV  
mV  
OUT  
I
I
= 5mA  
135  
180  
–35  
50  
190  
225  
mV  
mV  
SOURCE  
= 10mA  
275  
400  
mV  
mV  
SOURCE  
I
I
Sourcing  
Sinking  
–20  
–15  
mA  
mA  
SC  
25  
20  
mA  
mA  
Supply Current per Amplifier  
V
V
V
V
V
= Half Supply  
0.89  
1
1
1.3  
mA  
mA  
S
CM  
+
= V – 0.5V  
1.3  
1.7  
mA  
mA  
CM  
I
I
I
Disable Supply Current per Amplifier  
SHDN Pin Current Low  
= 0.8V  
= 0.8V  
= 2V  
22  
50  
90  
µA  
µA  
SD  
SHDN  
SHDN  
SHDN  
–1  
–1.5  
–0.5  
45  
0
0
µA  
µA  
SHDNL  
SHDNH  
SHDN Pin Current High  
–300  
–350  
300  
350  
nA  
nA  
l
l
l
V
V
SHDN Pin Input Voltage  
0.8  
V
V
L
SHDN Pin Input Voltage  
2.0  
H
I
Output Leakage Current Magnitude in Shutdown  
V
= 0.8V, Output Shorted to Either  
100  
nA  
OSD  
SHDN  
Supply  
t
t
Turn-On Time  
V
V
= 0.8V to 2V  
= 2V to 0.8V  
5
µs  
µs  
ON  
SHDN  
SHDN  
Turn-Off Time  
2
OFF  
BW  
–3dB Closed Loop Bandwidth  
Gain-Bandwidth Product  
A = 1, R = 1k to Half Supply  
100  
150  
MHz  
MHz  
V
L
GBW  
f = 2MHz, R = 1k to Half Supply  
80  
50  
L
l
t , 0.1  
Settling Time to 0.1%  
Settling Time to 0.01%  
Slew Rate  
A = –1, V = 2V Step R = 1k  
119  
170  
55  
ns  
ns  
S
V
O
L
t , 0.01  
S
A = –1, V = 2V Step R = 1k  
V O L  
SR  
A = –1, 2V Step  
V
V/µs  
624678fa  
LTC6246/LTC6247/LTC6248  
elecTrical characTerisTics  
(V = 2.7V) The l denotes the specifications which apply across the  
S
specified temperature range, otherwise specifications are at TA = 25°C. For each amplifier VS = 2.7V, 0V; VSHDN = 2V; VCM = VOUT  
1.35V, unless otherwise noted.  
=
SYMBOL  
PARAMETER  
CONDITIONS  
V = 2V (Note 13)  
OUT  
MIN  
TYP  
3.3  
MAX  
UNITS  
MHz  
dB  
FPBW  
Full Power Bandwidth  
Crosstalk  
P-P  
A = –1, R = 1k to Half Supply,  
–90  
V
OUT  
L
V
= 2V , f = 1MHz  
P-P  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: The input bias current is the average of the average of the currents  
through the positive and negative input pins.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The inputs are protected by back-to-back diodes. If any of  
the input or shutdown pins goes 300mV beyond either supply or the  
differential input voltage exceeds 1.4V the input current should be limited  
to less than 10mA. This parameter is guaranteed to meet specified  
performance through design and/or characterization. It is not production  
tested.  
Note 8: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LTC6248; between the two amplifiers on the  
LTC6247.  
Note 9: Thermal resistance varies with the amount of PC board metal  
connected to the package. The specified values are with short traces  
connected to the leads with minimal metal area.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output current is high.  
Note 10: The output voltage is varied from 0.5V to 4.5V during  
measurement.  
Note 4: The LTC6246C/LTC6247C/LTC6248C and LTC6246I/LTC6247I/  
LTC6248I are guaranteed functional over the temperature range of –40°C  
to 85°C. The LTC6246H/LTC6247H/LTC6248H are guaranteed functional  
over the temperature range of –40°C to 125°C.  
Note 11: Middle 80% of the output waveform is observed. R = 1k at half  
supply.  
Note 12: The output voltage is varied from 0.5V to 2.2V during  
measurement.  
L
Note 5: The LTC6246C/LTC6247C/LTC6248C are guaranteed to meet  
specified performance from 0°C to 70°C. The LTC6246C/LTC6247C/  
LTC6248C are designed, characterized and expected to meet specified  
performance from –40°C to 85°C but are not tested or QA sampled at  
these temperatures. The LTC6246I/LTC6247I/LTC6248I are guaranteed  
to meet specified performance from –40°C to 85°C. The LTC6246H/  
LTC6247H/LTC6248H are guaranteed to meet specified performance from  
–40°C to 125°C.  
Note 13: FPBW is determined from distortion performance in a gain of +2  
configuration with HD2, HD3 < –40dBc as the criteria for a valid output.  
Note 14: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R video  
measurement set.  
Typical perForMance characTerisTics  
VOS Distribution, VCM = VS/2  
(MS, PNP Stage)  
VOS Distribution, VCM = VS/2  
(TSOT-23, PNP Stage)  
VOS Distribution, VCM = V+ – 0.5V  
(MS, NPN Stage)  
22  
20  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
V
= 5V, 0V  
= 4.5V  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
S
= 2.5V  
CM  
S
CM  
S
CM  
6
6
4
4
2
2
0
0
0
–2000 –1200  
–400  
400  
1200  
2000  
–375 –250 –150 –50 50 150 250 350  
–175 –125 –75 –25 25  
75 125 175  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
624678 G03  
624678 G01  
624678 G02  
624678fa  
LTC6246/LTC6247/LTC6248  
Typical perForMance characTerisTics  
VOS Distribution, VCM = V+ – 0.5V  
(TSOT-23, NPN Stage)  
VOS vs Temperature  
(MS10, PNP Stage)  
VOS vs Temperature  
(MS10, NPN Stage)  
18  
16  
14  
12  
10  
8
500  
400  
300  
200  
100  
0
2500  
2000  
1500  
1000  
500  
V
V
= 5V, 0V  
= 4.5V  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
S
= 4.5V  
CM  
S
CM  
S
CM  
6 DEVICES  
6 DEVICES  
0
–500  
–1000  
–1500  
–2000  
–2500  
6
–100  
–200  
–300  
–400  
4
2
0
–2000 –1200  
–400  
400  
1200  
2000  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
624678 G04  
624678 G05  
624678 G06  
V
OS vs Temperature  
Offset Voltage  
vs Input Common Mode Voltage  
V
OS vs Temperature  
(MS10, PNP Stage)  
(MS10, NPN Stage)  
2500  
2000  
1500  
1000  
500  
500  
400  
1200  
1000  
800  
600  
400  
200  
0
V
S
= 5V, 0V  
V
V
= 2.7V, 0V  
= 1.35V  
S
CM  
6 DEVICES  
300  
200  
100  
–55°C  
25°C  
0
0
–100  
–200  
–300  
–400  
–500  
–500  
–1000  
–1500  
–2000  
125°C  
V
V
= 2.7V, 0V  
CM  
6 DEVICES  
S
= 2.2V  
–55 –35 –15  
5
25 45 65 85 105 125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
624678 G08  
624678 G09  
624678 G07  
Input Bias Current  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
vs Common Mode Voltage  
5
0
800  
600  
2.0  
1.5  
V
=
2ꢀ5V  
V
S
=
2.5V  
V
S
= 5V, 0V  
S
A
125°C  
T
= 25°C  
400  
25°C  
125°C  
–5  
200  
1.0  
0
–10  
–15  
–20  
–25  
–30  
–35  
0.5  
–200  
–400  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
–55°C  
0
–55°C  
–0.5  
–1.0  
–1.5  
–2.0  
25°C  
0
20 40 60 80 100 120 140 160  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–100 –75 –50 –25  
0
25 50 75 100  
TIME AFTER POWER-UP (s)  
COMMON MODE VOLTAGE (V)  
OUTPUT CURRENT (mA)  
624678 G11  
624678 G12  
624678 G10  
624678fa  
LTC6246/LTC6247/LTC6248  
Typical perForMance characTerisTics  
Input Noise Voltage and Noise  
Current vs Frequency  
Input Bias Current vs Temperature  
0.1Hz to 10Hz Voltage Noise  
700  
600  
500  
400  
300  
200  
100  
0
1.5  
1.0  
0.5  
0
1000  
100  
10  
V
S
= 5V, 0V  
V
= ±±.5V  
S
e , V = 4.5V  
V
= 4.5V  
n
CM  
CM  
e , V = 2.5V  
n
CM  
0.5  
–1.0  
–1.5  
i , V = 2.5V  
n
CM  
V
CM  
= 2.5V  
1.0  
i , V = 4.5V  
n
CM  
–100  
–200  
0.1  
–55  
–25  
5
35  
65  
95  
125  
0
1
±
3
4
5
6
7
8
9
10  
1
10 100 1k 10k 100k 1M 10M  
TEMPERATURE (°C)  
TIME (1s/DIV)  
FREQUENCY (Hz)  
624678 G13  
6±4678 G14  
624678 G15  
SHDN Pin Current  
Supply Current  
vs Supply Voltage (Per Amplifier)  
Supply Current Per Amplifier  
vs SHDN Pin Voltage  
vs SHDN Pin Voltage  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.25  
0
V
S
= 5V, 0V  
V = 5V, 0V  
S
125°C  
–55°C  
SHUTDOWN CURRENT  
25°C  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
T
= 125°C  
A
–55°C  
T
= –55°C  
A
T
= 25°C  
25°C  
2
A
125°C  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2.5  
3
3.5  
4
4.5  
5
TOTAL SUPPLY VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
624678 G16  
624678 G17  
624678 G18  
Output Saturation Voltage  
vs Load Current (Output High)  
Minimum Supply Voltage,  
VCM = VS/2 (PNP Operation)  
Minimum Supply Voltage,  
VCM = V+ – 0.5V (NPN Operation)  
12  
10  
8
5
4
10  
1
V
= 2.ꢀV  
V
= V – 0.5V  
CC  
S
CM  
3
–55°C  
T
= 12ꢀ°C  
A
6
T
= 2ꢀ°C  
A
2
4
25°C  
1
0.1  
0.01  
125°C  
2
125°C  
T
= –ꢀꢀ°C  
1
A
0
0
–55°C  
4
25°C  
3.5  
–2  
–1  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
4.5  
5
5.5  
0.01  
0.1  
10  
100  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
624678 G19  
624678 G20  
624678 G21  
624678fa  
LTC6246/LTC6247/LTC6248  
Typical perForMance characTerisTics  
Output Saturation Voltage  
Output Short-Circuit Current  
vs Power Supply Voltage  
vs Load Current (Output Low)  
Open Loop Gain  
500  
400  
10  
1
120  
100  
80  
V
= 2.ꢀV  
T
= 25°C  
T
= –55°C  
A
A
S
S
V
= 5V, 0V  
SINK  
T
T
= 25°C  
A
300  
60  
R
= 100 TO MID SUPPLY  
L
= 125°C  
200  
A
40  
R
= 1k TO MID SUPPLY  
L
100  
20  
0
T
= 12ꢀ°C  
A
0
–100  
–200  
–300  
–400  
–500  
–20  
–40  
–60  
–80  
–100  
T
= 2ꢀ°C  
A
0.1  
R
L
= 1k TO GROUND  
T
= 125°C  
A
R
L
= 100 TO GROUND  
SOURCE  
T
= –ꢀꢀ°C  
A
T
= –55°C  
A
T
= 25°C  
A
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.01  
0.1  
1
10  
100  
1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65  
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
POWER SUPPLY VOLTAGE ( Vꢀ  
624678 G24  
624678 G22  
624678 G23  
Open Loop Gain  
Gain vs Frequency (AV = 2)  
Gain vs Frequency (AV = 1)  
6
12  
6
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
A
S
V
= 2.7V, 0V  
R
= 100 TO MID SUPPLY  
L
0
–6  
R
L
= 1k TO MID SUPPLY  
0
R
L
= 1k TO GROUND  
–12  
–18  
–24  
–6  
–12  
–18  
V
=
2.ꢀV  
S
A
F
R
= 100 TO GROUND  
L
V
=
2.ꢀV  
T
= 2ꢀ°C  
S
A
L
–100  
–200  
–300  
T
= 2ꢀ°C  
= 1k  
R = R = 1k  
R
G
R
= 1k  
L
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0
0.5  
1
1.5  
2
2.5 2.7  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT VOLTAGE (V)  
624678 G26  
624678 G27  
624678 G25  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open Loop Gain and Phase  
vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
100  
50  
70  
70  
60  
50  
40  
T
= 25°C  
= 1k  
A
L
T
= 25°C  
R = 1k  
L
T
= 25°C  
= 1k  
A
A
L
R
60  
50  
R
PHASE MARGIN  
V
S
= 2ꢀ5V  
PHASE  
V
=
=
S
2ꢀ5V  
PHASE MARGIN  
300  
250  
200  
150  
100  
V
S
1ꢀ35V  
GAIN  
V
= 1ꢀ35V  
S
200  
180  
160  
140  
120  
100  
GAIN BANDWIDTH PRODUCT  
V
S
=
2ꢀ5V  
1ꢀ35V  
0
GAIN BANDWIDTH PRODUCT  
2ꢀ5V  
V
=
S
V
=
S
–50  
–100  
–10  
–20  
V
S
= 1ꢀ35V  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 300M  
2.5  
4
5
3
3.5  
4.5  
–55 –35 –15  
5
25 45 65 85 105 125  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
624678 G28  
624678 G29  
624678 G30  
624678fa  
ꢀ0  
LTC6246/LTC6247/LTC6248  
Typical perForMance characTerisTics  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
1000  
100  
10  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
=
2.ꢀV  
T = 25°C  
A
V
T
=
2ꢀ5V  
S
S
A
V
= 2ꢀ5V  
= 25°C  
S
A
= 10  
V
NEGATIVE SUPPLY  
A
= 2  
V
POSITIVE SUPPLY  
1
A
= 1  
V
0.1  
0.01  
0.001  
–10  
–10  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
10 100 1k 10k 100k 1M 10M 100M 1G  
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
624678 G31  
624678 G31  
624678 G33  
Series Output Resistor  
vs Capacitive Load (AV = 1)  
Series Output Resistor  
vs Capacitive Load (AV = 2)  
Slew Rate vs Temperature  
140  
1±0  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
A
= –1, R = 1k, V  
= 4V (±±25V),  
V
V
A
=
OUT  
= 1  
2ꢀ5V  
V
L
OUT P-P  
500Ω  
500Ω  
S
A
= 1  
V
±V (±12.5V) SLEW RATE MEASURED  
P-P  
= 100mV  
P-P  
R
S
V
OUT  
AT MIDDLE ±/. OF OUTPUT  
R
S
V
IN  
+
V
V
OUT  
+
FALLING, V = ±±25V  
S
V
IN  
C
L
R
S
= 10Ω  
A
V
= 2  
C
L
R
= 10Ω  
S
RISING, V = ±±25V  
S
R = 20Ω  
S
R
= 20Ω  
S
FALLING, V = ±12.5V  
S
R
= 49ꢀ9Ω  
S
V
OUT  
=
2ꢀ5V  
=200mV  
RISING, V = ±12.5V  
S
60  
S
V
P-P  
R
= 49ꢀ9Ω  
R = R = 500Ω,  
S
F
V
G
A
= 2  
40  
–55 –.5 –15  
5
±5 45 65 85 105 1±5  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
TEMPERATURE (°C)  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
6±4678 G.4  
624678 G35  
624678 G36  
Distortion vs Frequency  
(AV = 1, 5V)  
Distortion vs Frequency  
(AV = 1, 2.7V)  
Distortion vs Frequency  
(AV = 2, 5V)  
–40  
–50  
–40  
–50  
–40  
–50  
V
V
A
=
OUT  
= 1  
2.5V  
= 2V  
V
V
A
=
OUT  
= 1  
1.35V  
= 1V  
V
V
A
=
S
OUT  
= 2  
V
2.5V  
= 2V  
S
S
R
= 100Ω, 3RD  
R
= 100Ω, 3RD  
L
L
P-P  
P-P  
P-P  
V
V
–60  
–60  
–60  
R
= 100Ω, 3RD  
L
R
L
= 100Ω, 2ND  
R
L
= 100Ω, 2ND  
–70  
–70  
–70  
R
= 100Ω, 2ND  
L
R
L
= 1kΩ, 2ND  
–80  
–80  
–80  
R
L
= 1kΩ, 3RD  
–90  
–90  
–90  
R
L
= 1kΩ, 3RD  
R
L
= 1kΩ, 3RD  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
R
L
= 1kΩ, 2ND  
1
R
L
= 1kΩ, 2ND  
1
0.01  
0.1  
10  
0.01  
0.1  
1
10  
0.01  
0.1  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
624678 G37  
624678 G38  
624678 G39  
624678fa  
ꢀꢀ  
LTC6246/LTC6247/LTC6248  
Typical perForMance characTerisTics  
Distortion vs Frequency  
AV = 2, 2.7V)  
Maximum Undistorted Output  
Signal vs Frequency  
Settling Time vs Output Step  
(Noninverting)  
–40  
–50  
5
4
3
2
1
0
200  
180  
160  
140  
120  
100  
80  
V
A
=
2ꢀ.V  
S
V
A
R
L
= 100Ω, ꢀRD  
= 1  
+
T
= 2.°C  
V
OUT  
V
IN  
R
L
= 100Ω, 2ND  
–60  
1k  
–70  
R
= 1kΩ, 2ND  
L
–80  
1mV  
1mV  
R
L
= 1kΩ, ꢀRD  
–90  
V
= 2.5V  
= 25°C  
= 1kΩ  
S
A
L
T
60  
–100  
–110  
–120  
R
40  
10mV  
10mV  
HD2, HD3 < –40dBc  
V
V
A
=
OUT  
= 2  
1.ꢀ5V  
= 1V  
S
A
= 2  
= –1  
P-P  
V
V
20  
A
V
0
0.01  
0.1  
1
10  
–4 –3 –2 –1  
0
1
2
3
4
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
OUTPUT STEP (V)  
FREQUENCY (MHz)  
624678 G40  
624678 G42  
624678 G41  
Settling Time vs Output Step  
(Inverting)  
SHDN Pin Response Time  
Large Signal Response  
200  
180  
160  
140  
120  
100  
80  
V
A
T
= 2ꢀ.V  
1k  
S
V
A
= –1  
1k  
= 2.°C  
V
IN  
V
OUT  
+
0V  
1k  
V
SHDN  
±.ꢀV/DIV  
0V  
1mV  
10mV  
1mV  
1V/DIV  
0V  
OUT  
1.6V/DIV  
60  
V
40  
10mV  
6±4678 G44  
6±4678 G4.  
10µs/DIV  
±00ns/DIV  
20  
A
V
= 1  
A
V
= 1  
= ±±2.V  
= 1k  
V
S
L
V
S
= ±±.ꢀV  
= 1k  
0
R
R
–4 –3 –2 –1  
0
1
2
3
4
L
V
= 1.6V  
IN  
OUTPUT STEP (V)  
624678 G43  
Small Signal Response  
Output Overdriven Recovery  
0V  
V
IN  
0V  
1V/DIV  
25mV/DIV  
0V  
V
OUT  
2V/DIV  
624678 G46  
624678 G47  
50ns/DIV  
100ns/DIV  
A
V
= 1  
=
A
V
=
=
= 1k  
= 3V  
2
V
S
L
V
S
L
2ꢀ5V  
2ꢀ.V  
R
= 1k  
R
V
IN  
P-P  
624678fa  
ꢀꢁ  
LTC6246/LTC6247/LTC6248  
pin FuncTions  
–IN: Inverting Input of Amplifier. Valid input range from V  
V :NegativeSupplyVoltage.Typically0V.Thiscanbemade  
+
+
to V .  
a negative voltage as long as 2.5V ≤ (V – V ) ≤ 5.25V.  
+IN: Non-Inverting Input of Amplifier. Valid input range  
SHDN: Active Low Shutdown. Threshold is typically 1.1V  
+
from V to V .  
referenced to V . Floating this pin will turn the part on.  
+
V : Positive Supply Voltage. Allowed applied voltage  
OUT:AmplifierOutput.Swingsrail-to-railandcantypically  
source/sink over 50mA of current at a total supply of 5V.  
ranges from 2.5V to 5.25V when V = 0V.  
applicaTions inForMaTion  
Circuit Description  
and the PNP pair becomes inactive for the remaining input  
commonmoderange.Also,attheinputstage,devicesQ17  
to Q19 act to cancel the bias current of the PNP input pair.  
When Q1/Q2 are active, the current in Q16 is controlled to  
be the same as the current in Q1 and Q2. Thus, the base  
current of Q16 is nominally equal to the base current of  
theinputdevices.ThebasecurrentofQ16isthenmirrored  
by devices Q17 to Q19 to cancel the base current of the  
input devices Q1/Q2. A pair of complementary common  
emitter stages, Q14/Q15, enable the output to swing from  
rail-to-rail.  
The LTC6246/LTC6247/LTC6248 have an input and output  
signal range that extends from the negative power supply  
to the positive power supply. Figure 1 depicts a simplified  
schematic of the amplifier. The input stage is comprised  
of two differential amplifiers, a PNP stage, Q1/Q2, and an  
NPN stage, Q3/Q4 that are active over different common  
mode input voltages. The PNP stage is active between  
the negative supply to nominally 1.2V below the positive  
supply. As the input voltage approaches the positive sup-  
ply, the transistor Q5 will steer the tail current, I , to the  
1
current mirror, Q6/Q7, activating the NPN differential pair  
+
V
R3  
R4  
R5  
+
V
V
ESDD1  
ESDD2  
+
+
Q12  
I
I
1
2
Q15  
Q13  
Q11  
+IN  
–IN  
C2  
+
D6  
D5  
D8  
D7  
V
BIAS  
Q5  
I
3
ESDD5  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
ESDD3  
ESDD4  
Q18  
BUFFER  
AND  
OUTPUT BIAS  
Q10  
ESDD6  
+
Q9  
V
V
Q8  
Q16  
Q17  
C1  
Q19  
Q6  
Q7  
Q14  
R1  
R2  
V
624678 F01  
Figure 1. LTC6246/LTC6247/LTC6248 Simplified Schematic Diagram  
624678fa  
ꢀꢂ  
LTC6246/LTC6247/LTC6248  
applicaTions inForMaTion  
Input Offset Voltage  
Input Protection  
The offset voltage will change depending upon which  
input stage is active. The PNP input stage is active from  
the negative supply rail to approximately 1.2V below the  
positive supply rail, then the NPN input stage is activated  
for the remaining input range up to the positive supply rail  
with the PNP stage inactive. The offset voltage magnitude  
for the PNP input stage is trimmed to less than 500µV with  
5V total supply at room temperature, and is typically less  
than 150μV. The offset voltage for the NPN input stage  
is typically less than 1.7mV with 5V total supply at room  
temperature.  
The input stages are protected against a large differential  
input voltage of 1.4V or higher by 2 pairs of back-to-back  
diodes to prevent the emitter-base breakdown of the input  
transistors. In addition, the input and shutdown pins have  
reverse biased diodes connected to the supplies. The cur-  
rent in these diodes must be limited to less than 10mA.  
The amplifiers should not be used as comparators or in  
other open loop applications.  
ESD  
The LTC6246 family has reverse-biased ESD protection  
diodes on all inputs and outputs as shown in Figure 1.  
Input Bias Current  
Thereisanadditionalclampbetweenthepositiveandnega-  
tive supplies that further protects the device during ESD  
strikes. Hot plugging of the device into a powered socket  
must be avoided since this can trigger the clamp resulting  
in larger currents flowing between the supply pins.  
The LTC6246 family uses a bias current cancellation cir-  
cuit to compensate for the base current of the PNP input  
pair. When the input common mode voltage is less than  
200mV, the bias cancellation circuit is no longer effective  
and the input bias current magnitude can reach a value  
above 1µA. For common mode voltages ranging from  
0.2V above the negative supply to 1.2V below the positive  
supply, the low input bias current of the LTC6246 family  
allows the amplifiers to be used in applications with high  
source resistances where errors due to voltage drops  
must be minimized.  
Capacitive Loads  
The LTC6246/LTC6247/LTC6248 are optimized for high  
bandwidthandlowpowerapplications.Consequentlythey  
have not been designed to directly drive large capacitive  
loads. Increased capacitance at the output creates an ad-  
ditional pole in the open loop frequency response, wors-  
ening the phase margin. When driving capacitive loads, a  
resistorof10Ω to 100Ωshould beconnected between the  
amplifier output and the capacitive load to avoid ringing  
or oscillation. The feedback should be taken directly from  
the amplifier output. Higher voltage gain configurations  
tend to have better capacitive drive capability than lower  
gain configurations due to lower closed loop bandwidth  
and hence higher phase margin. The graphs titled Series  
Output Resistor vs Capacitive Load demonstrate the tran-  
sient response of the amplifier when driving capacitive  
loads with various series resistors.  
Output  
The LTC6246 family has excellent output drive capability.  
The amplifiers can typically deliver over 50mA of output  
drive current at a total supply of 5V. The maximum out-  
put current is a function of the total supply voltage. As  
the supply voltage to the amplifier decreases, the output  
current capability also decreases. Attention must be paid  
to keep the junction temperature of the IC below 150°C  
(refer to the Power Dissipation Section) when the output  
is in continuous short circuit. The output of the amplifier  
has reverse-biased diodes connected to each supply. If  
the output is forced beyond either supply, extremely high  
current will flow through these diodes which can result  
in damage to the device. Forcing the output to even 1V  
beyond either supply could result in several hundred mil-  
liamps of current through either diode.  
624678fa  
ꢀꢃ  
LTC6246/LTC6247/LTC6248  
applicaTions inForMaTion  
Feedback Components  
Power Dissipation  
When feedback resistors are used to set up gain, care  
must be taken to ensure that the pole formed by the  
feedback resistors and the parasitic capacitance at the  
inverting input does not degrade stability. For example if  
the amplifier is set up in a gain of +2 configuration with  
gain and feedback resistors of 5k, a parasitic capacitance  
of 5pF (device + PC board) at the amplifier’s inverting  
input will cause the part to oscillate, due to a pole formed  
at 12.7MHz. An additional capacitor of 5pF across the  
feedback resistor as shown in Figure 2 will eliminate any  
ringing or oscillation. In general, if the resistive feedback  
network results in a pole whose frequency lies within the  
closed loop bandwidth of the amplifier, a capacitor can be  
added in parallel with the feedback resistor to introduce  
a zero whose frequency is close to the frequency of the  
pole, improving stability.  
The LTC6246 and LTC6247 contain one and two amplifiers  
respectively. Hence the maximum on-chip power dis-  
sipation for them will be less than the maximum on-chip  
power dissipation for the LTC6248, which contains four  
amplifiers.  
TheLTC6248ishousedinasmall16-leadMSpackageand  
typically has a thermal resistance (θ ) of 125°C/ W. It is  
JA  
necessary to ensure that the die’s junction temperature  
does not exceed 150°C. The junction temperature, T , is  
J
calculated from the ambient temperature, T , power dis-  
A
sipation, PD, and thermal resistance, θ :  
JA  
T = T + (P • θ )  
J
A
D
JA  
The power dissipation in the IC is a function of the supply  
voltage, output voltage and load resistance. For a given  
supplyvoltagewithoutputconnectedtogroundorsupply,  
the worst-case power dissipation P  
occurs when  
D(MAX)  
5pF  
the supply current is maximum and the output voltage at  
half of either supply voltage for a given load resistance.  
5k  
P
is approximately (since I actually changes with  
D(MAX)  
S
output load current) given by:  
V
OUT  
C
PAR  
V
2
S 2  
+
PD(MAX) =(VS IS(MAX))+  
/RL  
5k  
V
IN  
624678 F02  
Example:ForanLTC6248ina16-leadMSpackageoperating  
on 2.5V supplies and driving a 100Ω load to ground, the  
worst-case power dissipation is approximately given by  
Figure 2. 5pF Feedback Cancels Parasitic Pole  
Shutdown  
2
P
/Amp = (5 • 1.3mA) + (1.25) /100 = 22mW  
D(MAX)  
The LTC6246 and LTC6247MS have SHDN pins that can  
shut down the amplifier to 42µA typical supply current.  
The SHDN pin needs to be taken below 0.8V above the  
negative supply for the amplifier to shut down. When left  
floating,theSHDNpinisinternallypulleduptothepositive  
supply and the amplifier remains on.  
If all four amplifiers are loaded simultaneously then the  
total power dissipation is 88mW.  
AttheAbsoluteMaximumambientoperatingtemperature,  
the junction temperature under these conditions will be:  
T = T + P • 125°C/W  
J
A
D
= 125 + (0.088W • 125°C/W) = 136°C  
which is less than the absolute maximum junction tem-  
perature for the LTC6248 (150°C).  
Refer to the Pin Configuration section for thermal resis-  
tances of various packages.  
624678fa  
ꢀꢄ  
LTC6246/LTC6247/LTC6248  
Typical applicaTions  
12-Bit ADC Driver  
Low Noise Low Power DC-Accurate Single Supply  
Photodiode Amplifier  
Figure3showstheLTC6246drivinganLTC236612-bitA/D  
converter. The low wideband noise of the LTC6246 main-  
tains a 70dB SNR even without the use of an intermediate  
antialiasing RC filter. On a single 3.3V supply with a 2.5V  
reference, a full –1dBFS output can be obtained without  
the amplifier transitioning between input regions, thus  
minimizing crossover distortion. Figure 4 shows an FFT  
obtained with a sampling rate of 2.2Msps and a 350kHz  
input waveform. Spurious free dynamic range is a quite  
handsome 82dB.  
Figure 5 shows the LTC6246 applied as a low power high  
performance transimpedance amplifier for a photodiode.  
A low noise JFET Q1 acts as a current buffer, with R2 and  
R3 imposing a low frequency gain of approximately 1.  
Transimpedance gain is set by feedback resistor R1 to  
1MΩ. R4 and R5 set the LTC6246 inputs at 1V below  
the 3V rail, with C3 reducing their noise contribution.  
By feedback this 1V also appears across R2, setting the  
JFET quiescent current at 1mA completely independent  
of its pinchoff voltage and I  
characteristics. It does  
GS  
DSS  
3.3V 2.5V  
this by placing the JFETs 1mA V at the gate referenced  
3.3V  
to the source, which is sitting 1V above ground. For this  
JFET, that will typically be about 500mV, and this voltage  
is imposed as a reverse voltage on the photodiode PD1.  
V
DD  
V
REF  
CS  
SDO  
SCK  
V
IN  
+
A
IN  
LTC6246  
LTC2366  
GND  
At zero I photocurrent, the output sits at the same volt-  
OV  
DD  
PD  
499Ω  
1%  
age and rises as photocurrent increases. As mentioned  
624678 F03  
499Ω  
1%  
before, R2 and R3 set the JFET gain to 1 at low frequency.  
10pF  
R1  
1M, 1%  
C1  
0.1pF  
Figure 3. Single Supply 12-Bit ADC Driver  
3V  
R2  
1k  
3V  
Q1  
NXP  
BF862  
+
0
I
PD  
V
= V + I • 1M  
f
f
= 350.195kHz  
SAMP  
LTC6246  
OUT  
R
PD  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
= 2.2Msps  
SFDR = 82dB  
SNR = 70dB  
1024 POINT FFT  
PD1  
OSRAM  
SFH213  
C2  
R3  
1k  
6.8nF  
FILM  
OR NPO  
C3  
0.1µF  
R4  
10k  
R5  
20k  
3V  
R6  
10M  
3V  
R7  
1k  
+
V
LT6003  
R
0
200  
400  
600  
800  
1000  
FREQUENCY (kHz)  
C4  
1µF  
624678 F04  
624678 F05  
Figure 4. 350kHz FFT Showing 82dB SFDR  
–3dB BW = 700kHz  
= 2.2mA  
I
CC  
OUTPUT NOISE = 160µV  
MEASURED ON A 1MHz BW  
RMS  
V
OUT  
IS REFERRED TO V  
R
AT ZERO PHOTOCURRENT, V  
= V  
R
OUT  
Figure 5. Low Noise Low Power DC Accurate  
Single Supply Photodiode Amplifier  
624678fa  
ꢀꢅ  
LTC6246/LTC6247/LTC6248  
Typical applicaTions  
Thisisnotthelowestnoiseconfigurationforatransistor,as  
downstream noise sources appear at the input completely  
unattenuated. At low frequency, this is not a concern for a  
transimpedance amplifier because the noise gain is 1 and  
theoutputnoiseisdominatedbythe130nV/√Hzofthe1MΩ  
R1. However, at increasing frequencies the capacitance  
of the photodiode comes into play and the circuit noise  
gain rises as the 1MΩ feedback looks back into lower and  
lower impedance. But capacitor C2 comes to the rescue.  
In addition to the obvious quenching of noise source R3,  
capacitor C2 increases the JFET gain to about 30 at high  
frequency effectively attenuating the downstream noise  
contributions of R2 and the op amp input noise. Thus the  
circuit achieves low input voltage noise at high frequency  
where it is most needed. Amplifier LT6003 is used to  
buffer the output voltage of the photodiode and R7 and  
C4 are used to filter out the voltage noise of the LT6003.  
Bandwidth to 700kHz was achieved with this circuit, with  
60dB 5.5MHz Gain Block  
Figure 6 shows the LTC6247 configured as a low power  
high gain high bandwidth block. Two amplifiers each  
configured with a gain of 31V/V, are cascaded in series. A  
660nF capacitor is used to limit the DC gain of the block  
to around 30dB to minimize output offset voltage. Figure 7  
shows the frequency response of the block. Mid-band  
voltage gain is approximately 60dB with a –3dB frequency  
of 5.5MHz, thus resulting in a gain-bandwidth product of  
5.5GHz with only 1.9mA of quiescent supply current.  
Single 2.7V Supply 4MHz 4th Order Butterworth Filter  
Benefitting from low voltage operation and rail-to-rail  
output, a low power filter that is suitable for antialiasing  
can be built as shown in Figure 8. On a 2.7V supply the  
filter has a passband of approximately 4MHz with 2V  
P-P  
inputsignalandastopbandattenuationthatisgreaterthan  
–75dB at 43MHz as shown in Figure 9. The resistor and  
capacitor values can be scaled to reduce noise at the cost  
of large signal power consumption and distortion.  
integratedoutputnoisebeing160µV  
upto1MHz.Total  
RMS  
supply current was a very low 2.2mA.  
65  
60  
55  
50  
45  
40  
1.5k  
2.5V  
30k  
2.5V  
50Ω  
V
1k  
1/2LTC6247  
660nF  
1/2LTC6247  
V
OUT  
+
+
V
V
= 2ꢀ5V  
S
35  
30  
25  
20  
IN  
= 4ꢀ5mV  
IN  
= 1kΩ  
P-P  
–2.5V  
–2.5V  
R
L
624678 F06  
DC GAIN = 30dB  
(DUE TO 660nF DC BLOCKING CAP)  
OUTPUT OFFSET = 4mV  
Figure 6. 60dB 5.5MHz Gain Block  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
624678 F07  
Figure 7  
10  
0
910Ω  
1.1k  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
12pF  
5.6pF  
2.7k  
910Ω  
2.7V  
V
IN  
1.1k  
2.3k  
2.7V  
56pF  
1/2LTC6247  
+
120pF  
1/2LTC6247  
V
OUT  
+
624678 F08  
1.2V  
V
V
= 2.7V, 0V  
S
= 2V  
IN P-P  
= 1kΩ to 0V  
R
L
Figure 8. Single 2.7V Supply 4MHz  
4th Order Butterworth Filter  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (kHz)  
624678 F09  
Figure 9  
624678fa  
ꢀꢆ  
LTC6246/LTC6247/LTC6248  
package DescripTion  
KC Package  
8-Lead Plastic UTDFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1749 Rev Ø)  
1.37 p 0.10  
R = 0.115  
TYP  
1.37 p0.05  
2.00 p0.10  
5
8
R = 0.05  
0.70 p0.05  
TYP  
0.40 p 0.10  
PIN 1 NOTCH  
2.55 p0.05  
1.15 p0.05  
2.00 p0.10  
0.64 p 0.10  
0.64 p0.05  
R = 0.20 OR  
0.25 s 45o  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(KC8) UTDFN 0107 REVØ  
4
1
0.25 p 0.05  
0.45 BSC  
0.23 p 0.05  
0.45 BSC  
0.55 p0.05  
0.125 REF  
1.35 REF  
1.35 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.889 p 0.127  
(.035 p .005)  
8
7 6 5  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
5.23  
(.206)  
MIN  
4.90 p 0.152  
(.193 p .006)  
3.20 – 3.45  
(.126 – .136)  
DETAIL “A”  
0o – 6o TYP  
0.254  
(.010)  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
1
2
3
4
(.0165 p .0015)  
0.53 p 0.152  
(.021 p .006)  
TYP  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 p 0.0508  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
624678fa  
ꢀꢇ  
LTC6246/LTC6247/LTC6248  
package DescripTion  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
624678fa  
ꢀꢈ  
LTC6246/LTC6247/LTC6248  
package DescripTion  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
0.280 p 0.076  
(.011 p .003)  
REF  
TYP  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 p 0.152  
(.193 p .006)  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
624678fa  
ꢁ0  
LTC6246/LTC6247/LTC6248  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
624678fa  
ꢁꢀ  
LTC6246/LTC6247/LTC6248  
package DescripTion  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
624678fa  
ꢁꢁ  
LTC6246/LTC6247/LTC6248  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
2/10  
Changes to Graph G15  
9
624678fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢂ  
LTC6246/LTC6247/LTC6248  
Typical applicaTion  
700kHz, 1MΩ Single Supply Photodiode Amplifier  
Output Noise Spectrum  
Transient Response  
R1  
1M, 1%  
200  
5V/DIV  
LED DRIVER  
VOLTAGE  
C1  
0.1pF  
3V  
R2  
1k  
20nV/√Hz/DIV  
3V  
500mV/DIV  
OUTPUT  
+
I
Q1  
NXP  
BF862  
PD  
LTC6246  
V
≈ 0.5V + I • 1M  
PD  
OUT  
WAVEFORM  
0V  
C2  
PD1  
OSRAM  
SFH213  
–3dB BW = 700kHz  
= 2.2mA  
OUTPUT NOISE = 153µV  
RMS  
MEASURED ON A 1MHz BW  
6.8nF  
FILM  
OR NPO  
R3  
1k  
0
624678 TA02c  
I
CC  
500ns/DIV  
C3  
0.1µF  
10kHz  
100kHz  
1MHz  
624678 TA02b  
R4  
10k  
R5  
20k  
3V  
624678 TA02a  
relaTeD parTs  
PART NUMBER DESCRIPTION  
Operational Amplifiers  
COMMENTS  
LT1818/LT1819 Single/Dual Wide Bandwidth, High Slew Rate Low Noise and  
Distortion Op Amps  
400MHz, 9mA, 6nV/√Hz, 2500V/µs, 1.5mV –85dBc at 5MHz  
LT1806/LT1807 Single/Dual Low Noise Rail-to-Rail Input and Output Op Amps 325MHz, 13mA, 3.5nV/√Hz, 140V/µs, 550µV, 85mA Output Drive  
LT6230/LT6231/ Single/Dual/Quad Low Noise Rail-to-Rail Output Op Amps  
LT6232  
215MHz, 3.5mA, 1.1nV/√Hz, 70V/µs, 350µV  
LT6200/LT6201 Single/Dual Ultralow Noise Rail-to-Rail Input/Output Op Amps 165MHz, 20mA, 0.95nV/√Hz, 44V/µs, 1mV  
LT6202/LT6203/ Single/Dual/Quad Ultralow Noise Rail-to-Rail Op Amp  
LT6204  
100MHz, 3mA, 1.9nV/√Hz, 25V/µs, 0.5mV  
LT1468  
16-Bit Accurate Precision High Speed Op Amp  
90MHz, 3.9mA, 5nV/√Hz, 22V/µs, 175µV,  
–96.5dB THD at 10V , 100kHz  
P-P  
LT1803/LT1804/ Single/Dual/Quad Low Power High Speed Rail-to-Rail Input  
LT1805 and Output Op Amps  
85MHz, 3mA, 21nV√Hz, 100V/µs, 2mV  
LT1801/LT1802 Dual/Quad Low Power High Speed Rail-to-Rail Input and  
Output Op Amps  
80MHz, 2mA, 8.5nV√Hz, 25V/µs, 350µV  
LT6552  
LT1028  
Single Supply Rail-to-Rail Output Video Difference Amplifier  
Ultralow Noise, Precision High Speed Op Amps  
75MHz (–3dB), 13.5mA, 55.5nV/√Hz, 350V/µs, 20mV  
75MHz, 9.5mA, 0.85nV/√Hz, 11V/µs, 40µV  
60MHz, 1.2mA, 1.2nV/√Hz, 15V/µs, 0.5mV  
LT6233/LT6234/ Single/Dual/Quad Low Noise Rail-to-Rail Output Op Amps  
LT6235  
LT6220/LT6221/ Single/Dual/Quad Low Power High Speed Rail-to-Rail Input  
60MHz, 1mA, 10nV/√Hz, 20V/µs, 350µV  
LT6222  
and Output Op Amps  
LT6244  
Dual High Speed CMOS Op Amp  
50MHz, 7.4mA, 8nV/√Hz, 35V/µs, 100µV, Input Bias Current = 1pA  
45MHz, 4.3mA, 12nV/√Hz, 45V/µs, 1.35mV  
LT1632/LT1633 Dual/Quad Rail-to-Rail Input and Output Precision Op Amps  
LT1630/LT1631 Dual/Quad Rail-to-Rail Input and Output Op Amps  
LT1358/LT1359 Dual/Quad Low Power High Speed Op Amps  
ADCs  
30MHz, 3.5mA, 6nV/√Hz, 10V/µs, 525µV  
25MHz, 2.5mA, 8nV/√Hz, 600V/µs, 800µV, Drives All Capacitive Loads  
LTC2366  
LTC2365  
LTC1417  
LTC1274  
3Msps, 12-Bit ADC Serial I/O  
72dB SNR, 7.8mW No Data Latency TSOT-23 Package  
73dB SNR, 7.8mW No Data Latency TSOT-23 Package  
Single 5V or 5V Supplies, 0V to 4.096V or 2.048V Input Range  
1Msps, 12-Bit ADC Serial I/O  
Low Power 14-Bit 400ksps ADC Parallel I/O  
Low Power 12-Bit 400ksps ADC Parallel I/O  
10mW Single 5V or 5V Supplies, 0V to 4.096V or 2.048V Input Range  
624678fa  
LT 0210 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢃ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6247CTS8#PBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6247CTS8#TRMPBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6247CTS8#TRPBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6247CTS8TRMPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247CTS8TRPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247HTS8

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247HTS8TRMPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247HTS8TRPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247IDC#TRMPBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6247IKC

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6247IKC#PBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: UTDFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6247IKC#TRMPBF

LTC6247 - Dual 180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps; Package: UTDFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear