LTC5530 [Linear]

400MHz to 3.7GHz High Signal Level Downconverting Mixer; 400MHz到3.7GHz的高信号电平下变频混频器
LTC5530
型号: LTC5530
厂家: Linear    Linear
描述:

400MHz to 3.7GHz High Signal Level Downconverting Mixer
400MHz到3.7GHz的高信号电平下变频混频器

文件: 总16页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5527  
400MHz to 3.7GHz  
High Signal Level  
Downconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5527 active mixer is optimized for high linearity,  
wide dynamic range downconverter applications. The IC  
includes a high speed differential LO buffer amplifier  
driving a double-balanced mixer. Broadband, integrated  
transformers on the RF and LO inputs provide single-  
ended 50interfaces. The differential IF output allows  
convenient interfacing to differential IF filters and amplifi-  
ers, or is easily matched to drive 50single-ended, with  
or without an external transformer.  
50  
Single-Ended RF and LO Ports  
Wide RF Frequency Range: 400MHz to 3.7GHz*  
High Input IP3: 24.5dBm at 900MHz  
23.5dBm at 1900MHz  
Conversion Gain: 3.2dB at 900MHz  
2.3dB at 1900MHz  
Integrated LO Buffer: Low LO Drive Level  
High LO-RF and LO-IF Isolation  
Low Noise Figure: 11.6dB at 900MHz  
12.5dB at 1900MHz  
Very Few External Components  
Enable Function  
4.5V to 5.25V Supply Voltage Range  
The RF input is internally matched to 50from 1.7GHz to  
3GHz, and the LO input is internally matched to 50from  
1.2GHz to 5GHz. The frequency range of both ports is  
easily extended with simple external matching. The IF  
output is partially matched and usable for IF frequencies  
up to 600MHz.  
16-Lead (4mm ×U4mm) QFN Package  
APPLICATIO S  
The LT5527’s high level of integration minimizes the total  
solution cost, board space and system-level variation.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over a wider frequency range is possible with reduced performance. Consult factory for  
information and assistance.  
Cellular, WCDMA, TD-SCDMA and UMTS  
Infrastructure  
GSM900/GSM1800/GSM1900 Infrastructure  
900MHz/2.4GHz/3.5GHz WLAN  
MMDS, WiMAX  
High Linearity Downmixer Applications  
U
TYPICAL APPLICATIO  
High Signal Level Downmixer for Multi-Carrier Wireless Infrastructure  
1.9GHz Conversion Gain, IIP3, SSB NF and  
LO-RF Leakage vs LO Power  
LO INPUT  
–3dBm (TYP)  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
IIP3  
LT5527  
IF = 240MHz  
LOW SIDE LO  
T
= 25°C  
A
CC  
4.7pF  
V
= 5V  
+
100nH  
IF  
IF  
SSB NF  
1nF  
IF  
220nH  
100nH  
OUTPUT  
240MHz  
LO-RF  
4.7pF  
RF  
RF  
INPUT  
6
4
G
C
BIAS  
EN  
2
–9  
–7  
–5  
–3  
–1  
1
3
V
V
CC1  
GND  
CC2  
LO POWER (dBm)  
5V  
5527 TA01b  
1nF  
1µF  
5527 TA01a  
5527f  
1
LT5527  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Supply Voltage (VCC1, VCC2, IF+, IF) ...................... 5.5V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO Input Power (380MHz to 4GHz) .................. +10dBm  
LO Input DC Voltage ............................ –1V to VCC + 1V  
RF Input Power (400MHz to 4GHz) .................. +12dBm  
RF Input DC Voltage ............................................ ±0.1V  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 125°C  
Junction Temperature (TJ)................................... 125°C  
TOP VIEW  
ORDER PART  
NUMBER  
16 15 14 13  
NC  
NC  
RF  
NC  
1
2
3
4
12 GND  
LT5527EUF  
+
11 IF  
17  
IF  
10  
9
GND  
5
6
7
8
UF PART MARKING  
5527  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, unless otherwise specified. Test circuit shown in Figure 1. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
4.5  
5
5.25  
V DC  
Supply Current  
V
V
(Pin 7)  
23.2  
2.8  
52  
mA  
mA  
mA  
mA  
CC1  
(Pin 6)  
CC2  
+
IF + IF (Pin 11 + Pin 10)  
Total Supply Current  
60  
88  
78  
Enable (EN) Low = Off, High = On  
Shutdown Current  
EN = Low  
100  
µA  
V DC  
V DC  
µA  
Input High Voltage (On)  
Input Low Voltage (Off)  
EN Pin Input Current  
Turn-ON Time  
3
0.3  
90  
EN = 5V DC  
50  
3
µs  
Turn-OFF Time  
3
µs  
AC ELECTRICAL CHARACTERISTICS  
Test circuit shown in Figure 1. (Notes 2, 3)  
MIN  
PARAMETER  
CONDITIONS  
TYP  
MAX  
UNITS  
RF Input Frequency Range  
No External Matching (Midband)  
With External Matching (Low Band or High Band)  
1700 to 3000  
MHz  
MHz  
400  
380  
3700  
LO Input Frequency Range  
No External Matching  
With External Matching  
1200 to 3500  
MHz  
MHz  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
Requires Appropriate IF Matching  
0.1 to 600  
>10  
MHz  
dB  
Z = 50, 1700MHz to 3000MHz  
O
Z = 50, 1200MHz to 3400MHz  
O
>12  
dB  
Differential at 240MHz  
407||2.5pF  
R||C  
1200MHz to 3500MHz  
380MHz to 1200MHz  
–8  
–5  
–3  
0
2
5
dBm  
dBm  
5527f  
2
LT5527  
AC ELECTRICAL CHARACTERISTICS  
IF output measured at 240MHz, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
Standard Downmixer Application: VCC = 5V, EN = High, TA = 25°C,  
PRF = 5dBm (–5dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – fIF, PLO = –3dBm (0dBm for 450MHz and 900MHz tests),  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
RF = 1900MHz  
RF = 2200MHz  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
2.5  
3.4  
2.3  
2.3  
2.0  
1.8  
0.3  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = 40°C to 85°C, RF = 1900MHz  
–0.018  
dB/°C  
A
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
RF = 1900MHz  
RF = 2200MHz  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
23.2  
24.5  
24.2  
23.5  
22.7  
20.8  
18.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Single-Sideband Noise Figure  
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
RF = 1900MHz  
RF = 2200MHz  
13.3  
11.6  
12.1  
12.5  
13.2  
13.9  
16.1  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
LO to RF Leakage  
f
f
= 400MHz to 2100MHz  
= 2100MHz to 3200MHz  
–44  
–36  
dBm  
dBm  
LO  
LO  
LO to IF Leakage  
f
f
= 400MHz to 700MHz  
= 700MHz to 3200MHz  
–40  
–50  
dBm  
dBm  
LO  
LO  
RF to LO Isolation  
f
f
= 400MHz to 2200MHz  
= 2200MHz to 3700MHz  
>43  
>38  
dB  
dB  
RF  
RF  
RF to IF Isolation  
f
f
= 400MHz to 800MHz  
= 800MHz to 3700MHz  
>42  
>54  
dB  
dB  
RF  
RF  
2RF-2LO Output Spurious Product  
900MHz: f = 830MHz at –5dBm, f = 140MHz  
–60  
–65  
dBc  
dBc  
RF  
IF  
(f = f + f /2)  
1900MHz: f = 1780MHz at –5dBm, f = 240MHz  
RF  
LO  
IF  
RF IF  
3RF-3LO Output Spurious Product  
(f = f + f /3)  
900MHz: f = 806.67MHz at –5dBm, f = 140MHz  
–73  
–63  
dBc  
dBc  
RF  
IF  
1900MHz: f = 1740MHz at –5dBm, f = 240MHz  
RF  
LO  
IF  
RF  
IF  
Input 1dB Compression  
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1900MHz  
9.5  
8.9  
9.0  
dBm  
dBm  
dBm  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: 450MHz, 900MHz and 3500MHz performance measured with  
Note 4: SSB Noise Figure measurements performed with a small-signal  
noise source and bandpass filter on RF input, and no other RF signal  
applied.  
external LO and RF matching. See Figure 1 and Applications Information.  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
5527f  
3
LT5527  
W U  
Midband (No external RF/LO matching)  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, f = 1MHz), PLO = –3dBm, IF output measured at 240MHz,  
unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
LO Leakage vs LO Frequency  
RF Isolation vs RF Frequency  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
24  
22  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
T
= 25°C  
LO  
A
A
P
IIP3  
= –3dBm  
LO-RF  
RF-LO  
SSB NF  
LO-IF  
T
= 25°C  
A
RF-IF  
IF = 240MHz  
LOW SIDE LO  
HIGH SIDE LO  
6
4
G
C
2
0
1200  
1800 2100 2400 2700 3000  
LO FREQUENCY (MHz)  
1500  
1700  
1900  
2300  
RF FREQUENCY (MHz)  
2500  
2700  
1700  
1900  
2100  
2300  
2500  
2700  
2100  
RF FREQUENCY (MHz)  
5527 G02  
5527 G03  
5527 G01  
Conversion Gain and IIP3  
vs Temperature (Low Side LO)  
Conversion Gain and IIP3  
vs Temperature (High Side LO)  
1900MHz Conversion Gain, IIP3  
and NF vs Supply Voltage  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
9
8
7
6
5
4
3
2
1
0
24  
22  
20  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
9
8
7
6
5
4
3
2
1
0
IIP3  
IIP3  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
18  
16  
14  
25°C  
85°C  
IF = 240MHz  
1700MHz  
1900MHz  
2200MHz  
IF = 240MHz  
12  
10  
8
1700MHz  
1900MHz  
2200MHz  
SSB NF  
6
G
C
4
G
G
C
C
2
0
5
–50 –25  
25  
50  
75  
100  
4.5  
4.75  
5.25  
5.5  
0
–50 –25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
5527 G05  
5527 G06  
5527 G04  
1700MHz Conversion Gain, IIP3  
and NF vs LO Power  
1900MHz Conversion Gain, IIP3  
and NF vs LO Power  
2200MHz Conversion Gain, IIP3  
and NF vs LO Power  
24  
25  
23  
21  
19  
17  
15  
13  
11  
9
24  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
25°C  
25°C  
85°C  
SSB NF  
SSB NF  
85°C  
SSB NF  
LOW SIDE LO  
IF = 240MHz  
–40°C  
25°C  
6
7
6
85°C  
G
C
G
C
4
5
4
G
C
2
3
2
0
1
0
–9  
–5  
–3  
–1  
1
3
–7  
–9  
–5  
–3  
–1  
1
3
–9  
–5  
–3  
–1  
1
3
–7  
–7  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5527 G09  
5527 G07  
5527 G08  
5527f  
4
LT5527  
W U  
Midband (No external RF/LO matching)  
VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, f = 1MHz), PLO = –3dBm, IF output measured at 240MHz,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
unless otherwise noted. Test circuit shown in Figure 1.  
IF Output Power, IM3 and IM5 vs  
RF Input Power (2 Input Tones)  
IFOUT, 2 × 2 and 3 × 3 Spurs  
2 × 2 and 3 × 3 Spurs  
vs RF Input Power (Single Tone)  
vs LO Power (Single Tone)  
10  
0
15  
5
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
T
= 25°C  
A
LO = 1660MHz  
IF = 240MHz  
IF  
3RF-3LO  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–5  
(RF = 1740MHz)  
IF  
OUT  
(RF = 1900MHz)  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
T
= 25°C  
A
2RF-2LO  
(RF = 1780MHz)  
RF1 = 1899.5MHz  
RF2 = 1900.5MHz  
LO = 1660MHz  
3RF-3LO  
(RF = 1740MHz)  
2RF-2LO  
(RF = 1780MHz)  
T
= 25°C  
A
IM3  
LO = 1660MHz  
IF = 240MHz  
P
= –5dBm  
IM5  
RF  
–21  
–15 –12 –9  
–6  
–3  
0
–18  
–9 –6  
3
6
–9  
–7  
–3  
–1  
1
3
–18 –15 –12  
–3  
0
9
12  
–5  
RF INPUT POWER (dBm/TONE) 5527 G10  
LO INPUT POWER (dBm)  
5527 G12  
5527 G11  
RF INPUT POWER (dBm)  
High Band (3500MHz application with external RF matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests,  
f = 1MHz), low side LO, PLO = –3dBm, IF output measured at 380MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and SSB  
NF vs RF Frequency  
3500MHz Conversion Gain, IIP3  
and SSB NF vs LO Power  
LO Leakage and RF-LO Isolation  
vs LO and RF Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
60  
50  
40  
30  
20  
10  
20  
18  
16  
14  
12  
10  
8
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
SSB NF  
SSB NF  
LO-RF  
LOW SIDE LO  
IF = 380MHz  
LOW SIDE LO  
IF = 380MHz  
= 25°C  
RF-LO  
T
T
= 25°C  
A
A
7
6
5
4
3
LO-IF  
G
C
2
1
G
C
0
–1  
3200  
3400  
3600  
3000  
3800  
3300  
3400  
3500  
3600  
3700  
–9  
–7  
–3  
–1  
1
3
–5  
5527 G15  
5527 G13  
LO/RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5527 G14  
Low Band (450MHz application with external RF/LO matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests,  
f = 1MHz), PLO = 0dBm, IF output measured at 140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
450MHz Conversion Gain,  
IIP3 and NF vs LO Power  
LO Leakage vs LO Frequency  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–30  
24  
22  
20  
T
= 25°C  
LO  
A
P
= 0dBm  
IIP3  
IIP3  
HIGH SIDE LO  
IF = 140MHz  
–40°C  
25°C  
85°C  
HIGH SIDE LO  
T
= 25°C  
LO-IF  
(450MHz APP)  
A
18  
16  
14  
LO-RF  
(900MHz APP)  
IF = 140MHz  
–40  
–50  
SSB NF  
SSB NF  
12  
10  
8
LO-RF  
(450MHz APP)  
–60  
–70  
–80  
LO-IF  
(900MHz APP)  
6
6
G
C
4
4
2
2
G
C
0
0
450  
–6  
–2  
0
2
4
6
400  
600  
800  
1000  
1200  
400  
425  
475  
500  
–4  
5527 G19  
LO INPUT POWER (dBm)  
5527 G20  
LO FREQUENCY (MHz)  
5527 G18  
RF FREQUENCY (MHz)  
5527f  
5
LT5527  
W U  
Low Band (900MHz application with external  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
RF/LO matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, f = 1MHz), PLO = 0dBm, IF output measured at  
140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF vs  
900MHz Conversion Gain, IIP3 and  
NF vs LO Power (Low Side LO)  
IFOUT, 2 × 2 and 3 × 3 Spurs  
RF Frequency (900MHz Low Side  
Application)  
vs RF Input Power (Single Tone)  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
10  
25  
23  
21  
19  
17  
15  
13  
11  
9
T
= 25°C  
A
IIP3  
LO = 760MHz  
IF = 140MHz  
IIP3  
LOW SIDE LO  
IF = 140MHz  
–40°C  
0
IF  
LOW SIDE LO  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
(RF = 900MHz)  
T
= 25°C  
A
25°C  
IF = 140MHz  
85°C  
SSB NF  
2RF-2LO  
(RF = 830MHz)  
SSB NF  
7
7
G
C
3RF-3LO  
(RF = 806.67MHz)  
5
5
G
C
3
3
1
1
–6  
–2  
0
2
4
6
–4  
–18 –15 –12 –9 –6 –3  
0
3
6
9
12  
750  
850  
900  
950  
1000 1050  
800  
LO INPUT POWER (dBm)  
5527 G22  
RF FREQUENCY (MHz)  
5527 G21  
5527 G23  
RF INPUT POWER (dBm)  
Conversion Gain, IIP3 and NF vs  
RF Frequency (900MHz High Side  
Application)  
900MHz Conversion Gain, IIP3 and  
NF vs LO Power (High Side LO)  
2 × 2 and 3 × 3 Spurs  
vs LO Power (Single Tone)  
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
T
= 25°C  
A
IIP3  
LO = 760MHz  
IF = 140MHz  
IIP3  
HIGH SIDE LO  
IF = 140MHz  
–40°C  
P
= –5dBm  
HIGH SIDE LO  
RF  
T
= 25°C  
A
2RF-2LO  
(RF = 830MHz)  
IF = 140MHz  
25°C  
85°C  
SSB NF  
SSB NF  
3RF-3LO  
(RF = 806.67MHz)  
7
7
G
C
5
5
G
C
3
3
1
1
750  
850  
900  
950  
1000 1050  
–6  
–2  
0
2
4
6
–6  
–4  
0
2
4
6
800  
–4  
–2  
RF FREQUENCY (MHz)  
5527 G24  
LO INPUT POWER (dBm)  
5527 G25  
LO INPUT POWER (dBm)  
5527 G26  
W U  
Test circuit shown in Figure 1.  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Shutdown Current vs Supply Voltage  
82  
81  
80  
79  
78  
76  
75  
74  
73  
72  
71  
100  
10  
1
85°C  
60°C  
25°C  
0°C  
–40°C  
85°C  
60°C  
25°C  
0°C  
–40°C  
0.1  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
5527 G16  
SUPPLY VOLTAGE (V)  
5527 G17  
SUPPLY VOLTAGE (V)  
5527f  
6
LT5527  
U
U
U
PI FU CTIO S  
NC(Pins 1, 2, 4, 8, 13, 14, 16): Not Connected Internally.  
These pins should be grounded on the circuit board for  
improved LO-to-RF and LO-to-IF isolation.  
be externally connected to the VCC2 pin and decoupled  
with 1000pF and 1µF capacitors.  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the backside ground for improved isolation.  
They should be connected to the RF ground on the circuit  
board, although they are not intended to replace the  
primary grounding through the backside contact of the  
package.  
IF, IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center tap.  
RF (Pin 3): Single-Ended Input for the RF Signal. This pin  
is internally connected to the primary side of the RF input  
transformer,whichhaslowDCresistancetoground.Ifthe  
RF source is not DC blocked, then a series blocking  
capacitormustbeused.TheRFinputisinternallymatched  
from 1.7GHz to 3GHz. Operation down to 400MHz or up to  
3700MHz is possible with simple external matching.  
EN (Pin 5): Enable Pin. When the input enable voltage is  
higherthan3V, themixercircuitssuppliedthroughPins6,  
7, 10 and 11 are enabled. When the input voltage is less  
than 0.3V, all circuits are disabled. Typical input current is  
50µAforEN=5Vand0µAwhenEN=0V.TheENpinshould  
not be left floating. Under no conditions should the EN pin  
voltage exceed VCC + 0.3V, even at start-up.  
LO (Pin 15): Single-Ended Input for the Local Oscillator  
Signal. This pin is internally connected to the primary side  
of the LO transformer, which is internally DC blocked. An  
external blocking capacitor is not required. The LO input is  
internally matched from 1.2GHz to 5GHz. Operation down  
to 380MHz is possible with simple external matching.  
VCC2 (Pin 6): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 2.8mA. This pin should be  
externally connected to the VCC1 pin and decoupled with  
1000pF and 1µF capacitors.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
EntireIC.Thismustbesolderedtotheprintedcircuitboard  
ground plane.  
VCC1 (Pin 7): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 23.2mA. This pin should  
W
BLOCK DIAGRA  
15  
LO  
REGULATOR  
EXPOSED  
PAD  
LIMITING  
AMPLIFIERS  
17  
V
CC1  
12  
11  
GND  
LINEAR  
AMPLIFIER  
+
IF  
RF  
IF  
3
10  
9
DOUBLE-BALANCED  
MIXER  
GND  
BIAS  
EN  
V
V
7
CC2  
CC1  
5
6
5525 BD  
5527f  
7
LT5527  
TEST CIRCUITS  
LO  
IN  
L4  
C4  
RF  
GND  
εR = 4.4  
0.018"  
0.062"  
0.018"  
BIAS  
GND  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LOW FREQUENCY  
LO ONLY  
NC LO NC NC  
1
2
12  
11  
T1  
NC  
NC  
GND  
L1  
L2  
+
3
2
1
4
5
IF  
Z
O
C3  
LT5527  
RF  
IN  
50  
3
4
10  
9
IF  
OUT  
240MHz  
IF  
GND  
NC  
RF  
L (mm)  
C5  
NC  
EN  
V
V
CC2 CC1  
EXTERNAL MATCHING  
FOR LOW BAND OR  
HIGH BAND ONLY  
5
6
7
8
EN  
V
CC  
C1  
C2  
APPLICATION  
RF LO  
LO MATCH  
RF MATCH  
GND  
L4  
C4  
10pF  
5.6pF  
2.7pF  
L
C5  
5527 F01  
450MHz High Side 6.8nH  
900MHz Low Side 3.9nH  
4.5mm  
1.3mm  
1.3mm  
4.5mm  
12pF  
3.9pF  
3.9pF  
0.5pF  
900MHz High Side  
3500MHz Low Side  
REF DES  
C1  
VALUE  
1000pF  
1µF  
SIZE  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L4, C4, C5  
L1, L2  
VALUE  
SIZE  
PART NUMBER  
AVX 04025C102JAT  
AVX 0603ZD105KAT  
AVX 04025A2R7CAT  
0402  
0603  
See Applications Information  
Toko LLQ1608-A82N  
C2  
82nH  
4:1  
C3  
2.7pF  
T1  
M/A-Com ETC4-1-2 (2MHz to 800MHz)  
Figure 1. Downmixer Test Schematic—Standard IF Matching (240MHz IF)  
LO  
IN  
L4  
C4  
DISCRETE  
IF BALUN  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LOW FREQUENCY  
LO ONLY  
NC LO NC NC  
1
2
12  
11  
C6  
L1  
NC  
NC  
GND  
+
IF  
C3  
IF  
OUT  
240MHz  
Z
O
L3  
LT5527  
RF  
IN  
50Ω  
C7  
3
4
10  
9
IF  
GND  
NC  
RF  
L (mm)  
C5  
NC  
L2  
EN  
V
V
CC2 CC1  
EXTERNAL MATCHING  
FOR LOW BAND OR  
HIGH BAND ONLY  
5
6
7
8
EN  
V
CC  
C1  
C2  
GND  
5527 F02  
REF DES  
C1, C3  
C2  
VALUE  
1000pF  
1µF  
SIZE  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L4, C4, C5  
L1, L2  
VALUE  
SIZE  
PART NUMBER  
AVX 04025C102JAT  
AVX 0603ZD105KAT  
AVX 04025A4R7CAT  
0402  
0603  
0603  
See Applications Information  
Toko LLQ1608-AR10  
100nH  
220nH  
C6, C7  
4.7pF  
L3  
Toko LLQ1608-AR22  
Figure 2. Downmixer Test Schematic—Discrete IF Balun Matching (240MHz IF)  
5527f  
8
LT5527  
W U U  
APPLICATIO S I FOR ATIO  
U
Introduction  
at Pin 3, which improves the 1.7GHz return loss to greater  
than 20dB. Likewise, the 2.7GHz match can be improved  
to greater than 30dB with a series 1.5nH inductor. A series  
1.5nH/2.7pFnetworkwillsimultaneouslyoptimizethelower  
and upper band edges and expand the RF input bandwidth  
to 1.1GHz-3.3GHz. Measured RF input return losses for  
these three cases are also plotted in Figure 4a.  
The LT5527 consists of a high linearity double-balanced  
mixer, RF buffer amplifier, high speed limiting LO buffer  
amplifier and bias/enable circuits. The RF and LO inputs  
are both single ended. The IF output is differential. Low  
side or high side LO injection can be used.  
Two evaluation circuits are available. The standard evalu-  
ationcircuit, showninFigure1, incorporatestransformer-  
based IF matching and is intended for applications that  
require the lowest LO-IF leakage levels and the widest IF  
bandwidth. The second evaluation circuit, shown in Fig-  
ure 2, replaces the IF transformer with a discrete IF balun  
for reduced solution cost and size. The discrete IF balun  
delivers comparable noise figure and linearity, higher  
conversion gain, but degraded LO-IF leakage and reduced  
IF bandwidth.  
Alternatively, the input match can be shifted down, as low  
as400MHzorupto3700MHz, byaddingashuntcapacitor  
(C5)totheRFinput.A450MHzinputmatchisrealizedwith  
C5 = 12pF, located 4.5mm away from Pin 3 on the evalu-  
ation board’s 50input transmission line. A 900MHz in-  
put match requires C5 = 3.9pF, located at 1.3mm. A  
3500MHz input match is realized with C5 = 0.5pF, located  
0
NO EXTERNAL  
MATCHING  
–5  
RF Input Port  
–10  
–15  
The mixer’s RF input, shown in Figure 3, consists of an  
integrated transformer and a high linearity differential  
amplifier. The primary terminals of the transformer are  
connected to the RF input pin (Pin 3) and ground. The  
secondary side of the transformer is internally connected  
to the amplifier’s differential inputs.  
–20  
SERIES 1.5nH  
SERIES 2.7pF  
SERIES 2.7pF  
–25  
–30  
SERIES 1.5nH  
2.7 3.2  
FREQUENCY (GHz)  
0.2 0.7 1.2 1.7 2.2  
3.7 4.2  
One terminal of the transformer’s primary is internally  
grounded. If the RF source has DC voltage present, then a  
couplingcapacitormustbeusedinserieswiththeRFinput  
pin.  
5527 F04a  
(4a) Series Reactance Matching  
0
–5  
The RF input is internally matched from 1.7GHz to 3GHz,  
requiring no external components over this frequency  
range. The input return loss, shown in Figure 4a, is typi-  
cally 10dB at the band edges. The input match at the lower  
band edge can be optimized with a series 2.7pF capacitor  
–10  
–15  
–20  
–25  
–30  
NO EXTERNAL  
MATCHING  
3.5GHz  
900MHz  
C5 = 3.9pF  
L = 1.3mm  
C5 = 0.5pF  
450MHz  
C5 = 12pF  
L = 4.5mm  
L = 4.5mm  
EXTERNAL MATCHING  
FOR LOW BAND OR  
HIGH BAND ONLY  
TO  
MIXER  
2.7 3.2  
0.2 0.7 1.2 1.7 2.2  
RF FREQUENCY (GHz)  
3.7 4.2  
Z
O
= 50  
RF  
IN  
L = L (mm)  
RF  
3
5527 F04b  
C5  
(4b) Series Shunt Matching  
5527 F03  
Figure 4. RF Input Return Loss With  
and Without External Matching  
Figure 3. RF Input Schematic  
5527f  
9
LT5527  
W U U  
U
APPLICATIO S I FOR ATIO  
at 4.5mm. This series transmission line/shunt capacitor  
matching topology allows the LT5527 to be used for mul-  
tiple frequency standards without circuit board layout  
modifications. The series transmission line can also be  
replaced with a series chip inductor for a more compact  
layout.  
The LO input is internally matched from 1.2GHz to 5GHz,  
although the maximum useful frequency is limited to  
3.5GHz by the internal amplifiers. The input match can be  
shifted down, as low as 750MHz, with a single shunt  
capacitor (C4) on Pin 15. One example is plotted in  
Figure 6 where C4 = 2.7pF produces an 850MHz to  
1.2GHz match.  
Input return loss for these three cases (450MHz, 900MHz  
and 3500MHz) are plotted in Figure 4b. The input return  
loss with no external matching is repeated in Figure 4b for  
comparison.  
LO input matching below 750MHz requires the series  
inductor (L4)/shunt capacitor (C4) network shown in  
Figure 5. Two examples are plotted in Figure 6 where L4 =  
3.9nH/C4 = 5.6pF produces a 650MHz to 830MHz match  
and L4 = 6.8nH/C4 = 10pF produces a 540MHz to 640MHz  
match. The evaluation boards do not include pads for L4,  
so the circuit trace needs to be cut near Pin 15 to insert L4.  
A low cost multilayer chip inductor is adequate for L4.  
RF input impedance and S11 versus frequency (with no  
external matching) is listed in Table 1 and referenced to  
Pin 3. The S11 data can be used with a microwave circuit  
simulator to design custom matching networks and simu-  
late board-level interfacing to the RF input filter.  
The optimum LO drive is –3dBm for LO frequencies above  
1.2GHz, although the amplifiers are designed to accom-  
modate several dB of LO input power variation without  
significant mixer performance variation. Below 1.2GHz,  
Table 1. RF Input Impedance vs Frequency  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
S11  
MAG  
0.825  
0.708  
0.644  
0.600  
0.529  
0.467  
0.386  
0.275  
0.193  
0.175  
0.209  
0.297  
0.431  
0.564  
0.745  
ANGLE  
173.9  
152.5  
144.3  
137.2  
123.2  
107.4  
89.3  
50  
4.8 + j2.6  
9.0 + j11.9  
11.9 + j15.3  
14.3 + j18.2  
19.4 + j23.8  
26.1 + j29.8  
37.3 + j33.9  
57.4 + j29.7  
71.3 + j10.1  
64.6 – j13.9  
53.0 – j21.8  
35.0 – j21.2  
20.7 – j9.0  
14.2 + j6.2  
10.4 + j31.9  
300  
EXTERNAL  
MATCHING  
FOR LOW BAND  
450  
600  
ONLY  
L4  
C4  
TO  
MIXER  
900  
LO  
IN  
1200  
1500  
1850  
2150  
2450  
2650  
3000  
3500  
4000  
5000  
LO  
15  
V
LIMITER  
BIAS  
60.6  
20.6  
V
CC2  
–36.8  
–70.3  
–111.2  
–155.8  
164.8  
113.3  
5527 F05  
Figure 5. LO Input Schematic  
0
–5  
L4 = 0nH  
L4 = 6.8nH  
C4 = 2.7pF  
C4 = 10pF  
–10  
–15  
–20  
–25  
–30  
NO  
EXTERNAL  
MATCHING  
LO Input Port  
The mixer’s LO input, shown in Figure 5, consists of an  
integratedtransformerandhighspeedlimitingdifferential  
amplifiers. The amplifiers are designed to precisely drive  
the mixer for the highest linearity and the lowest noise  
figure. An internal DC blocking capacitor in series with the  
transformer’s primary eliminates the need for an external  
blocking capacitor.  
L4 = 3.9nH  
C4 = 5.6pF  
0.1  
1
5
LO FREQUENCY (GHz)  
5527 F06  
Figure 6. LO Input Return Loss  
5527f  
10  
LT5527  
W U U  
APPLICATIO S I FOR ATIO  
U
0dBmLOdriveisrecommendedforoptimumnoisefigure,  
although –3dBm will still deliver good conversion gain  
and linearity.  
output impedance is listed in Table 3. This data is refer-  
enced to the package pins (with no external components)  
and includes the effects of IC and package parasitics. The  
IF output can be matched for IF frequencies as low as  
several kHz or as high as 600MHz.  
Custom matching networks can be designed using the  
port impedance data listed in Table 2. This data is refer-  
enced to the LO pin with no external matching.  
Table 3. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
Table 2. LO Input Impedance vs Frequency  
FREQUENCY (MHz)  
IMPEDANCE (R || X )  
IF  
IF  
FREQUENCY  
(MHz)  
INPUT  
S11  
1
415||-j64k  
IMPEDANCE  
MAG  
0.977  
0.847  
0.740  
0.635  
0.463  
0.330  
0.209  
0.093  
0.032  
0.052  
0.101  
0.124  
0.120  
0.096  
0.226  
ANGLE  
–15.9  
–86.7  
–124.8  
–158.7  
146.7  
106.9  
78.5  
10  
415||-j6.4k  
415||-j909  
413||-j453  
407||-j264  
403||-j211  
395||-j165  
387||-j138  
381||-j124  
50  
30.4 – j355.7  
8.7 – j52.2  
9.4 – j25.4  
11.5 – j8.9  
19.7 + j12.8  
34.3 + j24.3  
49.8 + j21.3  
53.8 + j8.9  
50.4 + j3.2  
45.1 + j0.3  
41.1 + j2.4  
41.9 + j8.1  
49.0 + j12.0  
55.4 + j8.6  
33.2 + j8.7  
70  
300  
140  
240  
300  
380  
450  
500  
450  
600  
900  
1200  
1500  
1850  
2150  
2450  
2650  
3000  
3500  
4000  
5000  
61.7  
80.5  
176.5  
163.1  
129.8  
87.9  
The following three methods of differential to single-  
ended IF matching will be described:  
• Direct 8:1 transformer  
• Lowpass matching + 4:1 transformer  
• Discrete IF balun  
53.2  
146.7  
IF Output Port  
The IF outputs, IF+ and IF, are internally connected to the  
collectors of the mixer switching transistors (see Fig-  
ure 7). Both pins must be biased at the supply voltage,  
which can be applied through the center tap of a trans-  
former or through matching inductors. Each IF pin draws  
26mAofsupplycurrent(52mAtotal).Foroptimumsingle-  
ended performance, these differential outputs should be  
combined externally through an IF transformer or a  
discrete IF balun circuit. The standard evaluation board  
(see Figure 1) includes an IF transformer for impedance  
transformation and differential to single-ended transfor-  
mation. A second evaluation board (see Figure 2) realizes  
the same functionality with a discrete IF balun circuit.  
L1  
L2  
+
4:1  
IF  
IF  
IF  
OUT  
11  
10  
50Ω  
C3  
V
CC  
V
CC  
5527 F07  
Figure 7. IF Output with External Matching  
0.7nH  
2.5pF  
+
IF  
IF  
11  
10  
R
S
415Ω  
The IF output impedance can be modeled as 415in  
parallel with 2.5pF at low frequencies. An equivalent  
small-signal model (including bondwire inductance) is  
shown in Figure 8. Frequency-dependent differential IF  
0.7nH  
5527 F08  
Figure 8. IF Output Small-Signal Model  
5527f  
11  
LT5527  
W U U  
U
APPLICATIO S I FOR ATIO  
Direct 8:1 IF Transformer Matching  
chip inductors (L1 and L2) improve the mixer’s conver-  
sion gain by a few tenths of a dB, but have little effect on  
linearity. Measured output return losses for each case are  
plotted in Figure 10 for the simple 8:1 transformer method  
and for the lowpass/4:1 transformer method.  
For IF frequencies below 100MHz, the simplest IF match-  
ing technique is an 8:1 transformer connected across the  
IF pins. The transformer will perform impedance transfor-  
mation and provide a single-ended 50output. No other  
matching is required. Measured performance using this  
technique is shown in Figure 9. This matching is easily  
implemented on the standard evaluation board by short-  
ing across the pads for L1 and L2 and replacing the 4:1  
transformer with an 8:1 (C3 not installed).  
Table 4. IF Matching Element Values  
IF  
FREQUENCY  
(MHz)  
L1, L2  
(nH)  
IF  
PLOT  
C3 (pF)  
TRANSFORMER  
1
2
3
4
5
6
1 to 100  
140  
Short  
120  
110  
82  
TC8-1 (8:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
25  
190  
2.7  
23  
IIP3  
21  
240  
2.7  
RF = 900MHz  
380  
56  
2.2  
19  
17  
15  
13  
11  
9
HIGH SIDE LO AT 0dBm  
V
= 5V DC  
CC  
A
450  
43  
2.2  
T
= 25°C  
C4 = 2.7pF, C5 = 3.9pF  
SSB NF  
0
–5  
7
5
G
C
–10  
3
1
–15  
10 20 30 40 50 60 70 80 90 100  
IF OUTPUT FREQUENCY (MHz)  
5527 F09  
–20  
–25  
–30  
2
4
5
Figure 9. Typical Conversion Gain, IIP3 and  
SSB NF Using an 8:1 IF Transformer  
6
3
1
0
50 100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
Lowpass + 4:1 IF Transformer Matching  
5527 F10  
The lowest LO-IF leakage and wide IF bandwidth are  
realizedbyusingthesimple,threeelementlowpassmatch-  
ing network shown in Figure 7. Matching elements C3, L1  
andL2, inconjunctionwiththeinternal2.5pFcapacitance,  
form a 400to 200lowpass matching network which is  
tuned to the desired IF frequency. The 4:1 transformer  
then transforms the 200differential output to a 50Ω  
single-ended output.  
Figure 10. IF Output Return Losses  
with Lowpass/Transformer Matching  
Discrete IF Balun Matching  
For many applications, it is possible to replace the IF  
transformer with the discrete IF balun shown in Figure 2.  
The values of L1, L2, C6 and C7 are calculated to realize a  
180 degree phase shift at the desired IF frequency and  
provide a 50single-ended output, using the equations  
listed below. Inductor L3 is calculated to cancel the  
internal2.5pFcapacitance.L3alsosuppliesbiasvoltageto  
the IF+ pin. Low cost multilayer chip inductors are ad-  
equate for L1 and L2. A high Q wire-wound chip inductor  
is recommended for L3 to maximize conversion gain and  
minimize DC voltage drop to the IF+ pin. C3 is a DC  
This matching network is most suitable for IF frequencies  
above 40MHz or so. Below 40MHz, the value of the series  
inductors (L1 and L2) becomes unreasonably high, and  
couldcausestabilityproblems, dependingontheinductor  
value and parasitics. Therefore, the 8:1 transformer tech-  
nique is recommended for low IF frequencies.  
Suggested lowpass matching element values for several  
IF frequencies are listed in Table 4. High-Q wire-wound  
blocking capacitor.  
5527f  
12  
LT5527  
W U U  
APPLICATIO S I FOR ATIO  
U
0
RIF ROUT  
L1, L2 =  
–5  
ωIF  
–10  
–15  
1
C6,C7 =  
ωIF • RIF ROUT  
190MHz  
240MHz  
–20  
–25  
–30  
XIF  
L3 =  
380MHz  
ωIF  
450MHz  
Compared to the lowpass/4:1 transformer matching tech-  
nique, this network delivers approximately 0.8dB higher  
conversion gain (since the IF transformer loss is elimi-  
nated) and comparable noise figure and IIP3. At a ±15%  
offset from the IF center frequency, conversion gain and  
noise figure degrade about 1dB. Beyond ±15%, conver-  
sion gain decreases gradually but noise figure increases  
rapidly. IIP3 is less sensitive to bandwidth. Other than IF  
bandwidth, the most significant difference is LO-IF leak-  
age,whichdegradestoapproximately38dBmcompared  
to the superior performance realized with the lowpass/4:1  
transformer matching.  
50 100 150 200 250 300 350 400 450 500 550  
IF FREQUENCY (MHz)  
5527 F11  
Figure 11. IF Output Return Losses with Discrete Balun Matching  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
0
IIP3  
–10  
–20  
–30  
–40  
–50  
–60  
190IF  
240IF  
380IF  
450IF  
LOW SIDE LO (–3dBm)  
T
= 25°C  
A
LO-IF  
Discrete IF balun element values for four common IF  
frequencies are listed in Table 5. The corresponding  
measured IF output return losses are shown in Figure 11.  
The values listed in Table 5 differ from the calculated  
values slightly due to circuit board and component  
parasitics. Typical conversion gain, IIP3 and LO-IF leak-  
age, versus RF input frequency, for all four IF frequency  
examples is shown in Figure 12. Typical conversion gain,  
IIP3 and noise figure versus IF output frequency for the  
same circuits are shown in Figure 13.  
6
G
C
4
2
1700  
1900  
2100  
2300  
2500  
2700  
RF INPUT FREQUENCY (MHz)  
5527 F12  
Figure 12. Conversion Gain, IIP3 and LO-IF Leakage vs RF Input  
Frequency Using Discrete IF Balun Matching  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
LOW SIDE LO (–3dBm)  
= 25°C  
Table 5. Discrete IF Balun Element Values (R  
= 50)  
OUT  
T
A
IF FREQUENCY  
(MHz)  
L1, L2  
(nH)  
C6, C7  
(pF)  
L3  
(nH)  
190  
240  
380  
450  
120  
100  
56  
6.8  
4.7  
3
220  
220  
68  
SSB NF  
190IF  
240IF  
380IF  
450IF  
6
4
2
G
C
47  
2.7  
47  
0
350 400  
150 200 250 300  
450 500 550  
For fully differential IF architectures, the IF transformer  
can be eliminated. An example is shown in Figure 14,  
wherethemixer’sIFoutputismatcheddirectlyintoaSAW  
filter. Supply voltage to the mixer’s IF pins is applied  
IF OUTPUT FREQUENCY (MHz)  
5527 F13  
Figure 13. Conversion Gain, IIP3 and SSB NF vs IF Output  
Frequency Using Discrete IF Balun Matching  
5527f  
13  
LT5527  
W U U  
U
APPLICATIO S I FOR ATIO  
through matching inductors in a band-pass IF matching  
network. The values of L1, L2 and C3 are calculated to  
resonate at the desired IF frequency with a quality factor  
that satisfies the required IF bandwidth. The L and C  
values are then adjusted to account for the mixer’s  
internal 2.5pF capacitance and the SAW filter’s input  
capacitance. In this case, the differential IF output imped-  
ance is 400since the bandpass network does not  
transform the impedance.  
SAW  
IF  
FILTER  
L1  
L2  
AMP  
+
IF  
IF  
C3  
5527 F14  
V
CC  
SUPPLY  
DECOUPLING  
Figure 14. Bandpass IF Matching for Differential IF Architectures  
AdditionalmatchingelementsmayberequirediftheSAW  
filter’s input impedance is less than or greater than 400.  
Contact the factory for application assistance.  
Standard Evaluation Board Layout  
Discrete IF Evaluation Board Layout  
5527f  
14  
LT5527  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
0.75 ± 0.05  
R = 0.115  
TYP  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.55 ± 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 09-04  
0.200 REF  
0.30 ± 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5527f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5527  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
LT5517  
LT5519  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Matching,  
Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
LT5524  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Matching,  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended  
LO Port Operation  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with Digitally 450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
Programmable Gain  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
LT5528  
1.5GHz to 2.4GHz High Linearity Direct I/Q  
Modulator  
21.8dBm OIP3 at 2GHz, –159dBm/Hz Noise Floor, 50Interface at all Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz RF Power Detector with 60dB  
Dynamic Range  
±1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
Precision 600MHz to 7GHz RF Detector  
with Fast Compatator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input,  
–26dBm to +12dBm Input Range  
Low Voltage RF Building Block  
LT5546 500MHz Quadrature Demodulator with VGA and  
17MHz Baseband Bandwidth  
Wide Bandwidth ADCs  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, –7dB to  
56dB Linear Power Gain  
LTC1749  
LTC1750  
12-Bit, 80Msps  
500MHz BW S/H, 71.8dB SNR  
500MHz BW S/H, 75.5dB SNR  
14-Bit, 80Msps  
5527f  
LT/TP 0305 500 • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY