LTC3251_15 [Linear]

500mA High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter;
LTC3251_15
型号: LTC3251_15
厂家: Linear    Linear
描述:

500mA High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter

文件: 总16页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
500mA High Efficiency,  
Low Noise, Inductorless  
Step-Down DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®3251/LTC3251-1.2/LTC3251-1.5 are 2-phase  
charge pump step-down DC/DC converters that produce a  
regulated output from a 2.7V to 5.5V input. The parts use  
switched capacitor fractional conversion to achieve twice  
the typical efficiency of a linear regulator. No inductors are  
required.VOUT isresistorprogrammablefrom0.9Vto1.6V  
or fixed at 1.2V or 1.5V, with up to 500mA of load current  
available.  
Up to 500mA Output Current  
No Inductors  
2.7V to 5.5V Input Voltage Range  
2x Efficiency Improvement Over LDOs  
2-Phase, Spread Spectrum Operation  
for Low Input and Output Noise  
Shutdown Disconnects Load from VIN  
Adjustable Output Voltage Range: 0.9V to 1.6V  
Fixed Output Voltages: 1.2V, 1.5V  
A unique 2-phase spread spectrum architecture provides  
averylownoiseregulatedoutputaswellaslownoiseatthe  
input.* The parts have four operating modes: Continuous  
Spread Spectrum, Spread Spectrum with Burst Mode  
operation, Super BurstTM mode operation and shutdown.  
Super Burst, Burst and Burst Defeat Operating Modes  
Low Operating Current: IIN = 35µA (Burst Mode®  
Operation)  
Super Burst Operating Current: IIN = 10µA  
Low Shutdown Current: IIN = 0.01µA Typ  
Low operating current (35µA in Burst Mode operation,  
10µA in Super Burst mode operation) and low external  
partscountmaketheLTC3251/LTC3251-1.2/LTC3251-1.5  
ideally suited for space-constrained battery-powered  
applications. The parts are short-circuit and overtempera-  
ture protected, and are available in a thermally enhanced  
10-pin MSOP package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
Super Burst is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by US Patents including 6411531.  
Soft-Start Limits Inrush Current at Turn-On  
Short-Circuit and Overtemperature Protected  
Available in a Thermally Enhanced  
10-Pin MSOP Package  
U
APPLICATIO S  
Handheld Devices  
Cellular Phones  
Portable Electronic Equipment  
DSP Power Supplies  
U
1.5V Efficiency vs Input Voltage  
(Burst Mode Operation)  
TYPICAL APPLICATIO  
100  
I
= 200mA  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Spread Spectrum Step-Down Converter  
LTC3251-1.5  
OFF ON  
1
9
MD0 MD1  
LTC3251-1.5  
2
3
4
V
= 1.5V  
7
OUT  
LDO  
V
V
OUT  
1-CELL Li-Ion  
OR  
3-CELL NiMH  
IN  
500mA  
1µF  
8
+
+
10µF  
C1  
C1  
C2  
1µF  
1µF  
6
C2  
5, 11  
10  
GND  
MODE  
3251 TA01  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
3251 TA02  
32511215fb  
1
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
W W  
U W  
ABSOLUTE AXI U RATI GS (Notes 1, 7)  
VIN to GND ................................................... –0.3V to 6V  
MD0, MD1, MODE and FB to GND . 0.3V to (VIN + 0.3V)  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Storage Temperature Range .................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................... 300°C  
I
OUT (Note 2) ...................................................... 650mA  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
MD0  
1
2
3
4
5
10 MODE  
MD0  
V
1
2
3
4
5
10 MODE  
NUMBER  
V
9
8
7
6
MD1  
9
8
7
6
MD1  
IN  
IN  
+
+
+
+
C1  
11  
C2  
C1  
11  
C2  
LTC3251EMSE-1.2  
LTC3251EMSE-1.5  
C1  
V
C1  
V
OUT  
OUT  
LTC3251EMSE  
GND  
C2  
GND  
C2  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART MARKING  
LTB4  
MSE PART MARKING  
EXPOSED PAD IS GND (PIN 11),  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 40°C/W, θJC = 10°C/W  
EXPOSED PAD IS GND (PIN 11),  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 40°C/W, θJC = 10°C/W  
LTAGM  
LTABE  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3.6V, C1 = C2 = 1µF, C = 1µF, C = 10µF,  
OUT  
A
IN  
IN  
V
= 0V for LTC3251-1.2V or LTC3251-1.5, V  
= 1.5V for LTC3251, all capacitors ceramic, unless otherwise noted.  
OUT  
MODE  
PARAMETER  
CONDITIONS  
(Notes 4,5)  
(Note 5)  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Minimum Operating Voltage  
2.7  
V
V
IN  
IN  
IN  
Maximum Operating Voltage  
Continuous Mode Operating Current  
5.5  
I
= 0mA, V  
= 0, V  
= V  
IN  
3
3.75  
5
6
mA  
mA  
OUT  
MD0  
MD1  
Spread Spectrum Disabled MODE = V  
IN  
IN  
IN  
V
V
Burst Mode Operating Current  
I
= 0mA, V  
= V , V = 0  
IN MD1  
35  
35  
60  
60  
µA  
µA  
IN  
IN  
OUT  
MD0  
Spread Spectrum Disabled MODE = V  
Super Burst Mode Operating Current  
I
= 0mA, V = V , V = V  
10  
10  
15  
15  
µA  
µA  
OUT  
MD0  
IN MD1  
IN  
Spread Spectrum Disabled MODE = V  
V
V
V
Shutdown Current  
V
= 0V, V = 0V (Note 5)  
0.01  
0.8  
1
µA  
IN  
MD0  
MD1  
Regulation Voltage (LTC3251)  
I
= 0mA, 2.7V V 5.5V  
0.78  
0.82  
V
FB  
OUT  
IN  
Regulation Voltage (LTC3251-1.2)  
I
I
I
200mA, 2.7V V 5.5V (Note 5)  
1.15  
1.15  
1.15  
1.2  
1.2  
1.2  
1.25  
1.25  
1.25  
V
V
V
OUT  
OUT  
OUT  
OUT  
IN  
Continuous Mode or Burst Mode Operation  
300mA, 2.8V V 5.5V (Note 5)  
IN  
500mA, 3V V 5.5V (Note 5)  
IN  
V
Regulation Voltage (LTC3251-1.2)  
I
40mA  
1.15  
1.2  
1.25  
V
OUT  
OUT  
Super Burst Operation  
V
Regulation Voltage (LTC3251-1.5)  
I
I
I
I
100mA, 3.1V V 5.5V (Note 5)  
1.44  
1.44  
1.44  
1.44  
1.5  
1.5  
1.5  
1.5  
1.56  
1.56  
1.56  
1.56  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
Continuous Mode or Burst Mode Operation  
200mA, 3.2V V 5.5V (Note 5)  
IN  
300mA, 3.3V V 5.5V (Note 5)  
IN  
500mA, 3.5V V 5.5V (Note 5)  
IN  
V
Regulation Voltage (LTC3251-1.5)  
I
40mA  
1.44  
1.5  
1.56  
V
OUT  
OUT  
Super Burst Operation  
I
I
Continuous Output Current (LTC3251)  
Super Burst Output Current (LTC3251)  
V
V
= 0, V  
= V or V  
= V , V = 0  
IN MD1  
500  
40  
mA  
mA  
OUT  
OUT  
MD0  
MD0  
MD1  
IN  
MD0  
= V , V  
= V  
IN  
IN MD1  
Load Regulation (LTC3251)  
0mA I  
500mA, Referred to FB Pin  
0.045  
mV/mA  
32511215fb  
OUT  
2
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3.6V, C1 = C2 = 1µF, C = 1µF, C = 10µF,  
OUT  
A
IN  
IN  
V
MODE  
= 0V for LTC3251-1.2V or LTC3251-1.5, V  
= 1.5V for LTC3251, all capacitors ceramic, unless otherwise noted.  
OUT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Line Regulation (LTC3251)  
Spread Spectrum Frequency Range  
I
= 500mA, 2.7V V 5.5V  
0.2  
%/V  
OUT  
IN  
f
f
Switching Frequency  
Switching Frequency  
0.7  
1.3  
1.0  
1.6  
MHz  
MHZ  
MIN  
2
2
MAX  
Spread Spectrum Disabled Frequency  
MODE = V  
1.6  
0.8  
0.8  
MHz  
V
IN  
MD0, MD1 Input High Voltage  
2.7V V 5.5V  
1.2  
IN  
MD0, MD1 Input Low Voltage  
2.7V V 5.5V  
0.4  
–1  
V
IN  
MD0, MD1 Input High Current  
MD0 = V , MD1 = V  
1
1
µA  
µA  
nA  
IN  
IN  
MD0, MD1 Input Low Current  
MD0 = 0V, MD1 = 0V  
= 0.85V  
–1  
FB Input Current (LTC3251)  
V
–50  
50  
70  
FB  
MODE Input High Voltage (LTC3251-1.2/LTC3251-1.5)  
MODE Input Low Voltage (LTC3251-1.2/LTC3251-1.5)  
MODE Input High Current (LTC3251-1.2/LTC3251-1.5)  
MODE Input Low Current (LTC3251-1.2/LTC3251-1.5)  
Turn-On Time (Burst or Continuous Mode Operation)  
Open-Loop Output Impedance (LTC3251)  
2.7V V 5.5V  
50  
50  
%/V  
%/V  
IN  
IN  
IN  
2.7V V 5.5V  
30  
–1  
–1  
IN  
MODE = V  
1
1
µA  
µA  
ms  
IN  
MODE = 0V  
R
= 3, (Note 5)  
1
OL  
IN  
V
= 3V, I  
= 200mA (Note 6)  
0.45  
0.7  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Minimum operating voltage required for regulation is:  
2 • (V + R • I  
V
)
OL OUT  
IN  
OUT  
Note 5: V  
= 0V or V = V for LTC3251-1.2/LTC3251-1.5.  
MODE IN  
MODE  
Note 6: Output not in regulation; R = (V /2 – V )/I .  
OUT OUT  
OL  
IN  
Note 2: Based on long term current density limitations.  
(V = 0.76V). Burst or continuous mode operation.  
FB  
Note 3: The LTC3251E is guaranteed to meet specified performance from  
0°C to 70°C. Specifications over the 40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with  
statistical process controls.  
Note 7: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
No Load Supply Current vs Supply  
Voltage (Continuous Mode Spread  
Spectrum Enabled)  
No Load Supply Current vs Supply  
Voltage (Continuous Mode,  
Spread Spectrum Disabled)  
No Load Supply Current vs Supply  
Voltage (Burst Mode Operation)  
10  
9
8
7
6
5
4
3
2
1
0
50  
45  
40  
35  
30  
25  
20  
7
6
5
4
3
2
1
0
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
85°C  
25°C  
–40°C  
4.7  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
4.7  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
V
IN  
V
V
IN  
IN  
3251 G17  
3251 G01  
3251 G02  
32511215fb  
3
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
No Load Supply Current  
1.5V Output Voltage vs Supply  
Voltage (Burst Mode Operation/  
Continuous Mode)  
1.2V Output Voltage vs Supply  
Voltage (Burst Mode Operation/  
Continuous Mode)  
vs Supply Voltage  
(Super Burst Mode Operation)  
1.300  
1.280  
1.260  
1.240  
1.220  
1.200  
1.180  
1.160  
1.140  
1.120  
1.100  
20  
18  
16  
14  
12  
10  
8
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
T
= 25°C  
T
= 25°C  
A
A
I
= 0mA  
OUT  
I
= 250mA  
I
= 0mA  
OUT  
OUT  
85°C  
25°C  
I
I
= 250mA  
OUT  
–40°C  
I
= 500mA  
= 500mA  
OUT  
OUT  
6
4
2
0
4.7  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
4.7  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
3
3.5  
4
4.5  
5
5.5  
V
V
IN  
V
(V)  
IN  
IN  
3251 G05  
3251 G02  
3251 G04  
1.2V Output Voltage  
vs Supply Voltage  
(Super Burst Mode Operation)  
1.5V Output Voltage  
vs Supply Voltage  
(Super Burst Mode Operation)  
FB Voltage vs Output Current  
(Burst Mode Operation/  
Continuous Mode)  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
0.805  
0.800  
0.795  
0.790  
T = 25°C  
A
0mA  
10mA  
40mA  
T
= 25°C  
0mA  
10mA  
40mA  
A
T
OUT  
= 25°C  
A
V
= 1.5V  
0.785  
0.780  
4.7  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
3
3.5  
4
4.5  
(V)  
5
5.5  
0
200  
300  
(mA)  
400  
500  
600  
100  
V
I
V
IN  
IN  
OUT  
3251 G18  
3251 G06  
3251 G07  
1.5V Output Efficiency vs Output  
Current (Super Burst Mode  
Operation)  
1.2V Output Efficiency vs Output  
Current (Burst Mode Operation)  
1.5V Output Efficiency vs Output  
Current (Burst Mode Operation)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.6V  
IN  
V
= 3V  
IN  
V
= 3.6V  
V
= 2.7V  
IN  
V
= 3.3V  
IN  
IN  
V
= 3.3V  
IN  
V
V
= 3.5V  
V
V
= 4V  
= 5V  
IN  
IN  
V
= 4V  
IN  
IN  
= 4.5V  
V
= 5V  
IN  
IN  
MD0 = V , MD1 = 0V  
MD0 = MD1 = V  
IN  
MD0 = V , MD1 = 0V  
IN  
IN  
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
100  
I
I
(mA)  
OUT  
I
OUT  
OUT  
3251 G08  
3251 G19  
3251 G09  
32511215fb  
4
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
MD0/MD1 Input Threshold Voltage  
vs Supply Voltage  
Max/Min Oscillator Frequency  
vs Supply Voltage  
1.2  
1.1  
1.0  
2.0  
1.9  
1.8  
25°C MAX  
–40°C MAX  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
–40°C  
0.9  
85°C MAX  
25°C  
0.8  
85°C  
0.7  
25°C MIN  
85°C MIN  
0.6  
0.5  
0.4  
–40°C MIN  
4.7  
2.7  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
5.2  
3.2  
V
V
IN  
IN  
3251 G10  
3251 G11  
Output Transient Response  
(Burst Mode Operation)  
Output Transient Response  
(Continuous Mode)  
450mA  
50mA  
450mA  
50mA  
IOUT  
IOUT  
VIN  
VOUT  
20mV/DIV  
(AC)  
VOUT  
20mV/DIV  
(AC)  
VOUT  
20mV/DIV  
(AC)  
TA = 25°C  
COUT = 10µF X5R 6.3V  
OUT = 1.5V  
10µs/DIV  
3251 G14  
T
A = 25°C  
10µs/DIV  
3251 G13  
COUT = 10µF X5R 6.3V  
V
VOUT = 1.5V  
Supply Transient Response  
(Continuous Mode)  
LTC3251-1.5 Output Voltage  
Ripple  
4.5V  
VIN  
SPREAD  
SPECT  
3.5V  
ENABLED  
10mV/DIV (AC)  
VOUT  
20mV/DIV (AC)  
SPREAD  
SPECT  
DISABLED  
10mV/DIV (AC)  
TA = 25°C  
20µs/DIV  
3251 G15  
T
A = 25°C  
200ns/DIV  
3251 G16  
COUT = 10µF X5R 6.3V  
IOUT = 250mA  
COUT = 10µF X5R 6.3V  
IOUT = 500mA  
VOUT = 1.5V  
VOUT = 1.5V  
32511215fb  
5
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
U
U
PI FU CTIO S  
MD0(Pin1)/MD1(Pin9):SwitchingModeInputPins.The  
Mode input pins are used to set the operating mode of the  
LTC3251. The modes of operation are:  
GND (Pin 5, 11): Ground. Connect to a ground plane for  
best performance.  
C2(Pin 6): Flying Capacitor 2 Negative Terminal (C2).  
MD1  
MD0  
OPERATING MODE  
Shutdown  
VOUT (Pin 7): Regulated Output Voltage. VOUT is discon-  
nected from VIN during shutdown. Bypass VOUT with a  
low ESR ceramic capacitor to GND (CIN). See VOUT  
Capacitor Selection for capacitor size requirements.  
0
0
1
1
0
1
0
1
Spread Spectrum with Burst  
Continuous Spread Spectrum  
Super Burst  
C2+ (Pin 8): Flying Capacitor 2 Positive Terminal (C2).  
FB (Pin 10) (LTC3251): Feedback Input Pin. An output  
divider should be connected from VOUT to FB to program  
the output voltage.  
MD0andMD1arehighimpedanceCMOSinputsandmust  
not be allowed to float.  
VIN (Pin 2): Input Supply Voltage. Operating VIN may be  
between 2.7V and 5.5V. Bypass VIN with a 1µF low ESR  
ceramic capacitor to GND (COUT).  
C1+ (Pin 3): Flying Capacitor 1 Positive Terminal (C1).  
C1(Pin 4): Flying Capacitor 1 Negative Terminal (C1).  
MODE (Pin 10) (LTC3251-1.2/LTC3251-1.5): Spread  
Spectrum Operation Mode Pin. A low voltage on MODE  
enables spread spectrum operation. When MODE is high  
spread spectrum operation is disabled and switching  
occurs at the maximum operating frequency.  
32511215fb  
6
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
W
W
SI PLIFIED BLOCK DIAGRA  
LTC3251-1.2/  
LTC3251-1.5  
ONLY  
1
9
10  
MD0  
MD1  
MODE  
OVERTEMP  
SWITCH CONTROL  
AND SOFT-START  
SPREAD SPECTRUM  
OSCILLATOR  
CHARGE  
PUMP 1  
V
IN  
2
+
C1  
C1  
3
4
7
INTERNAL ON  
LTC3251-1.2/  
LTC3251-1.5  
V
OUT  
CHARGE  
PUMP 2  
+
C2  
8
C2  
6
+
FB  
10  
BURST DETECT  
CIRCUIT  
GND  
5
11  
3251 BD  
32511215fb  
7
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
The LTC3251 family of parts use a dual phase switched  
capacitor charge pump to step down VIN to a regulated  
output voltage. Regulation is achieved by sensing the  
output voltage through an external resistor divider and  
modulating the charge pump output current based on the  
errorsignal. A2-phasenonoverlappingclockactivatesthe  
two charge pumps. The two charge pumps work in paral-  
lel, but out of phase from each other. On the first phase of  
the clock, current is transferred from VIN, through the  
external flying capacitor 1, to VOUT via the switches of  
ChargePump1.NotonlyiscurrentbeingdeliveredtoVOUT  
on the first phase, but the flying capacitor is also being  
charged. On the second phase of the clock, flying capaci-  
tor 1 is connected from VOUT to ground, transferring the  
chargestoredduringthefirstphaseoftheclocktoVOUT via  
the switches of Charge Pump 1. Charge Pump 2 operates  
in the same manner, but with the phases of the clock  
reversed. This dual phase architecture achieves extremely  
low output and input noise by providing constant charge  
Short-Circuit/Thermal Protection  
The LTC3251 family has built-in short-circuit current  
limiting as well as overtemperature protection. During  
short-circuit conditions, internal circuitry automatically  
limits the output current to approximately 800mA. At  
higher temperatures, or in cases where internal power  
dissipation causes excessive self heating on chip (i.e.,  
output short circuit), the thermal shutdown circuitry will  
shut down the charge pumps when the junction tempera-  
ture exceeds approximately 160°C. It will re-enable the  
charge pumps once the junction temperature drops back  
toapproximately150°C. TheLTC3251willcycleinandout  
of thermal shutdown without latch-up or damage until the  
overstress condition is removed. Long term overstress  
(IOUT > 650mA and/or TJ > 125°C) should be avoided as it  
candegradetheperformanceorshortenthelifeofthepart.  
Soft-Start  
To prevent excessive current flow at VIN during start-up,  
the LTC3251 family has built-in soft-start circuitry. Soft-  
start is achieved by increasing the amount of current  
available to the output charge storage capacitor linearly  
over a period of approximately 500µs. Soft-start is en-  
abled whenever the device is brought out of shutdown,  
and is disabled shortly after regulation is achieved.  
transfer from VIN to VOUT  
.
Using this method of switching, only half of the output  
current is delivered from VIN, thus achieving twice the  
efficiency over a conventional LDO. A spread spectrum  
oscillator, which utilizes random switching frequencies  
between 1MHz and 1.6MHz, sets the rate of charging and  
discharging of the flying capacitors. The LTC3251-1.2/  
LTC3251-1.5 MODE pin can be used to disable spread  
spectrum operation which causes switching to occur at  
1.6MHz. The part also has two types of low current Burst  
Mode operation to improve efficiency even at light loads.  
Spread Spectrum Operation  
Switchingregulatorscanbeparticularlytroublesomewhere  
electromagnetic interference (EMI) is concerned. Switch-  
ingregulatorsoperateonacycle-by-cyclebasistotransfer  
power to an output. In most cases the frequency of  
operation is either fixed or is a constant based on the  
output load. This method of conversion creates large  
componentsofnoiseatthefrequencyofoperation(funda-  
mental) and multiples of the operating frequency (har-  
monics). Figure 1a shows a conventional buck switching  
converter.Figures1band1caretheinputandoutputnoise  
spectrums for the buck converter of Figure 1 with VIN =  
3.6V, VOUT = 1.5V and IOUT = 500mA.  
In shutdown mode, all circuitry is turned off and the  
LTC3251 family draws only leakage current from the VIN  
supply. Furthermore, VOUT is disconnected from VIN. The  
MD0 and MD1 pins are CMOS inputs with threshold  
voltages of approximately 0.8V to allow regulator control  
with low voltage logic levels. The MODE pin is also CMOS,  
but has a threshold of about 1/2 • VIN. The LTC3251 family  
is in shutdown when a logic low is applied to both mode  
pins.SinceMD0,MD1andMODEpinsarehighimpedance  
CMOS inputs, they should never be allowed to float.  
Always drive MD0, MD1 and Mode with valid logic levels.  
32511215fb  
8
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
4.7µH  
10nH*  
22µF  
10nH*  
IN  
SW  
FB  
V
IN  
OUT  
V
OUT  
V
V
IN  
OUT  
IN  
10µF  
1µF  
1µF  
1µF  
10µF  
1µF  
LTC3251  
FB  
+
+
COMP  
C1  
C1  
C2  
*10nH = 1cm OF PCB TRACE  
*10nH = 1cm OF PCB TRACE  
1µF  
GND  
C2  
GND  
3251 F01a  
3251 F02a  
Figure 1a. Conventional Buck Switching Converter  
Figure 2a. LTC3251 Buck Converter  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
START FREQ: 100kHz RBW: 10kHz STOP FREQ: 30MHz  
START FREQ: 100kHz RBW: 10kHz STOP FREQ: 30MHz  
3251 F01b  
3251 F02b  
Figure 1b. Conventional Buck Converter Output Noise  
Figure 2b. LTC3251 Output Noise Spectrum  
Spectrum with 22µF Output Capacitor (I = 500mA)  
with 10µF Output Capacitor (I = 500mA)  
O
O
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
START FREQ: 100kHz RBW: 10kHz STOP FREQ: 30MHz  
START FREQ: 100kHz RBW: 10kHz STOP FREQ: 30MHz  
3251 F01c  
3251 F02c  
Figure 1c. Conventional Buck Converter Input Noise  
Figure 2c. LTC3251 Input Noise Spectrum  
with 1µF Input Capacitor (I = 500mA)  
O
Spectrum with 10µF Input Capacitor (I = 500mA)  
O
Low Current Burst Mode Operation  
Unlikeconventionalbuckconverters,theLTC3251’sinter-  
nal oscillator is designed to produce a clock pulse whose  
period is random on a cycle-by-cycle basis, but fixed  
between1MHzand1.6MHz.Thishasthebenefitofspread-  
ing the switching noise over a range of frequencies, thus  
significantly reducing the peak noise. Figures 2b and 2c  
are the input and output noise spectrums for the LTC3251  
Toimproveefficiencyatlowoutputcurrents,aBurstMode  
function is included in the LTC3251 family of parts. An  
output current sense is used to detect when the required  
output current drops below an internally set threshold  
(50mA typ). When this occurs, the part shuts down the  
internal oscillator and goes into a low current operating  
state. The part will remain in the low current operating  
state until the output voltage has dropped enough to  
require another burst of current. When the output current  
exceeds 50mA, the part will operate in continuous mode.  
Unlike traditional charge pumps, where the burst current  
isdependantonmanyfactors(i.e.,supply,switchstrength,  
of Figure 2a with VIN = 3.6V, VOUT = 1.5V and IOUT  
=
500mA. Note the significant reduction in peak output  
noise (>20dBm) with only 1/2 the output capacitance and  
the virtual elimination of input harmonics with only 1/10  
the input capacitance. Spread spectrum operation is used  
exclusively in “continuous” mode and for output currents  
greater than about 50mA in Burst Mode operation.  
32511215fb  
9
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
Diagram, the LTC3251 family uses a control loop to adjust  
the strength of the charge pump to match the current  
required at the output. The error signal of this loop is  
stored directly on the output charge storage capacitor.  
Thus the charge storage capacitor also serves to form the  
dominant pole for the control loop. The desired output  
voltage also affects stability. As the divider ratio (RA/RB)  
drops, the effective closed-loop gain increases, thus re-  
quiring a larger output capacitor for stability. Figure 3  
shows the suggested output capacitor for optimal tran-  
sientresponse.Thevalueoftheoutputcapacitanceshould  
not drop below the minimum capacitance line to prevent  
excessive ringing or instability. (see Ceramic Capacitor  
Selection Guidelines section).  
capacitor selection, etc.), the part’s burst current is set by  
the burst threshold and hysteresis. This means that the  
V
OUT ripple voltage in Burst Mode operation will be fixed  
and is typically 15mV with a 10µF output capacitor.  
Ultralow Current Super Burst Mode Operation  
To further optimize the supply current for low output  
current requirements, a Super Burst mode operaton is  
included in the LTC3251 family of parts. This mode is very  
similar to Burst Mode operation, but much of the internal  
circuitry and switch is shut down to further reduce supply  
current. In Super Burst mode operation an internal hyster-  
etic comparator is used to enable/disable charge transfer.  
The hysteresis of the comparator and the amount of  
current deliverable to the output are limited to keep output  
ripple low. The VOUT ripple voltage in Super Burst mode  
operation is typically 35mV with a 10µF output capacitor.  
The LTC3251 family can deliver 40mA of current in Super  
Burst mode operation but does not switch to continuous  
mode. The MODE pin of the LTC3251-1.2 and LTC3251-  
1.5 has no effect on operation in super-burst mode.  
16  
15  
14  
OPTIMUM CAPACITANCE  
13  
12  
11  
10  
9
8
MINIMUM CAPACITANCE  
7
V
OUT Capacitor Selection  
6
5
4
The style and value of capacitors used with the LTC3251  
family determine several important parameters such as  
regulator control loop stability, output ripple and charge  
pump strength.  
0.9  
1.1 1.2 1.3  
(V)  
1.4 1.5 1.6  
1.0  
V
OUT  
3251 F03  
Figure 3  
The dual phase nature of the LTC3251 family minimizes  
output noise significantly but not completely. What small  
ripple that does exist is controlled by the value of COUT  
directly. Increasing the size of COUT will proportionately  
reduce the output ripple. The ESR (equivalent series  
resistance) of COUT plays the dominant role in output  
noise. When a part switches between clock phases there  
isaperiodwhereallswitchesareturnedoff.Thisblanking  
period” shows up as a spike at the output and is a direct  
function of the output current times the ESR value. To  
reduce output noise and ripple, it is suggested that a low  
ESR (<0.08) ceramic capacitor be used for COUT. Tanta-  
lum and aluminum capacitors are not recommended be-  
cause of their high ESR.  
Likewise excessive ESR on the output capacitor will tend  
to degrade the loop stability. The closed loop output  
impedance of the LTC3251 is approximately:  
VOUT  
RO 0.045•  
0.8V  
For example, with the output programmed to 1.5V, the RO  
is 0.085, which produces a 40mV output change for a  
500mA load current step. For stability and good load  
transient response, it is important for the output capacitor  
to have 0.08or less of ESR. Ceramic capacitors typically  
have exceptional ESR, and combined with a tight board  
layout, should yield excellent stability and load transient  
performance.  
Both the style and value of COUT can significantly affect the  
stability of the LTC3251 family. As shown in the Block  
32511215fb  
10  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
10nH  
Furtheroutputnoisereductioncanbeachievedbyfiltering  
the LTC3251 output through a very small series inductor  
as shown in Figure 4. A 10nH inductor will reject the fast  
outputtransientscausedbytheblankingperiod.The10nH  
inductorcanbefabricatedonthePCboardwithabout1cm  
(0.4") of 1mm wide PC board trace.  
(TRACE INDUCTANCE)  
V
IN  
V
IN  
SUPPLY  
1µF  
LTC3251  
GND  
3251 F05  
Figure 5. 10nH Inductor Used for  
Additional Input Noise Reduction  
10nH  
(TRACE INDUCTANCE)  
Flying Capacitor Selection  
V
V
OUT  
OUT  
10µF  
1µF  
LTC3251  
GND  
Warning: A polarized capacitor such as tantalum or alumi-  
num should never be used for the flying capacitors since  
their voltages can reverse upon start-up of the LTC3251.  
Ceramic capacitors should always be used for the flying  
capacitors.  
3251 F04  
Figure 4. 10nH Inductor Used for  
Additional Output Noise Reduction  
The flying capacitors control the strength of the charge  
pump. In order to achieve the rated output current, it is  
necessary for the flying capacitor to have at least 0.4µF of  
capacitance over operating temperature with a 2V bias  
(see Ceramic Capacitor Selection Guidelines). If only  
200mA or less of output current is required for the  
application, the flying capacitor minimum can be reduced  
to 0.15µF.  
VIN Capacitor Selection  
The dual phase architecture used by the LTC3251 family  
makes input noise filtering much less demanding than  
conventional charge pump regulators. The input current  
should be continuous at about IOUT/2. The blanking period  
described in the VOUT section also effects the input. For  
this reason it is recommended that a low ESR, 1µF (0.4µF  
min) or greater ceramic capacitor be used for CIN (see  
Ceramic Capacitor Selection Guidelines section).  
Ceramic Capacitor Selection Guidelines  
Incaseswherethesupplyimpedanceishigh,heavyoutput  
transients can cause significant input transients. These  
input transients feed back to the output which slows the  
output transient recovery and increases overshoot and  
output impedance. This effect can generally be avoided by  
using low impedance supplies and short supply connec-  
tions. If this is not possible, a 4.7µF capacitor is recom-  
mended for the input capacitor. Aluminum and tantalum  
capacitors are not recommended because of their high  
ESR.  
Capacitors of different materials lose their capacitance  
with higher temperature and voltage at different rates. For  
example,aceramiccapacitormadeofX5RorX7Rmaterial  
will retain most of its capacitance from 40°C to 85°C,  
whereas a Z5U or Y5V style capacitor will lose consider-  
able capacitance over that range (60% to 80% loss typ).  
Z5U and Y5V capacitors may also have a very strong  
voltage coefficient, causing them to lose an additional  
60% or more of their capacitance when the rated voltage  
is applied. Therefore, when comparing different capaci-  
tors, it is often more appropriate to compare the amount  
of achievable capacitance for a given case size rather than  
discussing the specified capacitance value. For example,  
over rated voltage and temperature conditions, a 4.7µF,  
10V, Y5V ceramic capacitor in an 0805 case may not  
provideanymorecapacitancethana1µF,10V,X5RorX7R  
available in the same 0805 case. In fact, over bias and  
Further input noise reduction can be achieved by filtering  
the input through a very small series inductor as shown in  
Figure 5. A 10nH inductor will reject the fast input tran-  
sients caused by the blanking period, thereby presenting  
a nearly constant load to the input supply. For economy,  
the 10nH inductor can be fabricated on the PC board with  
about 1cm (0.4") of 1mm wide PC board trace.  
32511215fb  
11  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
temperature range, the 1µF, 10V, X5R or X7R will provide  
more capacitance than the 4.7µF, 10V, Y5V. The capacitor  
manufacturer’s data sheet should be consulted to deter-  
mine what value of capacitor is needed to ensure mini-  
mum capacitance values are met over operating tempera-  
ture and bias voltage.  
The flying capacitor pins C1+, C1, C2+, C2will have very  
high edge rate wave forms. The large dv/dt on these pins  
can couple energy capacitively to adjacent printed circuit  
board runs. Magnetic fields can also be generated if the  
flyingcapacitorsarenotclosetothepart(i.e.,thelooparea  
islarge).Todecouplecapacitiveenergytransfer,aFaraday  
shield may be used. This is a grounded PC trace between  
the sensitive node and the IC’s pins. For a high quality AC  
ground, it should be returned to a solid ground plane that  
extends all the way to the part. Keep the FB trace of the  
LTC3251 away from or shielded from the flying capacitor  
traces or degraded performance could result.  
Below is a list of ceramic capacitor manufacturers and  
how to contact them:  
AVX  
Kemet  
www.avxcorp.com  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
Murata  
Taiyo Yuden  
TDK  
Thermal Management  
Ifthejunctiontemperatureincreasesaboveapproximately  
160°C, the thermal shutdown circuitry will automatically  
deactivate the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
is recommended. Connecting the 10-pin MSE paddle  
directly to a ground plane, and maintaining a solid ground  
plane under the device on one or more layers of the PC  
board, can reduce the thermal resistance of the package  
and PC board considerably. Using this method a θJA of  
40°C/W should be achieved. The actual power dissipated  
by the LTC3251 (PD) can be calculated by the following  
equation:  
Layout Considerations  
Duetothehighswitchingfrequencyandtransientcurrents  
produced by the LTC3251, careful board layout is neces-  
sary for optimal performance. A true ground plane and  
short connections to all capacitors will improve perfor-  
mance and ensure proper regulation under all conditions.  
Figure 6 shows the recommended layout configuration.  
LTC3251 COMPONENTS NOT USED ON  
C
THE LTC3251-1.2 OR LTC3251-1.5  
I
1µF  
R
B
V
2
IN  
PD =  
VOUT IOUT  
V
C
IN  
A
R
A
5pF  
C1  
1µF  
Power Efficiency  
V
OUT  
C2  
1µF  
GND  
Thepowerefficiency(η)oftheLTC3251familyisapproxi-  
mately double that of a conventional linear regulator. This  
occurs because the input current for a 2-to-1 step-down  
charge pump is approximately half the output current. For  
an ideal 2-to-1 step-down charge pump the power effi-  
ciency is given by:  
3251 F06  
C
O
10µF  
Figure 6. Recommended Layout  
POUT VOUT IOUT 2VOUT  
η ≡  
=
=
P
1
V
IN  
IN  
V • IOUT  
IN  
2
32511215fb  
12  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
(Refer to Block Diagram)  
OPERATIO  
At moderate to high output power the switching losses  
and quiescent current of the LTC3251 family is negligible  
and the expression above is valid. For example with VIN =  
3.6V, IOUT = 200mA and VOUT regulating to 1.5V the  
measured efficiency is 81% which is in close agreement  
with the theoretical 83.3% calculation.  
For a 1.5V output, RO is 0.085, which produces a 40mV  
output change for a 500mA load current step. Thus, the  
user may want to target an unloaded output voltage  
slightly higher than desired to compensate for the output  
load conditions. The output may be programmed for  
regulation voltages of 0.9V to 1.6V.  
Since the LTC3251 employs a 2-to-1 charge pump archi-  
tecture, it is not possible to achieve output voltages  
greater than half the available input voltage. The minimum  
VIN supply required for regulation can be determined by  
the following equation:  
Programming the LTC3251 Output Voltage (FB Pin)  
The LTC3251 is programmed to an arbitrary output volt-  
age via an external resistive divider. Figure 7 shows the  
required voltage divider connection. The voltage divider  
ratio is given by the expression:  
VIN(MIN) 2 • (VOUT(MIN) + IOUT • ROL)  
RA VOUT  
RB 0.8V  
The compensation capacitor (CA) is necessary to counter-  
actthepolecausedbythelargevaluedresistorsRA andRB,  
andtheinputcapacitanceoftheFBpin.Forbestresults,CA  
should be 5pF for all RA or RB greater than 10k and can be  
omitted if both RA and RB are less than 10k.  
=
– 1  
V
V
OUT  
OUT  
R
R
A
B
C
R
R
LTC3251  
FB  
A
A
B
0.8V 1 +  
(
)
C
OUT  
Disabling Spread Spectrum Operation on the  
LTC3251-1.2/LTC3251-1.5 (MODE Pin)  
GND  
3251 F07  
Spread spectrum operation can be disabled by driving  
MODE high. When Mode is high, switching takes place at  
the maximum operating frequency (typ 1.6MHz). The  
advantage of spread spectrum operation is that it reduces  
the peak noise at and above the operating frequency at the  
expense of a slightly increased noise floor and slightly  
increased low frequency ripple caused by the converter  
compensating for the changing operating frequency. Us-  
ers who do not need the peak noise reduction gained by  
using spread spectrum may wish to disable spread spec-  
trum, thus improving the low frequency input/output  
ripple.  
Figure 7. Programming the LTC3251  
Typical values for total voltage divider resistance can  
range from several ks up to 1M.  
The user may want to consider load regulation when  
setting the desired output voltage. The closed loop output  
impedance of the LTC3251 is approximately:  
VOUT  
RO 0.045•  
0.8V  
32511215fb  
13  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
TYPICAL APPLICATIO S  
0.9V Output Continuous/Burst Mode Operation with Shutdown  
OFF ON  
1
9
MD0 MD1  
LTC3251  
V
OUT  
= 0.9V  
500mA  
2
3
7
V
V
OUT  
IN  
1-CELL  
Li-Ion  
OR  
3-CELL  
NiMH  
8
+
+
1µF  
1µF  
10µF  
4.7µF  
C1  
C1  
C2  
1µF  
73.2k  
4
6
5pF  
C2  
5,11  
10  
GND  
FB  
536k  
3251 TA05  
3.3V to 1.4V Conversion, Continuous  
Spread Spectrum Operation with Shutdown  
OFF ON  
1
9
MD0 MD1  
LTC3251  
V
V
I
= 1.4V  
350mA  
OUT  
OUT  
2
3
7
V
IN  
V
IN  
OUT  
3.3V  
8
1µF  
1µF  
+
+
10µF  
C1  
C1  
C2  
C2  
1µF  
4
6
4.12k  
5,11  
10  
GND  
FB  
5.36k  
3251 TA03  
32511215fb  
14  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
1.83 ± 0.102  
(.072 ± .004)  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
1
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MSE) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
32511215fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3251/  
LTC3251-1.2/LTC3251-1.5  
U
TYPICAL APPLICATIO  
1.2V Output with mProcessor Control of Operating Modes (Spread Spectrum Disabled)  
µP  
1
9
MD0 MD1  
LTC3251-1.2  
V
I
I
= 1.2V  
OUT  
OUT  
OUT  
2
3
4
7
V
IN  
V
OUT  
UP TO 300mA, V 2.8V  
1-CELL Li-Ion  
OR  
3-CELL NiMH  
IN  
10µF  
X5R  
6.3V  
8
UP TO 500mA, V 3.0V  
IN  
1µF  
+
+
C1  
C1  
C2  
1µF  
1µF  
6
C2  
5,11  
10  
GND  
MODE  
3251 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2.7V to 10V, V : 3V or 5V, Regulated Output, I : 60µA,  
LTC1514  
50mA, 650kHz, Step-Up/Down Charge Pump  
with Low Battery Comparator  
IN  
OUT  
Q
I
: 10µA, S8 Package  
SD  
LTC1515  
LT1776  
50mA, 650kHz, Step-Up/Down Charge Pump  
with Power-On Reset  
V : 2.7V to 10V, V : 3.3V or 5V, Regulated Output, I : 60µA,  
IN OUT Q  
SD  
I
: <1µA, S8 Package  
500mA (I ), 200kHz, High Efficiency  
90% Efficiency, V : 7.4V to 40V, V  
: 1.24V,  
OUT(MIN)  
OUT  
IN  
Step-Down DC/DC Converter  
I : 3.2mA, I : 30µA, N8, S8 Packages  
Q SD  
LTC1911-1.5/  
LTC1911-1.8  
250mA, 1.5MHz, High Efficiency  
Step-Down Charge Pump  
Up to 90% Efficiency, V : 2.7V to 5.5V, V : 1.5V/1.8V, Regulated Output,  
IN OUT  
I : 180µA, I : 10µA, MS8 Package  
Q
SD  
LTC3250-1.5  
250mA, 1.5MHz, High Efficiency  
Step-Down Charge Pump  
Up to 90% Efficiency, V : 3.1V to 5.5V, V : 1.5V, Regulated Output,  
IN OUT  
I : 35µA, I : <1µA, ThinSOT Package  
Q
SD  
LTC3252  
250mA, Dual, Low Noise, Inductorless  
Step-Down DC/DC Converter  
Up to 90% Efficiency, V : 2.7V to 5.5V, V : 0.9V to 1.6V,  
IN OUT  
I : 60µA, DFN Package  
Q
LTC3404  
600mA (I ), 1.4MHz, Synchronous  
Step-Down DC/DC Converter  
95% Efficiency, V : 2.7V to 6V, V  
I : 10µA, I : <1µA, MS8 Package  
Q SD  
: 0.8V,  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
LTC3405/LTC3405A 300mA (I ), 1.5MHz, Synchronous  
95% Efficiency, V : 2.7V to 6V, V  
: 0.8V,  
OUT  
IN  
Step-Down DC/DC Converter  
I : 20µA, I : <1µA, ThinSOT Package  
Q SD  
LTC3406/LTC3406B 600mA (I ), 1.5MHz, Synchronous  
95% Efficiency, V : 2.5V to 5.5V, V  
I : 20µA, I : <1µA, ThinSOT Package  
Q SD  
: 0.6V,  
OUT(MIN)  
OUT  
IN  
Step-Down DC/DC Converter  
LTC3411  
LTC3412  
LTC3440  
LTC3441  
1.25A (I ), 4MHz, Synchronous Step-Down 95% Efficiency, V : 2.5V to 5.5V, V  
: 0.8V,  
: 0.8V,  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
I : 60µA, I : <1µA, MS Package  
Q SD  
2.5A (I ), 4MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
IN  
I : 60µA, I : <1µA, TSSOP-16E Package  
Q SD  
OUT  
OUT(MIN)  
600mA (I ), 2MHz, Synchronous  
Buck-Boost DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V : 2.5V to 5.5V,  
IN OUT  
I : <25µA, I : 1µA, MS Package  
Q SD  
OUT  
1.2A (I ), 1MHz, Synchronous  
Buck-Boost DC/DC Converter  
95% Efficiency, V : 2.4V to 5.5V, V : 2.4V to 5.25V,  
IN OUT  
I : <25µA, I : 1µA, DFN Package  
Q SD  
OUT  
32511215fb  
LT 0306 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC3252

Dual Synchronous,400mA/800mA, 2.25MHz Step-Down DC/DC Regulator
Linear

LTC3252

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LTC3252EDE

Dual, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3252EDE#PBF

LTC3252 - Dual, Low Noise, Inductorless Step-Down DC/DC Converter; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear System

LTC3252EDE#TRPBF

LTC3252 - Dual, Low Noise, Inductorless Step-Down DC/DC Converter; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear System

LTC3255

Wide VIN Range Fault Protected 50mA Step-Down Charge Pump
Linear

LTC3255EDD#PBF

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3255EMSE#PBF

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3255HDD#PBF

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC3255HMSE#PBF

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC3255IDD#PBF

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3255IMSE#PBF

暂无描述
Linear