LTC3429BES6#TRMPBF [Linear]

LTC3429 - 600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3429BES6#TRMPBF
型号: LTC3429BES6#TRMPBF
厂家: Linear    Linear
描述:

LTC3429 - 600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总12页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3429/LTC3429B  
600mA, 500kHz Micropower  
Synchronous Boost Converter  
with Output Disconnect  
U
FEATURES  
DESCRIPTIO  
Up to 96% Efficiency  
The LTC®3429/LTC3429B are high efficiency synchro-  
nous,fixedfrequency,step-upDC/DCconverterswithtrue  
output load disconnect, inrush current limiting and soft-  
start in a low profile 6-lead ThinSOTTM package. These  
devices are capable of supplying 100mA from a single AA  
cell input or 250mA from a 2-cell AA with a 3.3V output.  
True Output Load Disconnect  
Inrush Current Limiting and Internal Soft-Start  
Low Voltage Start-Up: 0.85V  
Automatic Burst Mode® Operation with IQ ~ 20µA  
Continuous Switching at Light Loads (LTC3429B)  
Internal Synchronous Rectifier  
A switching frequency of 500kHz minimizes overall solu-  
tion footprint by allowing the use of tiny, low profile  
inductors and ceramic capacitors. Current mode PWM  
control with internal compensation reduces external parts  
counttherebysavingcriticalboardrealestate.TheLTC3429  
shiftsautomaticallytopowersavingBurstModeoperation  
at light loads while the LTC3429B features continuous  
switching at light loads. Antiringing control circuitry re-  
duces EMI concerns by damping the inductor in discon-  
tinuous mode.  
Current Mode Control with Internal Compensation  
Short-Circuit Protection  
500kHz Fixed Frequency Switching  
Input Range: 0.5V to 4.4V  
Output Range: 2.5V to 4.3V (Up to 5V with Schottky)  
Shutdown Current: <1µA  
Antiringing Control Minimizes EMI  
Tiny External Components  
Low Profile (1mm) SOT-23 Package  
U
The devices also feature low shutdown current of under  
1µA. The true output disconnect feature allows the output  
to be completely discharged in shutdown. It also limits the  
inrush of current during start-up, minimizing surge cur-  
rents seen by the input supply.  
, LTC and LT are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Burst Mode is a registered  
trademark of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology  
Corporation.  
APPLICATIO S  
MP3 Players  
Digital Cameras  
LCD Bias Supplies  
Handheld Instruments  
Wireless Handsets  
GPS Receivers  
U
TYPICAL APPLICATIO  
2-Cell to 3.3V Efficiency  
100  
100  
V
= 3V  
IN  
4.7µH  
90  
80  
10  
1
EFFICIENCY  
+
2-CELL  
AA  
V
= 2.4V  
= 2.4V  
IN  
4.7µF  
SW  
V
OUT  
3.3V  
V
V
IN  
LTC3429  
SHDN FB  
GND  
OUT  
250mA  
70  
60  
0.1  
V
1.02M  
604k  
IN  
10µF  
OFF  
ON  
V
= 3V  
IN  
0.01  
POWER LOSS  
50  
40  
0.001  
3429 F01a  
0.0001  
1000  
0.1  
1
10  
100  
Figure 1. 2-Cell to 3.3V Synchronous Boost Converter  
OUTPUT CURRENT (mA)  
3429 F01b  
3429fa  
1
LTC3429/LTC3429B  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage .............................................. 0.3V to 4.4V  
SW Voltage ................................................. 0.3V to 6V  
SHDN, FB Voltage ....................................... 0.3V to 6V  
VOUT ........................................................... 0.3V to 6V  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................... 65°C to 150°  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
LTC3429ES6  
LTC3429BES6  
OUT  
4 SHDN  
S6 PART MARKING  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
LTH5  
LTBMS  
TJMAX = 125°C, θJC = 102°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
= 1mA, V  
MIN  
TYP  
0.85  
0.5  
MAX  
1
UNITS  
V
Minimum Start-Up Voltage  
Minimum Operating Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
I
= 0V  
OUT  
LOAD  
SHDN = V (Note 3)  
0.65  
5
V
IN  
(Note 5)  
2.5  
V
1.192  
1.230  
1
1.268  
50  
30  
1
V
Feedback Input Current  
Quiescent Current (Burst Mode Operation)  
Quiescent Current (Shutdown)  
Quiescent Current (Active)  
NMOS Switch Leakage  
PMOS Switch Leakage  
NMOS Switch On Resistance  
PMOS Switch On Resistance  
NMOS Current Limit  
V
V
V
= 1.25V  
nA  
µA  
µA  
µA  
µA  
µA  
FB  
= 1.4V (Note 4)  
20  
FB  
= 0V, Not Including Switch Leakage, V  
= 0V  
0.01  
380  
0.1  
SHDN  
OUT  
Measured on V , Nonswitching  
550  
5
OUT  
V
SW  
V
SW  
= 5V  
= 5V, V  
= 0V  
0.1  
5
OUT  
0.35  
0.45  
850  
1.25  
40  
600  
mA  
mA  
ns  
%
Burst Mode Operation Current Threshold  
Current Limit Delay to Output  
Max Duty Cycle  
L = 4.7µH (LTC3429 Only)  
V
FB  
= 1.15V  
80  
380  
1
90  
Switching Frequency  
500  
620  
kHz  
V
SHDN Input High  
SHDN Input Low  
0.35  
1
V
SHDN Input Current  
V
= 5.5V  
0.01  
2.5  
µA  
ms  
SHDN  
Soft-Start Time  
SHDN to 90% of V  
OUT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LTC3429ES6/LTC3429BES6 are guaranteed to meet  
performance specifications from 0°C to 70°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 3: Minimum V operation after start-up is only limited by the  
battery’s ability to provide the necessary power as it enters a deeply  
discharged state.  
IN  
Note 4: Burst Mode operation I is measured at V . Multiply this value  
Q
OUT  
by V /V to get the equivalent input (battery) current.  
OUT IN  
Note 5: For applications where V  
> 4.3V, an external Schottky diode is  
OUT  
required. See the Applications Information.  
3429fa  
2
LTC3429/LTC3429B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (T = 25°C unless otherwise specified)  
A
Single-Cell to 3.3V Efficiency  
(LTC3429 Only)  
2-Cell to 3.3V Efficiency  
(LTC3429 Only)  
Efficiency vs Input Voltage  
100  
90  
100  
100  
100  
100  
V
= 3.3V  
= 50mA  
OUT  
OUT  
V
= 3V  
IN  
I
90  
80  
10  
1
90  
80  
10  
1
EFFICIENCY  
V
IN  
= 1.5V  
V
= 2.4V  
IN  
80  
70  
EFFICIENCY  
V
IN  
= 1.2V  
70  
60  
0.1  
70  
60  
0.1  
V
= 2.4V  
IN  
V
IN  
= 1.2V  
V
= 3V  
IN  
60  
50  
40  
0.01  
0.01  
V
IN  
= 1.5V  
POWER LOSS  
V
IN  
> V  
OUT  
POWER LOSS  
50  
40  
0.001  
50  
40  
0.001  
PMOS LDO  
MODE  
0.0001  
1000  
0.0001  
1000  
0.5  
1.5  
2.5  
3.5  
4.5  
0.1  
1
10  
100  
0.1  
1
10  
100  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3429 G01  
3429 G02  
3429 G05  
Burst Mode Output Current  
Threshold vs Input Voltage  
(LTC3429 Only)  
Li-Ion to 5V Efficiency  
(LTC3429 Only)  
2-Cell to 5V Efficiency  
(LTC3429 Only)  
100  
100  
100  
100  
35  
30  
L = 4.7µH  
V
= 4.2V  
IN  
V
= 3V  
90  
80  
10  
1
90  
80  
10  
1
IN  
EFFICIENCY  
V
= 3.6V  
IN  
EFFICIENCY  
25  
20  
V
= 2.4V  
IN  
V
= 2.4V  
IN  
V = 3.3V  
OUT  
70  
60  
0.1  
70  
60  
0.1  
V
= 3.6V  
IN  
15  
10  
5
V
= 3V  
IN  
V
= 5V  
V
= 4.2V  
OUT  
3.4  
IN  
0.01  
0.01  
POWER LOSS  
POWER LOSS  
50  
40  
0.001  
50  
40  
0.001  
0.0001  
1000  
0.0001  
1000  
0
0.1  
1
10  
100  
2.9  
3.9 4.4  
0.1  
1
10  
100  
0.9 1.4  
1.9 2.4  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3429 G04  
3429 G03  
3429 G06  
Maximum Load Current  
Capability at Output 4% Below  
Regulation Point  
No Load Input Current  
Minimum Start-Up Input Voltage  
vs Load Current  
vs Input Voltage (LTC3429 Only)  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
1000  
100  
10  
600  
500  
400  
300  
200  
100  
0
L = 4.7µH  
L = 4.7µH  
CURRENT  
SINK LOAD  
V
= 3.3V  
V
= 5V  
OUT  
OUT  
RESISTOR  
LOAD  
V
= 5V  
OUT  
V
= 3.3V  
OUT  
3
3.5  
0
50  
100  
150  
0.5  
1
1.5  
2
2.5  
4
4.5  
0.9 1.4 1.9  
INPUT VOLTAGE (V)  
4.4  
2.4 2.9 3.4  
3.9  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3429 G09  
3429 G08  
3429 G07  
3429fa  
3
LTC3429/LTC3429B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (T = 25°C unless otherwise specified)  
A
Normalized Oscillator Frequency  
vs Temperature  
Burst Mode Quiescent Current  
vs Temperature (LTC3429 Only)  
Output Voltage vs Temperature  
3.44  
3.40  
3.36  
3.32  
3.28  
3.24  
3.20  
3.16  
1.02  
1.00  
40  
35  
30  
25  
20  
15  
10  
5
V
OUT  
= 1.5V  
IN  
I
= 30mA  
V
= 5V  
OUT  
0.98  
V
OUT  
= 3.3V  
0.96  
0.94  
0.92  
0
–29  
0
20 40  
100  
–60 –40 –20  
0
40  
80 100  
20 40  
TEMPERATURE (°C)  
–60 –40  
60 80  
20  
60  
–60 –40 –20  
0
60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3429 G10  
3429 G11  
3429 G12  
SW Pin Discontinuous Mode  
Antiringing Operation  
Fixed Frequency and Burst Mode  
Operation (LTC3429 Only)  
SW Pin Fixed Frequency  
Continuous Mode Operation  
V
OUT  
V
V
SW  
1V/DIV  
SW  
1V/DIV  
100mV/DIV  
AC-COUPLED  
50mA  
I
OUT  
120µA  
3429 G14  
3429 G15  
3429 G13  
V
V
I
= 1.5V  
200ns/DIV  
V
V
I
= 1.5V  
5ms/DIV  
V
V
I
= 1.5V  
200ns/DIV  
IN  
OUT  
IN  
OUT  
= 120µA TO 50mA STEP  
IN  
OUT  
= 3.3V  
= 3.3V  
= 3.3V  
= 20mA  
= 50mA  
OUT  
OUT  
L = 10µH  
= 10µF  
OUT  
= 150pF  
PL  
OUT  
L = 10µH  
L = 10µH  
C
C
= 10µF  
C
C
C
C
= 10µF  
OUT  
= 150pF  
OUT  
= 150pF  
PL  
PL  
Inrush Current Control  
and Soft-Start  
Inrush Current Control  
and Soft-Start  
Output Voltage Transient  
Response  
V
OUT  
V
OUT  
2V/DIV  
1V/DIV  
V
OUT  
100mV/DIV  
AC-COUPLED  
INDUCTOR  
CURRENT  
100mA/DIV  
INDUCTOR  
CURRENT  
200mA/DIV  
90mA  
I
OUT  
40mA  
3429 G16  
3429 G17  
3429 G18  
V
V
I
= 1.5V  
100µs/DIV  
V
V
I
= 1.5V  
500µs/DIV  
V
V
I
= 2.5V  
= 5V  
OUT  
L = 4.7µH  
= 10µF  
OUT  
= 100pF  
PL  
2ms/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 40mA TO 90mA STEP  
= 3.3V  
= 10mA  
= 50mA  
OUT  
OUT  
L = 10µH  
L = 4.7µH  
C
C
= 10µF  
C
C
= 10µF  
C
C
OUT  
OUT  
PL  
= 150pF  
= 100pF  
PL  
3429fa  
4
LTC3429/LTC3429B  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor between SW  
and VIN. Keep these PCB trace lengths as short and wide  
as possible to reduce EMI and voltage overshoot. If the  
inductor current falls to zero, or SHDN is low, an internal  
150antiringing switch is connected from SW to VIN to  
minimize EMI.  
SHDN = Low: Shutdown, quiescent current <1µA.  
Outputcapacitorcanbecompletelydischargedthrough  
the load or feedback resistors. A 150resistor is  
internally connected between SW and VIN.  
V
OUT (Pin 5): Output Voltage Sense Input and Drain of the  
Internal Synchronous Rectifier MOSFET. Bias is derived  
from VOUT. PCB trace length from VOUT to the output filter  
capacitor(s)shouldbeasshortandwideaspossible.VOUT  
is completely disconnected from VIN when SHDN is low  
due to the output disconnect feature.  
GND (Pin 2): Signal and Power Ground. Provide a short  
directPCBpathbetweenGNDandthe()sideoftheoutput  
capacitor(s).  
FB (Pin 3): Feedback Input to the gm Error Amplifier.  
Connect resistor divider tap to this pin. The output voltage  
can be adjusted from 2.5V to 5V by:  
VIN (Pin 6): Battery Input Voltage. The device gets its  
start-up bias from VIN. Once VOUT exceeds VIN, bias  
comes from VOUT. Thus, once started, operation is com-  
pletelyindependentfromVIN.Operationisonlylimitedby  
the output power level and the battery’s internal series  
resistance.  
VOUT = 1.23V • [1 + (R1/R2)]  
SHDN (Pin 4): Logic Controlled Shutdown Input.  
SHDN = High: Normal free running operation, 500kHz  
typical operating frequency.  
W
BLOCK DIAGRA  
L1  
+
V
IN  
SW  
1
6
C
1V TO 4.4V  
IN  
+
V
OUT  
V
IN  
GOOD  
2.3V  
WELL  
START-UP  
OSC  
A/B  
MUX  
A
B
SWITCH  
V
OUT  
5
2.5V TO 5V  
0.45  
0.35Ω  
SYNC  
DRIVE  
CONTROL  
PWM  
CONTROL  
C
PL  
RAMP  
GEN  
500kHz  
R1  
CURRENT  
SENSE  
(OPTIONAL)  
Σ
SLOPE  
COMP  
PWM  
COMPARATOR  
+
FB  
3
+
C
OUT  
g
m
ERROR  
AMP  
1.23V  
REF  
R
C
80k  
C
P2  
2.5pF  
Burst Mode  
OPERATION  
CONTROL  
C
C
SLEEP  
R2  
150pF  
SHDN  
4
2
GND  
SHUTDOWN  
CONTROL  
SHUTDOWN  
3429 BD  
3429fa  
5
LTC3429/LTC3429B  
U
OPERATIO  
The LTC3429/LTC3429B are 500kHz, synchronous boost  
converters housed in a 6-lead SOT-23 package. Able to  
operate from an input voltage below 1V, the device fea-  
tures fixed frequency, current mode PWM control for  
exceptional line and load regulation. Low RDS(ON) internal  
MOSFET switches enable the device to maintain high  
efficiency over a wide range of load current. Detailed  
descriptions of the different operating modes follow.  
OperationcanbebestunderstoodbyreferringtotheBlock  
Diagram.  
LOW NOISE FIXED FREQUENCY OPERATION  
Oscillator  
The frequency of operation is internally set to 500kHz.  
Error Amp  
Theerroramplifierisaninternallycompensatedtranscon-  
ductance type (current output) with a transconductance  
(gm) = 33 microsiemens. The internal 1.23V reference  
voltageiscomparedtothevoltageattheFBpintogenerate  
an error signal at the output of the error amplifier. A volt-  
age divider from VOUT to ground programs the output  
voltage via FB from 2.5V to 5V using the equation:  
LOW VOLTAGE START-UP  
The LTC3429/LTC3429B include an independent start-up  
oscillator designed to start up at input voltages of 0.85V  
typically. The frequency and duty cycle of the start-up  
oscillator are internally set to 150kHz and 67% respec-  
tively. In this mode, the IC operates completely open-loop  
and the current limit is also set internally to 850mA. Once  
the output voltage exceeds 2.3V, the start-up circuitry is  
disabled and normal close-loop PWM operation is initi-  
ated. In normal mode, the LTC3429/LTC3429B power  
themselves from VOUT instead of VIN. This allows the  
battery voltage to drop to as low as 0.5V without affecting  
the circuit operation. The only limiting factor in the appli-  
cation becomes the ability of the battery to supply suffi-  
cient energy to the output. Soft-start and inrush current  
limiting are provided during start-up as well as normal  
mode operation.  
VOUT = 1.23V • [1 + (R1/R2)]  
Current Sensing  
Lossless current sensing converts the NMOS switch  
current signal to a voltage to be summed with the internal  
slope compensation. The summed signal is compared to  
the error amplifier output to provide a peak current  
control command for the PWM. Peak switch current is  
limited to approximately 850mA independent of input or  
output voltage. The switch current signal is blanked for  
60ns to enhance noise rejection.  
Zero Current Comparator  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
once this current reduces to approximately 27mA. This  
prevents the inductor current from reversing in polarity  
thereby improving efficiency at light loads.  
Soft-Start  
TheLTC3429/LTC3429Bprovidesoft-startbychargingan  
internal capacitor with a very weak current source. The  
voltage on this capacitor, in turn, slowly ramps the peak  
inductor current from zero to a maximum value of 850mA.  
The soft-start time is typically 2.5ms, the time it takes to  
charge the capacitor from zero to 1.35V. However, this  
time varies greatly with load current, output voltage and  
input voltage (see Typical Performance Characteristics,  
Inrush Current Control and Soft-Start). The soft-start  
capacitor is discharged completely in the event of a  
commanded shutdown or a thermal shutdown. It is dis-  
charged only partially in case of a short circuit at the  
output.  
Antiringing Control  
The antiringing control circuitry prevents high frequency  
ringing of the SW pin as the inductor current goes to zero  
in discontinuous mode. The damping of the resonant  
circuit formed by L and CSW (capacitance on SW pin) is  
achieved by placing a 150resistor across the inductor.  
Synchronous Rectifier  
To prevent the inductor current from running away, the  
PMOS synchronous rectifier is only enabled when VOUT  
(VIN + 0.1V) and the FB pin is >0.8V.  
>
3429fa  
6
LTC3429/LTC3429B  
U
OPERATIO  
Thermal Shutdown  
Diagram). However, this may adversely affect the effi-  
ciency and the quiescent current requirement at light  
loads. Typical values of CPL range from 15pF to 220pF.  
An internal temperature monitor will start to reduce the  
peak current limit if the die temperature exceeds 125°C. If  
the die temperature continues to rise and reaches 160°C,  
the part will go into thermal shutdown, all switches will be  
turned off and the soft-start capacitor will be reset. The  
part will be enabled again when the die temperature drops  
by about 15°C.  
OUTPUT DISCONNECT AND INRUSH LIMITING  
TheLTC3429/LTC3429Baredesignedtoallowtrueoutput  
disconnect by eliminating body diode conduction of the  
internal PMOS rectifier. This allows VOUT to go to zero  
volts during shutdown, drawing zero current from the  
input source. It also allows for inrush current limiting at  
start-up, minimizing surge currents seen by the input  
supply.Notethattoobtaintheadvantageofoutputdiscon-  
nect, there must not be an external Schottky diode con-  
Burst Mode OPERATION (LTC3429 Only)  
Portable devices frequently spend extended time in low  
power or standby mode, only switching to high power  
consumption when specific functions are enabled. To  
improve battery life in these types of products, it is  
important to maintain a high power conversion efficiency  
over a wide output power range. The LTC3429 provides  
automatic Burst Mode operation to increase efficiency of  
the power converter at light loads. Burst Mode operation  
is initiated if the output load current falls below an inter-  
nally programmed threshold. This threshold has an in-  
verse dependence on the duty cycle of the converter and  
also the value of the external inductor (See Typical Perfor-  
manceCharacteristics,OutputCurrentBurstModeThresh-  
old vs VIN). Once Burst Mode operation is initiated, only  
the circuitry required to monitor the output is kept alive  
and the rest of the device is turned off. This is referred to  
as the sleep state in which the IC consumes only 20µA  
fromtheoutputcapacitor.Whentheoutputvoltagedroops  
byabout1%fromitsnominalvalue, thepartwakesupand  
commencesnormalPWMoperation.Theoutputcapacitor  
recharges and causes the part to re-enter the sleep state  
if the output load remains less than the Burst Mode  
threshold. The frequency of this intermittent PWM or  
burst operation depends on the load current; that is, as the  
load current drops further below the burst threshold, the  
LTC3429 turns on less frequently. When the load current  
increases above the burst threshold, the LTC3429  
seamlessly resumes continuous PWM operation. Thus,  
Burst Mode operation maximizes the efficiency at very  
light loads by minimizing switching and quiescent losses.  
However, theoutputrippletypicallyincreasestoabout2%  
peak-to-peak. Burst Mode ripple can be reduced, in some  
circumstances, by placing a small phase-lead capacitor  
(CPL) between VOUT and FB pins (refer to the Block  
nected between the SWITCH pin and VOUT  
.
Board layout is extremely critical to minimize voltage  
overshoot on the SWITCH pin due to stray inductance.  
Keep the output filter capacitor as close as possible to the  
VOUT pin and use very low ESR/ESL ceramic capacitors  
tied to a good ground plane. For applications with VOUT  
over 4.3V, a Schottky diode is required to limit the peak  
SWITCH voltage to less than 6V unless some form of  
external snubbing is employed. This diode must also be  
placed very close to the pins to minimize stray inductance.  
See the Applications Information.  
SHORT CIRCUIT PROTECTION  
Unlike most boost converters, the LTC3429/LTC3429B  
allowtheiroutputtobeshortcircuitedduetotheoutputdis-  
connect feature. The devices incorporate internal features  
suchascurrentlimitfoldback,thermalregulationandther-  
mal shutdown for protection from an excessive overload  
or short circuit. In the event of a short circuit, the internal  
soft-startcapacitorgetspartiallydischarged. This, inturn,  
causes the maximum current limit to foldback to a smaller  
value. Inadditiontothis, athermalregulationcircuitstarts  
to dial back the current limit farther if the die temperature  
rises above 125°C. If the die temperature still reaches  
160°C, the device shuts off entirely.  
VIN > VOUT OPERATION  
The LTC3429/LTC3429B will maintain voltage regulation  
even if the input voltage is above the output voltage. This  
3429fa  
7
LTC3429/LTC3429B  
U
OPERATIO  
is achieved by terminating the switching of the synchro- mode, there will be more power dissipation within the IC.  
nous PMOS and applying VIN statically on its gate. This This will cause a sharp drop in the efficiency (see Typical  
ensures that the slope of the inductor current will reverse PerformanceCharacteristics,EfficiencyvsVIN).Themaxi-  
during the time current is flowing to the output. Since the mum output current should be limited in order to maintain  
PMOS no longer acts as a low impedance switch in this an acceptable junction temperature.  
W U U  
APPLICATIO S I FOR ATIO  
U
PCB LAYOUT GUIDELINES  
inductor ripple current. Increasing the inductance above  
10µH will increase size while providing little improvement  
in output current capability.  
The high speed operation of the LTC3429/LTC3429B  
demandscarefulattentiontoboardlayout. Youwillnotget  
advertised performance with careless layout. Figure 2  
shows the recommended component placement. A large  
groundpincopperareawillhelptolowerthechiptempera-  
ture. A multilayer board with a separate ground plane is  
ideal, but not absolutely necessary.  
The approximate output current capability of the LTC3429  
versusinductancevalueisgivenintheequationbelowand  
illustrated graphically in Figure 3.  
V D  
f L • 2  
IN  
IOUT(MAX) = η • I –  
• 1D  
(
)
P
where:  
η = estimated efficiency  
IP = peak current limit value (0.6A)  
VIN = input (battery) voltage  
1
2
3
SW  
V
6
5
4
IN  
V
IN  
GND V  
OUT  
D = steady-state duty ratio = (VOUT – VIN)/VOUT  
f = switching frequency (500kHz typical)  
L = inductance value  
FB SHDN  
SHDN  
V
OUT  
3429 F02  
200  
V
= 1.2V  
IN  
RECOMMENDED COMPONENT PLACEMENT. TRACES  
CARRYING HIGH CURRENT ARE DIRECT. TRACE AREA AT  
FB PIN IS SMALL. LEAD LENGTH TO BATTERY IS SHORT  
180  
160  
140  
120  
100  
80  
V
V
= 3.3V  
= 5V  
OUT  
OUT  
Figure 2. Recommended Component Placement  
for Single Layer Board  
COMPONENT SELECTION  
60  
40  
Inductor Selection  
20  
0
The LTC3429/LTC3429B can utilize small surface mount  
and chip inductors due to its fast 500kHz switching  
frequency. Typically, a 4.7µH inductor is recommended  
for most applications. Larger values of inductance will  
allow greater output current capability by reducing the  
3
5
7
9
11 13 15 17 19 21 23  
INDUCTANCE (µH)  
3429 F03  
Figure 3. Maximum Output Current vs  
Inductance Based on 90% Efficiency  
3429fa  
8
LTC3429/LTC3429B  
W U U  
APPLICATIO S I FOR ATIO  
U
Theinductorcurrentrippleistypicallysetfor20%to40%  
of the maximum inductor current (IP). High frequency  
ferrite core inductor materials reduce frequency  
dependent power losses compared to cheaper powdered  
irontypes, improvingefficiency. Theinductorshouldhave  
low ESR (series resistance of the windings) to reduce the  
I2R power losses, and must be able to handle the peak  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core to  
support the peak inductor currents of 850mA seen on the  
LTC3429/LTC3429B. To minimize radiated noise, use a  
toroid, pot core or shielded bobbin inductor. See Table 1  
for some suggested components and suppliers.  
Output and Input Capacitor Selection  
LowESR(equivalentseriesresistance)capacitorsshould  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints. A  
4.7µF to 15µF output capacitor is sufficient for most  
applications. Larger values up to 22µF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. An additional phase lead capacitor  
may be required with output capacitors larger than 10µF  
to maintain acceptable phase margin. X5R and X7R  
dielectric materials are preferred for their ability to main-  
taincapacitanceoverwidevoltageandtemperatureranges.  
Table 1. Recommended Inductors  
MAX  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice for  
input decoupling and should be located as close as pos-  
sible to the device. A 10µF input capacitor is sufficient for  
virtually any application. Larger values may be used with-  
out limitations. Table 2 shows a list of several ceramic  
capacitor manufacturers. Consult the manufacturers di-  
rectly for detailed information on their entire selection of  
ceramic capacitors.  
L
(µH)  
DCR  
m  
HEIGHT  
(mm)  
PART  
VENDOR  
CDRH5D18-4R1  
CDRH5D18-100  
CDRH3D16-4R7  
CDRH3D16-6R8  
CR43-4R7  
CR43-100  
CMD4D06-4R7MC  
CMD4D06-3R3MC  
4.1  
10  
4.7  
57  
2.0  
2.0  
1.8  
1.8  
3.5  
3.5  
0.8  
0.8  
Sumida  
www.sumida.com  
124  
105  
170  
109  
182  
216  
174  
4.7  
10  
4.7  
3.3  
DS1608-472  
DS1608-103  
DO1608C-472  
4.7  
10  
4.7  
60  
75  
90  
2.9  
2.9  
2.9  
Coilcraft  
www.coilcraft.com  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
WEBSITE  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
D52LC-4R7M  
D52LC-100M  
4.7  
10  
84  
137  
2.0  
2.0  
Toko  
www.tokoam.com  
Murata  
LQH32CN4R7M24  
4.7  
195  
2.2  
Murata  
www.murata.com  
Taiyo Yuden  
3429fa  
9
LTC3429/LTC3429B  
U
TYPICAL APPLICATIO S  
Applications Where VOUT > 4.3V  
improvement but will negate the output disconnect fea-  
ture. If output disconnect is required, an active snubber  
networkissuggestedasshownbelow.ExamplesofSchot-  
tky diodes are: MBR0520L, PMEG2010EA, 1N5817 or  
equivalent.  
When the output voltage is programmed above 4.3V, it is  
necessarytoaddaSchottkydiodeeitherfromSWtoVOUT  
or to add a snubber network in order to maintain an  
acceptablepeakvoltageontheSWpin.TheSchottkydiode  
between SW and VOUT will provide a peak efficiency  
,
Application Circuit for VOUT > 4.3V Where Inrush Current Limiting and Output Disconnect are Required  
L1  
Li-Ion to 5V Efficiency  
D1*  
4.7µH  
V
100  
100  
IN  
2.7V TO 4.2V  
C3*  
0.22µF  
1
V
= 4.2V  
IN  
+
C1  
4.7µF  
MP1  
Li-Ion  
SW  
V
90  
80  
10  
1
OUT  
6
5
3
5V  
V
V
OUT  
IN  
EFFICIENCY  
V
= 3.6V  
IN  
250mA  
R1  
1.82M  
LTC3429  
SHDN FB  
GND  
4
C2  
10µF  
OFF  
ON  
R2  
604k  
70  
60  
0.1  
V
= 3.6V  
IN  
2
V
= 4.2V  
IN  
3429 TA04  
0.01  
*LOCATE COMPONENTS CLOSE TO THE PIN  
C1: TAIYO YUDEN X5R JMK212BJ475MM  
C2: TAIYO YUDEN X5R JMK212BJ106MM  
D1: MOTOROLA MBR0520L  
POWER LOSS  
50  
40  
0.001  
0.0001  
1000  
L1: COILCRAFT D0160C-472  
0.1  
1
10  
100  
MP1: ZETEX ZXM61P02F  
OUTPUT CURRENT (mA)  
3429 TA04b  
Application Circuit for VOUT > 4.3V Where Inrush Current Limiting and Output Disconnect are Not Required  
L1  
4.7µH  
2-Cell to 5V Efficiency  
D1*  
100  
100  
V
IN  
+
1
C1  
2 AA  
CELL  
SW  
4.7µF  
V
= 3V  
IN  
V
90  
80  
10  
1
OUT  
6
5
3
V
V
5V  
IN  
LTC3429  
SHDN FB  
GND  
OUT  
150mA  
EFFICIENCY  
R1  
V
= 2.4V  
IN  
1.82M  
4
C2  
OFF  
ON  
10µF  
V
= 2.4V  
IN  
70  
60  
0.1  
R2  
604k  
2
V
= 3V  
IN  
0.01  
3429 TA05  
POWER LOSS  
*LOCATE COMPONENTS CLOSE TO THE PIN  
C1: TAIYO YUDEN X5R JMK212BJ475MM  
C2: TAIYO YUDEN X5R JMK212BJ106MM  
D1: MOTOROLA MBR0520L  
50  
40  
0.001  
0.0001  
1000  
L1: COILCRAFT D0160C-472  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
3429 TA05b  
3429fa  
10  
LTC3429/LTC3429B  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3429fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3429/LTC3429B  
U
TYPICAL APPLICATIO  
Single AA Cell to 2.5V Synchronous Boost Converter  
Single AA Cell to 3.3V  
L1  
4.7µH  
L1  
4.7µH  
1
1
+
+
SINGLE  
AA CELL  
SINGLE  
C1  
C1  
4.7µF  
AA CELL  
SW  
SW  
4.7µF  
V
V
OUT  
OUT  
6
4
5
3
6
4
5
3
3.3V  
2.5V  
V
V
V
IN  
V
OUT  
IN  
LTC3429  
SHDN FB  
GND  
OUT  
100mA  
130mA  
R1  
R1  
LTC3429  
SHDN FB  
GND  
1.02M  
1.02M  
C2  
C2  
10µF  
OFF  
ON  
OFF  
ON  
10µF  
R2  
604k  
R2  
1.02M  
2
2
3429 TA03  
3429 TA06  
C1: TAIYO YUDEN X5R JMK212BJ475MM  
C2: TAIYO YUDEN X5R JMK212BJ106MM  
L1: COILCRAFT D0160C-472  
C1: TAIYO YUDEN X5R JMK212BJ475MM  
C2: TAIYO YUDEN X5R JMK212BJ106MM  
L1: COILCRAFT D0160C-472  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1613  
550mA (I ), 1.4MHz High Efficiency Step-Up DC/DC  
Converter  
90% Efficiency, V : 0.9V to 10V, V  
ThinSOT  
= 34V, I = 3mA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1615/LT1615-1  
LT1618  
300mA/80mA (I ), High Efficiency Step-Up  
DC/DC Converters  
V : 1V to 15V, V  
= 34V, I = 20µA, I < 1µA, ThinSOT  
SW  
IN  
OUT(MAX) Q SD  
1.5A (I ), 1.25MHz High Efficiency Step-Up DC/DC  
90% Efficiency, V : 1.6V to 18V, V  
= 35V, I = 1.8mA,  
OUT(MAX) Q  
SW  
IN  
Converter  
I
< 1µA  
SD  
LTC1700  
No R  
Controller  
TM, 530kHz, Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.9V to 5V, I = 200µA, I < 10µA, MS10  
IN Q SD  
SENSE  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
DC/DC Converters  
High Efficiency, V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA,  
OUT(MAX) Q  
SW  
IN  
I
< 1µA, ThinSOT  
SD  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up  
High Efficiency, V : 2.45V to 16V, V  
= 34V, I = 32mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I
< 1µA, MS8  
SD  
1.5A (I ), 1.25MHz High Efficiency Step-Up DC/DC  
90% Efficiency, V : 3V to 25V, V  
= 35V, I = 0.9mA, I < 6µA,  
SW  
IN  
OUT(MAX) Q SD  
Converter  
MS8E  
LTC3400/LTC3400B 600mA (I ), 1.2MHz, Synchronous Step-Up  
92% Efficiency, V : 0.85V to 5V, V  
= 5V, I = 19µA/300µA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I
< 1µA, ThinSOT  
SD  
LTC3401/LTC3402  
LTC3421  
1A/2A (I ), 3MHz, Synchronous Step-Up  
DC/DC Converters  
97% Efficiency, V : 0.5V to 5V, V  
MS10  
= 5.5V, I = 38µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
3A (I ), 3MHz, Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
Converter with Output Disconnect  
I
< 1µA, QFN24  
SD  
LTC3425  
5A (I ), 8MHz, 4-Phase Synchronous Step-Up DC/DC 95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1µA, QFN32  
SD  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter V : 2.3V to 10V, V  
with Integrated Schottky and PNP Disconnect  
= 34V, I = 25µA, I < 1µA, ThinSOT  
OUT(MAX) Q SD  
SW  
IN  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
3429fa  
LT/TP 1104 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY