LTC6241HVCS8#TRPBF [Linear]

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC6241HVCS8#TRPBF
型号: LTC6241HVCS8#TRPBF
厂家: Linear    Linear
描述:

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总24页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6241/LTC6242  
Dual/Quad 18MHz, Low  
Noise, Rail-to-Rail,  
CMOS Op Amps  
U
DESCRIPTIO  
FEATURES  
The LTC®6241/LTC6242 are dual and quad low noise,  
low offset, rail-to-rail output, unity gain stable CMOS op  
amps that feature 1pA of input bias current. The 0.1Hz to  
0.1Hz to 10Hz Noise: 550nV  
P-P  
Input Bias Current: 1pA (Typ at 25°C)  
Low Offset Voltage: 125µV Max  
Low Offset Drift: 2.5µV/°C Max  
Voltage Gain: 124dB Typ  
10Hz noise of only 550nV , along with an offset of just  
P-P  
125µV make them uncommon among traditional CMOS  
op amps. Additionally, noise is guaranteed to be less  
than 10nV/√Hz at 1kHz. An 18MHz gain bandwidth, and  
10V/µs slew rate, along with the wide supply range and  
low input capacitance, make them perfect for use as fast  
signal processing amplifiers.  
Gain Bandwidth Product: 18MHz  
Output Swings Rail-to-Rail  
Supply Operation:  
2.8V to 6V LTC6241/LTC6242  
2.8V to 5.5V LTC6241HV/LTC6242HV  
Low Input Capacitance  
Dual LTC6241 in 8-Pin SO and Tiny DFN Packages  
Quad LTC6242 in 16-Pin SSOP and 5mm × 3mm  
DFN Packages  
These op amps have an output stage that swings within  
30mV of either supply rail to maximize the signal dynamic  
rangeinlowsupplyapplications.Theinputcommonmode  
range extends to the negative supply. They are fully speci-  
fiedon3Vand5V, andanHVversionguaranteesoperation  
on supplies up to 5.5V.  
U
APPLICATIO S  
The LTC6241 is available in the 8-pin SO, and for compact  
designs it is packaged in the tiny dual fine pitch leadless  
(DFN) package. The LTC6242 is available in the 16-Pin  
SSOP as well as the 5mm × 3mm DFN package.  
Photo Diode Amplifiers  
Charge Coupled Amplifiers  
Low Noise Signal Processing  
Active Filters  
Medical Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
High Impedance Transducer Amplifier  
U
TYPICAL APPLICATIO  
Low Noise Single-Ended Input to Differential Output Amplifier  
Noise Voltage vs Frequency  
60  
C3  
10pF  
T
V
V
= 25°C  
A
S
=
2.5V  
= 0V  
50  
40  
30  
20  
10  
0
CM  
C4  
10pF  
R4  
4.99k  
C1  
10pF  
+2.5V  
1/2  
R1  
200k  
R3  
4.99k  
V
IN  
+
V
V
OUT  
OUT  
LTC6241  
+
–2.5V  
1/2  
LTC6241  
+
R2  
200k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
6241 TA01b  
C2  
10pF  
6241 TA01a  
62412f  
1
LTC6241/LTC6242  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
+
Total Supply Voltage (V to V )  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Junction Temperature ........................................... 150°C  
DHC, DD Package ............................................. 125°C  
Storage Temperature Range....................–65ºC to 150°C  
DHC, DD Package ...............................–65ºC to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
LTC6241/LTC6242 ..................................................7V  
LTC6241HV/LTC6242HV.......................................12V  
Input Voltage.......................... (V + 0.3V) to (V – 0.3V)  
Input Current........................................................ 10mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
+
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
DD PART  
MARKING*  
TOP VIEW  
LTC6241CDD  
LTC6241HVCDD  
LTC6241IDD  
LBPD  
LBRR  
LBPD  
LBRR  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT B  
–IN B  
+IN B  
A
OUT B  
–IN B  
+IN B  
A
LTC6241HVIDD  
B
V
B
ORDER PART  
NUMBER  
S8 PART  
MARKING  
V
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
UNDERSIDE METAL CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
JA  
LTC6241CS8  
LTC6241HVCS8  
LTC6241IS8  
6241  
T
= 150°C, θ = 190°C/W  
JMAX  
JA  
6241HV  
6241I  
LTC6241HVIS8  
241HVI  
ORDER PART  
NUMBER  
DHC PART  
MARKING*  
TOP VIEW  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16  
OUT D  
LTC6242CDHC  
LTC6242HVCDHC  
LTC6242IDHC  
6242  
A
B
D
C
15 –IN D  
A
B
D
C
6242HV  
6242  
14 +IN D  
14  
13  
+IN D  
+
V
13 V  
+
V
V
17  
LTC6242HVIDHC  
6242HV  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11  
10  
9
–IN C  
OUT C  
NC  
ORDER PART  
NUMBER  
GN PART  
MARKING  
9
NC  
LTC6242CGN  
LTC6242HVCGN  
LTC6242IGN  
6242  
DHC16 PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
= 125°C, θ = 43°C/W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 150°C, θ = 135°C/W  
6242HV  
6242I  
T
JMAX  
JA  
T
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V  
LTC6242HVIGN  
242HVI  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
62412f  
2
LTC6241/LTC6242  
U
AVAILABLE OPTIO S  
PART NUMBER  
AMPS/PACKAGE  
SPECIFIED TEMP RANGE  
0°C to 70°C  
SPECIFIED SUPPLY VOLTAGE  
3V, 5V  
PACKAGE  
SO-8  
DD  
PART MARKING  
6241  
LTC6241CS8  
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
LTC6241CDD  
0°C to 70°C  
3V, 5V  
LBPD  
LTC6241HVCS8  
LTC6241HVCDD  
LTC6241IS8  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
SO-8  
DD  
6241HV  
LBRR  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
SO-8  
DD  
6241I  
LTC6241IDD  
3V, 5V  
LBPD  
LTC6241HVIS8  
LTC6241HVIDD  
LTC6242CGN  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
SO-8  
DD  
241HVI  
LBRR  
GN  
6242  
LTC6242CDHC  
LTC6242HVCGN  
LTC6242HVCDHC  
LTC6242IGN  
0°C to 70°C  
3V, 5V  
DHC  
GN  
6242  
0°C to 70°C  
3V, 5V, 5V  
3V, 5V, 5V  
3V, 5V  
6242HV  
6242HV  
6242I  
0°C to 70°C  
DHC  
GN  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LTC6242IDHC  
LTC6242HVIGN  
LTC6242HVIDHC  
3V, 5V  
DHC  
GN  
6242  
3V, 5V, 5V  
3V, 5V, 5V  
242HVI  
6242HV  
DHC  
ELECTRICAL CHARACTERISTICS (LTC6241/LTC6241HV, LTC6242/LTC6242HV) The  
denotes the  
specifications which apply over the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 2.5V  
A
S
CM  
unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage (Note 5)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SO-Package  
0°C to 70°C  
–40°C to 85°C  
40  
125  
250  
300  
µV  
µV  
µV  
OS  
GN Package  
0°C to 70°C  
–40°C to 85°C  
50  
100  
40  
150  
275  
300  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
550  
650  
725  
µV  
µV  
µV  
V
Match Channel-to-Channel (Note 6) SO-8 Package  
160  
300  
375  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
GN Package  
0°C to 70°C  
–40°C to 85°C  
50  
185  
325  
400  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 7)  
Input Bias Current (Notes 5, 8)  
0.7  
1
2.5  
µV/°C  
OS  
I
pA  
pA  
B
75  
62412f  
3
LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6241/LTC6241HV, LTC6242/LTC6242HV) The  
unless otherwise noted.  
denotes the  
specifications which apply over the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 2.5V  
A
S
CM  
MAX  
75  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
UNITS  
I
Input Offset Current (Notes 5, 8)  
0.5  
pA  
pA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
550  
7
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 9)  
Input Resistance  
10  
nV/√Hz  
fA/√Hz  
Ω
i
0.56  
n
12  
R
Common Mode  
10  
IN  
IN  
C
Input Capacitance  
Differential Mode  
Common Mode  
f = 100kHz (See Typical Characteristic  
Curves)  
0.5  
3
pF  
pF  
V
Input Voltage Range  
Guaranteed by CMRR  
0
3.5  
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 3.5V  
80  
105  
95  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 6)  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 4V  
O
R = 10k to V /2  
425  
300  
200  
1600  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V = 1.5V to 3.5V  
O
R = 1k to V /2  
90  
60  
50  
215  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 10)  
Output Voltage Swing High (Note 10)  
Power Supply Rejection  
No Load  
SINK  
SINK  
7
30  
75  
mV  
mV  
mV  
OL  
I
I
= 1mA  
= 5mA  
40  
190  
325  
No Load  
SOURCE  
SOURCE  
11  
45  
190  
30  
75  
325  
mV  
mV  
mV  
OH  
I
I
= 1mA  
= 5mA  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
80  
104  
100  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 6)  
74  
2.8  
15  
dB  
V
Minimum Supply Voltage (Note 11)  
Short-Circuit Current  
I
I
30  
mA  
SC  
Supply Current per Amplifier  
1.8  
2.2  
2.3  
2.4  
mA  
mA  
mA  
S
0°C to 70°C  
–40°C to 85°C  
GBW  
SR  
Gain Bandwidth Product  
Slew Rate (Note 12)  
Frequency = 20kHz, R = 1kΩ  
13  
5
18  
10  
MHz  
V/µs  
MHz  
ns  
L
A = –2, R = 1kΩ  
V
L
FPBW  
Full Power Bandwidth (Note 13)  
Settling Time  
V
OUT  
= 3V , R = 1kΩ  
0.53  
1.06  
1100  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
62412f  
4
LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6241/LTC6241HV, LTC6242/LTC6242HV) The  
denotes the  
specifications which apply over the specified temperature range, otherwise specifications are at T = 25°C. V = 3V, 0V, V = 1.5V  
A
S
CM  
unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage (Note 5)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SO-8 Package  
0°C to 70°C  
–40°C to 85°C  
40  
175  
275  
325  
µV  
µV  
µV  
OS  
GN Package  
0°C to 70°C  
–40°C to 85°C  
60  
100  
40  
200  
275  
325  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
550  
650  
725  
µV  
µV  
µV  
V
Match Channel-to-Channel (Note 6) SO-8 Package  
200  
325  
400  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
GN Package  
0°C to 70°C  
–40°C to 85°C  
60  
225  
325  
400  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
I
I
Input Bias Current (Notes 5, 8)  
Input Offset Current (Notes 5, 8)  
1
pA  
pA  
B
75  
0.5  
pA  
pA  
OS  
75  
V
Input Voltage Range  
Guaranteed by CMRR  
0
1.5  
V
CM  
CMRR  
Common Mode Rejection  
0V ≤ V ≤ 1.5V  
78  
100  
95  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 6)  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = 1V to 2V  
O
R = 10k to V /2  
140  
100  
75  
600  
V/mV  
V/mV  
V/mV  
L
S
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 10)  
Output Voltage Swing High (Note 10)  
Power Supply Rejection  
No Load  
SINK  
3
30  
mV  
mV  
OL  
I
= 1mA  
65  
110  
No Load  
= 1mA  
4
70  
30  
120  
mV  
mV  
OH  
I
SOURCE  
PSRR  
V = 2.8V to 6V, V = 0.2V  
S
80  
104  
100  
dB  
CM  
PSRR Match  
Channel-to-Channel (Note 6)  
74  
2.8  
3
dB  
V
Minimum Supply Voltage (Note 11)  
Short-Circuit Current  
I
I
6
mA  
SC  
S
Supply Current per Amplifier  
1.4  
1.7  
1.8  
1.9  
mA  
mA  
mA  
0°C to 70°C  
–40°C to 85°C  
GBW  
Gain Bandwidth Product  
Frequency = 20kHz, R = 1kΩ  
12  
17  
MHz  
L
62412f  
5
LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6241HV/LTC6242HV) The  
denotes the specifications which apply over  
CM  
the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 0V unless otherwise noted.  
A
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 5)  
SO-8 Package  
0°C to 70°C  
–40°C to 85°C  
50  
175  
275  
325  
µV  
µV  
µV  
OS  
GN Package  
0°C to 70°C  
–40°C to 85°C  
60  
100  
50  
200  
275  
325  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
550  
650  
725  
µV  
µV  
µV  
V
Match Channel-to-Channel (Note 6) SO-8 Package  
200  
325  
400  
µV  
µV  
µV  
OS  
0°C to 70°C  
–40°C to 85°C  
GN Package  
0°C to 70°C  
–40°C to 85°C  
60  
225  
325  
400  
µV  
µV  
µV  
DD, DHC Packages  
0°C to 70°C  
–40°C to 85°C  
150  
650  
700  
750  
µV  
µV  
µV  
TC V  
Input Offset Voltage Drift (Note 7)  
Input Bias Current (Notes 5, 8)  
0.7  
1
2.5  
75  
75  
µV/°C  
OS  
I
pA  
pA  
B
I
OS  
Input Offset Current (Notes 5, 8)  
0.5  
pA  
pA  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
550  
7
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density (Note 9)  
Input Resistance  
10  
nV/√Hz  
fA/√Hz  
Ω
i
0.56  
n
12  
R
Common Mode  
10  
IN  
IN  
C
Input Capacitance  
Differential Mode  
Common Mode  
f = 100kHz (See Typical Characteristic  
Curves)  
0.5  
3
pF  
pF  
V
Input Voltage Range  
Guaranteed by CMRR  
–5  
83  
3.5  
V
CM  
CMRR  
Common Mode Rejection  
–5V ≤ V ≤ 3.5V  
105  
95  
dB  
CM  
CMRR Match  
Channel-to-Channel (Note 6)  
76  
dB  
A
VOL  
Large Signal Voltage Gain  
V = –3.5V to 3.5V  
O
R = 10k  
775  
600  
500  
2700  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
R = 1k  
150  
90  
75  
360  
V/mV  
V/mV  
V/mV  
L
0°C to 70°C  
–40°C to 85°C  
V
V
Output Voltage Swing Low (Note 10)  
Output Voltage Swing High (Note 10)  
No Load  
15  
45  
30  
75  
mV  
mV  
mV  
OL  
I
I
= 1mA  
SINK  
SINK  
= 10mA  
360  
550  
No Load  
15  
45  
360  
30  
75  
550  
mV  
mV  
mV  
OH  
I
I
= 1mA  
SOURCE  
SOURCE  
= 10mA  
62412f  
6
LTC6241/LTC6242  
ELECTRICAL CHARACTERISTICS (LTC6241HV/LTC6242HV) The  
denotes the specifications which apply over  
CM  
the specified temperature range, otherwise specifications are at T = 25°C. V = 5V, 0V, V = 0V unless otherwise noted.  
A
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PSRR  
Power Supply Rejection  
V = 2.8V to 11V, V = 0.2V  
85  
110  
dB  
S
CM  
PSRR Match  
Channel-to-Channel (Note 6)  
82  
2.8  
15  
106  
dB  
V
Minimum Supply Voltage (Note 11)  
Short-Circuit Current  
I
I
35  
mA  
SC  
S
Supply Current per Amplifier  
2.5  
3.2  
3.3  
3.7  
mA  
mA  
mA  
0°C to 70°C  
–40°C to 85°C  
GBW  
SR  
Gain Bandwidth Product  
Slew Rate (Note 12)  
Frequency = 20kHz, R = 1kΩ  
13  
5.5  
18  
10  
MHz  
V/µs  
MHz  
ns  
L
A = –2, R = 1kΩ  
V
L
FPBW  
Full Power Bandwidth (Note 13)  
Settling Time  
V
OUT  
= 3V , R = 1kΩ  
0.58  
1.06  
900  
P-P  
L
t
s
V = 2V, A = 1, R = 1kΩ, 0.1%  
STEP V L  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
is calculated between the matching sides in µV/V. The result is converted  
to dB.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: This parameter is not 100% tested.  
Note 8: This specification is limited by high speed automated test  
capability. See Typical Characteristics curves for actual typical  
Note 3: All versions of the LTC6241/LTC6242 are guaranteed functional  
over the temperature range of –40°C and 85°C.  
performance.  
1/2  
Note 9: Current noise is calculated from the formula: i = (2qI )  
n
B
–19  
Note 4: The LTC6241C/LTC6241HVC, LTC6242C/LTC6242HVC are  
guaranteed to meet specified performance from 0°C to 70°C. They are  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C, but are not tested or QA sampled at these temperatures.  
The LTC6241I/LTC6241HVI, LTC6242I/LTC6242HVI are guaranteed to meet  
specified performance from –40°C to 85°C.  
where q = 1.6 × 10 coulomb. The noise of source resistors up to  
50GΩ dominates the contribution of current noise. See also Typical  
Characteristics curve Noise Current vs Frequency.  
Note 10: Output voltage swings are measured between the output and  
power supply rails.  
Note 11: Minimum supply voltage is guaranteed by the power supply  
Note 5: ESD (Electrostatic Discharge) sensitive device. ESD protection  
devices are used extensively internal to the LTC6241/LTC6242; however,  
high electrostatic discharge can damage or degrade the device. Use proper  
ESD handling precautions.  
rejection ratio test.  
Note 12: Slew rate is measured in a gain of –2 with R = 1k and R  
= 500Ω. On the LTC6241/LTC6242, V is 1V and V  
measured between –1V and +1V. On the LTC6241HV/LTC6242HV, V is  
F
G
slew rate is  
IN  
OUT  
IN  
Note 6: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LTC6242; between the two amplifiers  
of the LTC6241. CMRR and PSRR match are defined as follows: CMRR  
and PSRR are measured in µV/V on the matched amplifiers. The difference  
2V and V  
slew rate is measured between –2V and +2V.  
OUT  
Note 13: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
62412f  
7
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
Temperature Coefficient  
OS  
V
Distribution  
V
OS  
Distribution  
Distribution  
OS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
120  
100  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
V
=
2.5V  
V
=
2.5V  
V = 2.5V  
S
S
S
SO-8 PACKAGE  
DD PACKAGE  
2 LOTS  
–55°C TO 125°C  
6
4
2
0
0
–70 –50 –30 –10 10  
30  
50  
70  
–350 –250 –150 –50 50 150 250 350  
–1.0 –0.6 –0.2 0.2 0.6 1.0 1.4 1.8  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
DISTRIBUTION (µV/°C)  
6241 G01  
6241 G02  
6241 G03  
Offset Voltage vs Input Common  
Mode Voltage  
Input Bias Current vs Common  
Mode Voltage  
Supply Current vs Supply Voltage  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V, 0V  
V
= 5V, 0V  
S
S
T
= 25°C  
A
T = 125°C  
A
T
= 125°C  
= 25°C  
A
T
= –55°C  
A
T
A
T
= 125°C  
A
0
–50  
–100  
–150  
–200  
–250  
–300  
T
= –55°C  
T
= 85°C  
A
A
T
= 25°C  
A
1
8
12  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
INPUT COMMON MODE VOLTAGE (V)  
0
2
4
6
10  
–0.5  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
6241 G06  
6241 G05  
6241 G04  
Input Bias Current vs  
Output Saturation Voltage vs  
Load Current (Output Low)  
Common Mode Voltage  
Input Bias Current vs Temperature  
10  
1
1000  
100  
10  
700  
600  
500  
400  
300  
200  
100  
0
V
= 5V, 0V  
V
= V /2  
S
V
= 5V, 0V  
S
CM  
S
T
= 25°C  
A
T
= 125°C  
A
T
= 25°C  
A
T
= 125°C  
A
V = 10V  
S
0.1  
T
= –55°C  
A
V
= 5V  
S
–100  
–200  
–300  
–400  
0.01  
0.001  
T
= 85°C  
A
1
25 35 45 55 65 75 85 95 105 115 125  
–0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0  
0.1  
1
10  
100  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
LOAD CURRENT (mA)  
6241 G08  
6241 G07  
6241 G09  
62412f  
8
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Saturation Voltage vs  
Load Current (Output High)  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open Loop Gain vs Frequency  
10  
1
70  
60  
50  
40  
30  
80  
120  
100  
80  
V
= 5V, 0V  
C
= 5pF  
= 1k  
C
= 5pF  
= 1k  
CM  
S
L
L
L
L
PHASE  
V
=
5V  
70  
60  
50  
40  
30  
20  
10  
0
R
R
S
V
= V /2  
S
T
= 25°C  
A
60  
PHASE MARGIN  
V
= 5V  
S
V
=
1.5V  
GAIN  
40  
S
T
= 125°C  
A
V
=
1.5V  
5V  
S
40  
30  
20  
10  
0
20  
T
= –55°C  
A
0
V
=
S
0.1  
V
=
5V  
–20  
–40  
–60  
–80  
S
GAIN BANDWIDTH  
V =  
1.5V  
S
V
=
1.5V  
S
–10  
–20  
0.01  
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
6241 G12  
6241 G13  
6241 G10  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Slew Rate vs Temperature  
Output Impedance vs Frequency  
20  
18  
16  
14  
12  
10  
8
10k  
70  
A
= –2  
T = 25°C  
A
V = 2.5V  
S
T
= 25°C  
= 5pF  
= 1k  
V
F
A
L
L
R
= 1k, R = 500Ω  
C
G
60  
50  
40  
CONDITIONS: SEE NOTE 12  
R
1k  
100  
10  
PHASE MARGIN  
V
=
S
5V FALLING  
5V RISING  
S
A
= 10  
V
A = 2  
V
V
=
=
2.5V FALLING  
2.5V RISING  
S
30  
20  
10  
0
V
=
1
A
= 1  
V
V
S
GAIN BANDWIDTH  
0.10  
0.01  
6
4
–55 –35 –15  
5
25 45 65 85 105 125  
0
2
4
6
8
10  
12  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
6241 G15  
6241 G14  
6241 G16  
Common Mode Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
Channel Separation vs Frequency  
0
–10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
= 2.5V  
T
V
A
= 25°C  
T
= 25°C  
= 2.5V  
A
S
A
S
V
A
S
V
=
2.5V  
V
= 1  
–20  
–30  
–40  
–50  
POSITIVE SUPPLY  
–60  
–70  
–80  
–90  
NEGATIVE SUPPLY  
–100  
–110  
–120  
–10  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G19  
6241 G18  
6241 G17  
62412f  
9
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short Circuit Current vs  
Power Supply Voltage  
Input Capacitance vs Frequency  
Minimum Supply Voltage  
50  
40  
16  
14  
12  
10  
8
100  
80  
V
= 1.5V  
V
= V /2  
S
S
CM  
T
= –55°C  
A
SINKING  
30  
60  
C
CM  
T
T
= 125°C  
= 125°C  
A
A
20  
40  
T
A
= 25°C  
A
10  
20  
T
= 25°C  
0
0
A
C
DM  
–10  
–20  
–30  
–40  
–50  
–20  
–40  
–60  
–80  
–100  
T
= –55°C  
6
4
T
= 125°C  
A
SOURCING  
T
= –55°C  
A
2
0
1k  
10k  
100k  
1M  
10M  
100M  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
6
7
8
9
10  
POWER SUPPLY VOLTAGE ( V)  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
6241 G22  
6241 G20  
6241 G21  
Open Loop Gain  
Open Loop Gain  
Open Loop Gain  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
100  
80  
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
S
A
S
V
= 3V, 0V  
V
= 5V, 0V  
V = 5V  
S
60  
40  
60  
R
= 10k  
= 1k  
R
= 100k  
L
L
R
= 10k  
= 1k  
L
20  
40  
R
= 10k  
L
R
L
0
R
L
20  
–20  
–40  
–60  
0
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6241 G23  
6241 G24  
6241 G25  
Noise Voltage vs Frequency  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
60  
50  
40  
30  
20  
10  
0
500  
400  
25  
20  
15  
10  
5
T
A
= 25°C  
2.5V  
= 0V  
V
=
5V  
T = 25°C  
A
S
V
V
=
S
CM  
300  
T
= 125°C  
V
S
=
5V  
A
S
200  
T
= 25°C  
100  
A
V
=
2.5V  
0
T
= –55°C  
A
–100  
–200  
–300  
–400  
–500  
V
=
1.5V  
0
S
–5  
1
10  
100  
1k  
10k  
100k  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
0
5
10 15 20 25 30 35 40 45 50 55 60  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
TIME AFTER POWER UP (s)  
6241 G28  
6241 G26  
6241 G27  
62412f  
10  
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Series Output Resistance and  
Overshoot vs Capacitive Load  
0.1Hz to 10Hz Voltage Noise  
Noise Current vs Frequency  
1000  
100  
10  
60  
V
= 5V, 0V  
T
V
V
= 25°C  
75pF  
S
A
S
=
2.5V  
= 0V  
50  
CM  
1k  
1k  
R
+
S
40  
30  
20  
10  
0
C
L
R
= 10Ω  
S
R
= 50Ω  
S
1
V
A
=
= –1  
2.5V  
S
V
0.1  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
100  
1k  
10k  
100k  
TIME (1s/DIV)  
FREQUENCY (Hz)  
6241 G11  
6241 G42  
6241 G29  
Series Output Resistance and  
Overshoot vs Capacitive Load  
Settling Time vs Output Step  
(Non-Inverting)  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
75pF  
T
V
A
= 25°C  
A
S
V
=
5V  
= 1  
V
+
500Ω  
OUT  
1k  
R
+
S
V
IN  
1k  
C
L
1mV  
R
= 10Ω  
S
R
= 50Ω  
S
1mV  
10mV  
–4 –3 –2 –1  
10mV  
3
V
A
=
= –2  
2.5V  
S
V
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
1
2
4
OUTPUT STEP (V)  
6241 G31  
6241 G30  
Maximum Undistorted Output  
Signal vs Frequency  
Settling Time vs Output Step  
(Inverting)  
10  
9
8
7
6
5
4
3
2
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
V
A
= 25°C  
A
S
V
=
5V  
1k  
= –1  
1k  
+
V
IN  
A
= –1  
V
V
OUT 1k  
A
= +2  
V
1mV  
1mV  
10mV  
T
= 25°C  
A
S
10mV  
V
=
5V  
HD , HD < –40dBc  
2
3
10k  
100k  
1M  
10M  
–4 –3 –2 –1  
0
1
2
3
4
FREQUENCY (Hz)  
OUTPUT STEP (V)  
6241 G33  
6241 G32  
62412f  
11  
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
2.5V  
V
A
V
=
5V  
S
V
S
V
= 1  
= 1  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
R
= 1k, 2ND  
L
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
R
= 1k, 3RD  
L
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G34  
6241 G35  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
2.5V  
V
A
V
=
5V  
S
V
S
V
= 2  
= 2  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
R
= 1k, 2ND  
L
R
= 1k, 2ND  
L
R
= 1k, 3RD  
L
R
= 1k, 3RD  
1M  
L
10k  
100k  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6241 G36  
6241 G37  
62412f  
12  
LTC6241/LTC6242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Small Signal Response  
Large Signal Response  
0V  
0V  
6241 G38  
6241 G39  
V
A
=
2.5V  
V
A
=
5V  
S
V
L
S
V
L
= 1  
= 1  
R
= ∞  
R
= ∞  
Large Signal Response  
Output Overdrive Recovery  
0V  
V
IN  
0V  
(1V/DIV)  
0V  
V
OUT  
(2V/DIV)  
6241 G40  
6241 G41  
V
A
= 2.5V  
= –1  
= 1k  
V
A
=
2.5V  
500ns/DIV  
S
V
L
S
V
L
= 3  
R
R
= ∞  
62412f  
13  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
Amplifier Characteristics  
The amplifier input bias current is the leakage current of  
these ESD diodes. This leakage is a function of the tem-  
perature and common mode voltage of the amplifier, as  
shown in the Typical Performance Curves.  
Figure 1 is a simplified schematic of the LTC6241, which  
has a pair of low noise input transistors M1 and M2. A  
simple folded cascode Q1, Q2 and R1, R2 allow the input  
stage to swing to the negative rail, while performing level  
shift to the Differential Drive Generator. Low offset voltage  
is accomplished by laser trimming the input stage.  
Noise  
The LTC6241 exhibits exceptionally low 1/f noise in the  
0.1Hz to 10Hz region. This 550nV noise allows these  
P-P  
Capacitor C1 reduces the unity cross frequency and im-  
proves the frequency stability without degrading the gain  
bandwidth of the amplifier. Capacitor Cm sets the overall  
amplifier gain bandwidth. The differential drive generator  
supplies signals to transistors M3 and M4 that swing the  
output from rail-to-rail.  
op amps to be used in a wide variety of high impedance  
low frequency applications, where Zero-Drift amplifiers  
might be inappropriate due to their charge injection.  
In the frequency region above 1kHz the LTC6241 also  
show good noise voltage performance. In this frequency  
region, noise can easily be dominated by the total source  
resistance of the particular application. Specifically, these  
amplifiers exhibit the noise of a 3.1kΩ resistor, meaning it  
is desirable to keep the source and feedback resistance at  
The photo of Figure 2 shows the output response to an  
input overdrive with the amplifier connected as a voltage  
follower. If the negative going input signal is less than  
a diode drop below V , no phase inversion occurs. For  
or below this value, i.e. R + R ||R ≤ 3.1kΩ. Above this  
S
G
FB  
input signals greater than a diode drop below V , limit the  
totalsourceimpedance,thenoisevoltageisnotdominated  
current to 3mA with a series resistor R to avoid phase  
S
by the amplifier.  
inversion.  
Noise current can be estimated from the expression i =  
n
–19  
√2qI , where q = 1.6 • 10 coulombs. Equating √4kTRΔf  
andR√2qI Δfshowsthatforsourceresistorsbelow50GΩ  
ESD  
B
B
The LTC6241 has reverse-biased ESD protection diodes  
on all input and outputs as shown in Figure 1. If these  
pins are forced beyond either supply, unlimited current  
will flow through these diodes. If the current is transient  
and limited to one hundred milliamps or less, no damage  
to the device will occur.  
the amplifier noise is dominated by the source resistance.  
See the Typical Characteristics curve Noise Current vs  
Frequency.  
V
=
DD  
+2.5V  
+
V
I
TAIL  
M3  
CM  
V
+
V
+
V
V
=
SS  
–2.5V  
DESD1  
+
DESD2  
DESD4  
DESD5  
DIFFERENTIAL  
DRIVE  
GENERATOR  
V
O
V
M1  
M2  
IN  
V
OUT  
AND V OF FOLLOWER WITH LARGE INPUT OVERDRIVE  
IN  
V
IN  
DESD6  
C1  
+2.5V  
V
R
S
DESD3  
V
Q1  
Q2  
+
BIAS  
M4  
1/2  
LTC6241  
V
+
V
V
OUT  
V
IN  
R1  
R2  
–2.5V  
V
6241 F02  
6241 F01  
Figure 2. Unity Gain Follower Test Circuit  
Figure 1. Simplified Schematic  
62412f  
14  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
Proprietary design techniques are used to obtain simul-  
taneous low 1/f noise and low input capacitance. Low  
input capacitance is important when the amplifier is used  
with high source and feedback resistors. High frequency  
Half the Noise  
The circuit shown in Figure 3 can be used to achieve even  
lower noise voltage. By paralleling 4 amplifiers the noise  
voltage can be lowered by √4, or half as much noise. The  
√ comes about from an RMS summing of uncorrelated  
noise sources. This circuit maintains extremely high input  
resistance, and has a 250Ω output resistance. For lower  
output resistance, a buffer amplifier can be added without  
influencing the noise.  
noise from the amplifier tail current source, I  
in Fig-  
TAIL  
ure 1, couples through the input capacitance and appears  
across these large source and feedback resistors. As an  
example, the photodiode amplifier of Figure 11 on the last  
page of this data sheet shows the noise results from the  
LTC6241 and the results of a competitive CMOS amplifier.  
The LTC6241 output is the ideal noise of a 1MΩ resistor  
at room temperature, 130nV√Hz.  
Stability  
The good noise performance of these op amps can be at-  
tributedtolargeinputdevicesinthedifferentialpair.Above  
several hundred kilohertz, the input capacitance rises and  
can cause amplifier stability problems if left unchecked.  
+2.5  
+
1k  
1/4  
LTC6242  
When the feedback around the op amp is resistive (R ), a  
F
pole will be created with R , the source resistance, source  
F
–2.5  
capacitance (R , C ), and the amplifier input capacitance.  
S
S
1k  
In low gain configurations and with R and R in even  
10Ω  
F
S
the kilohm range (Figure 4), this pole can create excess  
phase shift and possibly oscillation. A small capacitor C  
F
+
in parallel with R eliminates this problem.  
1k  
F
1/4  
LTC6242  
Low Noise Single-Ended Input to Differential Output  
Amplifier  
V
V
O
IN  
1k  
The circuit on the first page of the data sheet is a low noise  
single-ended input to differential output amplifier, with a  
200k input impedance. The very low input bias current  
of the LTC6241 allows for these large input and feedback  
resistors. The 200k resistors, R1 and R2, along with C1  
and C2 set the –3dB bandwidth to 80kHz. Capacitor C3 is  
used to cancel effects of input capacitance, while C4 adds  
10Ω  
10Ω  
10Ω  
+
1k  
1/4  
LTC6242  
1k  
C
F
R
F
+
1k  
1/4  
LTC6242  
+
C
IN  
OUTPUT  
R
C
S
S
6241 F04  
1k  
Figure 4. Compensating Input Capacitance  
6241 F03  
Figure 3. Parallel Amplifier Lowers Noise by 2x  
62412f  
15  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
gain of the difference amplifier is one. An LTC6910-2 PGA  
amplifies the difference amplifier output with inverting  
gains of –1, –2, –4, –8, –16, –32 and –64. The second  
LTC6241 op amp is used as an integrator to set the DC  
phase lead to compensate the phase lag of the second  
amplifier. The op amp’s good input offset voltage match  
andlowinputbiascurrentmeansthatthetypicaldifferential  
output voltage is less than 40µV. A noise spectrum plot of  
the differential output is shown in Figure 5.  
output voltage equal to the LT6650 reference voltage V  
.
REF  
The integrator drives the PGA analog ground to provide  
a feedback loop, in addition to blocking any DC voltage  
through the PGA. The reference voltage of the LT6650  
140  
V
T
=
2.5V  
S
A
= 25°C  
120  
100  
80  
60  
40  
20  
0
–3dB BW = 80kHz  
+
can be set to a voltage from 400mV to V – 350mV with  
resistors R5 and R6. If R6 is 20k or less, the error due  
to the LT6650 op amp bias current is negligible. The low  
voltage offset and drift of the LTC6241 integrator will not  
contribute any significant error to the LT6650 reference  
voltage. The LT6650 V  
voltage has a maximum error  
REF  
+
R3  
V
G2 G1 G0  
0
10 20 30 40 50 60 70 80 90 100  
0.1µF  
FREQUENCY (kHz)  
C1  
8
7
6
5
R1  
6241 F05  
V1  
LTC6910-2  
OUT AGND IN  
Figure 5. Differential Output Noise  
V
4
+
1
2
3
1/2  
LTC6241  
Achieving Low Input Bias Current  
V
OUT  
100Ω  
R7  
R2  
C2  
R4  
C3  
The DD package is leadless and makes contact to the PCB  
beneath the package. Solder flux used during the attach-  
ment of the part to the PCB can create leakage current  
paths and can degrade the input bias current performance  
ofthepart. Allinputsaresusceptiblebecausethebackside  
paddle is connected to V internally. As the input voltage  
changes or if V changes, a leakage path can be formed  
and alter the observed input bias current. For lowest bias  
current, use the LTC6241 in the SO-8 and provide a guard  
ring around the inputs that are tied to a potential near the  
input voltage.  
V2  
+
V
R1 = R2 = R3 = R4  
0.1µF  
R5  
+
1/2  
LTC6241  
1000pF  
R6  
20k  
1
5
4
LT6650  
V
REF  
2
1µF  
1µF  
1k  
3
+
V
A Digitally Programmable AC Difference Amplifier  
DIGITAL INPUTS GAIN  
G2 G1 GO  
V
V
= (V1 – V2) GAIN + V  
REF  
OUT  
The LTC6241 configured as a difference amplifier, can  
be combined with a programmable gain amplifier (PGA)  
to obtain a low noise high speed programmable differ-  
ence amplifier. Figure 6 shows the LTC6241 based as a  
single-supply AC amplifier. One LTC6241 op amp is used  
at the circuit’s input as a standard four resistor difference  
amplifier. The low bias current and current noise of the  
LTC6241allowtheuseofhighvaluedinputresistors, 100k  
or greater. Resistors R1, R2, R3 and R4 are equal and the  
R5  
R6  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
= 0.4•  
+ 1  
REF  
–1  
–2  
R5 =10k • 5• V – 2 R6 = 20k  
(
)
REF  
–4  
–3d BANDWIDTH =  
1
f
– f  
LOW  
(
)
HIGH  
–8  
–16  
–32  
–64  
GAIN  
f
=
f
=
HIGH  
LOW  
2• π R3C1  
2 • π R7 C3  
6241 F06  
Figure 6. Wideband Difference Amplifier with High  
Input Impedance and Digitally Programmable Gain  
62412f  
16  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
of 2% with 1% resistors. The upper –3dB frequency of  
the amplifier is set by resistor R3 and capacitor C1 and  
is limited by the bandwidth of the PGA when operated at  
a gain of 64. Capacitor C2 is equal to C1 and is added to  
maintain good common mode rejection at high frequency.  
The lower –3dB frequency is set by the integrator resistor  
R7, capacitor C3, and the gain setting of the LTC6910-2  
PGA. This lower –3dB zero frequency is multiplied by the  
PGA gain. The rail-to-rail output of the LTC6910-2 PGA  
allows for a maximum output peak-to-peak voltage equal  
40nVpp Noise, 0.05µV/°C Drift, Chopped FET  
Amplifier  
Figure 7’s circuit combines the 5V rail-to-rail performance  
of the LTC6241 with a pair of extremely low noise JFETs  
configured in a chopper based carrier modulation scheme  
to achieve an extraordinarily low noise and low DC drift.  
The performance of this circuit is suited for the demand-  
ing transducer signal conditioning situations such as high  
resolution scales and magnetic search coils.  
The LTC1799’s output is divided down to form a 2-phase  
925Hz square wave clock. This frequency, harmonically  
unrelatedto60Hz,providesexcellentimmunitytoharmonic  
beating or mixing effects which could cause instabilities.  
S1 and S2 receive complementary drive, causing A1 to  
see a chopped version of the input voltage. A1’s square  
wave output is synchronously demodulated by S3 and  
S4. Because these switches are synchronously driven  
with the input chopper, proper amplitude and polarity  
information is presented to A2, the DC output amplifier.  
This stage integrates the square wave into a DC voltage,  
providing the output. The output is divided down (R2 and  
R1) and fed back to the input chopper where it serves as  
a zero signal reference. Gain, in this case 1000, is set by  
the R1-R2 ratio. Because A1 is AC coupled, its DC offset  
and drift do not affect the overall circuit offset, resulting  
in the extremely low offset and drift noted. The JFETs  
have an input RC damper that minimizes offset voltage  
contribution due to parasitic switch behavior, resulting in  
the 1µV offset specification.  
to twice the V voltage. At the maximum gain setting of  
REF  
64, the maximum peak-to-peak difference between inputs  
V1 and V2 is equal to twice V divided by 64.  
REF  
Example Design: Design a programmable gain AC differ-  
ence amplifier, with a bandwidth 10Hz to 100kHz, an input  
impedance equal or greater than 100kΩ, and an output  
DC reference equal to 1V.  
a. Select input resistors R1, R2, R3 and R4 equal to  
100k.  
b. If the upper –3dB frequency is 100kHz then C1 = 1/(2π  
• R2 • f3dB) = 1/(6.28 • 100kΩ • 100kHz) = 15pF (to  
the nearest 5% value) and C2 = C1 = 15pF.  
c. Select R7 equal to one 1M and set the lower –3dB  
frequency to 10Hz at the highest PGA gain of 64, then  
C3 = Gain/(2π • R7 • f3dB) = 64/(6.28 • 100kΩ • 10Hz)  
= 1uF. Lower gains settings will give a lower f3dB.  
d. Calculate the value of R5 to set the LT6650 reference  
equal to 1V;  
The noise measured over a 50 second interval, in Figure 8,  
is 40nV in a 0.1Hz to 10Hz bandwidth.This low noise is at-  
tributed to the input JFET’s die size and current density.  
V
= 0.4(R5/R6 + 1), so R5 = R6(2.5V  
– 1). For  
REF  
REF  
R6 = 20kΩ, R5 = 30kΩ  
With V = 1V the maximum input difference voltage  
is equal to 2V/64 = 31.2mV.  
REF  
62412f  
17  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
5V  
–5V  
+
TO LTC201 V PIN  
TO LTC201 V PIN  
1µF  
1µF  
+
5V  
5V  
18.5kHz  
+
V
74C90 ÷ 10  
74C74 ÷ 2  
DIV  
OUT  
5V  
LTC1799  
R
SET  
Q
Q
925Hz  
54.2k*  
TO  
Ø1  
TO  
Ø2  
5V  
Ø1  
POINTS POINTS  
8
898**  
898**  
3k  
6
7
INPUT  
Ø2  
S1  
S2  
0.01µF  
1µF  
1
LSK389  
1µF  
11  
10  
A1  
3
2
9
LTC6241HV  
S3  
S4  
240k  
499**  
–5V  
Ø2  
+
10M  
10k  
A2  
OUTPUT  
LTC6241HV  
14  
15  
16  
Ø1  
+
R2  
10k  
1µF  
* = 0.1% METAL FILM RESISTOR  
** = 1% METAL FILM RESISTOR  
NOISE = 40nV 0.1Hz TO 10Hz  
P-P  
R1  
OFFSET = 1µV  
DRIFT = 0.05µV/°C  
R2  
10Ω  
= LTC201 QUAD  
=
+1  
GAIN  
10  
= LSK389  
= LINEAR INTEGRATED SYSTEMS  
FREMONT, CA  
9
OPEN-LOOP GAIN = 10  
= 500pA  
I
6241 F07  
BIAS  
Figure 7. Ultra Low Noise Chopper Amplifier  
VERT = 20nV/DIV  
HORIZ = 5s/DIV  
6241 F08  
Figure 8. Noise in a 0.1Hz to 10Hz Bandwidth  
62412f  
18  
LTC6241/LTC6242  
U
W U U  
APPLICATIO S I FOR ATIO  
Low Noise Shock Sensor Amplifiers  
accelerometerswherethecablelengthmayvary.Difficulties  
with the circuit are inaccuracy of the gain setting with the  
small capacitor, and low frequency cutoff due to the bias  
resistor working into the small feedback capacitor.  
Figures 9 and 10 show the LTC6241 realizing two different  
approachestoamplifyingsignalsfromacapacitivesensor.  
The sensor in both cases is a 770pF piezoelectric shock  
sensor accelerometer, which generates charge under  
physical acceleration.  
Figure 10 shows a non-inverting amplifier approach. This  
approach has many advantages. First of all, the gain is set  
accurately with resistors rather than with a small capaci-  
tor. Second, the low frequency cutoff is dictated by the  
bias resistor working into the large 770pF sensor, rather  
than into a small feedback capacitor, for lower frequency  
response. Third, the non-inverting topology can be paral-  
leled and summed (as shown) for scalable reductions in  
voltage noise. The only drawback to this circuit is that the  
parasiticcapacitanceattheinputreducesthegainslightly.  
This circuit is favored in cases where parasitic input  
capacitances such as traces and cables will be relatively  
small and invariant.  
Figure 9 shows the classical “charge amplifier” approach.  
TheLTC6241isintheinvertingconfigurationsothesensor  
looks into a virtual ground. All of the charge generated  
by the sensor is forced across the feedback capacitor  
by the op amp action. Because the feedback capacitor  
is 100 times smaller than the sensor, it will be forced to  
100 times what would have been the sensor’s open circuit  
voltage. So the circuit gain is 100. The benefit of this ap-  
proach is that the signal gain of the circuit is independent  
of any cable capacitance introduced between the sensor  
and the amplifier. Hence this circuit is favored for remote  
+
V
S
+
1/2  
LTC6241HV  
SHOCK SENSOR  
MURATA-ERIE  
PKGS-00LD  
770pF  
+
1k  
1k  
1/2  
LTC6241  
100Ω  
10k  
SHOCK SENSOR  
MURATA-ERIE  
PKGS-00LD  
770pF  
V
OUT  
C
7.7pF  
V
= 110mV/g  
OUT  
f
1G  
+
BIAS RESISTOR  
1/2  
VISHAY-TECHNO  
CRHV2512AF1007G  
(OR EQUIVALENT)  
LTC6241HV  
MAIN  
R
1G  
GAIN-SETTING  
ELEMENT IS A  
CAPACITOR  
f
V
V
= 110mV/g  
CABLE HAS  
UNKNOWN C  
OUT  
=
S
1.4V to 5.5V  
V
S
BW = 0.2Hz to 10kHz  
BIAS RESISTOR  
VISHAY-TECHNO  
CRHV2512AF1007G  
(OR EQUIVALENT)  
100Ω  
10k  
6241 F09  
6241 F10  
Figure 9. Classical Inverting Charge Amplifier  
Figure 10. Low Noise Non-Inverting Shock Sensor Amplifier  
62412f  
19  
LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706)  
0.65 0.05  
3.50 0.05  
1.65 0.05  
2.20 0.05 (2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
4.40 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
4.40 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
62412f  
20  
LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.150 – .165  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
62412f  
21  
LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 0.10  
TYP  
5
8
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
62412f  
22  
LTC6241/LTC6242  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
62412f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC6241/LTC6242  
U
TYPICAL APPLICATIO  
1MTIA  
150kHz 3RD ORDER BUTTERWORTH FILTER  
+1.5V  
R1  
R2  
1.69k  
R3  
2k  
C2  
+
866Ω  
1500pF  
1/2  
LTC6241  
+
1/2  
LTC6241  
C1  
1500pF  
C3  
180pF  
R
F
1MΩ  
SFH213FA  
OR EQUIVALENT  
(4pF)  
–1.5V  
6241 TA02a  
C
F
–1.5V  
1pF  
Figure 11. Ultralow Noise 1MΩ 150kHz Photodiode Amplifier  
LTC6241 Output Noise Spectrum. 1MΩ Resistor Noise  
Competition Output Noise Spectrum. Op Amp Noise Dominates;  
Performance Compromised  
Dominates; Ideal Performance  
0V  
0V  
1kHz  
10kHz/DIV  
101kHz  
1kHz  
10kHz/DIV  
101kHz  
6241 TA02b  
6241 TA02c  
RELATED PARTS  
PART NUMBER  
LTC1151  
DESCRIPTION  
15V Zero-Drift Op Amp  
COMMENTS  
Dual High Voltage Operation 18V  
6nV/√Hz Noise, 15V Operation  
2.7 Volt Operation, SOT-23  
LT1792  
Low Noise Precision JFET Op Amp  
Zero-Drift Op Amp  
LTC2050  
LTC2051/LTC2052  
LTC2054/LTC2055  
Dual/Quad Zero-Drift Op Amp  
Single/Dual Zero-Drift Op Amp  
Dual/Quad Version of LTC2050 in MS8/GN16 Packages  
Micropower Version of the LTC2050/LTC2051 in SOT-23 and DD Packages  
62412f  
LT/TP 0605 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6241HVHS8

Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps
Linear

LTC6241HVHS8#PBF

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6241HVHS8#TR

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6241HVHS8#TRPBF

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6241HVIDD

Dual/Quad 18MHz, Low Noise, Rail-to-Rail, CMOS Op Amps
Linear

LTC6241HVIS8

Dual/Quad 18MHz, Low Noise, Rail-to-Rail, CMOS Op Amps
Linear

LTC6241HVIS8#TR

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6241HVIS8#TRMPBF

IC DUAL OP-AMP, 325 uV OFFSET-MAX, 18 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOP-8, Operational Amplifier
Linear

LTC6241IDD

Dual/Quad 18MHz, Low Noise, Rail-to-Rail, CMOS Op Amps
Linear

LTC6241IDD#PBF

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6241IDD#TR

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6241IDD#TRPBF

LTC6241 - Dual 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amp; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear