LTC5510_15 [Linear]

1MHz to 6GHz Wideband High Linearity Active Mixer;
LTC5510_15
型号: LTC5510_15
厂家: Linear    Linear
描述:

1MHz to 6GHz Wideband High Linearity Active Mixer

文件: 总30页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5510  
1MHz to 6GHz Wideband  
High Linearity Active Mixer  
FEATURES  
DESCRIPTION  
TheLTC®5510isahighlinearitymixeroptimizedforapplica-  
tions requiring very wide input bandwidth, low distortion,  
and low LO leakage. The chip includes a double-balanced  
activemixerwithaninputbufferandahighspeedLOampli-  
fier. The input is optimized for use with 1:1 transmission-  
line baluns, allowing very wideband impedance matching.  
The mixer can be used for both up- and down-conversion  
and can be used in wideband systems.  
n
Input Frequency Range to 6GHz  
n
50Ω Matched Input from 30MHz to >3GHz  
n
Capable of Up- or Down-Conversion  
n
OIP3: 27dBm at f  
= 1575MHz  
OUT  
n
n
n
n
n
n
n
n
n
n
1.5dB Conversion Gain  
Noise Figure: 11.6dB at f  
= 1575MHz  
OUT  
High Input P1dB: 11dBm at 5V  
5V or 3.3V Supply at 105mA  
Shutdown Control  
The LO can be driven differentially or single-ended and  
requiresonly0dBmofLOpowertoachieveexcellentdistor-  
tion and noise performance, while also reducing external  
drive circuit requirements. The LTC5510 offers low LO  
leakage, greatly reducing the need for output filtering to  
meet LO suppression requirements.  
LO Input Impedance Always Matched  
0dBm LO Drive Level  
0n-Chip Temperature Monitor  
–40°C to 105°C Operation (T )  
C
16-Lead (4mm × 4mm) QFN Package  
APPLICATIONS  
The LTC5510 is optimized for 5V but can also be used  
with a 3.3V supply with slightly reduced performance.  
The shutdown function allows the part to be disabled for  
further power savings.  
n
Wideband Receivers/Transmitters  
n
Cable Downlink Infrastructure  
n
HF/VHF/UHF Mixer  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
n
Wireless Infrastructure  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Conversion Gain, IIP3 and NF  
30MHz to 4GHz Up/Down Mixer for Wideband Receiver  
vs Input Frequency  
LO  
30  
25  
20  
15  
10  
5
50Ω  
0.1µF  
0.1µF  
BD1222J50200AHF  
4:1  
TEMPERATURE  
OUT  
1575MHz  
50Ω  
IIP3  
NF  
+
LO  
LO  
LTC5510  
TEMP  
MONITOR  
0.1µF  
+
TCM1-43X  
1:1  
6.8pF  
6.8nH  
HS LO  
LS LO  
IN  
30MHz TO  
4GHz  
+
+
IN  
IN  
OUT  
OUT  
0.6pF  
0.1µF  
50Ω  
6.8nH  
BIAS  
f
= 1575MHz  
= –10dBm  
= 0dBm  
OUT  
IN  
LO  
P
P
LGND  
EN  
V
V
I
CC2 ADJ  
CC1  
4.75kΩ  
T
= 25°C  
C
10nF  
5V  
G
C
EN  
0
10nF  
1000  
2000  
3000  
4000  
0
1µF  
INPUT FREQUENCY (MHz)  
5510 TA01a  
5510 TA01  
5510fa  
1
For more information www.linear.com/LTC5510  
LTC5510  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V , V , OUT , OUT )................6.0V  
CC1 CC2  
Enable Voltage (EN) .........................–0.3V to V + 0.3V  
CC  
16 15 14 13  
Current Adjust Voltage (I ).................... –0.3V to 2.7V  
ADJ  
TEMP  
1
2
3
4
12 GND  
LO Input Power (1MHz to 6GHz) ........................ +10dBm  
+
+
IN  
11 OUT  
17  
LO Differential DC Voltage .......................................1.5V  
IN  
OUT  
10  
9
+
LO , LO Input DC Voltage........................... –0.3V to 3V  
LGND  
GND  
+
5
6
7
8
IN , IN Input Power (1MHz to 6GHz) ................ +15dBm  
+
IN , IN Input DC Voltage ......................... –0.3V to 2.4V  
Temp Monitor Input Current (TEMP)......................10mA  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 150°C, θ = 6°C/W  
Operating Temperature Range (T )........ –40°C to 105°C  
C
T
JMAX  
JC  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
Storage Temperature Range .................. –65°C to 150°C  
Junction Temperature (T ) .................................... 150°C  
J
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 105°C  
LTC5510IUF#PBF  
LTC5510IUF#TRPBF  
5510  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1 to 6000  
1 to 6500  
1 to 6000  
>11  
MAX  
UNITS  
MHz  
MHz  
MHz  
dB  
l
l
l
Input Frequency Range  
LO Input Frequency Range  
Output Frequency Range  
Input Return Loss  
Requires External Matching  
Requires External Matching  
Z = 50Ω, 30MHz to 3GHz  
O
LO Input Return Loss  
Output Impedance  
LO Input Power  
Z = 50Ω, 1MHz to 5GHz  
>10  
dB  
O
Differential at 1500MHz  
201Ω||0.6pF  
0
R||C  
dBm  
f
LO  
= 1MHz to 5GHz  
–6  
6
5V Wideband Up/Downmixer Application: f = 30MHz to 3000MHz, f  
= 1575MHz, V = 5V, R1 = 4.75kΩ  
CC  
IN  
OUT  
Conversion Gain  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
0.5  
1.5  
1.4  
1.1  
1.2  
dB  
dB  
dB  
dB  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
l
Conversion Gain vs Temperature  
T = –40°C to 105°C, f = 900MHz  
–0.007  
dB/°C  
C
IN  
5510fa  
2
For more information www.linear.com/LTC5510  
LTC5510  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),  
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Two-Tone Output 3rd Order Intercept  
(Δf = 2MHz)  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
24.0  
27.8  
25.0  
26.0  
24.5  
dBm  
dBm  
dBm  
dBm  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
SSB Noise Figure  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
11.6  
12.1  
11.6  
11.8  
14.5  
dB  
dB  
dB  
dB  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
SSB Noise Figure Under Blocking  
f
f
=900MHz, f = 2475MHz,  
20.3  
dB  
IN  
LO  
= 800MHz, P  
= +5dBm  
BLOCK  
BLOCK  
LO-IN Leakage  
f
LO  
= 20MHz to 3300MHz  
<–50  
dBm  
LO-OUT Leakage  
f
LO  
f
LO  
= 20MHz to 1000MHz  
= 1000MHz to 3300MHz  
<–40  
<–33  
dBm  
dBm  
IN-OUT Isolation  
f
IN  
f
IN  
= 20MHz to 1150MHz  
= 1150MHz to 3000MHz  
>40  
>22  
dB  
dB  
IN-LO Isolation  
f
IN  
= 30MHz to 3000MHz  
>55  
dB  
Input 1dB Compression  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
11.0  
12.2  
11.5  
11.6  
dBm  
dBm  
dBm  
dBm  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
3.3V Wideband Up/Downmixer Application: f = 30MHz to 3000MHz, f  
= 1575MHz, V = 3.3V, R1 = 1.8kΩ  
CC  
IN  
OUT  
Conversion Gain  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
1.5  
1.4  
1.1  
1.2  
dB  
dB  
dB  
dB  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
l
Conversion Gain vs Temperature  
T = –40°C to 105°C, f = 900MHz  
–0.006  
dB/°C  
C
IN  
Two-Tone Output 3rd Order Intercept  
(Δf = 2MHz)  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
24.2  
23.3  
23.9  
22.3  
dBm  
dBm  
dBm  
dBm  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
SSB Noise Figure  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
11.2  
12.2  
11.4  
11.4  
dB  
dB  
dB  
dB  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
SSB Noise Figure Under Blocking  
f
f
= 900MHz, f = 2475MHz,  
20.8  
dB  
IN  
LO  
= 800MHz P  
= +5dBm  
BLOCK  
BLOCK  
LO-IN Leakage  
f
LO  
= 20MHz to 3300MHz  
<–50  
dBm  
LO-OUT Leakage  
f
LO  
f
LO  
= 20MHz to 1000MHz  
= 1000MHz to 3300MHz  
<–40  
<–33  
dBm  
dBm  
IN-OUT Isolation  
f
IN  
f
IN  
= 20MHz to 1150MHz  
= 1150MHz to 3000MHz  
>40  
>22  
dB  
dB  
IN-LO Isolation  
f
IN  
= 30MHz to 3000MHz  
>55  
dB  
Input 1dB Compression  
f
IN  
f
IN  
f
IN  
f
IN  
= 190MHz, f = 1765MHz, Upmixer  
8.9  
10.7  
10.1  
9.6  
dBm  
dBm  
dBm  
dBm  
LO  
= 900MHz, f = 2475MHz, Upmixer  
LO  
= 2150MHz, f = 575MHz, Downmixer  
LO  
= 2600MHz, f = 1025MHz, Downmixer  
LO  
5510fa  
3
For more information www.linear.com/LTC5510  
LTC5510  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),  
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5V Wideband Upmixer Application: f = 30MHz to 1000MHz, f  
= 2140MHz, f = f + f , V = 5V, R1 = 4.75kΩ  
IN  
OUT  
LO  
IN  
OUT CC  
Conversion Gain  
f
IN  
f
IN  
f
IN  
= 190MHz  
= 450MHz  
= 900MHz  
1.1  
1.0  
1.0  
dB  
dB  
dB  
l
Conversion Gain vs Temperature  
T = –40°C to 105°C, f = 190MHz  
–0.006  
dB/°C  
C
IN  
Two-Tone Output 3rd Order Intercept  
(Δf = 2MHz)  
f
IN  
f
IN  
f
IN  
= 190MHz  
= 450MHz  
= 900MHz  
25.6  
24.6  
23.9  
dBm  
dBm  
dBm  
SSB Noise Figure  
f
IN  
f
IN  
f
IN  
= 190MHz  
= 450MHz  
= 900MHz  
12.0  
12.2  
12.4  
dB  
dB  
dB  
SSB Noise Floor at P = +5dBm  
f
IN  
f
LO  
f
LO  
f
IN  
f
IN  
= 800MHz, f = 3040MHz, f  
= 2140MHz  
–151.4  
<–50  
<–31  
>40  
dBm/Hz  
dBm  
dBm  
dB  
IN  
LO  
OUT  
LO-IN Leakage  
= 2100MHz to 3500MHz  
= 2100MHz to 3500MHz  
= 30MHz to 1100MHz  
= 30MHz to 1100MHz  
LO-OUT Leakage  
IN-OUT Isolation  
IN-LO Isolation  
>50  
dB  
Input 1dB Compression  
f
IN  
f
IN  
f
IN  
= 190MHz  
= 450MHz  
= 900MHz  
11.5  
11.5  
11.7  
dBm  
dBm  
dBm  
5V VHF/UHF Wideband Downmixer Application: f = 100MHz to 1000MHz, f  
= 44MHz, f = f + f , V = 5V, R1 = Open  
LO IN OUT CC  
IN  
OUT  
Conversion Gain  
f
IN  
f
IN  
f
IN  
= 140MHz  
= 456MHz  
= 900MHz  
1.9  
1.9  
1.9  
dB  
dB  
dB  
l
Conversion Gain vs Temperature  
T = –40°C to 105°C, f = 456MHz  
–0.006  
dB/°C  
C
IN  
Two-Tone Input 3rd Order Intercept  
(Δf = 2MHz)  
f
IN  
f
IN  
f
IN  
= 140MHz  
= 456MHz  
= 900MHz  
27.8  
28.5  
26.8  
dBm  
dBm  
dBm  
SSB Noise Figure  
f
IN  
f
IN  
f
IN  
= 140MHz  
= 456MHz  
= 900MHz  
10.8  
10.9  
11.6  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
Two-Tone Input 2nd Order Intercept  
f
f
= 900MHz, f = 944MHz,  
20.0  
dB  
dBm  
dBc  
IN  
LO  
= 800MHz, P  
= +5dBm  
BLOCK  
BLOCK  
f
IN1  
= 477MHz, f = 435MHz, f = 500MHz  
IN2 LO  
72  
(Δf = f = 42MHz)  
IM2  
2LO-2RF Output Spurious Product  
f
IN  
= 478MHz at –6dBm, f = 500MHz, f = 44MHz  
OUT  
–84  
–82  
LO  
(f = f – f /2)  
IN  
LO  
OUT  
3LO-3RF Output Spurious Product  
(f = f – f /3)  
f
f
= 485.33MHz at –6dBm, f = 500MHz,  
dBc  
IN  
LO  
= 44.01MHz  
IN  
LO  
OUT  
OUT  
LO-IN Leakage  
f
LO  
f
LO  
f
IN  
f
IN  
f
IN  
= 50MHz to 1200MHz  
= 50MHz to 1200MHz  
= 50MHz to 1000MHz  
= 50MHz to 1000MHz  
= 456MHz  
<–62  
<–31  
>23  
dBm  
dBm  
dB  
LO-OUT Leakage  
IN-OUT Isolation  
IN-LO Isolation  
>62  
dB  
Input 1dB Compression  
12.1  
dBm  
5510fa  
4
For more information www.linear.com/LTC5510  
LTC5510  
AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),  
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5V VHF/UHF Upmixer Application: f = 70MHz, f  
= 100MHz to 1000MHz, f = f + f , V = 5V, R1 = Open, L3 = 220nH  
LO IN OUT CC  
IN  
OUT  
Conversion Gain  
f
= 456MHz  
1.1  
–0.007  
29.0  
dB  
dB/°C  
dBm  
OUT  
l
Conversion Gain vs Temperature  
T = 40°C to 105°C, f  
= 456MHz  
C
OUT  
Two-Tone Output 3rd Order Intercept  
(Δf = 2MHz)  
f
= 456MHz  
OUT  
SSB Noise Figure  
f
f
f
f
f
f
f
= 456MHz  
11.3  
–152  
<–62  
<–39  
>43  
dB  
dBm/Hz  
dBm  
dBm  
dB  
OUT  
SSB Noise Floor at P = +5dBm  
= 44MHz, f = 532MHz, f  
= 462MHz  
IN  
IN  
LO  
OUT  
LO-IN Leakage  
= 100MHz to 1500MHz  
= 100MHz to 1500MHz  
= 50MHz to 400MHz  
= 50MHz to 400MHz  
LO  
LO  
IN  
LO-OUT Leakage  
IN-OUT Isolation  
IN-LO Isolation  
>70  
dB  
IN  
Input 1dB Compression  
= 456MHz  
11.0  
dBm  
OUT  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, unless otherwise noted. Test circuit shown in  
Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
l
l
Supply Voltage (Pins 6, 7, 10, 11)  
5V Supply  
3.3V Supply  
4.5  
3.1  
5
3.3  
5.3  
3.5  
V
V
Supply Current (Pins 6, 7, 10, 11)  
5V, R1 = Open  
5V, R1 = 4.75k  
3.3V, R1 = Open  
3.3V, R1 = 1.8k  
105  
99.6  
105  
94  
mA  
mA  
mA  
mA  
113  
2.5  
Total Supply Current – Shutdown  
Enable Logic Input (EN)  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
EN Input Current  
EN = Low  
1.3  
mA  
l
l
1.8  
V
V
0.5  
–0.3V to V + 0.3V  
–20  
200  
μA  
μs  
μs  
CC  
Turn-On Time  
EN: Low to High  
EN: High to Low  
0.6  
0.6  
Turn-Off Time  
Current Adjust Pin (I  
)
ADJ  
Open Circuit DC Voltage  
1.8  
1.9  
V
Short Circuit DC Current  
I
Shorted to Ground  
mA  
ADJ  
Temperature Monitor Pin (TEMP)  
DC Voltage at T = 25°C  
I
IN  
I
IN  
= 10µA  
= 80µA  
697  
755  
mV  
mV  
J
l
l
Voltage Temperature Coefficient  
I
IN  
I
IN  
= 10µA  
= 80µA  
–1.80  
–1.61  
mV/°C  
mV/°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SSB Noise Figure measured with a small-signal noise source,  
bandpass filter and 3dB matching pad on the signal input, bandpass filter  
and 6dB matching pad on the LO input, and no other RF signals applied.  
Note 4: Specified performance includes all external component and  
Note 2: The LTC5510 is guaranteed functional over the case operating  
evaluation PCB losses.  
temperature range of –40°C to 105°C. (θ = 6°C/W)  
JC  
5510fa  
5
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL DC PERFORMANCE CHARACTERISTICS (Test Circuit Shown in Figure 1)  
5V Supply Current  
vs Supply Voltage  
3.3V Supply Current  
vs Supply Voltage  
106  
104  
102  
100  
98  
98  
96  
94  
92  
90  
88  
R1 = 4.75kΩ  
R1 = 1.8kΩ  
T
= –40°C  
C
T
= –40°C  
C
T
= 25°C  
C
T
C
= 25°C  
T
= 85°C  
C
T
= 85°C  
C
T
= 105°C  
3.5  
C
96  
T
= 105°C  
C
94  
4.7  
4.9  
5.1  
5.3  
4.5  
3.0  
3.1  
3.2  
3.3  
3.4  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5510 G01  
5510 G02  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Up/Downmixer Application:  
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), fLO = 1765MHz, PLO = 0dBm, output  
measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain Distribution  
at 1575MHz  
Noise Figure Distribution  
at 1575MHz  
OIP3 Distribution at 1575MHz  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
85°C  
f
= 190MHz  
85°C  
25°C  
–40°C  
f
= 190MHz  
85°C  
25°C  
–40°C  
f
= 190MHz  
IN  
IN  
IN  
25°C  
–40°C  
0.8  
1
1.2 1.4 1.6 1.8  
GAIN (dB)  
2
2.2  
21  
23  
25  
27  
29  
31  
33  
9
10  
11  
12  
13  
14  
OIP3 (dBm)  
NOISE FIGURE (dB)  
5510 G03  
5510 G04  
5510 G05  
5510fa  
6
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Up/Downmixer Application for  
fIN < 1575MHz: VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO,  
PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain, OIP3 and NF  
vs Input Frequency  
Conversion Gain and OIP3  
vs Output Frequency  
LO Leakage vs LO Frequency  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
LO-OUT  
LO-IN  
NF  
4
4
G
C
G
C
0
0
0
400  
800  
1200  
1600  
1200  
1400  
1600  
1800  
2000  
1500  
1900  
2300  
2700  
3100  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G06  
5510 G07  
5510 G08  
Conversion Gain, OIP3 and NF  
vs LO Power  
Noise Figure  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
vs Input Blocker Level  
32  
28  
24  
20  
16  
12  
8
24  
22  
20  
18  
16  
14  
12  
32  
28  
24  
20  
16  
12  
8
f
f
f
= 900MHz  
= 800MHz  
= 2475MHz  
IN  
BLOCK  
LO  
OIP3  
OIP3  
T
T
T
T
= 105°C  
T
T
T
T
= 105°C  
C
C
C
C
C
C
C
C
P
= –6dBm  
= 85°C  
= 25°C  
= –40°C  
LO  
= 85°C  
= 25°C  
= –40°C  
–3dBm  
0dBm  
3dBm  
6dBm  
NF  
NF  
4
4
G
C
G
C
0
0
–12  
–9  
–6  
–3  
0
3
6
–20  
–15  
–10  
–5  
0
5
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3  
LO INPUT POWER (dBm)  
BLOCKER POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G09  
5510 G10  
5510 G11  
IM3 Level  
IM2 Level  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
vs Output Power (2-Tone)  
vs Output Power (2-Tone)  
0
–20  
0
–20  
35  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
30  
25  
20  
15  
10  
5
OIP3  
–40  
–40  
NF  
–60  
–60  
IP1dB  
–80  
–80  
G
C
f
= 1385MHz  
–10  
IM2  
–100  
–100  
0
–15  
–10  
–5  
0
5
–15  
–5  
0
5
–45  
–15  
15  
45  
75  
105  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G12  
5510 G13  
5510 G14  
5510fa  
7
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Up/Downmixer Application  
for fIN > 1575MHz: VCC = 5V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,  
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain, OIP3 and NF  
vs Input Frequency  
Conversion Gain and OIP3  
vs Output Frequency  
LO Leakage vs LO Frequency  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
LO-OUT  
LO-IN  
NF  
G
G
C
C
0
0
1600  
2000  
2400  
2800  
3200  
1200  
1400  
1600  
1800  
2000  
0
300  
600  
900  
1200  
1500  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G15  
5510 G16  
5510 G17  
Conversion Gain, OIP3 and NF  
vs LO Power  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
NF  
NF  
G
G
C
C
0
0
–12  
–9  
–6  
–3  
0
3
6
4.5  
4.7  
4.9  
5.1  
5.3  
LO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G18  
5510 G20  
IM3 Level  
vs Output Power (2-Tone)  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
0
–20  
30  
25  
20  
15  
10  
5
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
OIP3  
–40  
NF  
–60  
IP1dB  
–80  
G
C
–100  
0
–15  
–10  
–5  
0
5
–45  
–15  
15  
45  
75  
105  
OUTPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G21  
5510 G23  
5510fa  
8
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 3.3V Wideband Up/Downmixer Application  
for fIN < 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm,  
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain, OIP3 and NF  
vs Input Frequency  
Conversion Gain and OIP3  
vs Output Frequency  
LO Leakage vs LO Frequency  
32  
28  
24  
20  
16  
12  
8
35  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OIP3  
OIP3  
LO-OUT  
LO-IN  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
NF  
T
T
T
T
= 105°C  
C
C
C
C
= 85°C  
= 25°C  
= –40°C  
4
G
G
C
C
0
0
0
400  
800  
1200  
1600  
1200  
1400  
1600  
1800  
2000  
1500  
1900  
2300  
2700  
3100  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G24  
5510 G25  
5510 G26  
Conversion Gain, OIP3 and NF  
vs LO Power  
Noise Figure  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
vs Input Blocker Level  
32  
28  
24  
20  
16  
12  
8
24  
22  
20  
18  
16  
14  
12  
32  
28  
24  
20  
16  
12  
8
f
f
f
= 900MHz  
= 800MHz  
= 2475MHz  
IN  
BLOCK  
LO  
OIP3  
P
= –6dBm  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
OIP3  
NF  
T
T
T
T
= 105°C  
LO  
C
C
C
C
C
C
C
C
–3dBm  
0dBm  
3dBm  
6dBm  
= 85°C  
= 25°C  
= –40°C  
NF  
G
4
4
G
C
C
0
0
–12  
–9  
–6  
–3  
0
3
6
–20  
–15  
–10  
–5  
0
5
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LO INPUT POWER (dBm)  
BLOCKER POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G27  
5510 G28  
5510 G29  
IM3 Level  
vs Output Power (2-Tone)  
IM2 Level  
vs Output Power (2-Tone)  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
0
–20  
0
–20  
35  
30  
25  
20  
15  
10  
5
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
OIP3  
–40  
–40  
–60  
–60  
NF  
IP1dB  
–80  
–80  
G
C
f
= 1385MHz  
–10  
IM2  
–100  
–100  
0
–15  
–10  
–5  
0
5
–15  
–5  
0
5
–45  
–15  
15  
45  
75  
105  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G30  
5510 G31  
5510 G32  
5510fa  
9
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 3.3V Wideband Up/Downmixer Application for  
fIN > 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,  
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain, OIP3 and NF  
vs Input Frequency  
Conversion Gain and OIP3  
vs Output Frequency  
LO Leakage vs LO Frequency  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
LO-OUT  
LO-IN  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
NF  
C
C
C
C
G
C
G
C
0
0
1600  
2000  
2400  
2800  
3200  
1200  
1400  
1600  
1800  
2000  
0
300  
600  
900  
1200  
1500  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G33  
5510 G34  
5510 G35  
Conversion Gain, OIP3 and NF  
vs LO Power  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
C
C
C
C
C
C
C
C
= 85°C  
= 25°C  
= –40°C  
NF  
NF  
G
C
G
C
0
0
–12  
–9  
–6  
–3  
0
3
6
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G36  
5510 G38  
IM3 Level  
vs Output Power (2-Tone)  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
30  
25  
20  
15  
10  
5
0
–20  
–40  
–60  
–80  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
OIP3  
NF  
IP1dB  
G
C
0
–45  
–15  
15  
45  
75  
105  
–15  
–10  
–5  
0
5
CASE TEMPERATURE (°C)  
OUTPUT POWER (dBm)  
5510 G41  
5510 G39  
5510fa  
10  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Upmixer Application:  
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at  
2140MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).  
Conversion Gain, OIP3 and NF  
vs Input Frequency  
Conversion Gain, OIP3 and NF  
vs Output Frequency  
LO Leakage vs LO Frequency  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
C
C
C
C
C
C
C
C
= 85°C  
= 25°C  
= –40°C  
LO-OUT  
LO-IN  
NF  
NF  
4
4
G
C
G
C
0
0
0
400  
800  
1200  
1600 1700 1800 1900 2000 2100 2200 2300  
2100 2300 2500 2700 2900 3100 3300 3500  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G42  
5510 G43  
5510 G44  
Conversion Gain, OIP3 and NF  
vs LO Power  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
Output Noise Floor vs Input Power  
32  
28  
24  
20  
16  
12  
8
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
32  
f
f
= 800MHz  
= 3040MHz  
IN  
LO  
28  
24  
20  
16  
12  
8
OIP3  
OIP3  
NF  
T
T
T
T
= 105°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
P
= –6dBm  
= 85°C  
= 25°C  
= –40°C  
LO  
–3dBm  
0dBm  
3dBm  
6dBm  
NF  
4
4
G
C
G
C
0
0
–12  
–9  
–6  
–3  
0
3
6
–20  
–15  
–10  
–5  
0
5
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3  
LO INPUT POWER (dBm)  
INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G45  
5510 G46  
5510 G47  
IM3 Level  
IM2 Level  
vs Output Power (2-Tone)  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
vs Output Power (2-Tone)  
0
–20  
0
–20  
30  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
OIP3  
25  
20  
15  
10  
5
–40  
–40  
NF  
–60  
–60  
IP1dB  
–80  
–80  
G
C
f
= 1950MHz  
–10  
IM2  
–100  
–100  
0
–15  
–10  
–5  
0
5
–15  
–5  
0
5
–45  
–15  
15  
45  
75  
105  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G48  
5510 G49  
5510 G50  
5510fa  
11  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V VHF/UHF Upmixer Application:  
VCC = 5V, TC = 25°C, fIN = 70MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at  
456MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).  
Conversion Gain, OIP3 and NF  
vs Output Frequency  
Conversion Gain and OIP3  
vs Input Frequency  
LO Leakage vs LO Frequency  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
OIP3  
OIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
LO-OUT  
LO-IN  
NF  
4
4
G
C
G
C
0
0
0
200  
400  
600  
800  
1000  
0
100  
200  
300  
400  
0
300  
600  
900  
1200  
1500  
OUTPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G51  
5510 G52  
5510 G53  
Conversion Gain, OIP3 and NF  
vs LO Power  
Output Noise Floor  
vs Input Power  
Conversion Gain, OIP3 and NF  
vs Supply Voltage  
32  
28  
24  
20  
16  
12  
8
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
32  
28  
24  
20  
16  
12  
8
f
f
f
= 44MHz  
OUT  
= 532MHz  
IN  
= 462MHz  
LO  
OIP3  
OIP3  
T
T
T
T
= 105°C  
T
T
T
T
= 105°C  
C
C
C
C
C
C
C
C
P
= –6dBm  
LO  
= 85°C  
= 25°C  
= –40°C  
= 85°C  
= 25°C  
= –40°C  
–3dBm  
0dBm  
3dBm  
6dBm  
NF  
NF  
4
4
G
C
G
C
0
0
–12  
–9  
–6  
–3  
0
3
6
–20  
–15  
–10  
–5  
0
5
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3  
LO INPUT POWER (dBm)  
INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5510 G54  
5510 G55  
5510 G56  
IM3 Level  
IM2 Level  
Conversion Gain, OIP3, NF and  
Input P1dB vs Case Temperature  
vs Output Power (2-Tone)  
vs Output Power (2-Tone)  
0
–20  
0
–20  
32  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
C
C
OIP3  
28  
24  
20  
16  
12  
8
–40  
–40  
IP1dB  
NF  
–60  
–60  
–80  
–80  
4
G
C
f
= 386MHz  
IM2  
–100  
–100  
0
–15 –12 –9  
–6  
–3  
0
3
6
–15 –12 –9  
–6  
–3  
0
3
6
–45  
–15  
15  
45  
75  
105  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G57  
5510 G58  
5510 G59  
5510fa  
12  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL AC PERFORMANCE CHARACTERISTICS 5V VHF/UHF Downmixer Application:  
VCC = 5V, TC = 25°C, fIN = 456MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at  
44MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).  
Conversion Gain, IIP3 and NF  
vs Input Frequency  
Conversion Gain and IIP3  
vs Output Frequency  
LO Leakage vs LO Frequency  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IIP3  
IIP3  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
LO-OUT  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
NF  
LO-IN  
G
G
C
C
0
0
0
200  
400  
600  
800  
1000  
0
50  
100  
150  
200  
250  
300  
0
200  
400  
600  
800 1000 1200  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5510 G60  
5510 G61  
5510 G62  
Conversion Gain, IIP3 and NF  
vs LO Power  
Noise Figure  
Conversion Gain, IIP3 and NF  
vs Supply Voltage  
vs Input Blocker Level  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
26  
24  
22  
20  
18  
16  
14  
12  
P
LO  
P
LO  
P
LO  
P
LO  
P
LO  
= –6dBm  
= –3dBm  
= 0dBm  
= 3dBm  
= 6dBm  
IIP3  
IIP3  
T
T
T
T
= 105°C  
T
T
T
T
= 105°C  
C
C
C
C
C
C
C
C
= 85°C  
= 25°C  
= –40°C  
= 85°C  
= 25°C  
= –40°C  
f
f
f
= 900MHz  
= 800MHz  
= 944MHz  
IN  
BLOCK  
LO  
NF  
NF  
G
G
C
C
0
0
–12  
–9  
–6  
–3  
0
3
6
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3  
–20  
–15  
–10  
–5  
0
5
LO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
BLOCKER POWER (dBm)  
5510 G63  
5510 G65  
5510 G64  
IM3 Level  
Conversion Gain, IIP3, NF and  
Input P1dB vs Case Temperature  
vs Input Power (2-Tone)  
0
–20  
30  
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
IIP3  
25  
20  
15  
10  
5
–40  
IP1dB  
NF  
–60  
–80  
G
C
–100  
0
–15  
–10  
–5  
0
5
–45  
–15  
15  
45  
75  
105  
INPUT POWER (dBm)  
CASE TEMPERATURE (°C)  
5510 G66  
5510 G68  
5510fa  
13  
For more information www.linear.com/LTC5510  
LTC5510  
PIN FUNCTIONS  
TEMP(Pin1):TemperatureMonitor.Thispinisconnected  
to the anode of a diode through a 30Ω resistor. It may be  
used to measure the die temperature by forcing a current  
into the pin and measuring the voltage.  
I
(Pin 8): Bias Adjust Pin. This pin allows adjustment  
ADJ  
of the internal mixer current by adding an external pull-  
down resistor. The typical DC voltage on this pin is 1.8V.  
If not used, this pin must be left floating.  
+
IN , IN (Pins2, 3):DifferentialSignalInput. Foroptimum  
performance,thesepinsshouldbedrivenwithadifferential  
signal. The input can be driven single-ended, with some  
performance degradation, by connecting the undriven pin  
to RF ground through a capacitor. An internally generated  
1.6V DC bias voltage is present on these pins, thus DC  
blocking capacitors are required.  
GND (Pins 9, 12, 13, Exposed Pad (Pin 17)): Ground.  
These pins must be soldered to the RF ground plane on  
the circuit board. The exposed metal pad of the package  
provides both electrical contact to ground and a good  
thermal contact to the printed circuit board.  
+
OUT , OUT (Pins 10, 11,): Differential Output. These  
pins must be connected to a DC supply through imped-  
ance matching inductors and/or a transformer center-tap.  
Typical DC current consumption is 32mA into each pin.  
LGND (Pin 4): DC Ground Return for the Input Amplifier.  
This pin must be connected to DC ground. The typical  
current from this pin is 64mA. In some applications an  
external chip inductor may be used. Note that any induc-  
tor DC resistance will reduce the current through this pin.  
+
LO , LO (Pins 14, 15): Differential Local Oscillator Input.  
A single-ended LO may be used by connecting one pin to  
RF ground through a DC blocking capacitor. These pins  
are internally biased to 1.7V; thus, DC blocking capacitors  
are required. Each LO input pin is internally matched to  
50Ω for both EN states.  
EN(Pin5):EnablePin. Whentheappliedvoltageisgreater  
than1.8V, theICisenabled. Below0.5V, theICisdisabled.  
V
, V  
(Pins 6, 7): Power Supply Pins for the Bias  
CC2  
CC1  
and LO Buffer Circuits. Typical current consumption is  
41mA. These pins should be connected together on the  
circuit board and decoupled with a 10nF capacitor located  
close to the pins.  
TP (Pin 16): Test Pin. This pin is used for production test  
purposes only and must be connected to ground.  
BLOCK DIAGRAM  
EXPOSED PAD  
+
GND  
17  
TP LO  
LO  
14  
GND  
13  
16  
15  
TEMP  
1
2
12 GND  
+
IN  
+
11 OUT  
10 OUT  
IN  
3
4
9
GND  
BIAS  
LGND  
5
6
7
8
EN  
V
V
I
CC2 ADJ  
CC1  
5510 BD  
5510fa  
14  
For more information www.linear.com/LTC5510  
LTC5510  
TEST CIRCUITS  
LO  
RF  
50Ω  
0.015”  
0.062”  
0.015”  
DC1983A  
EVALUATION BOARD  
STACK-UP  
GND  
C4  
C5  
BIAS  
GND  
(NELCO N4000-13)  
16  
TP  
15  
14  
13  
+
LO  
LO  
GND  
TO V  
CC  
TEMPERATURE  
MONITOR  
GND  
+
12  
11  
C8  
TEMP  
1
2
LTC5510  
C1  
C2  
C9  
T1  
1:1  
OUT  
50Ω  
+
IN  
OUT  
L1  
IN  
50Ω  
3
1
4
6
17  
GND  
3
4
2
5
1
6
T2  
4:1  
C3  
OUT  
10  
9
IN  
3
4
L2  
NC  
GND  
LGND  
V
V
EN  
5
CC1  
6
CC2  
7
I
ADJ  
8
L3  
R1  
EN  
V
CC  
C7  
C6  
5510 F01  
5V/3.3V Wideband  
Up/Downmixer*  
5V Wideband Upmixer  
f = 30MHz-2500 MHz  
IN  
f
= 30MHz-3000MHz  
IN  
REF DES  
f
= 1575MHz  
0.1µF  
0.7pF  
1µF  
f
= 2140MHz  
0.1µF  
-
SIZE  
0402  
0402  
0603  
0402  
0402  
0402  
0603  
0402  
COMMENTS  
OUT  
OUT  
C1, C2, C4, C5  
Murata GRM15, X7R  
Murata GJM15, C0G  
Murata GRM18, X7R  
Murata GRM15, X7R  
Murata GJM15, C0G  
CoilCraft 0402HP  
C3  
C6  
1µF  
C7, C8  
C9  
10nF  
10nF  
6.8pF  
6.8nH  
0Ω  
5.6pF  
5.6nH  
0Ω  
L1, L2  
L3  
R1  
4.75kΩ (5V),  
1.8kΩ (3.3V)  
4.75kΩ  
1%  
T1  
Mini-Circuits  
TC1-1-13M+  
Mini-Circuits  
TC1-1-13M+  
T2  
Anaren  
BD1222J50200AHF  
Mini-Circuits  
NCS4-232+  
*Standard DC1983A Eval Board Configuration  
Figure 1. High Frequency Output Test Circuit Schematic (DC1983A)  
5510fa  
15  
For more information www.linear.com/LTC5510  
LTC5510  
TEST CIRCUITS  
LO  
50Ω  
RF  
0.015”  
0.062”  
DC1984A  
GND  
C4  
C5  
EVALUATION BOARD  
STACK-UP  
(NELCO N4000-13)  
BIAS  
GND  
0.015”  
16  
TP  
15  
14  
13  
+
LO  
LO  
GND  
TEMPERATURE  
MONITOR  
GND  
+
12  
11  
TEMP  
1
2
L4  
T2  
4:1  
LTC5510  
C1  
C2  
C9  
T1  
1:1  
+
+
IN  
OUT  
L1  
L2  
OUT  
3
4
6
3
1
4
6
IN  
50Ω  
17  
GND  
C3  
2
1
C10  
C8  
OUT  
10  
9
IN  
3
4
OUT  
OPTIONAL  
DIFF OUT  
L5  
GND  
LGND  
V
V
EN  
5
CC1  
6
CC2  
7
I
ADJ  
8
L3  
R1  
EN  
V
CC  
C7  
C6  
5510 F02  
5V VHF/UHF  
Wideband Downmixer  
f = 100MHz-1000 MHz  
IN  
5V VHF/UHF Upmixer*  
= 70MHz  
f
IN  
REF DES  
f
= 100MHz-1000 MHz  
f
= 44MHz  
0.1µF  
0.9pF  
1µF  
SIZE  
0402  
0402  
0603  
0402  
0603  
0603  
0402  
0402  
COMMENTS  
OUT  
OUT  
C1, C2, C4, C5  
0.1µF  
0.5pF  
1µF  
Murata GRM15, X7R  
Murata GJM15, C0G  
Murata GRM18, X7R  
Murata GRM15, X7R  
C3  
C6  
C7, C8, C9, C10  
10nF  
-
10nF  
-
L1, L2  
L3  
220nH  
15nH  
-
0Ω  
Coilcraft 0603HP, WE 744761  
CoilCraft 0402HP  
L4, L5  
R1  
0Ω  
-
T1  
Mini-Circuits  
TC1-1-13M+  
Mini-Circuits  
TC1-1-13M+  
T2  
Mini-Circuits  
TC4-19LN+  
Mini-Circuits  
TC4-1W-7ALN+  
*Standard DC1984A Eval Board Configuration  
Figure 2. Low Frequency Output Test Circuit Schematic (DC1984A)  
5510fa  
16  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
TheLTC5510useswidebandhighperformanceRFandLO  
amplifiersdrivingadouble-balancedmixercoretoachieve  
frequencyup-ordown-conversionwithhighlinearityover  
a very broad frequency range. For flexibility, all ports are  
differential; however, the LO port has also been optimized  
for single-ended use. Low side or high side LO injection  
can be used. The IN port may also be driven single-ended,  
though with some reduction in performance.  
external components required for the data sheet specified  
performance are shown in Figures 1 and 2. The evaluation  
boards are shown in Figures 3a and 3b.  
The High Frequency Output test circuit, shown in Figure 1,  
utilizes a multilayer chip balun to realize a single-ended  
output. The Low Frequency Output test circuit in Figure 2  
usesawire-woundbalunandisdesignedtoaccommodate  
a differential output if desired. Both the IN and LO ports  
are very broadband and use the same configurations for  
both test circuits. Additional components may be used  
to modify the DC supply current or frequency response,  
which will be discussed in the following sections.  
See the Pin Functions and Block Diagram sections for a  
descriptionofeachpin.Testcircuitschematicsshowingall  
IN Port Interface  
A simplified schematic of the mixer’s input is shown in  
+
Figure 4a. The IN and IN pins drive the bases of the input  
transistors while internal resistors are used for impedance  
matching. These pins are internally biased to a common  
mode voltage of 1.6V, thus external capacitors C1 and C2  
arerequiredforDCisolationandcanbeusedforimpedance  
matching. A small value of C3 can be used to improve the  
impedance match at high frequencies and may improve  
noisefigure.The1:1transformer,T1,providessingle-ended  
to differential conversion for optimum performance.  
5510 F03a  
3a. High Frequency Output Board (DC1983A)  
The typical return loss at the IN port is shown in Figure 5  
with 0.1µF at C1 and C2. The performance is better than  
12dB up to 2.6GHz without C3. Adding a capacitance of  
0.7pF at C3 extends the impedance match to 3GHz.  
Differential input impedances (parallel equivalent) for  
various frequencies are listed in Table 1. At frequencies  
below 30MHz additional external components may be  
needed to optimize the input impedance. Figure 4b shows  
an equivalent circuit that can be used for single-ended  
or differential impedance matching at frequencies below  
1GHz. Above 1GHz, the S-parameters should be used.  
TheDCbiascurrentoftheinputamplifierflowsthroughPin  
4 (LGND). Typically this pin should be directly connected  
to a good RF ground; however, at lower input frequencies  
it may be beneficial to insert an inductor to ground for  
improved IP2 performance. The inductor should have low  
resistance and must be rated to handle 64mA DC current.  
5510 F03b  
3b. Low Frequency Output Board (DC1984A)  
Figure 3. LTC5510 Evaluation Board Layouts  
5510fa  
17  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
Table 1. IN Port Differential Impedance  
V
CC  
LTC5510  
IMPEDANCE (Ω)  
REFL. COEFF.  
MAG  
C1  
+
FREQUENCY  
IN  
(MHz)  
0.2  
REAL*  
823  
IMAG*  
–j3971  
–j800  
–j154  
–j248  
–j378  
–j665  
–j961  
–j832  
–j509  
–j439  
–j367  
–j302  
–j289  
–j280  
–j303  
–j7460  
j155  
ANG (°)  
–1.4  
–7.2  
–41  
–36  
–27  
–17  
–12  
–14  
–24  
–28  
–35  
–49  
–55  
–66  
–91  
–178  
126  
96  
2
0.89  
0.88  
0.50  
0.25  
0.20  
0.18  
0.17  
0.17  
0.16  
0.16  
0.15  
0.13  
0.12  
0.11  
0.08  
0.08  
0.17  
0.29  
T1  
1
751  
1:1  
IN  
50Ω  
C3  
10  
133  
30  
78.1  
73.3  
71.3  
70.7  
70.0  
67.9  
66.7  
64.6  
60.4  
58.5  
55.5  
50.6  
42.9  
42.7  
55.9  
C2  
IN  
50  
3
100  
64mA  
LGND  
200  
V
CC  
500  
4
1000  
1200  
1500  
2000  
2200  
2500  
3000  
4000  
5000  
6000  
5510 F04a  
Figure 4a. IN Port with External Matching  
+
IN  
200pF  
450Ω  
450Ω  
75Ω  
j89  
IN  
5510 F04b  
*Parallel Equivalent Impedance  
Figure 4b. IN Port Equivalent Circuit (< 1GHz)  
LO Input Interface  
0
T1 = TC1-1-13M+  
C1, C2 = 0.1µF  
The LTC5510 can be driven by a single-ended or differ-  
ential LO signal. Internal resistors, as shown in Figure 6,  
provide an impedance match of 50Ω per side or 100Ω  
differential. The impedance match is maintained when the  
part is disabled as well. The LO input pins are internally  
biased to 1.7V, thus external capacitors, C4 and C5 are  
used to provide DC isolation.  
–6  
C3 = OPEN  
–12  
–18  
–24  
C3 = 0.7pF  
–30  
0
1000  
2000  
3000  
4000  
FREQUENCY (MHz)  
5510 F05  
Figure 5. IN Port Return Loss  
5510fa  
18  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
The measured return loss of the LO input port is shown  
in Figure 7 for C4 and C5 values of 0.1µF. The return loss  
is better than 10dB from 5MHz to 6GHz. For frequencies  
below 5MHz, larger C4 and C5 values are required. Table  
2 lists the single-ended input impedance and reflection  
coefficient versus frequency for the LO input. The dif-  
ferential impedance is listed in Table 3.  
Table 2. Single-Ended LO Input Impedance  
IMPEDANCE (Ω)  
REFL. COEFF.  
FREQUENCY  
(MHz)  
1
REAL  
90.3  
87.5  
55.3  
47.8  
47.0  
46.2  
45.2  
44.2  
43.2  
42.3  
41.5  
40.8  
40.1  
38.6  
37.7  
IMAG  
–1.0  
–7.1  
–16.4  
–5.0  
–4.7  
–5.0  
–5.1  
–4.7  
–3.9  
–2.4  
–0.3  
2.0  
MAG  
ANG (°)  
–1  
0.29  
0.28  
0.16  
0.06  
0.06  
0.06  
0.07  
0.08  
0.08  
0.09  
0.09  
0.10  
0.13  
0.20  
0.25  
10  
–8  
100  
–63  
600  
–111  
–119  
–124  
–130  
–138  
–148  
–161  
–178  
166  
1100  
1600  
2100  
2600  
3100  
3600  
4100  
4500  
5000  
6000  
6500  
C5  
LTC5510  
LO  
14  
V
CC  
+
C4  
LO  
15  
LO  
50Ω  
5.6  
147  
5510 F06  
14.3  
19.1  
120  
110  
Figure 6. LO Input Circuit  
Table 3. Differential LO Input Impedance  
0
–5  
C4, C5 = 0.1µF  
IMPEDANCE (Ω)  
REFL. COEFF.  
FREQUENCY  
(MHz)  
1
REAL  
94.9  
95.3  
94.8  
91.7  
85.6  
78.4  
71.5  
65.7  
61.3  
58.2  
56.2  
55.2  
54.6  
54.0  
53.7  
IMAG  
–0.1  
MAG  
0.31  
0.31  
0.31  
0.31  
0.30  
0.29  
0.27  
0.24  
0.22  
0.18  
0.14  
0.10  
0.05  
0.11  
0.18  
ANG (°)  
–0.1  
–0.4  
–2  
–10  
–15  
–20  
–25  
–30  
10  
–0.5  
100  
–2.3  
ON (EN = HIGH)  
OFF (EN = LOW)  
600  
–12.5  
–20.1  
–24.2  
–25.4  
–24.3  
–21.7  
–17.9  
–13.3  
–9.1  
–12  
–21  
–30  
–38  
–45  
–51  
–56  
–58  
–55  
–31  
64  
1100  
1600  
2100  
2600  
3100  
3600  
4100  
4500  
5000  
6000  
6500  
0
1000  
2000  
3000  
4000  
5000  
FREQUENCY (MHz)  
5510 F07  
Figure 7. Single-Ended LO Input Return Loss  
–2.9  
11.0  
18.5  
69  
5510fa  
19  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
OUT Port Interface  
Output Matching: High Frequency Output Board  
The differential output interface is shown in Figure 8.  
Thehighfrequency(HF)outputevaluationboard(DC1983A)  
showninFigure3aisdesignedtousemultilayerchiphybrid  
baluns at the output. This board is intended for frequen-  
cies above about 800MHz (limited by balun availability).  
These baluns deliver good performance and are smaller  
than wire-wound baluns. The board is configured for the  
matching topology shown in Figure 10. Inductors L1 and  
L2 are used to tune out the parasitic output capacitance,  
whilethetransformerprovidesdifferentialtosingle-ended  
conversion and impedance transformation. The DC bias  
to the mixer core can be applied through the matching  
inductors. Each pin draws approximately 32mA of DC  
supply current.  
+
The OUT and OUT pins are open collector outputs with  
internal load resistors that provide a 245Ω differential  
output resistance at low frequencies.  
Figure 9 shows the equivalent circuit of the output and  
Table4listsdifferentialimpedancesforvariousfrequencies.  
Theimpedancevaluesarelistedinparallelequivalentform,  
with equivalent capacitances also shown. For optimum  
single-ended performance, the differential output signal  
must be combined through an external transformer or a  
discretebaluncircuit.Inapplicationswheredifferentialfilters  
or amplifiers follow the mixer, it is possible to eliminate  
the transformer and drive these components differentially.  
Table 4. Differential OUT Port Impedance  
LTC5510  
32mA  
IMPEDANCE (Ω)  
IMAG* (CAP)  
REFL. COEFF.  
MAG ANG  
FREQUENCY  
(MHz)  
+
OUT  
REAL*  
245  
244  
244  
245  
243  
240  
224  
201  
171  
138  
104  
73  
11  
1
–j240k (0.67pF)  
–j40k (0.40pF)  
–j5.31k (0.60pF)  
–j2.66k (0.60pF)  
–j884 (0.60pF)  
–j529 (0.60pF)  
–j260 (0.61pF)  
–j169 (0.63pF)  
–j122 (0.65pF)  
–j93 (0.69pF)  
–j73 (0.73pF)  
–j59 (0.77pF)  
–j51 (0.78pF)  
–j59 (0.60pF)  
j4.74K  
0.66  
0.66  
0.66  
0.66  
0.66  
0.66  
0.65  
0.63  
0.60  
0.57  
0.53  
0.48  
0.43  
0.39  
0.38  
0.44  
0.0  
–0.2  
–1.1  
–2.3  
–6.8  
–11  
–23  
–35  
–48  
–62  
–78  
–97  
–120  
–148  
180  
10  
50  
100  
V
CC  
300  
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
6000  
OUT  
10  
32mA  
5510 F08  
Figure 8. Output Interface  
47  
29  
LTC5510  
+
1.2nH  
OUT  
22  
11  
10  
49  
j51  
117  
245Ω  
0.4pF  
1.2nH  
0.2pF  
* Parallel Equivalent  
OUT  
5510 F09  
Figure 9. Output Port Equivalent Circuit  
5510fa  
20  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
CapacitorC9canbeusedtoimprovetheimpedancematch.  
The component values used for characterization are listed  
in Table 5, along with the 12dB return loss bandwidths.  
The measured return loss curves are plotted in Figure 11.  
Output Matching: Low Frequency Output Board  
Forloweroutputfrequencies,wire-woundtransformerspro-  
videbetterperformance.Thelowfrequency(LF)evaluation  
board(DC1984A)inFigure3(b)accommodatestheseappli-  
cations.TheoutputmatchingtopologyisshowninFigure12.  
Components L1, L2, L4 and L5 are used to tune the im-  
pedance match, while T2 provides the desired impedance  
transformation. C9 and C10 are used for DC blocking in  
some applications. Table 6 lists component values used  
for characterization, and the measured return loss perfor-  
mance is plotted in Figure 13.  
V
CC  
C8  
+
OUT  
11  
C9  
OUT  
L1  
3
4
2
5
1
6
V
CC  
L2  
NC  
OUT  
10  
L4  
+
OUT  
5510 F10  
11  
T2  
4
C9  
Figure 10. HF Board Output Schematic  
L1  
L2  
OUT  
3
2
1
LTC5510  
C10  
Table 5. OUT Port Component Values: HF Output Board (DC1983A)  
C8  
6
FREQUENCY RANGE* L1, L2  
C9  
(MHz)  
(GHz)  
(nH)  
(pF)  
T2  
L5  
OUT  
10  
1575  
1.2 to 2.1  
6.8  
6.8  
5.6  
Anaren  
BD1222J50200AHF  
V
CC  
5510 F12  
2140  
1.6 to 2.5  
5.6  
Mini-Circuits  
NCS4-232+  
Figure 12. LF Board Output Schematic  
* 12dB Return Loss Bandwidth  
Table 6. OUT Port Component Values: LF Output Board (DC1984A)  
FREQUENCY RANGE* L1, L2 L4, L5  
0
(MHz)  
(MHz)  
(nH)  
(nH)  
T2  
44  
5 to 325  
0Ω  
Mini-Circuits  
TC4-1W-7ALN+  
–6  
456  
10 to 1300  
15  
Mini-Circuits  
TC4-19LN+  
a
b
–12  
* 12dB Return Loss Bandwidth  
–18  
–24  
1000  
1500  
2000  
2500  
3000  
FREQUENCY (MHz)  
5510 F11  
Figure 11. Out Port Return Loss of HF Board (DC1983A).  
Tuned for 1575MHz (a), and 2140MHz (b)  
5510fa  
21  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
0
V
CC1  
LTC5510  
6
5
EN  
–6  
a
300k  
–12  
b
5510 F14  
–18  
–24  
Figure 14. Enable Pin Interface  
Current Adjust Pin (I  
)
ADJ  
0
300  
600  
900  
1200  
1500  
FREQUENCY (MHz)  
The I  
pin (Pin 8) can be used to optimize the perfor-  
5510 F13  
ADJ  
mance of the mixer core over temperature. The nominal  
open-circuit DC voltage on this pin is 1.8V and the typical  
short-circuit current is 1.9mA. As shown in Figure 15, an  
internal 4mA reference sets the current in the mixer core.  
Figure 13. Out Port Return Loss of LF Board (DC1984A)  
Tuned for 44MHz (a), and 456MHz (b)  
DC and RF Grounding  
Connecting resistor R1 to the I  
pin shunts some of  
ADJ  
TheLTC5510reliesonthebacksidegroundforbothRFand  
thermal performance. The exposed pad must be soldered  
to the low impedance top side ground plane of the board.  
The top side ground should also be connected to other  
ground layers to aid in thermal dissipation and ensure a  
lowinductanceRFground.TheLTC5510evaluationboards  
(Figures 3a and 3b) utilize a 4 × 4 array of vias under the  
exposed pad for this purpose.  
the reference current to ground, thus reducing the mixer  
core current. The optimum value of R1 depends on the  
supply voltage and intended output frequency. Some  
recommended values are shown in Table 7, but the values  
can be optimized as required for individual applications.  
Table 7. Recommended Values for R1  
V
(V)  
f
(MHz)  
R1 (Ω)  
Open  
4.75k  
1k  
I
(mA)  
CC  
CC  
OUT  
5
<1200  
105  
Enable Interface  
5
>1200  
<1200  
>1200  
99  
90  
94  
3.3  
3.3  
Figure 14 shows a schematic of the EN pin interface. To  
enable the part, the applied EN voltage must be greater  
than 1.8V. Setting the voltage below 0.5V will disable  
the IC. If the enable function is not required, the enable  
1.8k  
V
LTC5510  
715Ω  
CC1  
3V  
pin can be connected to V through a 1k resistor. The  
6
8
CC  
4mA  
ramp-up time of the supply voltage should be greater than  
I
ADJ  
1ms. The voltage at the enable pin should never exceed  
BIAS  
the power supply voltage (V ) by more than 0.3V. Under  
CC  
R
1
no circumstances should voltage be applied to the enable  
pin before the supply voltage is applied to the V pin. If  
5510 F15  
CC  
this occurs, damage to the IC may result.  
Figure 15. Current Adjust Pin Interface  
5510fa  
22  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
Temperature Monitor (TEMP)  
Supply Voltage Ramping  
The TEMP input (pin 1) is connected to an on-chip diode  
that can be used as a coarse temperature monitor by forc-  
ingcurrentintoitandmeasuringtheresultingvoltage. The  
temperature diode is protected by a series 30Ω resistor  
and additional ESD diodes to ground.  
Fast ramping of the supply voltage can cause a current  
glitchintheinternalESDprotectioncircuits.Dependingon  
the supply inductance, this could result in a supply volt-  
age transient that exceeds the maximum rating. A supply  
voltage ramp time of greater than 1ms is recommended.  
The TEMP pin voltage is shown as a function of junction  
temperature in Figure 16. Given the voltage (in mV) at  
The ramp rate of the supply voltage at the V pins should  
CC  
not exceed 20V/ms. If the EN and V pins are switched  
CC  
the pin, V , the junction temperature can be estimated  
simultaneously,theconfigurationinFigure17canbeused  
D
for forced input currents of 10µA and 80µA using the  
following equations:  
to slow the rise time at the V pins if needed.  
CC  
LTC5510  
T (10µA) = (V – 742.4)/ –1.796  
J
D
EN  
5
V
V
CC  
CC  
6
7
T (80µA) = (V – 795.6)/ –1.609  
J
D
10k  
0.5Ω  
900  
850  
800  
750  
700  
650  
600  
550  
500  
V
CC  
220µF  
10nF  
5510 F17  
I
= 80µA  
IN  
Figure 17. Suggested Configuration for Simultaneous VCC  
and EN Switching  
I
= 10µA  
IN  
Spurious Output Levels  
Mixer spurious output levels versus harmonics of the IN  
and LO frequencies are tabulated in Tables 8 and 9 for  
the 5V Wideband Up/Downmixer application. Results  
are shown for frequencies up to 15GHz. The spur fre-  
quencies can be calculated using the following equation:  
–50 –30 –10 10 30 50 70 90 110  
JUNCTION TEMPERATURE (°C)  
5510 G16  
Figure 16. TEMP Pin Voltage vs Junction Temperature  
Auto Supply Voltage Detect  
f
= |M • f  
N • f |  
LO  
SPUR  
IN  
An internal circuit automatically detects the supply volt-  
age and configures internal components for 3.3V or 5V  
operation. TheDCcurrentisaffectedwhentheauto-detect  
circuitswitchesatapproximately4.1V. Toavoidundesired  
operation, the mixer should only be operated in the 3.1V  
to 3.6V or 4.5V to 5.3V supply ranges.  
Table 8 shows the “difference” spurs (f  
LO  
= |M • f – N  
IN  
SPUR  
• f |) and Table 9 shows the “sum” spurs (f  
= M • f  
SPUR  
IN  
+ N • f ). The spur levels were measured on a standard  
LO  
evaluationboardatroomtemperatureusingthetestcircuit  
shown in Figure 1. The spurious output levels for each  
application will be dependent on the external matching  
circuits and the particular application frequencies.  
5510fa  
23  
For more information www.linear.com/LTC5510  
LTC5510  
APPLICATIONS INFORMATION  
Table 8. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO  
|
Table 9. Output Spur Levels (dBc), fSPUR = M • fIN + N • fLO  
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)  
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)  
N
N
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
–30 –30 –40 –18  
–44  
–4  
–46 –24  
0
1
–30  
–30 –40 –18 –44 –4 –46 –24  
–64 0** –50 –30 –64  
–22 –55 –47 –72  
–58 –49 –72 –59  
–66 –79 –75 –86  
-64 –0.4** –50 –16 –55 –26 –52 –52 –69  
2
*
*
*
*
*
*
*
*
*
–37 –73 –65 –65  
2
*
*
*
*
*
*
*
*
*
–36  
–49  
–66  
–70  
–73  
–75  
–74  
–80  
*
–73 –50 –63 –59 –46 –76 –62  
–88 –65 –72 –74 –84 –81  
3
–48  
–68  
–77  
–89  
*
*
*
*
*
*
*
*
*
–71  
–83  
–84  
–87  
–86  
–84  
*
*
*
*
*
*
*
*
*
3
*
4
–84  
–87  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
*
*
*
*
*
–84 –90  
*
*
*
*
*
*
*
–79  
*
*
*
*
*
*
*
*
*
M
5
M
5
*
*
*
*
*
*
*
*
*
*
*
*
6
6
*
7
*
7
*
8
*
*
8
*
9
*
*
9
*
10  
*
*
*
10  
*
* Less Than <–90dBc  
**Carrier Frequency  
* Less Than <–90dBc  
**Image Frequency  
5510fa  
24  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL APPLICATIONS  
Upmixer with 3.3GHz to 3.8GHz Output  
LO  
50Ω  
5V  
10nF  
0.1µF  
0.1µF  
+
LO  
LO  
LTC5510  
MINI-CIRCUITS  
TC1-1-13M  
1:1  
0.1µF  
4.7pF  
NC  
+
+
OUT  
50Ω  
+
IN  
IN  
OUT  
2nH  
2nH  
IN  
0.7pF  
0.1µF  
3
4
2
5
1
6
MINI-CIRCUITS  
NCS1-422  
1:1  
456MHz  
+
BIAS  
OUT  
LGND  
EN  
V
V
I
CC2 ADJ  
CC1  
4.75kΩ  
TYPICAL PERFORMANCE (ROOM TEMPERATURE)  
IN = 456MHz, OUT = 3500MHz, LO = 3956MHz  
EN  
5V  
P
G
= –10dBm, P = 0dBm  
= 0.6dB  
10nF  
IN LO  
C
1µF  
OIP3 = 24.7dBm  
5510 TA02  
SSB NF = 13.3dB  
INPUT P1dB = 11dBm  
Conversion Gain, OIP3 and NF  
vs Output Frequency  
Conversion Gain and OIP3  
vs Input Frequency  
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
0
30  
6
5
4
3
2
1
0
25  
20  
15  
10  
5
OIP3  
OIP3  
LSLO  
LSLO  
HSLO  
HSLO  
NF  
f
= 456MHz  
f
= 3500MHz  
IN  
OUT  
G
C
G
C
0
0
3100  
3300  
3500  
3700  
3900  
0
200  
400  
600  
800  
1000  
OUTPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
5510 TA03  
5510 TA04  
IN Isolation and LO Leakage  
vs Frequency  
IN, OUT and LO Port Return Loss  
vs Frequency  
100  
80  
60  
40  
20  
0
0
0
–6  
–20  
–40  
–60  
–80  
–100  
OUT  
IN-LO  
LO-OUT  
–12  
–18  
–24  
–30  
IN  
LO-IN  
4000  
LO  
IN-OUT  
1000  
0
2000  
3000  
5000  
0
1000  
2000  
3000  
4000  
5000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5510 TA05  
5510 TA06  
5510fa  
25  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL APPLICATIONS  
Mixer with Extended Input Frequency Range to 6GHz  
LO  
50Ω  
0.1µF  
0.1µF  
MINI-CIRCUITS  
+
TC4-1W-7ALN  
4:1  
+
LO  
LO  
LTC5510  
OUT  
140MHz  
MINI-CIRCUITS  
TCM1-63AX  
1:1  
0.1µF  
+
+
+
OUT  
IN  
IN  
IN  
0.3pF  
0.1µF  
0.05pF  
TYPICAL PERFORMANCE (ROOM TEMPERATURE)  
IN = 3GHz, OUT = 140MHz, LO = 3.14GHz  
30MHz TO 6000MHz  
P
G
= –10dBm, P = 0dBm  
= 1.3dB  
IN  
C
LO  
OUT  
BIAS  
IIP3 = 21.3dBm  
LGND  
EN  
V
V
I
CC2 ADJ  
CC1  
4.75kΩ  
1µF  
10nF  
5V  
EN  
10nF  
5510 TA07  
Conversion Gain and IIP3  
vs Input Frequency  
LO-OUT Leakage and IN-OUT  
Isolation vs Frequency  
35  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
60  
50  
40  
30  
20  
10  
0
IIP3  
IN-OUT  
G
C
0
LO-OUT  
–5  
0
1000 2000 3000 4000 5000 6000  
0
1000 2000 3000 4000 5000 6000  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
5510 TA08  
5510 TA09  
IN PORT and LO PORT Return Loss  
vs Frequency  
OUT PORT Return Loss  
vs Frequency  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
IN-PORT  
–10  
–15  
–20  
–25  
LO-PORT  
0
1000 2000 3000 4000 5000 6000  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5510 TA10  
5510 TA11  
5510fa  
26  
For more information www.linear.com/LTC5510  
LTC5510  
TYPICAL APPLICATIONS  
Broadband Downmixer Application Using Single-Ended Input  
LO  
50Ω  
10nF  
10nF  
+
+
LO  
TC4-1W-7ALN  
4:1  
LO  
LTC5510  
OUT  
44MHZ  
50Ω  
10nF  
+
+
IN  
100MHz TO 1000MHz  
50Ω  
IN  
IN  
OUT  
TYPICAL PERFORMANCE (T = 25°C)  
IN = 450MHz, OUT = 44MHz, LO = 494MHz  
C
10nF  
P
= –5dBm, P = 0dBm  
IN  
C
LO  
OUT  
BIAS  
G
= 1.8dB  
IIP3 = 26.3dBm  
LGND  
EN  
SSB NF = 11.5dB  
INPUT P1dB = 8.8dBm  
V
V
I
CC1  
CC2 ADJ  
100nH  
10nF  
5V  
10nF  
1µF  
EN  
5510 TA12  
Conversion Gain, IIP3 and NF  
vs Input Frequency  
Conversion Gain and IIP3  
vs Output Frequency  
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
28  
26  
24  
22  
20  
18  
IIP3  
IIP3  
f
= 44MHz  
OUT  
HSLO  
f
= 450MHz  
IN  
HSLO  
NF  
G
G
C
C
0
0
200  
400  
600  
800  
1000  
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
5510 TA13  
5510 TA14  
LO Leakage and IN Isolation  
vs Frequency  
IN, OUT and LO Port Return Loss  
vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
90  
0
–5  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUT  
IN  
–10  
–15  
–20  
–25  
–30  
–35  
IN-LO  
LO-OUT  
LO  
IN-OUT  
900  
LO-IN  
0
300  
600  
1200  
0
200  
400  
600  
800 1000 1200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5510 TA15  
5510 TA16  
5510fa  
27  
For more information www.linear.com/LTC5510  
LTC5510  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692 Rev Ø)  
0.72 ±0.05  
4.35 ±0.05  
2.90 ±0.05  
2.15 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 ±0.05  
R = 0.115  
TYP  
4.00 ±0.10  
(4 SIDES)  
15  
16  
0.55 ±0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 ±0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 ±0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5510fa  
28  
For more information www.linear.com/LTC5510  
LTC5510  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
06/15 LO and OUTPUT frequency range increased to 6500 and 6000MHz, respectively.  
2, 19, 20, 22,  
23, 26  
Corrected Figure 4 caption.  
22  
5510fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTC5510  
TYPICAL APPLICATION  
5V CATV Downmixer with 1GHz IF Bandwidth  
Conversion Gain, OIP3 and 2RF-LO  
Spur vs IF Output Frequency  
LO  
50Ω  
30  
27  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
OIP3  
10nF  
10nF  
+
TP  
LO  
LO GND  
GND  
f
= 1150MHz  
= –7dBm  
IN  
+
24 IN  
TC4-19LN  
4:1  
10nF  
P
10nF  
+
IF  
TC1-1-13M  
1:1  
OUT  
15nH  
15nH  
21  
18  
15  
12  
9
f
P
T
= f + f  
+
50MHz TO  
1000MHz  
50Ω  
LO IN OUT  
IN  
+
OUT  
3
2
4
= 0dBm  
IN  
1150MHz  
50Ω  
LO  
C
0.5pF  
10nF  
= 25°C  
LTC5510  
2RF-LO  
1
6
IN  
OUT  
10nF  
10nF  
LGND  
EN  
GND  
ADJ  
V
V
I
CC1 CC2  
6
EN  
5V  
3
G
C
10nF  
1µF  
0
0
200  
400  
600  
800  
1000  
5510 TA17  
IF OUTPUT FREQUENCY (MHz)  
5510 TA18  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Mixers and Modulators  
LT®5527  
LT5557  
400MHz to 3.7GHz, 5V Downconverting Mixer  
400MHz to 3.8GHz, 3.3V Downconverting Mixer  
600MHz to 4.5GHz Dual Downconverting Mixer  
Family  
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply  
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply  
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply  
LTC559x  
LTC5569  
300MHz to 4GHz, 3.3V Dual Active  
Downconverting Mixer  
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply  
LTC554x  
LT5578  
LT5579  
LTC5588-1  
LTC5585  
Amplifiers  
LTC6430-15  
LTC6431-15  
LTC6412  
LT5554  
600MHz to 4GHz, 5V Downconverting Mixer Family 8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply  
400MHz to 2.7GHz Upconverting Mixer  
1.5GHz to 3.8GHz Upconverting Mixer  
200MHz to 6GHz I/Q Modulator  
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer  
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor  
700MHz to 3GHz Wideband I/Q Demodulator  
>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling  
High Linearity Differential IF Amp  
High Linearity Single-Ended IF Amp  
31dB Linear Analog VGA  
20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz  
20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz  
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB  
Ultralow Distortion IF Digital VGA  
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps  
RF Power Detectors  
LT5538  
LT5581  
LTC5582  
LTC5583  
ADCs  
40MHz to 3.8GHz Log Detector  
0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current  
0.5dB Accuracy Over Temperature, 0.2dB Linearity Error, 57dB Dynamic Range  
Up to 60dB Dynamic Range, 0.5dB Accuracy Over Temperature, >50dB Isolation  
6GHz Low Power RMS Detector  
40MHz to 10GHz RMS Detector  
Dual 6GHz RMS Power Detector  
LTC2208  
LTC2153-14  
16-Bit, 130Msps ADC  
14-Bit, 310Msps Low Power ADC  
78dBFS Noise Floor, >83dB SFDR at 250MHz  
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption  
RF PLL/Synthesizer with VCO  
LTC6946-1/  
LTC6946-2/  
LTC6946-3  
Low Noise, Low Spurious Integer-N PLL with  
Integrated VCO  
373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop  
Phase Noise  
5510fa  
LT 0615 REV A • PRINTED IN USA  
30 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC5510  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY