LTC4300A-3CMS8#TRPBF [Linear]

LTC4300A-3 - Level Shifting Hot Swappable 2-Wire Bus Buffer with Enable; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LTC4300A-3CMS8#TRPBF
型号: LTC4300A-3CMS8#TRPBF
厂家: Linear    Linear
描述:

LTC4300A-3 - Level Shifting Hot Swappable 2-Wire Bus Buffer with Enable; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

文件: 总12页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4300A-3  
Level Shifting  
Hot Swappable 2-Wire  
Bus Buffer with Enable  
U
DESCRIPTIO  
FEATURES  
Bidirectional Buffer* for SDA and SCL Lines  
The LTC®4300A-3 hot swappable 2-wire bus buffer allows  
I/O card insertion into a live backplane without corruption  
of the data and clock busses. When the connection is  
made, the LTC4300A-3 provides bidirectional buffering,  
keeping the backplane and card capacitances isolated.  
Rise-time accelerator circuitry allows the use of weaker  
DC pull-up currents while still meeting rise-time require-  
ments. During insertion, the SDA and SCL lines are  
precharged to 1V to minimize bus disturbances.  
Increases Fanout  
Prevents SDA and SCL Corruption During Live  
Board Insertion and Removal from Backplane  
Logic Threshold ENABLE Input  
Isolates Input SDA and SCL Lines from Output  
Compatible with I2CTM, I2C Fast Mode and SMBus  
Standards (Up to 400kHz Operation)  
1V Precharge on all SDA and SCL Lines  
Supports Clock Stretching, Arbitration and  
The LTC4300A-3 provides level translation between 3.3V  
and 5V supplies. The backplane and card can both be  
powered with supplies ranging from 2.7V to 5.5V. The  
LTC4300A-3alsoincorporatesaCMOSthresholdENABLE  
pin which forces the part into a low current mode and iso-  
latesthecardfromthebackplane. WhendriventoVCC, the  
ENABLE pin sets normal operation.  
Synchronization  
5V to 3.3V Level Translation  
High Impedance SDA, SCL Pins for VCC = 0V,  
VCC2 = 0V  
Small 8-Pin DFN and MSOP Packages  
U
APPLICATIO S  
TheLTC4300A-3isavailableintheMSOPand3mm×3mm  
DFN packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Patent pending.  
Hot Board Insertion  
Servers  
Capacitance Buffer/Bus Extender  
Desktop Computer  
U
TYPICAL APPLICATIO  
V
3.3V  
CC  
V
CC2  
Input–Output Connection  
0.01µF  
0.01µF  
10k  
10k  
3
10k  
10k  
8
1
INPUT  
SIDE  
150pF  
OUTPUT  
SIDE  
50pF  
2
7
SCLIN  
SCLOUT  
0.5V/DIV  
6
SDAIN  
SDAOUT  
LTC4300A-3  
5
ENABLE  
OFF ON  
GND  
4
4300A-3 TA01  
200ns/DIV  
4300A TA02  
sn4300a3 4300a3fs  
1
LTC4300A-3  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Storage Temperature Range  
VCC to GND .................................................... 0.3 to 7V  
VCC2 to GND .................................................. 0.3 to 7V  
SDAIN, SCLIN, SDAOUT, SCLOUT................. 0.3 to 7V  
ENABLE ......................................................... 0.3 to 7V  
Operating Temperature Range  
MSOP ............................................... 65°C to 150°C  
DFN .................................................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
MSOP Only ....................................................... 300°C  
LTC4300A-3C ......................................... 0°C to 70°C  
LTC4300A-3I ...................................... 40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
8
7
6
5
V
CC  
CC2  
LTC4300A-3CDD  
LTC4300A-3IDD  
LTC4300A-3CMS8  
LTC4300A-3IMS8  
V
1
2
3
4
8 V  
CC  
7 SDAOUT  
6 SDAIN  
SCLOUT  
SCLIN  
GND  
SDAOUT  
SDAIN  
CC2  
9
SCLOUT  
SCLIN  
GND  
ENABLE  
5 ENABLE  
DD  
MS8  
PART MARKING  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
PART MARKING*  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 200°C/W  
LBHG  
LBHG  
LTBHD  
LTBHF  
TJMAX = 125°C, θJA = 43°C/W  
EXPOSED PAD (PIN 9) PCB CONNECTION IS OPTIONAL  
Consult LTC marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specfications are at TA = 25°C. VCC = 2.7V to 5.5V, VCC2 = 2.7V to 5.5V, unless otherwise noted.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Positive Supply Voltage  
2.7  
2.7  
5.5  
5.5  
V
V
CC  
Card Side Supply Voltage  
Supply Current in Shutdown Mode  
CC2  
I
I
I
V
V
V
= 0V  
20  
3
µA  
mA  
mA  
SD  
ENABLE  
V
V
Supply Current  
= V  
= 0V, V  
= V  
= 5.5V  
4.1  
2.9  
VCC1  
VCC2  
CC  
SDAIN  
SCLIN  
CC1  
CC2  
Supply Current  
= V  
= 0V, V  
= V = 5.5V  
CC2  
2.1  
CC2  
SDAOUT  
SCLOUT  
CC1  
Start-Up Circuitry  
V
Precharge Voltage  
SDA, SCL Floating  
0.8  
50  
1.0  
95  
1.2  
V
µs  
V
PRE  
t
Bus Idle Time  
150  
IDLE  
V
V
ENABLE Threshold Voltage  
Disable Threshold Voltage  
ENABLE Input Current  
ENABLE Delay, On-Off  
ENABLE Delay, Off-On  
0.5 • V  
0.5 • V  
±0.1  
10  
0.9 • V  
CC  
EN  
CC  
ENABLE Pin  
0.1 • V  
V
DIS  
CC  
CC  
I
t
t
ENABLE from 0V to V  
±1  
µA  
ns  
µs  
EN  
CC  
PHL  
PLH  
95  
sn4300a3 4300a3fs  
2
LTC4300A-3  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specfications are at TA = 25°C. VCC = 2.7V to 5.5V, VCC2 = 2.7V to 5.5V, unless otherwise noted.  
SYMBOL PARAMETER  
Rise-Time Accelerators  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Transient Boosted Pull-Up Current  
Positive Transition on SDA, SCL, V = 2.7V,  
1
2
mA  
PULLUPAC  
CC  
V
= 2.7V, Slew Rate = 1.25V/µs (Note 2)  
CC2  
Input-Output Connection  
V
Input-Output Offset Voltage  
10k to V on SDA, SCL, V = 3.3V (Note 3),  
0
0
100  
175  
mV  
OS  
CC  
CC  
V
= 3.3V, V = 0.2V  
CC2  
IN  
f
Operating Frequency  
Guaranteed by Design, Not Subject to Test  
Guaranteed by Design, Not Subject to Test  
400  
10  
kHz  
pF  
V
SCL, SDA  
C
V
Digital Input Capacitance  
Output Low Voltage, Input = 0V  
IN  
SDA, SCL Pins, I  
= 3mA, V = 2.7V,  
0
0.4  
OL  
SINK  
CC  
V
= 2.7V  
CC2  
I
Input Leakage Current  
SDA, SCL Pins = V = 5.5V, V  
= 5.5V  
±5  
µA  
LEAK  
CC  
CC2  
Timing Characteristics  
2
f
t
I C Operating Frequency  
(Note 4)  
(Note 4)  
0
400  
kHz  
I2C  
Bus Free Time Between Stop  
and Start Condition  
1.3  
µs  
BUF  
t
Hold Time After (Repeated)  
Start Condition  
(Note 4)  
0.6  
µs  
hD,STA  
t
t
t
t
t
t
t
t
Repeated Start Condition Setup Time (Note 4)  
0.6  
0.6  
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
su,STA  
su,STO  
hD, DAT  
su, DAT  
LOW  
HIGH  
f
Stop Condition Setup Time  
Data Hold Time  
(Note 4)  
(Note 4)  
300  
Data Setup Time  
(Note 4)  
100  
Clock Low Period  
(Note 4)  
1.3  
Clock High Period  
Clock, Data Fall Time  
Clock, Data Rise Time  
(Note 4)  
0.6  
(Notes 4, 5)  
(Notes 4, 5)  
20 + 0.1 • C  
20 + 0.1 • C  
300  
300  
B
r
B
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Guaranteed by design, not subject to test.  
Note 5: C = total capacitance of one bus line in pF.  
B
Note 2: I  
varies with temperature and V voltage, as shown in  
PULLUPAC  
CC  
the Typical Performance Characteristics section.  
Note 3: The connection circuitry always regulates its output to a higher  
voltage than its input. The magnitude of this offset voltage as a function of  
the pullup resistor and V voltage is shown in the Typical Performance  
CC  
Characteristics section.  
sn4300a3 4300a3fs  
3
LTC4300A-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input–Output High to Low  
Propagation Delay vs Temperature  
IPULLUPAC vs Temperature  
ICC vs Temperature  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
12  
10  
8
100  
80  
60  
40  
20  
0
V
V
= 2.7V  
= 3.3V  
CC  
CC  
V
= 5.5V  
CC  
V
= 5V  
CC  
6
V
V
= 3V  
V
CC  
= 2.7V  
V
= 5.5V  
CC  
CC  
CC  
4
2
C
= C  
OUT  
PULLUPIN  
= 100pF  
= R  
= 2.7V  
25  
IN  
R
= 10k  
50  
PULLUPOUT  
25  
TEMPERATURE (°C)  
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
50  
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4300-3 G01  
4300-3 G03  
4300-3 G02  
Connection Circuitry VOUT – VIN  
ISD vs Temperature  
35  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
T
= 25°C  
IN  
A
V
= 0V  
V
= 5.5V  
CC  
V
= 5V  
CC  
V
= 3.3V  
CC  
V
= 2.7V  
25  
CC  
0
0
50  
100  
–50 –25  
0
75  
0
10,000  
20,000  
()  
30,000  
40,000  
R
TEMPERATURE (°C)  
PULLUP  
4300A G05  
4300-3 G04  
sn4300a3 4300a3fs  
4
LTC4300A-3  
U
U
U
PI FU CTIO S  
VCC2 (Pin 1): Card Supply Voltage. This is the supply  
voltage for the devices on the card I2C busses. Connect  
pull-up resistors from SDAOUT and SCLOUT to this pin.  
Placeabypasscapacitorofatleast0.01µFclosetothispin  
for best results.  
isolates SCLIN from SCLOUT. For active operation, drive  
this pin to VCC. If this feature is unused, tie to VCC. Since  
ENABLE is VCC referenced, do not connect to VCC2 or pull  
up to VCC2  
.
SDAIN (Pin 6): Serial Data Input. Connect this pin to the  
SDA bus on the backplane.  
SCLOUT (Pin 2): Serial Clock Output. Connect this pin to  
the SCL bus on the card.  
SDAOUT (Pin 7): Serial Data Output. Connect this pin to  
the SDA bus on the card.  
SCLIN (Pin 3): Serial Clock Input. Connect this pin to the  
SCL bus on the backplane.  
VCC (Pin 8): Main Input Power Supply from Backplane.  
This is the supply voltage for the devices on the backplane  
I2C busses. Connect pull-up resistors from SDAIN and  
SCLIN to this pin. Place a bypass capacitor of at least  
0.01µF close to this pin for best results.  
GND (Pin 4): Device Ground. Connect this pin to a ground  
plane for best results.  
ENABLE(Pin5):DigitalCMOSThresholdInput. Ground-  
ing this pin puts the part in a low current mode. It also  
disables the rise-time accelerators, disables the bus  
discharge circuitry, isolates SDAIN from SDOUT and  
Exposed Pad (Pin 9, DFN Package Only): Exposed Pad  
may by be left open or connected to device ground.  
sn4300a3 4300a3fs  
5
LTC4300A-3  
W
BLOCK DIAGRA  
2-Wire Bus Buffer and Hot SwapTM Controller  
V
CC  
8
2mA  
2mA  
1
V
CC2  
SLEW RATE  
DETECTOR  
SLEW RATE  
DETECTOR  
BACKPLANE-TO-CARD  
SDAIN  
6
7 SDAOUT  
CONNECTION  
CONNECT  
CONNECT  
CONNECT  
100k  
100k  
100k  
100k  
1V  
PRECHARGE  
2mA  
2mA  
SLEW RATE  
DETECTOR  
SLEW RATE  
DETECTOR  
BACKPLANE-TO-CARD  
CONNECTION  
SCLIN  
3
2
SCLOUT  
– 1V  
CONNECT  
CONNECT  
+
V
CC2  
+
+
STOP BIT AND BUS IDLE  
0.5µA  
+
0.55V  
/
CC  
CC  
20pF  
0.45V  
95µs  
CONNECT CONNECT  
UVLO  
DELAY,  
RISING  
ONLY  
RD  
S
ENABLE  
5
QB  
4
GND  
0.5pF  
4300A-3 BD  
Hot Swap is a trademark of Linear Technology Corporation.  
sn4300a3 4300a3fs  
6
LTC4300A-3  
U
OPERATIO  
Start-Up  
Another key feature of the connection circuitry is that it  
provides bidirectional buffering, keeping the backplane  
and card capacitances isolated. Because of this isolation,  
the waveforms on the backplane busses look slightly  
different than the corresponding card bus waveforms, as  
described here.  
When the LTC4300A-3 first receives power on its VCC pin,  
either during power-up or during live insertion, it starts in  
an undervoltage lockout (UVLO) state, ignoring any activ-  
ityontheSDAandSCLpinsuntilVCC risesabove2.5V.The  
part also waits for VCC2 to rise above 2V. This ensures that  
the part does not try to function until it has enough voltage  
to do so.  
Input to Output Offset Voltage  
When a logic low voltage, VLOW1, is driven on any of the  
LTC4300A-3’s data or clock pins, the LTC4300A-3 regu-  
lates the voltage on the other side of the part (call it  
During this time, the 1V precharge circuitry is also active  
and forces 1V through 100k nominal resistors to the SDA  
and SCL pins. Because the I/O card is being plugged into  
alivebackplane,thevoltageonthebackplaneSDAandSCL  
bussesmaybeanywherebetween0VandVCC.Precharging  
the SCL and SDA pins to 1V minimizes the worst-case  
voltagedifferentialthesepinswillseeatthemomentofcon-  
nection, therefore minimizing the amount of disturbance  
caused by the I/O card.  
V
LOW2) to a slightly higher voltage, as directed by the  
following equation (typical):  
VLOW2 = VLOW1 + 75mV + (VCC/R) • 70 []  
where R is the bus pull-up resistance in ohms. For ex-  
ample, if a device is forcing SDAOUT to 10mV where  
VCC =3.3Vandthepull-upresistorRonSDAINis10k,then  
the voltage on SDAIN = 10mV + 75mV + (3.3/10000) • 70  
= 108mV (typical). See the Typical Performance Charac-  
teristics section for curves showing the offset voltage as  
a function of VCC and R.  
OncetheLTC4300A-3comesoutofUVLO, itassumesthat  
SDAIN and SCLIN have been inserted into a live system  
and that SDAOUT and SCLOUT are being powered up at  
the same time as itself. Therefore, it looks for either a stop  
bit or bus idle condition on the backplane side to indicate  
the completion of a data transaction. When either one  
occurs, the part also verifies that both the SDAOUT and  
SCLOUT voltages are high. When all of these conditions  
are met, the input-to-output connection circuitry is acti-  
vated, joiningtheSDAandSCLbussesontheI/Ocardwith  
those on the backplane, and the rise time accelerators are  
enabled.  
Propagation Delays  
During a rising edge, the rise-time on each side is deter-  
mined by the combined pull-up current of the LTC4300A-  
3 boost current and the bus resistor and the equivalent  
capacitance on the line. If the pull-up currents are the  
same, a difference in rise-time occurs which is directly  
proportional to the difference in capacitance between the  
twosides.ThiseffectisdisplayedinFigure1forVCC =VCC2  
=3.3Vanda10kpull-upresistoroneachside(50pFonone  
side and 150pF on the other). Since the output side has  
less capacitance than the input, it rises faster and the  
effective propagation delay is negative.  
Connection Circuitry  
Once the connection circuitry is activated, the functional-  
ityoftheSDAINandSDAOUTpinsisidentical.Alowforced  
on either pin at any time results in both pin voltages being  
low. For proper operation, logic low input voltages should  
benohigherthan0.4Vwithrespecttothegroundpinvoltage  
of the LTC4300A-3. SDAIN and SDAOUT enter a logic high  
state only when all devices on both SDAIN and SDAOUT  
releasehigh.ThesameistrueforSCLINandSCLOUT.This  
importantfeatureensuresthatclockstretching,clocksyn-  
chronization, arbitration and the acknowledge protocol al-  
wayswork,regardlessofhowthedevicesinthesystemare  
tied to the LTC4300A-3.  
There is a finite propagation delay through the connection  
circuitry for falling waveforms. Figure 2 shows the falling  
edge waveforms for the same VCC, pull-up resistors and  
equivalent capacitance conditions as used in Figure 1. An  
external NMOS device pulls down the voltage on the side  
with 150pF capacitance; the LTC4300A-3 pulls down the  
voltage on the opposite side, with a delay of 55ns. This  
delayisalwayspositiveandisafunctionofsupplyvoltage,  
sn4300a3 4300a3fs  
7
LTC4300A-3  
U
OPERATIO  
OUTPUT  
SIDE  
50pF  
INPUT  
SIDE  
150pF  
INPUT  
SIDE  
150pF  
OUTPUT  
SIDE  
50pF  
0.5V/DIV  
0.5V/DIV  
200ns/DIV  
4300A-3 F01  
200ns/DIV  
4300A-3 F02  
Figure 1. Input–Output Connection Low to High Transition  
Figure 2. Input–Output Connection High to Low Transition  
temperature and the pull-up resistors and equivalent bus  
capacitances on both sides of the bus. The Typical Perfor-  
mance Characteristics section shows tPHL as a function of  
temperature and voltage for 10k pull-up resistors and  
100pF equivalent capacitance on both sides of the part. By  
comparison with Figure 2, the VCC = VCC2 = 3.3V curve  
showsthatincreasingthecapacitancefrom50pFto100pF  
results in a propagation delay increase from 55ns to 75ns.  
Larger output capacitances translate to longer delays (up  
to 150ns). Users must quantify the difference in propaga-  
tion times for a rising edge versus a falling edge in their  
systems and adjust setup and hold times accordingly.  
For example, assume an SMBus system with VCC = 3V, a  
10k pull-up resistor and equivalent bus capacitance of  
200pF. The rise-time of an SMBus system is calculated  
from (VIL(MAX) – 0.15V) to (VIH(MIN) + 0.15V), or 0.65V to  
2.25V. It takes an RC circuit 0.92 time constants to  
traverse this voltage for a 3V supply; in this case, 0.92 •  
(10k • 200pF) = 1.84µs. Thus, the system exceeds the  
maximum allowed rise-time of 1µs by 84%. However,  
using the rise-time accelerators, which are activated at a  
DC threshold of below 0.65V, the worst-case rise-time is:  
(2.25V – 0.65V) • 200pF/1mA = 320ns, which meets the  
1µs rise-time requirement.  
Rise-Time Accelerators  
ENABLE Low Current Disable  
Onceconnectionhasbeenestablished,rise-timeaccelera-  
tor circuits on all four SDA and SCL pins are activated.  
TheseallowtheusertochooseweakerDCpull-upcurrents  
on the bus, reducing power consumption while still meet-  
ing system rise-time requirements. During positive bus  
transitions, the LTC4300A-3 switches in 2mA (typical) of  
current to quickly slew the SDA and SCL lines once their  
DC voltages exceed 0.6V. Using a general rule of 20pF of  
capacitance for every device on the bus (10pF for the  
device and 10pF for interconnect), choose a pull-up cur-  
rent so that the bus will rise on its own at a rate of at least  
1.25V/µs to guarantee activation of the accelerators.  
Grounding the ENABLE pin disconnects the backplane  
side from the card side, disables the rise-time accelera-  
tors, disablesthebusprechargecircuitryandputsthepart  
in a near-zero current state. When the pin voltage is driven  
all the way to VCC, the part waits for data transactions on  
both the backplane and card sides to be complete (as  
describedintheStart-Upsection)beforereconnectingthe  
two sides.  
sn4300a3 4300a3fs  
8
LTC4300A-3  
U
W U U  
APPLICATIO S I FOR ATIO  
Resistor Pull-Up Value Selection  
Live Insertion and Capacitance Buffering Application  
The system pull-up resistors must be strong enough to  
provide a positive slew rate of 1.25V/µs on the SDA and  
SCL pins, in order to activate the boost pull-up currents  
during rising edges. Choose maximum resistor value R  
using the formula:  
Figures 3 and 4 illustrate the usage of the LTC4300A-3 in  
applicationsthattakeadvantageofbothitsHotSwapcon-  
trolling and capacitance buffering features. In all of these  
applications, note that if the I/O cards were plugged di-  
rectly into the backplane, all of the backplane and card ca-  
pacitances would add directly together, making rise- and  
fall-time requirements difficult to meet. Placing a  
LTC4300A-3 on the edge of each card, however, isolates  
the card capacitance from the backplane. For a given I/O  
card,theLTC4300A-3drivesthecapacitanceofeverything  
on the card and the backplane must drive only the capaci-  
tance of the LTC4300A-3, which is less than 10pF.  
R (VCC(MIN) – 0.6)(800,000)/C  
where R is the pull-up resistor value in ohms, VCC(MIN) is  
the minimum VCC voltage and C is the equivalent bus  
capacitance in picofarads (pF).  
In addition, regardless of the bus capacitance, always  
choose R 16k for VCC = 5.5V maximum, R 24k for  
VCC = 3.6Vmaximum.Thestart-upcircuitryrequireslogic  
high voltages on SDAOUT and SCLOUT to connect the  
backplanetothecard, andthesepull-upvaluesareneeded  
to overcome the precharge voltage.  
BACKPLANE  
CONNECTOR  
BACKPLANE  
I/O PERIPHERAL CARD 1  
C1  
V
CC2  
R1  
10k  
R2  
10k  
0.01µF  
R7  
10k  
R8  
10k  
V
CC2  
SDAOUT  
SCLOUT  
ENABLE  
CARD_SDA  
CARD_SCL  
V
V
CC  
CC  
SDAIN  
SCLIN  
LTC4300A-3  
GND  
SDA  
SCL  
C2 0.01µF  
R3  
10k  
ENA1  
I/O PERIPHERAL CARD 2  
C3  
R4  
10k  
R5  
10k  
0.01µF  
V
CC2  
SDAOUT  
SCLOUT  
ENABLE  
CARD2_SDA  
CARD2_SCL  
V
CC  
SDAIN  
SCLIN  
LTC4300A-3  
GND  
C4 0.01µF  
R6  
10k  
ENA2  
4300A-3 F03  
Figure 3. The LTC4300A-3 in a PCI Application Where All the Pins Have the Same Length.  
ENABLE Should be Held Low Until All Transients Associated with the Live Insertion Have Settled  
sn4300a3 4300a3fs  
9
LTC4300A-3  
U
W U U  
APPLICATIO S I FOR ATIO  
BACKPLANE  
CONNECTOR  
BACKPLANE  
I/O PERIPHERAL CARD 1  
C1  
V
CC2  
R1  
10k  
R2  
0.01µF  
R7  
10k  
R8  
10k  
10k  
V
CC2  
SDAOUT  
SCLOUT  
ENABLE  
CARD_SDA  
CARD_SCL  
V
V
CC  
CC  
SDAIN  
SCLIN  
SDA  
SCL  
LTC4300A-3  
GND  
C2 0.01µF  
R3  
10k  
ENA1  
I/O PERIPHERAL CARD 2  
C3  
R4  
10k  
R5  
10k  
0.01µF  
V
CC2  
SDAOUT  
SCLOUT  
ENABLE  
CARD2_SDA  
CARD2_SCL  
V
CC  
LTC4300A-3  
GND  
SDAIN  
SCLIN  
C4 0.01µF  
R6  
10k  
ENA2  
4300A-3 F04  
Figure 4. The LTC4300A-3 in a Custom Application. Making ENABLE the Shortest Pin Ensures that  
VCC and VCC2 Connect Before ENABLE is Allowed to Go High, Connecting the Card to the Backplane  
5V to 3.3V Level Translator and Power Supply  
Redundancy  
voltage magnitudes of VCC and VCC2 with respect to each  
other.  
Systems requiring different supply voltages for the  
backplane side and the card side can use the LTC4300A-3,  
asshowninFigure5.Thepull-upresistorsonthecardside  
connect from SDAOUT to SCLOUT to VCC2, and those on  
thebackplanesideconnectfromSDAINandSCLINtoVCC.  
TheLTC4300A-3functionsforvoltagesrangingfrom2.7V  
to5.5VonbothVCC andVCC2. Thereisnoconstraintonthe  
This application also provides power supply redundancy.  
If the VCC2 voltage falls below its UVLO threshold, the  
LTC4300A-3 disconnects the backplane from the card, so  
that the backplane can continue to function. If the VCC  
voltage falls below its UVLO threshold and the VCC2  
voltage remains active, hold ENABLE at ground to ensure  
proper operation.  
sn4300a3 4300a3fs  
10  
LTC4300A-3  
U
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6  
5
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
0.889 ± 0.127  
(.035 ± .005)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
5.23  
(.206)  
MIN  
0.53 ± 0.152  
(.021 ± .006)  
3.20 – 3.45  
(.126 – .136)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
SEATING  
PLANE  
(.0165 ± .0015)  
TYP  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
RECOMMENDED SOLDER PAD LAYOUT  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn4300a3 4300a3fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4300A-3  
U
TYPICAL APPLICATIO S  
V
CC  
CARD_V , 3.3V  
CC  
5V  
C2  
0.01µF  
C1  
0.01µF  
R3  
10k  
R2  
10k  
R1  
10k  
R4  
10k  
V
V
CC2  
CC  
SDAIN  
SCLIN  
SDAOUT  
SCLOUT  
CARD_SDA  
CARD_SCL  
SDA  
SCL  
LTC4300A-3  
GND  
4300A-3 F05  
ENABLE  
Figure 5. 5V to 3.3V Level Translator  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1380/LTC1393  
Single-Ended 8-Channel/Differential 4-Channel Analog Low R : 35Single-Ended/70Differential,  
ON  
Mux with SMBus Interface  
Expandable to 32 Single or 16 Differential Channels  
LTC1427-50  
Micropower, 10-Bit Current Output DAC  
with SMBus Interface  
Precision 50µA ± 2.5% Tolerance Over Temperature,  
4 Selectable SMBus Addresses, DAC Powers up at Zero or Midscale  
LTC1623  
Dual High Side Switch Controller with SMBus Interface 8 Selectable Addresses/16-Channel Capability  
LTC1663  
SMBus Interface 10-Bit Rail-to-Rail Micropower DAC  
SMBus Accelerator  
DNL < 0.75LSB Max, 5-Lead SOT-23 Package  
2
LTC1694/LTC1694-1  
Improved SMBus/I C Rise-Time,  
Ensures Data Integrity with Multiple SMBus/I C Devices  
2
LT1786F  
LTC1695  
LTC1840  
SMBus Controlled CCFL Switching Regulator  
1.25A, 200kHz, Floating or Grounded Lamp Configurations  
0.75PMOS 180mA Regulator, 6-Bit DAC  
TM  
2
SMBus/I C Fan Speed Controller in ThinSOT  
2
Dual I C Fan Speed Controller  
Two 100µA 8-Bit DACs, Two Tach Inputs, Four GPI0  
LTC4300A-1/LTC4300A-2 Hot Swappable 2-Wire Bus Buffer  
Preserves Data integrity Under Hot Swap Conditions, Provides  
Capacitive Buffering, Rise-Time Acceleration  
LTC4301  
Supply Independent 2-Wire Bus Buffer  
Provides Capacitive Buffer, 3.3V to 5V Level Translation with Only  
the Card Bus V Supply  
CC  
LTC4301L  
Hot-Swappable 2-Wire Bus Buffer with Low Voltage  
Level Translation  
Level Translators, 1V Signals to Standard 3.3V and 5V Logic Rails  
2
LTC4302-1/LTC4302-2  
Addressable I C and SMBus Compatible Bus Buffers  
Provides Capacitive Buffering, Rise-Time Acceleration, and Input to  
Output Connection Control Using 2-Wire Bus Commands  
ThinSOT is a trademark of Linear Technology Corporation.  
sn4300a3 4300a3fs  
LT/TP 0404 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY