LTC6244IMS8#TRPBF [Linear]

LTC6244 - Dual 50MHz, Low Noise, Rail-to-Rail, CMOS Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C;
LTC6244IMS8#TRPBF
型号: LTC6244IMS8#TRPBF
厂家: Linear    Linear
描述:

LTC6244 - Dual 50MHz, Low Noise, Rail-to-Rail, CMOS Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C

运算放大器 放大器电路
文件: 总24页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6244  
Dual 50MHz, Low Noise,  
Rail-to-Rail, CMOS Op Amp  
U
DESCRIPTIO  
FEATURES  
TheLTC®6244isadualhighspeed,unity-gainstableCMOS  
opampthatfeaturesa50MHzgainbandwidth,40V/µsslew  
rate, 1pA of input bias current, low input capacitance and  
rail-to-rail output swing. The 0.1Hz to 10Hz noise is just  
Input Bias Current: 1pA (Typ at 25°C)  
Low Offset Voltage: 100µV Max  
Low Offset Drift: 2.5µV/°C Max  
0.1Hz to 10Hz Noise: 1.5µV  
Slew Rate: 40V/µs  
P-P  
1.5µV and 1kHz noise is guaranteed to be less than  
P-P  
Gain Bandwidth Product: 50MHz  
Output Swings Rail-to-Rail  
Supply Operation:  
12nV/√Hz. This excellent AC and noise performance is  
combined with wide supply range operation, a maximum  
offset voltage of just 100µV and drift of only 2.5µV/°C,  
making it suitable for use in many fast signal processing  
applications, such as photodiode amplifiers.  
2.8V to 6V LTC6244  
2.8V to 5.25V LTC6244HV  
Low Input Capacitance: 2.1pF  
Available in 8-Pin MSOP and Tiny DFN Packages  
U
This op amp has an output stage that swings within 35mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications. The input common mode  
range extends to the negative supply. It is fully specified  
on 3V and 5V, and an HV version guarantees operation  
on supplies of 5V.  
APPLICATIO S  
Photodiode Amplifiers  
Charge Coupled Amplifiers  
Low Noise Signal Processing  
The LTC6244 is available in the 8-pin MSOP, and for com-  
pact designs, it is packaged in the tiny dual fine pitch lead  
free (DFN) package.  
Active Filters  
Medical Instrumentation  
High Impedance Transducer Amplifier  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Very Low Noise Large Area Photodiode  
V
Distribution  
OS  
0.25pF  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LTC6244MS8  
5V PHILIPS  
BF862  
V
V
= 5V, 0V  
S
CM  
= 2.5V  
1M  
JFET  
T
A
= 25°C  
5V  
V
= 1M • I  
PD  
OUT  
4.99k  
BW = 350kHz  
NOISE = 291nV AT 10kHz  
–5V  
1/2  
V
OUT  
I
LTC6244HV  
PD  
4.7µF*  
+
4.99k  
6244 TA01a  
–5V  
V
BB  
HAMAMATSU LARGE AREA  
PHOTODIODE  
–60 –40 –20  
0
20  
40  
60  
S1227-1010BQ  
INPUT OFFSET VOLTAGE (µV)  
C
PD  
= 3000pF  
6244 G01  
* CAN BE MICROPHONIC, FILM, X7R, IF NEEDED.  
6244f  
1
LTC6244  
W W U W  
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V to V )  
+
Specified Temperature Range (Note 3)  
LTC6244 .................................................................7V  
LTC6244HV...........................................................12V  
Input Voltage.......................... (V + 0.3V) to (V – 0.3V)  
Input Current........................................................ 10mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range  
LTC6244C ................................................ 0°C to 70°C  
LTC6244I ............................................. –40°C to 85°C  
LTC6244H.......................................... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
DD Package ...................................................... 125°C  
Storage Temperature Range................... –65°C to 150°C  
DD Package ....................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
+
LTC6244C ............................................ –40°C to 85°C  
LTC6244I ............................................. –40°C to 85°C  
LTC6244H.......................................... –40°C to 125°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
+
9
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
TOP VIEW  
+
OUT B  
–IN B  
+IN B  
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
A
7 OUT B  
6 –IN B  
5 +IN B  
B
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 250°C/W  
DD PACKAGE  
8-LEAD (3mm 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
EXPOSED PAD (PIN 9) CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
T
JMAX  
JA  
T
JMAX  
JA  
ORDER PART NUMBER  
DD PART MARKING*  
ORDER PART NUMBER  
MS8 PART MARKING*  
LTC6244CDD  
LTC6244HVCDD  
LTC6244IDD  
LCCF  
LCGD  
LCCF  
LCGD  
LTC6244CMS8  
LTC6244HVCMS8  
LTC6244IMS8  
LTC6244HVIMS8  
LTC6244HMS8  
LTCCM  
LTCGF  
LTCCM  
LTCGF  
LTCCM  
LTC6244HVIDD  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identifed by a label on the shipping container.  
6244f  
2
LTC6244  
U
AVAILABLE OPTIO S  
PART NUMBER  
LTC6244CMS8  
LTC6244CDD  
SPECIFIED TEMP RANGE  
0°C to 70°C  
SPECIFIED SUPPLY VOLTAGE  
3V, 5V  
PACKAGE  
MS8  
DD  
PART MARKING  
LTCCM  
LCCF  
0°C to 70°C  
3V, 5V  
LTC6244HVCMS8  
LTC6244HVCDD  
LTC6244IMS8  
LTC6244IDD  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
MS8  
DD  
LTCGF  
LCGD  
LTCCM  
LCCF  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
MS8  
DD  
3V, 5V  
LTC6244HVIMS8  
LTC6244HVIDD  
LTC6244HMS8  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
MS8  
DD  
LTCGF  
LCGD  
LTCCM  
MS8  
ELECTRICAL CHARACTERISTICS (LTC6244C/I, LTC6244HVC/I) The  
denotes the specifications which apply  
CM  
over the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 2.5V unless otherwise noted.  
A
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
MS8 Package  
0°C to 70°C  
–40°C to 85°C  
40  
100  
225  
300  
µV  
µV  
µV  
OS  
DD Package  
0°C to 70°C  
–40°C to 85°C  
100  
40  
650  
800  
950  
µV  
µV  
µV  
V
Match Channel-to-Channel (Note 5) MS8 Package  
160  
275  
325  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
DD Package  
0°C to 70°C  
–40°C to 85°C  
150  
800  
900  
1.1  
µV  
µV  
mV  
TC V  
Input Offset Voltage Drift, MS8 (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
1
2.5  
75  
75  
µV/°C  
OS  
I
B
pA  
pA  
I
OS  
Input Offset Current (Notes 4, 7)  
0.5  
pA  
pA  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1.5  
8
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 8)  
Input Resistance  
12  
nV/√Hz  
fA/√Hz  
Ω
i
n
0.56  
12  
R
Common Mode  
f = 100kHz  
10  
IN  
IN  
C
Input Capacitance  
Differential Mode  
Common Mode  
3.5  
2.1  
pF  
pF  
V
Input Voltage Range  
Guaranteed by CMRR  
0V ≤ V ≤ 3.5V  
0
3.5  
V
CM  
CMRR  
Common Mode Rejection  
74  
105  
100  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
72  
dB  
6244f  
3
LTC6244  
ELECTRICAL CHARACTERISTICS (LTC6244C/I, LTC6244HVC/I) The  
denotes the specifications which apply  
CM  
over the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 2.5V unless otherwise noted.  
A
S
SYMBOL  
PARAMETER  
CONDITIONS  
V = 1V to 4V  
MIN  
TYP  
MAX  
UNITS  
A
VOL  
Large Signal Voltage Gain  
O
R = 10k to V /2  
1000  
600  
450  
2500  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V = 1.5V to 3.5V  
O
R = 1k to V /2  
300  
200  
150  
1000  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
SINK  
SINK  
15  
40  
35  
75  
mV  
mV  
mV  
OL  
I
I
= 1mA  
= 5mA  
150  
300  
No Load  
SOURCE  
SOURCE  
15  
45  
175  
35  
75  
325  
mV  
mV  
mV  
OH  
I
I
= 1mA  
= 5mA  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
75  
105  
100  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
73  
2.8  
25  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
35  
6.25  
50  
mA  
mA  
MHz  
V/µs  
MHz  
ns  
SC  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate (Note 11)  
7.4  
S
GBW  
SR  
Frequency = 20kHz, R = 1kΩ  
35  
18  
L
A = –2, R = 1kΩ  
V
35  
L
FPBW  
Full Power Bandwidth (Note 12)  
Settling Time  
V
OUT  
= 3V , R = 1kΩ  
1.9  
3.7  
535  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
(LTC6244C/I, LTC6244HVC/I) The  
denotes the specifications which apply over the specified temperature range, otherwise  
specifications are at T = 25°C. V = 3V, 0V, V = 1.5V unless otherwise noted.  
A
S
CM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
MS8 Package  
0°C to 70°C  
–40°C to 85°C  
40  
175  
250  
325  
µV  
µV  
µV  
OS  
DD Package  
0°C to 70°C  
–40°C to 85°C  
100  
40  
650  
800  
950  
µV  
µV  
µV  
V
Match Channel-to-Channel (Note 5) MS8 Package  
200  
300  
350  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
DD Package  
0°C to 70°C  
–40°C to 85°C  
150  
800  
900  
1.1  
µV  
µV  
mV  
I
I
Input Bias Current (Notes 4, 7)  
Input Offset Current (Notes 4, 7)  
1
pA  
pA  
B
75  
75  
0.5  
pA  
pA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1.5  
8
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 8)  
Input Voltage Range  
12  
nV/√Hz  
fA/√Hz  
V
i
n
0.56  
V
Guaranteed by CMRR  
0
1.5  
CM  
6244f  
4
LTC6244  
ELECTRICAL CHARACTERISTICS (LTC6244C/I, LTC6244HVC/I) The  
denotes the specifications which apply  
CM  
over the specified temperature range, otherwise specifications are at T = 25°C. V = 3V, 0V, V = 1.5V unless otherwise noted.  
A
S
SYMBOL  
PARAMETER  
CONDITIONS  
0V ≤ V ≤ 1.5V  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection  
70  
105  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
68  
100  
800  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 2V  
O
R = 10k to V /2  
200  
100  
85  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
SINK  
12  
45  
30  
mV  
mV  
OL  
I
= 1mA  
110  
No Load  
= 1mA  
12  
50  
30  
110  
mV  
mV  
OH  
I
SOURCE  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
75  
105  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
73  
2.8  
8
100  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
15  
4.8  
50  
mA  
mA  
MHz  
SC  
Supply Current per Amplifier  
Gain Bandwidth Product  
5.8  
S
GBW  
Frequency = 20kHz, R = 1kΩ  
35  
L
(LTC6244HVC/I) The  
denotes the specifications which apply over the specified temperature range, otherwise specifications are at  
T = 25°C. V = 5V, 0V, V = 0V unless otherwise noted.  
A
S
CM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
MS8 Package  
0°C to 70°C  
–40°C to 85°C  
50  
220  
275  
375  
µV  
µV  
µV  
OS  
DD Package  
0°C to 70°C  
–40°C to 85°C  
100  
50  
700  
800  
µV  
µV  
µV  
1050  
V
Match Channel-to-Channel (Note 5) MS8 Package  
250  
325  
400  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
DD Package  
0°C to 70°C  
–40°C to 85°C  
150  
900  
1000  
1100  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift, MS8 (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
1
2.5  
75  
75  
µV/°C  
OS  
I
B
pA  
pA  
I
OS  
Input Offset Current (Notes 4, 7)  
0.5  
pA  
pA  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1.5  
8
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 8)  
Input Resistance  
12  
nV/√Hz  
fA/√Hz  
Ω
i
n
0.56  
12  
R
Common Mode  
f = 100kHz  
10  
IN  
IN  
C
Input Capacitance  
Differential Mode  
Common Mode  
3.5  
2.1  
pF  
pF  
6244f  
5
LTC6244  
ELECTRICAL CHARACTERISTICS (LTC6244HVC/I) The  
denotes the specifications which apply over the  
specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 0V unless otherwise noted.  
A
S
CM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–5  
TYP  
MAX  
UNITS  
V
V
Input Voltage Range  
Common Mode Rejection  
Guaranteed by CMRR  
–5V ≤ V ≤ 3.5V  
3.5  
CM  
CMRR  
80  
105  
95  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
78  
dB  
A
VOL  
Large Signal Voltage Gain  
V = –3.5V to 3.5V  
O
R = 10k  
2500  
1500  
1200  
6000  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
R = 1k  
700  
400  
300  
3500  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
15  
45  
40  
75  
mV  
mV  
mV  
OL  
I
I
= 1mA  
SINK  
SINK  
= 10mA  
360  
550  
No Load  
15  
45  
360  
40  
75  
550  
mV  
mV  
mV  
OH  
I
I
= 1mA  
SOURCE  
SOURCE  
= 10mA  
PSRR  
V = 2.8V to 10.5V, V = 0.2V  
S
75  
110  
106  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
73  
2.8  
40  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
55  
7
mA  
mA  
MHz  
V/µs  
MHz  
ns  
SC  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate (Note 11)  
8.8  
S
GBW  
SR  
Frequency = 20kHz, R = 1kΩ  
35  
18  
50  
L
A = –2, R = 1kΩ  
V
40  
L
FPBW  
Full Power Bandwidth (Note 12)  
Settling Time  
V
OUT  
= 3V , R = 1kΩ  
1.9  
4.25  
330  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
(LTC6244H) The  
CM  
denotes the specifications which apply from –40°C to 125°C, otherwise specifications are at T = 25°C. V = 5V, 0V,  
A
S
V
= 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
MS8 Package  
40  
125  
400  
µV  
µV  
OS  
V
Match Channel-to-Channel (Note 5) MS8 Package  
40  
160  
400  
µV  
µV  
OS  
TC V  
Input Offset Voltage Drift, MS8 (Note 6)  
Input Bias Current (Notes 4, 7)  
0.7  
1
2.5  
µV/°C  
OS  
I
pA  
nA  
B
2
I
Input Offset Current (Notes 4, 7)  
0.5  
pA  
pA  
OS  
250  
3.5  
V
Input Voltage Range  
Guaranteed by CMRR  
0
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 3.5V  
74  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
72  
dB  
6244f  
6
LTC6244  
ELECTRICAL CHARACTERISTICS  
(LTC6244H) The  
denotes the specifications which apply from –40°C to  
125°C, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 2.5V unless otherwise noted.  
A
S
CM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
350  
125  
TYP  
MAX  
UNITS  
V/mV  
V/mV  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 4V  
O
R = 10k to V /2  
L
S
V = 1.5V to 3.5V  
O
R = 1k to V /2  
L
S
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
SINK  
SINK  
40  
85  
mV  
mV  
mV  
OL  
I
I
= 1mA  
= 5mA  
325  
No Load  
SOURCE  
SOURCE  
40  
85  
325  
mV  
mV  
mV  
OH  
I
I
= 1mA  
= 5mA  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
75  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 5)  
73  
2.8  
20  
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
mA  
SC  
S
Supply Current per Amplifier  
Gain Bandwidth Product  
6.25  
7.4  
mA  
GBW  
SR  
Frequency = 20kHz, R = 1kΩ  
30  
17  
MHz  
V/µs  
MHz  
L
Slew Rate (Note 11)  
A = –2, R = 1kΩ  
V L  
FPBW  
Full Power Bandwidth (Note 12)  
V
OUT  
= 3V , R = 1kΩ  
1.8  
P-P  
L
(LTC6244H) The  
CM  
denotes the specifications which apply from –40°C to 125°C, otherwise specifications are at T = 25°C. V = 3V, 0V,  
A
S
V
= 1.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 4)  
MS8 Package  
40  
175  
400  
µV  
µV  
OS  
V
Match Channel-to-Channel (Note 5) MS8 Package  
40  
1
200  
420  
µV  
µV  
OS  
I
I
Input Bias Current (Notes 4, 7)  
Input Offset Current (Notes 4, 7)  
pA  
nA  
B
2
0.5  
pA  
pA  
OS  
250  
1.5  
V
Input Voltage Range  
Guaranteed by CMRR  
0
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 1.5V  
70  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 5)  
68  
75  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 2V  
O
R = 10k to V /2  
V/mV  
L
S
V
V
Output Voltage Swing Low (Note 9)  
Output Voltage Swing High (Note 9)  
Power Supply Rejection  
No Load  
SINK  
30  
mV  
mV  
OL  
I
= 1mA  
110  
No Load  
SOURCE  
30  
110  
mV  
mV  
OH  
I
= 1mA  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
75  
dB  
CM  
6244f  
7
LTC6244  
ELECTRICAL CHARACTERISTICS  
(LTC6244H) The  
denotes the specifications which apply from –40°C to  
125°C, otherwise specifications are at T = 25°C. V = 3V, 0V, V = 1.5V unless otherwise noted.  
A
S
CM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PSRR Match Channel-to-Channel  
(Note 5)  
73  
2.8  
5
dB  
V
Minimum Supply Voltage (Note 10)  
Short-Circuit Current  
I
I
mA  
mA  
MHz  
SC  
Supply Current per Amplifier  
Gain Bandwidth Product  
4.8  
5.8  
S
GBW  
Frequency = 20kHz, R = 1kΩ  
28  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 3: The LTC6244C/LTC6244HVC are guaranteed to meet specified  
performance from 0°C to 70°C. They are designed, characterized and  
expected to meet specified performance from –40°C to 85°C, but are not  
tested or QA sampled at these temperatures. The LTC6244I/LTC6244HVI,  
are guaranteed to meet specified performance from –40°C to 85°C. The  
LTC6244H is guaranteed to meet specified performance from –40°C to  
125°C.  
Note 4: ESD (Electrostatic Discharge) sensitive device. ESD protection  
devices are used extensively internal to the LTC6244; however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 6: This parameter is not 100% tested.  
Note 7: This specification is limited by high speed automated test  
capability. See Typical Characteristics curves for actual typical  
performance.  
1/2  
Note 8: Current noise is calculated from the formula: i = (2qI )  
n
B
–19  
where q = 1.6 × 10 coulomb. The noise of source resistors up to  
50GΩ dominates the contribution of current noise. See also Typical  
Characteristics curve Noise Current vs Frequency.  
Note 9: Output voltage swings are measured between the output and  
power supply rails.  
Note 10: Minimum supply voltage is guaranteed by the power supply  
rejection ratio test.  
Note 11: Slew rate is measured in a gain of –2 with R = 1k and R =  
F
G
500Ω. V is 1V and V  
slew rate is measured between –1V and  
IN  
OUT  
+1V. On the LTC6244HV/LTC6245HV, V is 2V and V  
slew rate is  
IN  
OUT  
measured between –2V and +2V.  
Note 12: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
Note 5: Matching parameters are the difference between the two amplifiers  
of the LTC6244. CMRR and PSRR match are defined as follows: CMRR  
and PSRR are measured in µV/V on the amplifiers. The difference is  
calculated between the sides in µV/V. The result is converted to dB.  
6244f  
8
LTC6244  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
Temperature Coefficient  
OS  
V
Distribution  
V
Distribution  
Distribution  
OS  
OS  
14  
13  
12  
11  
10  
9
60  
50  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LTC6244DD  
LTC6244MS8  
V
V
2 LOTS  
–55°C TO 125°C  
LTC6244MS8  
V
V
T
= 5V, 0V  
= 2.5V  
= 25°C  
= 5V, 0V  
= 2.5V  
V
V
T
= 5V, 0V  
= 2.5V  
S
CM  
A
S
CM  
S
CM  
= 25°C  
A
40  
30  
8
7
6
5
4
3
2
1
20  
10  
0
0
–500  
–350 –200 –50 100 250 400  
–2.4 –1.6 –0.8  
0
0.8  
1.6  
2.4  
–60 –40 –20  
0
20  
40  
60  
INPUT OFFSET VOLTAGE (µV)  
DISTRIBUTION (µV/°C)  
INPUT OFFSET VOLTAGE (µV)  
6244 G02  
6422 G03  
6244 G01  
V
Temperature Coefficient  
Supply Current vs Supply Voltage  
(Per Amplifier)  
Offset Voltage vs Input Common  
Mode Voltage  
OS  
Distribution  
11  
10  
9
8
7
6
5
500  
400  
300  
200  
100  
0
V
= 5V, 0V  
LTC6244DD  
S
NORMALIZED TO  
V
V
= 5V, 0V  
= 2.5V  
S
CM  
2 LOTS  
25°C V VALUE  
OS  
8
–55°C TO 125°C  
7
6
4
3
5
4
–100  
–200  
–300  
–400  
3
2
1
0
2
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
= –55°C  
A
A
A
A
A
A
1
= –55°C  
0
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
0
2
4
8
10  
12  
6
–1 –0.5 0 0.5  
1 1.5  
2 2.5  
3 3.5 4.5  
4 5  
DISTRIBUTION (µV/°C)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6422 G19  
6244 G04  
6244 G05  
Input Bias Current vs Common  
Mode Voltage  
Input Bias Current vs  
Common Mode Voltage  
Input Bias Current vs Temperature  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
800  
700  
600  
500  
400  
300  
200  
100  
0
MS8 PACKAGE  
MS8 PACKAGE  
MS8 PACKAGE  
V
= 5V, 0V  
V
= 5V, 0V  
S
V
= V /2  
CM S  
S
T
= 125°C  
A
V
= 10V  
S
T
T
= 85°C  
= 25°C  
A
A
T
A
= 125°C  
V
= 5V  
S
T
= 25°C  
A
–100  
–200  
–300  
–400  
1
1
T
= 85°C  
A
0.1  
0.1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
25 35 45 55 65 75 85 95 105 115 125  
–0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
6244 G06  
6244 G08  
6244 G07  
6244f  
9
LTC6244  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
Gain Bandwidth and Phase  
Margin vs Temperature  
10  
1
10  
1
80  
60  
40  
20  
0
V
= 5V, 0V  
V
= 5V, 0V  
S
S
V
=
5V  
S
PHASE  
MARGIN  
V
=
1.5V  
S
70  
60  
50  
40  
–20  
GAIN  
BANDWIDTH  
0.1  
0.01  
0.1  
0.01  
V
=
5V  
S
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
A
A
A
A
A
A
C
= 5pF  
= 1k  
L
L
= –55°C  
= –55°C  
R
V
=
S
1.5V  
30  
0.1  
1
10  
100  
0.1  
1
10  
100  
–55 –35 –15  
5
25 45  
TEMPERATURE (°C)  
125  
65 85 105  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
6244 G10  
6244 G09  
6244 G11  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Open Loop Gain vs Frequency  
Slew Rate vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
60  
50  
40  
30  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
C
R
V
= 5pF  
T
= 25°C  
= 5pF  
= 1k  
A
= –2  
L
L
A
L
L
V
F
100  
80  
= 1k  
C
R
= 1k, R = 500Ω  
G
PHASE  
= V /2  
R
CONDITIONS: SEE NOTE 11  
CM  
S
PHASE MARGIN  
60  
40  
20  
GAIN  
0
70  
FALLING  
RISING  
–20  
–40  
–60  
–80  
–100  
–120  
60  
50  
40  
GAIN BANDWIDTH  
V
S
V
S
=
=
5V  
1.5V  
V
S
V
S
=
=
5V  
2.5V  
–10  
–20  
0
4
6
8
10  
12  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
2
–50  
0
25  
50  
75 100 125  
–25  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6244 G12  
6244 G13  
6244 G14  
Common Mode Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Channel Separation vs Frequency  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
1000  
100  
10  
T
= 25°C  
= 2.5V  
T
V
A
= 25°C  
T
= 25°C  
= 2.5V  
A
S
A
S
V
A
S
V
=
2.5V  
V
= 1  
–20  
–30  
–40  
–50  
A
= 10  
V
A
= 2  
V
–60  
1
–70  
A
= 1  
V
–80  
0.1  
–90  
–100  
–110  
–120  
0.01  
0.001  
–10  
10k  
100k  
1M  
10M  
100M  
10k  
100  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6244 G16  
6244 G17  
6244 G15  
6244f  
10  
LTC6244  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
300  
250  
200  
150  
100  
50  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V /2  
S
T
= 25°C  
CM  
A
S
V
= 2.5V  
NEGATIVE  
SUPPLY  
30  
20  
SINKING  
POSITIVE  
SUPPLY  
10  
0
0
–50  
–100  
–150  
–200  
–250  
–300  
–10  
–20  
–30  
–40  
–50  
SOURCING  
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
= –55°C  
A
A
A
A
A
A
= –55°C  
–10  
0
1
2
3
4
5
6
7
8
9
10  
2.5  
3
3.5  
4
5
1.5  
4.5  
2
1k  
10k  
100k  
1M  
10M  
100M  
POWER SUPPLY VOLTAGE ( V)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
6244 G18  
6244 G20  
6244 G21  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
–40  
–50  
–40  
–50  
–40  
–50  
T = 25°C  
A
V = 3V, 0V  
S
–60  
–60  
–60  
R
= 100k  
= 10k  
–70  
L
–70  
–80  
–70  
–80  
–80  
R
L
–90  
–90  
–90  
–100  
–100  
–100  
–110  
–110  
–110  
–5  
–2  
0
1
2
3
4
5
2
3
–4 –3  
–1  
5
4.5  
0
0.5  
1
1.5  
2.5  
0
1.5  
3
3.5  
4
0.5  
1
2
2.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6244 G22  
6244 G23  
6244 G22  
Noise Voltage vs Frequency  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
200  
150  
100  
50  
40  
35  
30  
25  
20  
15  
10  
5
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
V
=
5V  
T
A
S
CM  
= 25°C  
2.5V  
= 0V  
T
= 25°C  
S
A
V
V
=
V
=
1.5V  
S
T
= 125°C  
A
V
=
5V  
S
0
T
= 25°C  
A
–50  
–100  
–150  
– 200  
V
=
2.5V  
T
= –55°C  
S
A
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
10  
100  
1k  
10k  
100k  
30 35  
40 45 50 55 60  
0
5
10 15 20 25  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
TIME AFTER POWER UP (SEC)  
6244 G27  
6244 G25  
6244 G26  
6244f  
11  
LTC6244  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Series Output Resistance and  
Overshoot vs Capacitive Load  
0.1Hz to 10Hz Voltage Noise  
Noise Current vs Frequency  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
V
V
A
= 100mV  
2.5V  
T
V
V
= 25°C  
OUT  
V
= 5V, 0V  
A
S
S
=
=
2.5V  
= 0V  
S
= –2  
V
CM  
30pF  
1k  
R
= 10Ω  
S
500  
R
S
+
C
L
1
R
= 50Ω  
S
0.1  
10  
100  
1000  
100  
1k  
10k  
100k  
TIME (1s/DIV)  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
6244 G30  
6244 G29  
6244 G28  
Series Output Resistance and  
Overshoot vs Capacitive Load  
Series Output Resistance and  
Overshoot vs Capacitive Load  
Settling Time vs Output Step  
(Noninverting)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
V
A
= 100mV  
2.5V  
V
A
T
=
5V  
NOTE: EXCEEDS INPUT  
COMMON MODE RANGE  
V
V
A
= 100mV  
2.5V  
OUT  
S
V
A
OUT  
R
= 10Ω  
=
= 1  
=
S
S
S
= –1  
= 25°C  
= 1  
V
V
30pF  
R
= 10Ω  
S
+
V
OUT  
1k  
V
IN  
1k  
1k  
R
S
+
R
= 50Ω  
S
C
L
1mV  
1mV  
+
R
S
R
= 50Ω  
S
10mV  
10mV  
C
L
10  
100  
1000  
0
1
–4 –3 –2 –1  
2
3
4
10  
100  
CAPACITIVE LOAD (pF)  
1000  
CAPACITIVE LOAD (pF)  
OUTPUT STEP (V)  
6244 G31  
6244 G32  
6244 G33  
Settling Time vs Output Step  
(Inverting)  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
9
8
7
6
5
4
3
2
1
V
A
T
= 5V  
V
A
V
=
2.5V  
= +1  
= 2V  
S
V
A
S
V
1k  
1k  
+
= –1  
V
IN  
V
OUT  
= 25°C  
OUT  
P-P  
1k  
R
= 1k, 2ND  
L
1mV  
1mV  
A
= +2  
V
R
= 1k, 3RD  
L
10mV  
2
10mV  
A
= –1  
V
=
5V  
V
S
A
T
= 25°C  
HD2, HD3 < –40dBc  
0
1
10k  
100k  
1M  
10M  
–4 –3 –2 –1  
3
4
10k  
100k  
1M  
10M  
OUTPUT STEP (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6244 G36  
6244 G35  
6244 G34  
6244f  
12  
LTC6244  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
5V  
= +2  
= 2V  
V
A
V
=
2.5V  
= +2  
= 2V  
V
A
V
=
5V  
= +1  
= 2V  
S
V
S
V
S
V
OUT  
P-P  
OUT  
P-P  
OUT  
P-P  
R
= 1k, 2ND  
R
= 1k, 2ND  
R
= 1k, 2ND  
L
L
L
R
= 1k, 3RD  
L
R
= 1k, 3RD  
R
= 1k, 3RD  
L
L
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6244 G39  
6244 G37  
6244 G38  
Large-Signal Response  
Small-Signal Response  
Small-Signal Response  
0V  
0V  
0V  
6244 G40  
6244 G41  
6244 G42  
V
A
=
2.5V  
200ns/DIV  
V
A
=
2.5V  
200ns/DIV  
V
A
=
5V  
2µs/DIV  
S
V
L
S
V
L
L
S
V
L
= 1  
= 1  
= 1  
R
= ∞  
R
= ∞  
= 75pF  
R
= ∞  
C
Output Overdrive Recovery  
Large-Signal Response  
V
IN  
0V  
0V  
1V/DIV  
0V  
V
OUT  
2V/DIV  
6244 G43  
6244 G44  
V
A
=
= –1  
= 1k  
2.5V  
200ns/DIV  
V
A
=
2.5V  
200ns/DIV  
S
V
L
S
V
L
= 3  
R
R
= 3k  
6244f  
13  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
Amplifier Characteristics  
ESD  
TheLTC6244hasreverse-biasedESDprotectiondiodeson  
all input and outputs as shown in Figure 1. These diodes  
protect the amplifier for ESD strikes to 4kV. If these pins  
are forced beyond either supply, unlimited current will  
flow through these diodes. If the current transient is less  
than 1 second and limited to one hundred milliamps or  
less, no damage to the device will occur.  
Figure 1 is a simplified schematic of the LTC6244, which  
has a pair of low noise input transistors M1 and M2. A  
simple folded cascode Q1, Q2 and R1, R2 allow the input  
stage to swing to the negative rail, while performing level  
shift to the Differential Drive Generator. Low offset voltage  
is accomplished by laser trimming the input stage.  
Capacitor C1 reduces the unity cross frequency and im-  
proves the frequency stability without degrading the gain  
The amplifier input bias current is the leakage current of  
these ESD diodes. This leakage is a function of the tem-  
perature and common mode voltage of the amplifier, as  
shown in the Typical Performance Chacteristics.  
bandwidth of the amplifier. Capacitor C sets the overall  
M
amplifier gain bandwidth. The differential drive generator  
supplies signals to transistors M3 and M4 that swing the  
output from rail-to-rail.  
Noise  
The photo of Figure 2 shows the output response to an  
input overdrive with the amplifier connected as a voltage  
follower. If the negative going input signal is less than  
The LTC6244 exhibits low 1/f noise in the 0.1Hz to 10Hz  
region. This 1.5µV noise allows these op amps to be  
P-P  
used in a wide variety of high impedance low frequency  
applications, where Zero-Drift amplifiers might be inap-  
propriate due to their input sampling characteristic.  
a diode drop below V , no phase inversion occurs. For  
input signals greater than a diode drop below V , limit the  
current to 3mA with a series resistor R to avoid phase  
S
inversion.  
In the frequency region above 1kHz the LTC6244 also  
shows good noise voltage performance. In this frequency  
region, noise can easily be dominated by the total source  
The input common mode voltage range extends from  
+
V to V – 1.5V. In unity gain voltage follower applications,  
exceeding this range by applying a signal that reaches 1V  
fromthepositivesupplyrailcancreatealowlevelinstability  
at the output. Loading the amplifier with several hundred  
micro-amps will reduce or eliminate the instability.  
+
V
2.5V  
+
V
+
I
TAIL  
V
V
M3  
CM  
DESD1  
+
DESD2  
DESD4  
+
V
V
V
–2.5V  
DESD5  
V
V
M1  
M2  
IN  
DIFFERENTIAL  
DRIVE  
GENERATOR  
IN  
V
O
V
AND V OF FOLLOWER WITH LARGE INPUT OVERDRIVE  
IN  
OUT  
DESD6  
DESD3  
C1  
+2.5V  
+
V
V
V
Q1  
+
Q2  
BIAS  
M4  
1/2  
R
S
V
OUT  
LTC6244  
0Ω  
V
R1  
R2  
IN  
–2.5V  
V
6244 F01  
6244 F02  
Figure 2. Unity Gain Follower Test Circuit  
Figure 1. Simplified Schematic  
6244f  
14  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
resistance of the particular application. Specifically, these  
amplifiers exhibit the noise of a 4k resistor, meaning it is  
desirable to keep the source and feedback resistance at or  
In low gain configurations and with R and R in even  
F S  
the kilohm range (Figure 3), this pole can create excess  
phase shift and possibly oscillation. A small capacitor C  
F
below this value, i.e., R + R ||R ≤ 4k. Above this total  
in parallel with R eliminates this problem.  
S
G
FB  
F
source impedance, the noise voltage is not dominated by  
Achieving Low Input Bias Current  
the amplifier.  
The DD package is leadless and makes contact to the PCB  
beneath the package. Solder flux used during the attach-  
ment of the part to the PCB can create leakage current  
paths and can degrade the input bias current performance  
ofthepart. Allinputsaresusceptiblebecausethebackside  
Noise current can be estimated from the expression i =  
n
–19  
√2qI , where q = 1.6 • 10 coulombs. Equating √4kTRΔf  
B
and R √2qI Δf shows that for source resistors below  
S
B
50GΩ the amplifier noise is dominated by the source  
resistance. See the Typical Characteristics curve Noise  
Current vs Frequency.  
paddle is connected to V internally. As the input voltage  
changes or if V changes, a leakage path can be formed  
Proprietary design techniques are used to obtain simulta-  
neous low 1/f noise and low input capacitance. Low input  
capacitance is important when the amplifier is used with  
high source and feedback resistors. High frequency noise  
and alter the observed input bias current. For lowest bias  
current, use the LTC6244 in the MS8 package.  
Photodiode Amplifiers  
from the amplifier tail current source, I  
in Figure 1,  
TAIL  
Photodiodes can be broken into two categories: large area  
photodiodes with their attendant high capacitance (30pF  
to 3000pF) and smaller area photodiodes with relatively  
lowcapacitance(10pForless).Foroptimalsignal-to-noise  
performance, atransimpedanceamplifierconsistingofan  
invertingopampandafeedbackresistorismostcommonly  
usedtoconvertthephotodiodecurrentintovoltage. Inlow  
noise amplifier design, large area photodiode amplifiers  
require more attention to reducing op amp input voltage  
noise, while small area photodiode amplifiers require  
more attention to reducing op amp input current noise  
and parasitic capacitances.  
couplesthroughtheinputcapacitanceandappearsacross  
these large source and feedback resistors.  
Stability  
The good noise performance of these op amps can be  
attributed to large input devices in the differential pair.  
Above several hundred kilohertz, the input capacitance  
can cause amplifier stability problems if left unchecked.  
When the feedback around the op amp is resistive (R ), a  
F
pole will be created with R , the source resistance, source  
F
capacitance (R , C ), and the amplifier input capacitance.  
S
S
C
F
R
F
+
C
IN  
OUTPUT  
6244 F03  
R
C
S
S
Figure 3. Compensating Input Capacitance  
6244f  
15  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
Large Area Photodiode Amplifiers  
amp voltage noise and the noise gain. For reference, the  
DC output offset of this circuit is about 100µV, bandwidth  
A simple large area photodiode amplifier is shown in  
Figure 4a. The capacitance of the photodiode is 3650pF  
(nominally 3000pF), and this has a significant effect on  
the noise performance of the circuit. For example, the  
photodiodecapacitanceat10kHzequatestoanimpedance  
of 4.36kΩ, so the op amp circuit with 1MΩ feedback has a  
noise gain of NG = 1 + 1M/4.36k = 230 at that frequency.  
Therefore, the LTC6244 input voltage noise gets to the  
output as NG • 7.8nV/√Hz = 1800nV/√Hz, and this can  
clearly be seen in the circuit’s output noise spectrum in  
Figure 4b. Note that we have not yet accounted for the  
op amp current noise, or for the 130nV/√Hz of the gain  
resistor, but these are obviously trivial compared to the op  
is 52kHz, and the total noise was measured at 1.7mV  
on a 100kHz measurement bandwidth.  
RMS  
An improvement to this circuit is shown in Figure 5a,  
where the large diode capacitance is bootstrapped by a  
1nV/√Hz JFET. This depletion JFET has a V of about  
GS  
–0.5V, so that R  
forces it to operate at just over 1mA of  
BIAS  
drain current. Connected as shown, the photodiode has a  
reverse bias of one V , so its capacitance will be slightly  
GS  
lower than in the previous case (measured 2640pF), but  
the most drastic effects are due to the bootstrapping.  
Figure 5b shows the output noise of the new circuit.  
Noise at 10kHz is now 220nV/√Hz, and the 130nV/√Hz  
noise thermal noise floor of the 1M feedback resistor  
is discernible at low frequencies. What has happened is  
that the 7.8nV/√Hz of the op amp has been effectively  
replaced by the 1nV/√Hz of the JFET. This is because the  
1M feedback resistor is no longer “looking back” into the  
large photodiode capacitance. It is instead looking back  
intoaJFETgatecapacitance,anopampinputcapacitance,  
and some parasitics, approximately 10pF total. The large  
photodiode capacitance is across the gate-source volt-  
age of the low noise JFET. Doing a sample calculation at  
10kHz as before, the photodiode capacitance looks like  
6kΩ, so the 1nV/√Hz of the JFET creates a current noise  
of 1nV/6k = 167fA/√Hz. This current noise necessarily  
flows through the 1M feedback resistor, and so appears  
as 167nV/√Hz at the output. Adding the 130nV/√Hz of the  
resistor (RMS wise) gives a total calculated noise density  
of 210nV/√Hz, agreeing well with the measured noise of  
Figure 5b. Another drastic improvement is in bandwidth,  
now over 350kHz, as the bootstrap enabled a reduction  
of the compensating feedback capacitance. Note that the  
bootstrap does not affect the DC accuracy of the amplifier,  
except by adding a few picoamps of gate current.  
C
F
3.9pF  
R
F
1M  
5V  
V
= 1M • I  
PD  
OUT  
I
PD  
BW = 52kHz  
NOISE = 1800nV/Hz AT 10kHz  
1/2  
LTC6244HV  
HAMAMATSU  
LARGE AREA  
PHOTODIODE  
S1227-1010BQ  
V
OUT  
+
6244 F04a  
–5V  
C
PD  
= 3000pF  
Figure 4a. Large Area Photodiode Transimpedance Amplifier  
1k  
10k  
100k  
FREQUENCY (Hz)  
6244 F04b  
There is one drawback to this circuit. Most photodiode  
circuits require the ability to set the amount of applied  
reverse bias, whether it’s 0V, 5V, or 200V. This circuit has  
a fixed reverse bias of about 0.5V, dictated by the JFET.  
Figure 4b. Output Noise Spectral Density of the Circuit of Figure  
4a. At 10kHz, the 1800nV/√Hz Output Noise is Due Almost  
Entirely to the 7.8nV Voltage Noise of the LTC6244 and the High  
Noise Gain of the 1M Feedback Resistor Looking Into the High  
Photodiode Capacitance  
6244f  
16  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
C
F
C
F
0.25pF  
0.25pF  
5V  
PHILIPS  
BF862  
JFET  
5V PHILIPS  
BF862  
R
F
1M  
R
F
1M  
JFET  
5V  
5V  
R
4.99k  
V
= 1M • I  
V
= 1M • I  
PD  
BIAS  
OUT  
PD  
OUT  
I
PD  
4.99k  
BW = 350kHz  
BW = 250kHz  
–5V  
–5V  
OUTPUT NOISE = 220nV/Hz  
OUTPUT NOISE = 291nV/Hz  
1/2  
LTC6244HV  
1/2  
LTC6244HV  
AT10kHz  
AT 10kHz  
HAMAMATSU  
LARGE AREA  
PHOTODIODE  
V
V
OUT  
OUT  
4.7µF  
X7R  
I
PD  
+
+
S1227-1010BQ  
= 3000pF  
4.99k  
6244 F04a  
6244 F06a  
–5V  
–5V  
C
PD  
V
BB  
HAMAMATSU LARGE AREA  
PHOTODIODE  
Figure 5a. Large Area Diode Bootstrapping  
S1227-1010BQ  
C
= 3000pF  
PD  
Figure 6a. The Addition of a Capacitor and Resistor Enable the  
Benefit of Bootstrapping While Applying Arbitrary Photodiode  
Bias Voltage V  
BB  
1k  
10k  
100k  
FREQUENCY (Hz)  
6244 F05b  
Figure 5b: Output Noise Spectral Density of Figure 5a. The  
Simple JFET Bootstrap Improves Noise (and Bandwidth)  
Drastically. Noise Density at 10kHz is Now 220nV/√Hz, About  
a 8.2x Reduction. This is Mostly Due to the Bootstrap Effect  
of Swapping the 1nV/√Hz of the JFET for the 7.8nV/√Hz of the  
Op Amp  
1k  
10k  
100k  
6244 F06b  
FREQUENCY (Hz)  
Figure 6b: Output Spectrum of Circuit of Figure 6a, with  
Photodiode Bias at 0V. Photodiode Capacitance is Back Up,  
as in the Original Circuit of Figure 4a. However, it can be  
Reduced Arbitrarily by Providing Reverse Bias. This Plot  
Shows that Bootstrapping Alone Reduced the 10kHz Noise  
Density by a Factor of 6.2, from 1800nV/√Hz to 291nV/√Hz.  
The solution is as shown in the circuit of Figure 6a, which  
uses a capacitor-resistor pair to enable the AC benefits of  
bootstrappingwhileallowingadifferentreverseDCvoltage  
on the photodiode. The JFET is still running at the same  
current, but an arbitrary reverse bias may be applied to  
the photodiode. The output noise spectrum of the circuit  
with 0V of photodiode reverse bias is shown in Figure 6b.  
Photodiode capacitance is again 3650pF, as in the original  
circuit of Figure 4a. This noise plot with 0V bias shows  
that bootstrapping alone was responsible for a factor of  
6.2 noise reduction, from 1800nV/√Hz to 291nV/√Hz at  
10kHz, independent of photodiode capacitance. However,  
photodiodecapacitancecannowcanbereducedarbitrarily  
by providing reverse bias, and the photodiode can also be  
reversed to support either cathode or anode connections  
for positive or negative going outputs.  
The circuit on the last page of this data sheet shows fur-  
ther reduction in noise by paralleling four JFETs to attain  
152nV/√Hz at 10kHz, a noise of 12 times less than the  
basic photodiode circuit of Figure 4a.  
6244f  
17  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
Small Area Photodiode Amplifiers  
grounded), or about 6pF total. The small photodiode has  
1.8pF,sotheinputcapacitanceoftheamplifierisdominating  
the capacitance. The small feedback capacitor is an actual  
component (AVX Accu-F series), but it is also in parallel  
with the op amp lead, resistor and parasitic capacitances,  
so the total real feedback capacitance is probably about  
0.4pF. The reason this is important is that this sets the  
compensation of the circuit and, with op amp gain band-  
width, the circuit bandwidth. The circuit as shown has a  
Smallareaphotodiodeshaveverylowcapacitance,typically  
under 10pF and some even below 1pF. Their low capaci-  
tance makes them more approximate current sources to  
higher frequencies than large area photodiodes. One of  
the challenges of small area photodiode amplifier design  
is to maintain low input capacitance so that voltage noise  
does not become an issue and current noise dominates. A  
simplesmallareaphotodiodeamplifierusingtheLTC6244  
is shown in Figure 7. The input capacitance of the ampli-  
bandwidth of 350kHz, with an output noise of 120µV  
measured over that bandwidth.  
RMS  
fier consists of C and one C (because the +input is  
DM  
CM  
The circuit of Figure 8a makes some slight improvements.  
Operation is still transimpedance mode, with R setting  
F
C
F
0.1pF  
the gain to 1MΩ. However, a noninverting input stage A1  
with a gain of 3 has been inserted, followed by the usual  
inverting stage performed by A2. Note what this achieves.  
The amplifier input capacitance is bootstrapped by the  
feedback of R2:R1, eliminating the effect of A1’s input  
R
F
1M  
V
= 1M • I  
PD  
OUT  
BW = 350kHz  
NOISE = 120 V  
5V  
I
PD  
RMS  
MEASURED ON A  
350kHz BW  
SMALL AREA  
PHOTODIODE  
VISHAY  
C
(3.5pF), and leaving only one C (2.1pF). The op  
DM  
CM  
1/2  
V
OUT  
amp at Pins 5, 6 and 7 was chosen for the input amplifier  
to eliminate extra pin-to-pin capacitance on the (+) input.  
The lead capacitance on the corner of an MSOP package is  
only about 0.15pF. By using this noninverting configura-  
tion, input capacitance is minimized.  
LTC6244HV  
TEMD1000  
+
C
= 1.8pF  
PD  
–5V  
6244 F07  
–5V  
Figure 7. LTC6244 in a Normal TIA Configuration  
0.07pF  
(PARASITIC)  
R
F
1M  
R4  
6.98k  
5V  
V
= 1M • I  
OUT PD  
I
PD  
BW = 1.6MHz  
NOISE = 1.2mV  
5
6
SMALL AREA  
PHOTODIODE  
VISHAY  
8
R3  
1k  
+
RMS  
C2  
A1 1/2  
LTC6244HV  
MEASURED ON A  
2MHz BW  
7
2
3
150pF  
TEMD1000  
A2 1/2  
LTC6244HV  
1
V
C
= 1.8pF  
OUT  
PD  
6244 F08a  
R2  
1k  
–5V  
+
4
C1  
56pF  
R1  
499  
–5V  
Figure 8a: Using Both Op Amps for Higher Bandwidth. A1 Provides a Gain of 3 Within the Loop, Increasing the Gain Bandwidth  
Product. This Bootstraps the C Accross A1’s Inputs, Reducing Amplifier Input Capacitance. Inversion is Provided by A2, so that  
DM  
the Photodiode Looks Into a Noninverting Input. Pin 5 was Selected Because it is in the Corner, Removing One Lead Capacitance  
6244f  
18  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
adding appreciable noise to the circuit. In addition, add-  
ing gain to low level signals over appreciable bandwidth  
is extremely useful. A typical application for a low noise,  
high impedance, differential amplifier is in the baseband  
circuit of an RFID (radio frequency identification) receiver.  
The baseband signal of a UHF RFID receiver is typically a  
low level differential signal at the output of a demodulator  
with differential output impedance in the range of 100Ω to  
400Ω. The bandwidth of this signal is 1MHz or less.  
Total capacitance at the amplifier’s input is now one C  
CM  
(2.1pF) plus the photodiode capacitance C (1.8pF), or  
PD  
about4pFaccountingforparasitics. Theshuntimpedance  
at 1MHz, for example, is X = 1/(2πfC) = 39.8kΩ, and  
C
therefore, the noise gain at 1MHz is NG = 1+Rf/X = 26.  
C
Theinputvoltagenoiseofthisamplifierisabout15nV/√Hz,  
after accounting for the effects of R1 through R3, the  
noise of the second stage and the fact that voltage noise  
does rise with frequency. Multiplying the noise gain by  
the input voltage noise gives an output noise density due  
to voltage noise of 26 • 15nV/√Hz = 390nV/√Hz. But the  
noise spectral density plot of Figure 8b shows an output  
noise of 782nV/√Hz at 1MHz. The extra output noise is  
due to input current noise, multiplied by the feedback  
impedance. So while the circuit of Figure 8a does increase  
bandwidth, it does not offer a noise advantage. Note,  
The circuit of Figure 9a uses an LTC6244 to make a low  
noise fully differential amplifier. The amplifier’s gain, input  
impedanceand3dBbandwidthcanbespecifiedindepen-  
dently. Knowing the desired gain, input impedance and  
–3dB bandwidth, R , C and C can be calculated from  
G
F
IN  
the equations shown in Figure 9b. The common mode  
gain of this amplifier is equal to one (V = V  
)
INCM  
OUTCM  
however, that the 1.2mV  
of noise is now measured in  
RMS  
and is independent of resistor matching. The component  
values in the Figure 9a circuit implement a 970kHz, gain  
= 5, differential amplifier with 4k input impedance. The  
output differential DC offset is typically less than 500µV.  
The differential input referred noise voltage density is  
shown in Figure 10. The total input referred noise in a  
a 2MHz bandwidth, instead of over a 350kHz bandwidth  
of the previous example.  
A Low Noise Fully Differential Buffer/Amplifier  
In differential signal conditioning circuits, there is often a  
need to monitor a differential source without loading or  
1MHz bandwidth is 16µV  
.
RMS  
50k  
1M  
FREQUENCY (Hz)  
5M  
6244 F08b  
Figure 8b: Output Noise Spectrum of the Circuit in Figure 8a.  
Noise at 1MHz is 782nV/√Hz, Due Mostly to the Input Current  
Noise Rising with Frequency  
6244f  
19  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
f
= 970kHz  
–3dB  
32  
28  
24  
20  
16  
12  
8
+
GAIN = 5  
= 4k  
1/2  
+
R
IN  
V
OUT  
LTC6244  
C
F
33pF  
R
IN  
R
G
2k  
+
10k  
2k  
2k  
2k  
V
V
IN  
C
IN  
4
82pF  
10k  
100k  
FREQUENCY (Hz)  
1M  
6244 F10  
C
IN  
82pF  
R
IN  
Figure 10. Differential Input Referred Noise  
R
G
2k  
10k  
IN  
C
F
33pF  
2k  
A Low Noise AC Difference Amplifier  
+
In the signal conditioning of wideband sensors and trans-  
ducers, a low noise amplifier is often used to provide gain  
for low level AC difference signals in the frequency range  
of a few Hertz to hundreds of kilo-Hertz. In addition, the  
amplifiermustrejectcommonmodeACsignalsanditsinput  
impedance should be higher than the differential source  
impedance. Typical applications are piezoelectric sensors  
used in sonar, sound and ultrasound systems and LVDT  
(linearvariabledifferentialtransformers)fordisplacement  
measurements in process control and robotics.  
V
1/2  
LTC6244  
V
OUT  
6244 F09a  
+
V
Figure 9a. Low Noise Fully Differential Buffer/Amplifier  
(f  
–3dB  
= 970kHz, Gain = 5, R = 4k)  
IN  
Input Impedance = 2 • RIN  
The Figure 11a circuit is a low noise, single supply AC  
difference amplifier. The amplifier’s low frequency –3dB  
bandwidth is set with resistor R5 and capacitor C3, while  
the upper –3dB bandwidth is set with R2 and C1. The  
+
VOUT – VOUT  
RG  
RIN  
Gain =  
=
+
V
– V  
IN  
IN  
input common mode DC voltage can vary from ground to  
5MHz  
f3dB  
+
V and the output DC voltage is equal to the V voltage.  
Maximum Gain =  
REF  
The amplifier’s gain is the ratio of resistors R2 to R1 (R4  
= R2 and R3 = R1). The component values in the circuit  
of Figure 11a implement an 800Hz to 160kHz AC ampli-  
fier with a gain equal to 10 and 12nV/√Hz input referred  
voltage noise density shown in Figure 11b. The total input  
1
CF =  
4398 • f3dB • Gain + 2  
(
)
Gain + 2  
CIN =  
referred wideband noise is 4.5µV , in the bandwidth  
RMS  
of 500Hz to 200kHz.  
8.977 • Gain RIN • f3dB  
1
f3dB  
=
4000 • π2 RG • CF • CIN  
Figure 9b. Design Equations for Figure 9a Circuit  
6244f  
20  
LTC6244  
U
W U U  
APPLICATIO S I FOR ATIO  
C1  
47pF  
R1  
2k  
R2  
20k  
V1  
1/2 LTC6244  
+
V
OUT  
C3  
1000pF  
+
V
R5  
200k  
R3  
2k  
+
R4  
20k  
V2  
1/2 LTC6244  
C2  
47pF  
V
REF  
6244 F11a  
VOUT = GAIN • V2 – V1 + V  
(
)
REF  
R2  
R1  
GAIN =  
R3 = R1, R4 = R2, C1= C2  
BANDWIDTH = fHI – fLO  
1
1
fHI  
=
, fLO =  
2 • π R2 C1  
2 • π R5 C3  
Figure 11a. Low Noise AC Difference Amplifier  
(Bandwidth 800Hz to 160kHz, Gain = 10)  
BW = 800Hz TO 160kHz  
GAIN = 10  
28  
24  
20  
16  
12  
8
4
0
1
10  
1000  
FREQUENCY (kHz)  
6244 F11b  
Figure 11b. Input Referred Noise  
6244f  
21  
LTC6244  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 0.10  
TYP  
5
8
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
6244f  
22  
LTC6244  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 0.076  
(.009 – .015)  
(.005 .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6244f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC6244  
TYPICAL APPLICATION  
Ultralow Noise Large Area Photodiode Amplifier  
5V  
J4  
–5V  
Photodiode Amplifier Output  
Noise Spectal Density  
5V  
J3  
C
F
5V  
J2  
R4  
R3  
0.25pF  
5V  
J1  
R
1M  
F
V
= 1M • I  
PD  
OUT  
R2  
R1  
BW = 400kHz  
NOISE = 150µV  
5V  
RMS  
MEASURED ON 100kHz  
BANDWIDTH  
1/2  
C1  
C2  
C3  
C4  
I
PD  
V
OUT  
LTC6244HV  
6244 TA02a  
+
R5  
4.99k  
HAMAMATSU  
LARGE AREA  
PHOTODIODE  
S1227-1010BQ  
–5V  
1
10  
100  
–5V  
(kHz)  
6244 TA02b  
C1 TO C4: 4.7µF X7R  
J1 TO J4: PHILIPS BF862 JFETS  
R1 TO R4: 4.99k  
C
= 3000pF  
PD  
RELATED PARTS  
PART NUMBER  
LTC1151  
DESCRIPTION  
15V Zero-Drift Op Amp  
COMMENTS  
Dual High Voltage Operation 18V  
6nV/√Hz Noise, 15V Operation  
2.7 Volt Operation, SOT-23  
LT1792  
Low Noise Precision JFET Op Amp  
Zero-Drift Op Amp  
LTC2050  
LTC2051/LTC2052  
LTC2054/LTC2055  
LT6241/LT6242  
Dual/Quad Zero-Drift Op Amp  
Single/Dual Zero-Drift Op Amp  
Dual/Quad, 18MHz CMOS Op Amps  
Dual/Quad Version of LTC2050 in MS8/GN16 Packages  
Micropower Version of the LTC2050/LTC2051 in SOT-23 and DD Packages  
Low Noise, Rail-to-Rail  
6244f  
LT 0706 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6246

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6246CS6

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6246CS6#PBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6246CS6#TRMPBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6246CS6#TRPBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6246CS6TRMPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6246CS6TRPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6246HS6

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear

LTC6246HS6#PBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6246HS6#TRMPBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6246HS6#TRPBF

LTC6246 - 180MHz, 1mA Power Efficient Single Rail-to-Rail I/O Op Amps; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6246HS6TRMPBF

180MHz, 1mA Power Efficient Rail-to-Rail I/O Op Amps
Linear