LTC2377CMS-16#TRPBF [Linear]

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2377CMS-16#TRPBF
型号: LTC2377CMS-16#TRPBF
厂家: Linear    Linear
描述:

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总26页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2377-16  
16-Bit, 500ksps, Low Power  
SAR ADC with 97dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2377-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2377-16 has a  
n
500ksps Throughput Rate  
n
0ꢀ5ꢁSꢂ INꢁ ꢃ(aꢄx  
n
Guaranteed 16-ꢂit No (issing Codes  
n
ꢁow Power: 6ꢀ8mW at 500ksps, 6ꢀ8µW at 500sps  
97dꢂ SNR ꢃTypx at f = 2kHz  
123dꢂ THD ꢃTypx at f = 2kHz  
±V fully differential input range with V ranging from  
REF REF  
n
2.5V to 5.1V. The LTC2377-16 consumes only 6.8mW and  
achieves ±±.5LSꢀ ꢁIL maximum, no missing codes at 16  
bits with 97dꢀ SIR.  
IN  
n
n
n
n
n
n
n
n
n
n
n
IN  
Digital Gain Compression ꢃDGCx  
Guaranteed Operation to 125°C  
2.5V Supply  
The LTC2377-16 has a high speed SPꢁ-compatible se-  
rial interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisy-chain mode. The fast 5±±ksps  
throughput with no cycle latency makes the LTC2377-16  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2377-16 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
Fully Differential ꢁnput Range ±V  
REF  
V
ꢁnput Range from 2.5V to 5.1V  
REF  
Io Pipeline Delay, Io Cycle Latency  
1.8V to 5V ꢁ/O Voltages  
SPꢁ-Compatible Serial ꢁ/O with Daisy-Chain Mode  
ꢁnternal Conversion Clock  
16-Lead MSOP and 4mm × 3mm DFI Packages  
The LTC2377-16 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
APPLICATIONS  
n
Medical ꢁmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢁnstrumentation  
function that maps zero-scale code from ±V to ±.1 • V  
REF  
n
ꢁndustrial Process Control  
and full-scale code from V  
to ±.9 • V . For a typical  
REF  
REF  
n
Low Power ꢀattery-Operated ꢁnstrumentation  
reference voltage of 5V, the full-scale input range is now  
±.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
n
ATE  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
TYPICAL APPLICATION  
32k Point FFT fS = 500ksps, fIN = 2kHz  
2.5V 1.8V TO 5V  
0
SNR = 97.2dB  
–20  
–40  
THD = –123dB  
SINAD = 97.2dB  
SFDR = 126dB  
10µF  
0.1µF  
V
OV  
DD  
CHAIN  
RDL/SDI  
SDO  
DD  
6800pF  
3300pF  
6800pF  
V
V
REF  
20Ω  
20Ω  
–60  
+
IN  
+
–80  
0V  
LTC2377-16  
SCK  
REF  
BUSY  
CNV  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
IN  
SAMPLE CLOCK  
0V  
V
REF  
GND  
REF  
237716 TA01  
2.5V TO 5.1V  
47µF  
(X5R, 0805 SIZE)  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
237716 TA02  
237716fa  
1
For more information www.linear.com/LTC2377-16  
LTC2377-16  
ABSOLUTE MAXIMUM RATINGS  
ꢃNotes 1, 2x  
Supply Voltage (V )...............................................2.8V  
Digital Output Voltage  
DD  
Supply Voltage (OV )................................................6V  
(Iote 3)........................... (GID –±.3V) to (OV + ±.3V)  
DD  
DD  
Reference ꢁnput (REF).................................................6V  
Power Dissipation.............................................. 5±±mW  
Operating Temperature Range  
LTC2377C ................................................ ±°C to 7±°C  
LTC2377ꢁ .............................................–4±°C to 85°C  
LTC2377H.......................................... –4±°C to 125°C  
Storage Temperature Range .................. –65°C to 15±°C  
Analog ꢁnput Voltage (Iote 3)  
+
ꢁI , ꢁI ......................... (GID –±.3V) to (REF + ±.3V)  
REF/DGC ꢁnput (Iote 3).... (GID –±.3V) to (REF + ±.3V)  
Digital ꢁnput Voltage  
(Iote 3)........................... (GID –±.3V) to (OV + ±.3V)  
DD  
PIN CONFIGURATION  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
GND 6  
REF 7  
REF/DGC 8  
9
CNV  
REF/DGC  
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 15±°C, θ = 11±°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
T
= 15±°C, θ = 4±°C/W  
JA  
JMAX  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
http://wwwꢀlinearcom/product/TC2377-16#orderinfo  
ORDER INFORMATION  
ꢁEAD FREE FINISH  
LTC2377CMS-16#PꢀF  
LTC2377ꢁMS-16#PꢀF  
LTC2377HMS-16#PꢀF  
LTC2377CDE-16#PꢀF  
LTC2377ꢁDE-16#PꢀF  
TAPE AND REEꢁ  
PART (ARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TE(PERATURE RANGE  
±°C to 7±°C  
LTC2377CMS-16#TRPꢀF 237716  
LTC2377ꢁMS-16#TRPꢀF 237716  
LTC2377HMS-16#TRPꢀF 237716  
LTC2377CDE-16#TRPꢀF 23776  
–4±°C to 85°C  
–4±°C to 125°C  
±°C to 7±°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2377ꢁDE-16#TRPꢀF  
23776  
–4±°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 5±± unit reels through  
designated sales channels with #TRMPꢀF suffix.  
237716fa  
2
For more information www.linear.com/LTC2377-16  
LTC2377-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ  
V +  
PARA(ETER  
CONDITIONS  
(Iote 5)  
(IN  
–±.±5  
–±.±5  
TYP  
(AX  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
V
V
+ ±.±5  
V
V
V
V
ꢁI  
REF  
REF  
V
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
+ ±.±5  
ꢁI  
V + – V – ꢁnput Differential Voltage Range  
V
ꢁI  
= V + – V –  
–V  
+V  
REF  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
REF  
V
CM  
Common-Mode ꢁnput Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
REF  
±.1  
±.1  
±1  
l
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
µA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢁI  
CMRR  
ꢁnput Common Mode Rejection Ratio  
f
ꢁI  
= 25±kHz  
86  
dꢀ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ PARA(ETER  
CONDITIONS  
(IN  
16  
TYP  
(AX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
16  
ꢀits  
Transition Ioise  
±.15  
±±.2  
±±.1  
±
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–±.5  
–±.5  
–4  
±.5  
±.5  
4
LSꢀ  
DIL  
ꢀZE  
LSꢀ  
LSꢀ  
1
mLSꢀ/°C  
LSꢀ  
l
FSE  
–13  
±2  
13  
±±.±5  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢂFSꢀ ꢃNotes 4, 8x  
SY(ꢂOꢁ PARA(ETER  
CONDITIONS  
(IN  
94.6  
94.5  
TYP  
97  
(AX  
UNITS  
dꢀ  
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
REF  
= 2kHz, V = 5V, (H-Grade)  
97  
dꢀ  
REF  
l
l
l
Signal-to-Ioise Ratio  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
95.3  
94.5  
92.1  
97  
96.4  
95  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V, (H-Grade)  
95.2  
94.3  
91.8  
97  
96.4  
95  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GID, (H-Grade)  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
l
l
THD  
Total Harmonic Distortion  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
–123  
–125  
–122  
–1±3  
–1±1  
–1±3  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
l
SFDR  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
f
= 2kHz, V = 5V  
1±4  
124  
34  
dꢀ  
MHz  
ps  
ꢁI  
REF  
5±±  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
1.46  
µs  
237716fa  
3
For more information www.linear.com/LTC2377-16  
LTC2377-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ  
PARA(ETER  
CONDITIONS  
(Iote 5)  
(IN  
TYP  
(AX  
5.1  
UNITS  
l
l
l
l
V
Reference Voltage  
2.5  
V
mA  
V
REF  
REF  
Reference ꢁnput Current  
High Level ꢁnput Voltage REF/DGC Pin  
Low Level ꢁnput Voltage REF/DGC Pin  
(Iote 9)  
±.32  
±.4  
V
ꢁHDGC  
V
ꢁLDGC  
±.8V  
REF  
±.2V  
V
REF  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
UNITS  
V
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
±.8 • OV  
ꢁH  
ꢁL  
DD  
±.2 • OV  
1±  
V
DD  
V
= ±V to OV  
DD  
–1±  
µA  
pF  
ꢁI  
ꢁI  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –5±±µA  
O
OV – ±.2  
DD  
V
OH  
OL  
ꢁ = 5±±µA  
O
±.2  
1±  
V
V
V
V
= ±V to OV  
DD  
–1±  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
= ±V  
= OV  
–1±  
1±  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ  
PARA(ETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
(IN  
2.375  
1.71  
TYP  
(AX  
2.625  
5.25  
3.2  
UNITS  
l
l
l
V
DD  
2.5  
V
V
OV  
DD  
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
5±±ksps Sample Rate  
2.7  
±.1  
±.9  
±.9  
mA  
mA  
µA  
VDD  
OVDD  
PD  
5±±ksps Sample Rate (C = 2±pF)  
L
+ ꢁ  
+ ꢁ  
l
l
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ )  
REF  
9±  
14±  
VDD  
VDD  
OVDD  
OVDD  
REF  
+ ꢁ , H-Grade)  
µA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
5±±ksps Sample Rate  
6.75  
2.25  
2.25  
8
225  
315  
mW  
µW  
µW  
D
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ  
+ ꢁ  
+ ꢁ )  
REF  
REF  
VDD  
VDD  
OVDD  
OVDD  
+ ꢁ , H-Grade)  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ  
PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
5±±  
1.5  
UNITS  
ksps  
µs  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
1
Acquisition Time  
t
= t  
– t (Iote 1±)  
HOLD  
1.46  
µs  
ACQ  
CYC  
Maximum Time ꢀetween Acquisitions  
Time ꢀetween Conversions  
CIV High Time  
54±  
13  
ns  
HOLD  
CYC  
2
µs  
2±  
ns  
CIVH  
ꢀUSYLH  
CIVL  
QUꢁET  
C = 2±pF  
L
ns  
CIVto ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Quiet Time from CIV↑  
(Iote 11)  
(Iote 1±)  
2±  
2±  
ns  
ns  
237716fa  
4
For more information www.linear.com/LTC2377-16  
LTC2377-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ ꢃNote 4x  
SY(ꢂOꢁ  
PARA(ETER  
CONDITIONS  
(IN  
1±  
4
TYP  
(AX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
SCK Period  
(Iotes 11, 12)  
SCK  
SCK High Time  
ns  
SCKH  
SCK Low Time  
4
ns  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK↑  
SDꢁ Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from ꢀUSY↓  
ꢀus Enable Time After RDL↓  
ꢀus Relinquish Time After RDL↑  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
HSDO  
DSDOꢀUSYL  
EI  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 2±pF (Iote 11)  
L
9.5  
ns  
C = 2±pF (Iote 1±)  
L
1
ns  
C = 2±pF (Iote 1±)  
L
5
ns  
(Iote 11)  
(Iote 11)  
16  
13  
ns  
ns  
DꢁS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 7: ꢀipolar zero-scale error is the offset voltage measured from  
–±.5LSꢀ when the output code flickers between ±±±± ±±±± ±±±± ±±±± and  
1111 1111 1111 1111. Full-scale bipolar error is the worst-case of –FS  
or +FS untrimmed deviation from ideal first and last code transitions and  
includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dꢀ are referred to a full-scale ±5V input with a  
5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REFor  
OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 1±±mA below ground or above REFor OV without  
latch-up.  
Note 9: f  
= 5±±kHz, ꢁ varies proportionately with sample rate.  
SMPL REF  
DD  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, V = 2.5V, f  
= 5±±kHz,  
DD  
DD  
CM  
SMPL  
DD  
DD  
REF/DGC = V  
.
REF  
and OV = 5.25V.  
DD  
Note 5: Recommended operating conditions.  
Note 12: t  
of 1±ns maximum allows a shift clock frequency up to  
SCK  
Note 6: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
1±±MHz for rising capture.  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237716 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
0.2*OV  
DD  
Figure 1ꢀ Voltage ꢁevels for Timing Specifications  
237716fa  
5
For more information www.linear.com/LTC2377-16  
LTC2377-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2ꢀ5V, OVDD = 2ꢀ5V, VC( = 2ꢀ5V,  
REF = 5V, fS(Pꢁ = 500ksps, unless otherwise notedꢀ  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
1.0  
0.8  
0.5  
0.4  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
σ = 0.15  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–32768  
–16384  
0
16384  
32768  
–32768  
–16384  
0
16384  
32768  
–2  
–1  
0
1
2
OUTPUT CODE  
OUTPUT CODE  
CODE  
237716 G01  
237716 G02  
237716 G03  
THD, Harmonics  
32k Point FFT fS = 500ksps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
98.0  
97.5  
97.0  
96.5  
96.0  
95.5  
95.0  
94.5  
94.0  
93.5  
93.0  
–80  
–90  
SNR = 97.2dB  
THD = –123dB  
SINAD = 97.2dB  
SFDR = 126dB  
THD  
2ND  
3RD  
SNR  
–40  
–60  
–100  
–110  
–120  
–130  
–140  
SINAD  
–80  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237716 G05  
237716 G06  
237716 G04  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
98.0  
98.0  
97.5  
97.0  
96.5  
96.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
97.5  
97.0  
SNR  
96.5  
96.0  
SNR  
THD  
3RD  
SINAD  
SINAD  
95.5  
95.0  
2ND  
94.5  
94.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
–30  
–20  
–10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFERENCE VOLTAGE (V)  
INPUT LEVEL (dB)  
REFERENCE VOLTAGE (V)  
237716 G08  
237716 G07  
237716 G09  
237716fa  
6
For more information www.linear.com/LTC2377-16  
LTC2377-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2ꢀ5V, OVDD = 2ꢀ5V, VC( = 2ꢀ5V,  
REF = 5V, fS(Pꢁ = 500ksps, unless otherwise notedꢀ  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
INꢁ/DNꢁ vs Temperature  
98.0  
97.5  
97.0  
96.5  
96.0  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
0.5  
0.3  
SNR  
MAX INL  
MAX DNL  
THD  
SINAD  
0.1  
3RD  
MIN DNL  
–0.1  
–0.3  
–0.5  
MIN INL  
2ND  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–50 –25 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237716 G10  
237716 G11  
237716 G12  
Supply Current vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
I
VDD  
–FS  
1.0  
0.5  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
I
REF  
+FS  
I
OVDD  
–1.0  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237716 G14  
237716 G15  
237716 G13  
Reference Current  
vs Reference Voltage  
Shutdown Current vs Temperature  
C(RR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
0.4  
0.35  
0.3  
I
+ I  
+ I  
VDD OVDD REF  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
50  
100  
150  
250  
–55 –35 –15  
5
25 45 65 85 105 125  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
237716 G16  
237716 G17  
237716 G18  
237716fa  
7
For more information www.linear.com/LTC2377-16  
LTC2377-16  
PIN FUNCTIONS  
CHAIN ꢃPin 1x: Chain Mode Selector Pin. When low, the  
LTC2377-16 operates in normal mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2377-16 operates in chain mode and the RDL/SDꢁ  
pin functions as SDꢁ, the daisy-chain serial data input.  
ꢂUSY ꢃPin 11x: ꢀUSY ꢁndicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by ±V .  
DD  
RDꢁ/SDI ꢃPin 12x: When CHAꢁI is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAꢁI is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy-chain is input. Logic levels are  
Logic levels are determined by ±V .  
DD  
V
ꢃPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGIDwitha1±µFceramic  
DD  
capacitor.  
determined by ±V .  
DD  
GND ꢃPins 3, 6, 10 and 16x: Ground.  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢀ  
+
IN , IN ꢃPins 4, 5x: Positive and Iegative Differential  
Analog ꢁnputs.  
first. Logic levels are determined by ±V .  
DD  
REF ꢃPin 7x: Reference ꢁnput. The range of REF is 2.5V  
to 5.1V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, ±8±5 size).  
SDOPin14x:SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format. Logic levels are determined by ±V .  
DD  
REF/DGCꢃPin8x:WhentiedtoREF,digitalgaincompression  
OV ꢃPin 15x: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
isdisabledandtheLTC2377-16definesfull-scaleaccording  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
to the ±V analog input range. When tied to GID, digital  
REF  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
gain compression is enabled and the LTC2377-16 defines  
or 5V). ꢀypass OV to GID with a ±.1µF capacitor.  
DD  
full-scale with inputs that swing between 1±% and 9±%  
of the ±V analog input range.  
GND ꢃEꢄposed Pad Pin 17 – DFN Package Onlyx: Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
REF  
CNV ꢃPin 9x: Convert ꢁnput. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by ±V .  
DD  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
LTC2377-16  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
+
IN  
SPI  
PORT  
16-BIT SAMPLING ADC  
IN  
CNV  
BUSY  
REF/DGC  
CONTROL LOGIC  
GND  
237716 BD01  
237716fa  
8
For more information www.linear.com/LTC2377-16  
LTC2377-16  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
POWER-DOWN  
BUSY  
SCK  
HOLD  
ACQUIRE  
D15 D14 D13 D2 D1 D0  
SDO  
237716 TD01  
237716fa  
9
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
OVERVIEW  
TRANSFER FUNCTION  
The LTC2377-16 is a low noise, low power, high speed  
16-ꢀit successive approximation register (SAR) ADC.  
Operating from a single 2.5V supply, the LTC2377-16  
The LTC2377-16 digitizes the full-scale voltage of 2 × REF  
16  
into 2 levels, resulting in an LSꢀ size of 152µV with  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in 2’s complement format.  
supports a large and flexible ±V fully differential input  
REF  
range with V ranging from 2.5V to 5.1V, making it ideal  
REF  
for high performance applications which require a wide  
dynamic range. The LTC2377-16 achieves ±±.5LSꢀ ꢁIL  
max, no missing codes at 16 bits and 97dꢀ SIR.  
011...111  
BIPOLAR  
011...110  
ZERO  
000...001  
000...000  
111...111  
111...110  
Fast 5±±ksps throughput with no cycle latency makes  
the LTC2377-16 ideally suited for a wide variety of high  
speed applications. An internal oscillator sets the con-  
version time, easing external timing considerations. The  
LTC2377-16 dissipates only 6.8mW at 5±±ksps, while an  
auto power-down feature is provided to further reduce  
power dissipation during inactive periods.  
100...001  
FSR = +FS – –FS  
1LSB = FSR/65536  
100...000  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
237716 F02  
The LTC2377-16 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
Figure 2ꢀ TC2377-16 Transfer Function  
ANAꢁOG INPUT  
function that maps zero-scale code from ±V to ±.1 • V  
The analog inputs of the LTC2377-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
shown in Figure 3. The diodes at the input provide ESD  
protection. ꢁn the acquisition phase, each input sees ap-  
REF  
and full-scale code from V  
to ±.9 • V . For a typical  
REF  
REF  
reference voltage of 5V, the full-scale input range is now  
±.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
proximately 45pF (C ) from the sampling CDAC in series  
ꢁI  
with 4±Ω (R ) from the on-resistance of the sampling  
OI  
CONVERTER OPERATION  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
The LTC2377-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
+
the C capacitors during acquisition. During conversion,  
the analog inputs draw only a small leakage current.  
converter (CDAC) is connected to the ꢁI and ꢁI pins  
to sample the differential analog input voltage. A rising  
edge on the CIV pin initiates a conversion. During the  
conversionphase,the16-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
ꢁI  
REF  
C
45pF  
IN  
R
40Ω  
ON  
+
IN  
IN  
referencevoltage(e.g.V /2,V /4…V /65536)using  
REF  
REF  
REF  
BIAS  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 16-bit digital output  
code for serial transfer.  
VOLTAGE  
REF  
C
45pF  
IN  
R
40Ω  
ON  
237716 F03  
Figure 3ꢀ The Equivalent Circuit for the  
Differential Analog Input of the TC2377-16  
237716fa  
10  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2377-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2377-16. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2377-16. The LT635± ADC  
driver is recommended for performing single-ended-to-  
differential conversions. The LT635± is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the ±5V differential input range of the  
LTC2377-16. The LT635± is also available in H-grade to  
complement the extended temperature operation of the  
LTC2377-16 up to 125°C.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
Figure 5a shows the LT635± being used to convert a ±V  
to 5V single-ended input signal. ꢁn this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5b,  
the LT635± drives the LTC2377-16 to near full data sheet  
performance.  
LPF2  
6800pF  
SINGLE-ENDED-  
20Ω  
LPF1  
INPUT SIGNAL  
+
IN  
500Ω  
3300pF  
The LT635± can also be used to buffer and convert large  
true bipolar signals which swing below ground to the  
±5V differential input range of the LTC2377-16 in order  
to maximize the signal swing that can be digitized. Fig-  
ure 6a shows the LT635± being used to convert a ±1±V  
true bipolar signal for use by the LTC2377-16. ꢁn this  
case, the first amplifier in the LT635± is configured as  
an inverting amplifier stage, which acts to attenuate and  
level shift the input signal to the ±V to 5V input range of  
the LTC2377-16. ꢁn the inverting amplifier configuration,  
the single-ended input signal source no longer directly  
drives a high impedance input of the first amplifier. The  
LTC2377-16  
6600pF  
IN  
20Ω  
237716 F04  
SINGLE-ENDED- 6800pF  
TO-DIFFERENTIAL  
DRIVER  
BW = 48kHz  
BW = 600kHz  
Figure 4ꢀ Input Signal Chain  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SIR.  
input impedance is instead set by resistor R . R must  
ꢁI ꢁI  
be chosen carefully based on the source impedance of the  
signal source. Higher values of R tend to degrade both  
ꢁI  
the noise and distortion of the LT635± and LTC2377-16  
as a system.  
237716fa  
11  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
V
CM  
LT6350  
5V  
0V  
OUT1  
4
5V  
0V  
R2 = 499Ω  
R
R
INT  
INT  
200pF  
8
1
+
LT6350  
5V  
0V  
OUT1  
OUT2  
4
5
5V  
0V  
+
R
INT  
R
INT  
8
+
OUT2  
5
10µF  
R4 = 402Ω  
R3 = 2k  
2
5V  
0V  
+
+
V
= V /2  
REF  
CM  
1
2
237716 F05a  
10V  
0V  
–10V  
R
= 2k  
R1 = 499Ω  
IN  
+
V
= V /2  
REF  
CM  
Figure 5aꢀ T6350 Converting a 0V-5V Single-Ended  
Signal to a 5V Differential Input Signal  
220pF  
237716 F06a  
Figure 6aꢀ T6350 Converting a 10V Single-Ended Signal to  
a 5V Differential Input Signal  
0
–20  
–40  
0
–20  
–40  
–60  
–80  
–60  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
237716 F05b  
0
50  
100  
150  
200  
250  
Figure 5bꢀ 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 5a  
FREQUENCY (kHz)  
237716 F06b  
Figure 6bꢀ 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 6a  
R1, R2, R3 and R4 must be selected in relation to R to  
ꢁI  
achievethedesiredattenuationandtomaintainabalanced  
input impedance in the first amplifier. Table 1 shows the  
5V  
LT6203  
5V  
0V  
3
2
+
resulting SIR and THD for several values of R , R1, R2,  
ꢁI  
1
7
0V  
R3 and R4 in this configuration. Figure 6b shows the re-  
sulting FFT when using the LT635± as shown in Figure 6a.  
5V  
0V  
5V  
0V  
5
6
+
Table 1ꢀ SNR, THD vs RIN for 10V Single-Ended Input Signalꢀ  
R
R1  
ꢃΩx  
R2  
ꢃΩx  
R3  
ꢃΩx  
R4  
ꢃΩx  
SNR  
ꢃdꢂx  
THD  
ꢃdꢂx  
IN  
ꢃΩx  
237716 F07  
2k  
499  
499  
2k  
4±2  
2k  
96.4  
96.3  
96.3  
–1±1  
–92  
Figure 7ꢀ T6203 ꢂuffering a Fully Differential Signal Source  
1±k  
1±±k  
2.49k  
24.9k  
2.49k  
24.9k  
1±k  
1±±k  
2±k  
–98  
Digital Gain Compression  
The LTC2377-16 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
Fully Differential Inputs  
tween 1±% and 9±% of the ±V analog input range. To  
REF  
To achieve the full distortion performance of the  
LTC2377-16,alowdistortionfullydifferentialsignalsource  
driven through the LT62±3 configured as two unity gain  
buffers as shown in Figure 7 can be used to get the full  
data sheet THD specification of –123dꢀ.  
enable digital gain compression, bring the REF/DGC pin  
low. This feature allows the LT635± to be powered off of  
a single +5.5V supply since each input swings between  
±.5V and 4.5V as shown in Figure 8. Ieeding only one  
237716fa  
12  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
5V  
many applications. With its small size, low power and  
highaccuracy, theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2377-16. The LTC6655-5 offers ±.±25%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications. The LTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2377-16 up to 125°C. We recommend bypassing the  
LTC6655-5witha4Fceramiccapacitor(X5R,±5size)  
close to the REF pin.  
4.5V  
0.5V  
0V  
237716 F08  
Figure 8ꢀ Input Swing of the TC2377 with Gain  
Compression Enabled  
positive supply to power the LT635± results in additional  
power savings for the entire system.  
TheREFpinoftheLTC2377-16drawscharge(Q  
)from  
COIV  
Figure 9a shows how to configure the LT635± to accept a  
±1±V true bipolar input signal and attenuate and level shift  
the signal to the reduced input range of the LTC2377-16  
whendigitalgaincompressionisenabled.Figure9bshows  
anFFTplotwiththeLTC2377-16beingdrivenbytheLT635±  
with digital gain compression enabled.  
the 47µF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
= Q  
/t . The DC current draw of the REF pin,  
REF  
REF  
COIV CYC  
, depends on the sampling rate and output code. ꢁf  
the LTC2377-16 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than ±.5LSꢀs.  
ADC REFERENCE  
The LTC2377-16 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
enceiscriticaltoachievingthefulldatasheetperformance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
When idling, the REF pin on the LTC2377-16 draws only  
a small leakage current (< 1µA). ꢁn applications where a  
burst of samples is taken after idling for long periods as  
shown in Figure 1±, ꢁ quickly goes from approximately  
REF  
5.5V  
V
V
V
LTC6655-5  
IN  
0
–20  
OUT_F  
OUT_S  
5V  
1k  
–40  
47µF  
V
CM  
–60  
4.5V  
0.5V  
2.5V  
1k  
10µF  
3
+
–80  
V
6800pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2377-16  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
+
20Ω  
IN  
IN  
R
R
INT  
8
+
INT  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237716 F09a  
V
6800pF  
10V  
0V  
–10V  
= 15k  
3.01k  
IN  
0
50  
100  
150  
200  
250  
0.5V  
V
CM  
FREQUENCY (kHz)  
237716 F09b  
Figure 9aꢀ T6350 Configured to Accept a 10V Input Signal While Running Off of a  
Single 5ꢀ5V Supply When Digital Gain Compression Is Enabled in the TC2377-16  
Figure 9bꢀ 32k Point FFT Plot  
with fIN = 2kHz for Circuit Shown  
in Figure 9a  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
237716 F10  
Figure 10ꢀ CNV Waveform Showing ꢂurst Sampling  
237716fa  
13  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
±µA to a maximum of ±.4mA at 5±±ksps. This step in DC  
currentdrawtriggersatransientresponseinthereference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
code. ꢁn applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
Signal-to-Noise Ratio ꢃSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 11 shows  
that the LTC2377-16 achieves a typical SIR of 97dꢀ at a  
5±±kHz sampling rate with a 2kHz input.  
DYNA(IC PERFOR(ANCE  
Total Harmonic Distortion ꢃTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2377-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VI2  
THD=2±log  
V1  
Signal-to-Noise and Distortion Ratio ꢃSINADx  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
I
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 11 shows that the LTC2377-16 achieves  
a typical SꢁIAD of 97dꢀ at a 5±±kHz sampling rate with  
a 2kHz input.  
through Ith harmonics.  
POWER CONSIDERATIONS  
The LTC2377-16 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2377-16 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
0
SNR = 97.2dB  
–20  
–40  
THD = –123dB  
SINAD = 97.2dB  
SFDR = 126dB  
Power Supply Sequencing  
–60  
The LTC2377-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2377-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2377-16 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. Io conversions should be initiated  
until 2±µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
–80  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
237716 F11  
Figure 11ꢀ 32k Point FFT with fIN = 2kHz of the TC2377-16  
time will produce invalid results.  
237716fa  
14  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
TI(ING AND CONTROꢁ  
DIGITAꢁ INTERFACE  
The LTC2377-16 has a serial digital interface. The flexible  
CNV Timing  
OV supply allows the LTC2377-16 to communicate with  
DD  
The LTC2377-16 conversion is controlled by CIV. A ris-  
ing edge on CIV will start a conversion and power up the  
LTC2377-16.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CIV should be driven by a clean low jitter  
signal. Converter status is indicated by the ꢀUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CIV should occur within 4±ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2377-16 powers down and begins acquiring the  
input signal.  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
4±MHz, a 5±±ksps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D15 remains valid till the first rising edge of SCK.  
The serial interface on the LTC2377-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2377-16. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisy-chained.  
Acquisition  
AproprietarysamplingarchitectureallowstheLTC2377-16  
to begin acquiring the input signal for the next conver-  
sion 527ns after the start of the current conversion. This  
extends the acquisition time to 1.46µs, easing settling  
requirementsandallowingtheuseofextremelylowpower  
ADC drivers. (Refer to the Timing Diagram.)  
3.0  
2.5  
I
VDD  
2.0  
1.5  
1.0  
0.5  
0
Internal Conversion Clock  
The LTC2377-16 has an internal clock that is trimmed to  
achieve a maximum conversion time of 1.5µs.  
I
REF  
Auto Power-Down  
I
OVDD  
0
100  
200  
300  
400  
500  
The LTC2377-16 automatically powers down after a con-  
version has been completed and powers up once a new  
conversion is initiated on the rising edge of CIV. During  
power down, data from the last conversion can be clocked  
out. To minimize power dissipation during power down,  
disableSDOandturnoffSCK.Theautopower-downfeature  
will reduce the power dissipation of the LTC2377-16 as  
the sampling frequency is reduced. Since power is con-  
sumedonlyduringaconversion, theLTC2377-16remains  
powered-downforalargerfractionoftheconversioncycle  
SAMPLING RATE (kHz)  
237716 F12  
Figure 12ꢀ Power Supply Current of the TC2377-16  
Versus Sampling Rate  
(t ) at lower sample rates, thereby reducing the average  
CYC  
power dissipation which scales with the sampling rate as  
shown in Figure 12.  
237716fa  
15  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
Normal (ode, Single Device  
Figure 13 shows a single LTC2377-16 operated in normal  
mode with CHAꢁI and RDL/SDꢁ tied to ground. With RDL/  
SDꢁ grounded, SDO is enabled and the MSꢀ(D15) of the  
new conversion data is available at the falling edge of  
ꢀUSY. ThisisthesimplestwaytooperatetheLTC2377-16.  
When CHAꢁI = ±, the LTC2377-16 operates in normal  
mode. ꢁn normal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2377-16  
SCK  
RDL/SDI  
SDO  
DATA IN  
CLK  
237716 F13a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
t
HOLD  
ACQ  
t
= t  
– t  
ACQ CYC HOLD  
t
CONV  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
14  
15  
16  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D15  
D14  
D13  
D1  
D0  
237716 F13  
Figure 13ꢀ Using a Single TC2377-16 in Normal (ode  
237716fa  
16  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
Normal (ode, (ultiple Devices  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
be used to allow only one LTC2377-16 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure14,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 14 shows multiple LTC2377-16 devices operating  
in normal mode (CHAꢁI = ±) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2377-16  
B
LTC2377-16  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
237716 F14a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = 0  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
t
SCKL  
HSDO  
t
t
DIS  
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
A
D0  
A
D15  
D14  
D13  
D1  
B
D0  
B
A
A
A
B
B
B
237716 F14  
Figure 14ꢀ Normal (ode With (ultiple Devices Sharing CNV, SCK and SDO  
237716fa  
17  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
APPLICATIONS INFORMATION  
Chain (ode, (ultiple Devices  
This is useful for applications where hardware constraints  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 15 shows an example with  
two daisy-chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 16 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
When CHAꢁI = OV , the LTC2377-16 operates in chain  
DD  
mode.nchainmode,SDOisalwaysenabledandRDL/SDꢁ  
serves as the serial data input pin (SDꢁ) where daisy-chain  
data output from another ADC can be input.  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2377-16  
LTC2377-16  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
237716 F16a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D15  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D15  
D14  
D13  
D1  
B
D15  
D14  
D1  
A
D0  
A
SDO  
B
B
B
B
A
A
B
237716 F15  
Figure 15ꢀ Chain (ode Timing Diagram  
237716fa  
18  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2377-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible. ꢁn  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended ꢁayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1783A, the  
evaluation kit for the LTC2377-16.  
Partial Top Silkscreen  
237716fa  
19  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
BOARD LAYOUT  
Partial ꢁayer 1 Component Side  
Partial ꢁayer 2 Ground Plane  
237716fa  
20  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
BOARD LAYOUT  
Partial ꢁayer 3 PWR Plane  
Partial ꢁayer 4 ꢂottom ꢁayer  
237716fa  
21  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
BOARD LAYOUT  
Partial Schematic of Demo ꢂoard  
D G C R E F /  
R E F  
8
7
1 5  
2
1
G N D  
D D  
D D  
V
G N D 1 6  
O V  
G N D  
1 0  
G N D  
6
3
3
2
1
3
2
1
237716fa  
22  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
PACKAGE DESCRIPTION  
Please refer to http://wwwꢀlinearcom/product/TC2377-16#packaging for the most recent package drawingsꢀ  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
0.70 0.05  
3.30 0.05  
ꢀ.70 0.05  
3.60 0.05  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
TYP  
3.30 0.ꢀ0  
3.00 0.ꢀ0  
(2 SIDES)  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
0.35 × 45°  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
237716fa  
23  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
PACKAGE DESCRIPTION  
Please refer to http://wwwꢀlinearcom/product/TC2377-16#packaging for the most recent package drawingsꢀ  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
237716fa  
24  
For more information www.linear.com/LTC2377-16  
LTC2377-16  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NU(ꢂER  
A
±9/16 Updated graphs G±1, G±2 and G±3.  
6
237716fa  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2377-16  
TYPICAL APPLICATION  
T6350 Configured to Accept a 10V Input Signal While Running Off of a Single 5ꢀ5V Supply When  
Digital Gain Compression Is Enabled in the TC2377-16  
5.5V  
V
V
V
LTC6655-5  
IN  
OUT_F  
OUT_S  
5V  
1k  
1k  
47µF  
V
CM  
4.5V  
0.5V  
2.5V  
10µF  
3
+
V
6800pF  
6800pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2377-16  
REF/DGC  
+
20Ω  
IN  
IN  
R
R
INT  
8
+
INT  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237716 TA03  
V
10V  
0V  
= 15k  
3.01k  
IN  
0.5V  
V
CM  
–10V  
RELATED PARTS  
PART NU(ꢂER  
DESCRIPTION  
CO((ENTS  
ADCs  
LTC2379-18  
18-ꢀit, 1.6Msps, Serial, Low Power ADC  
16-ꢀit, 2Msps Serial, Low Power ADC  
2.5V Supply, Differential ꢁnput, 1±1.2dꢀ SIR, ±5V ꢁnput Range,  
DGC, MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC238±-16  
2.5V Supply, Differential ꢁnput, 96.2dꢀ SIR, ±5V ꢁnput Range, DGC,  
MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC2383-16/LTC2382-16/ 16-ꢀit, 1Msps/5±±ksps/25±ksps Serial, Low Power ADC 2.5V Supply, Differential ꢁnput, 92dꢀ SIR, ±2.5V ꢁnput Range, Pin  
LTC2381-16  
Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC2393-16/LTC2392-16/ 16-ꢀit, 1Msps/5±±ksps/25±ksps Parallel/Serial ADC  
LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, ±4.±96V ꢁnput Range, Pin  
Compatible Family in 7mm × 7mm LQFP-48 and QFI-48 Packages  
LTC2362  
12-ꢀit, 5±±ksps Serial ADC  
2.35V to 3.6V, 3.3mW, 6- and 8-Lead TSOT-23 Packages  
5V Supply, 14mW at 5±±ksps, DFI-1± Package  
LTC23±2/LTC23±6  
12-ꢀit, 5±±ksps, 1-/2-Channel, Low Ioise, ADC  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-1± Package  
DACS  
LTC2757  
18-ꢀit, Single Parallel ꢁ  
SoftSpan™ DAC  
±1LSꢀ ꢁIL/DIL, Software-Selectable Ranges, 7mm × 7mm LQFP-  
48 Package  
OUT  
LTC2641  
16-ꢀit/14-ꢀit/12-ꢀit Single Serial V  
DACs  
±1LSꢀ ꢁIL/DIL, MSOP-8 Package, ±V to 5V Output  
OUT  
LTC263±  
12-ꢀit/1±-ꢀit/8-ꢀit Single V  
DACs  
SC7± 6-Pin Package, ꢁnternal Reference, ±1LSꢀ ꢁIL (12 ꢀits)  
OUT  
REFERENCES  
LTC6655  
Precision Low Drift Low Ioise ꢀuffered Reference  
Precision Low Drift Low Ioise ꢀuffered Reference  
5V/2.5V, 5ppm/°C, ±.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6652  
A(PꢁIFIERS  
LT635±  
Low Ioise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail ꢁnput and Outputs, 24±ns, ±.±1% Settling Time  
LT62±±/LT62±±-5/  
LT62±±-1±  
165MHz/8±±MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 1±  
Low Ioise Voltage: ±.95nV/√Hz (1±±kHz), Low Distortion: –8±dꢀ at  
1MHz, TSOT23-6 Package  
LT62±2/LT62±3  
Single/Dual 1±±MHz Rail-to-Rail ꢁnput/Output Ioise Low 1.9nV√Hz, 3mA Maximum, 1±±MHz Gain ꢀandwidth  
Power Amplifiers  
LTC1992  
Low Power, Fully Differential ꢁnput/Output Amplifier/  
Driver Family  
1mA Supply Current  
237716fa  
LT 0916 REV A • PRINTED IN USA  
LinearTechnology Corporation  
163± McCarthy ꢀlvd., Milpitas, CA 95±35-7417  
26  
(4±8)432-19±± FAX: (4±8) 434-±5±7 www.linear.com/LTC2377-16  
LINEAR TECHNOLOGY CORPORATION 2011  

相关型号:

LTC2377CMS-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377IMS-16#PBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377IMS-16#TRPBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377IMS-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2378-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2378-16

16-Bit, 1Msps, Low Power SAR ADC with 97dB SNR
LINEAR_DIMENS

LTC2378-18

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2378-20

20-Bit, 1Msps, Low Power SAR ADC with 0.5ppm INL
Linear

LTC2378CDE-16

16-Bit, 1Msps, Low Power SAR ADC with 97dB SNR
LINEAR_DIMENS

LTC2378CDE-16#PBF

LTC2378-16 - 16-Bit, 1Msps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2378CDE-18#PBF

LTC2378-18 - 18-Bit, 1Msps, Low Power SAR ADC with 102dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2378CDE-20#PBF

LTC2378-20 - 20-Bit, 1Msps, Low Power SAR ADC with 0.5ppm INL; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear