LTC2360HTS8#PBF [Linear]

LTC2360 - 100ksps, 12-Bit Serial ADCs in TSOT-23; Package: SOT; Pins: 8; Temperature Range: -40°C to 125°C;
LTC2360HTS8#PBF
型号: LTC2360HTS8#PBF
厂家: Linear    Linear
描述:

LTC2360 - 100ksps, 12-Bit Serial ADCs in TSOT-23; Package: SOT; Pins: 8; Temperature Range: -40°C to 125°C

转换器 模数转换器
文件: 总20页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2360/LTC2361/LTC2362  
100ksps/250ksps/500ksps,  
12-Bit Serial ADCs in TSOT-23  
FEATURES  
DESCRIPTION  
The LTC®2360/LTC2361/LTC2362 are 100ksps/250ksps/  
500ksps, 12-bit, sampling A/D converters that draw only  
0.5mA, 0.75mA and 1.1mA, respectively, from a single  
3V supply. The supply current drops at lower sampling  
rates because these devices automatically power down  
after conversions. The full-scale input of the LTC2360/  
n
12-Bit Resolution  
n
Low Noise: 73dB SNR  
n
Low Power Dissipation: 1.5mW @ 100ksps  
n
100ksps/250ksps/500ksps Sampling Rates  
n
Single Supply 2.35V to 3.6V Operation  
n
No Data Latency  
n
Sleep Mode with 0.1μA Typical Supply Current  
LTC2361/LTC2362 is 0V to V or V . These ADCs are  
available in tiny 6- and 8-lead TSOT-23 packages.  
DD  
REF  
n
Dedicated External Reference (TSOT23-8)  
n
1V to 3.6V Digital Output Supply (TSOT23-8)  
The serial interface, tiny TSOT-23 package and extremely  
high sample rate-to-power ratio make the LTC2360/  
LTC2361/LTC2362 ideal for compact, low power, high  
speed systems.  
n
SPI/MICROWIRE™ Compatible Serial I/O  
n
Guaranteed Operation from –40°C to 125°C  
n
Tiny 6- and 8-Lead TSOT-23 Packages  
APPLICATIONS  
The high impedance single-ended analog input and the  
ability to operate with reduced spans (down to 1.4V full  
scale)allowdirectconnectiontosensorsandtransducersin  
many applications, eliminating the need for gain stages.  
n
Communication Systems  
n
Data Acquisition Systems  
n
Handheld Portable Devices  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Uninterrupted Power Supplies  
n
Battery-Operated Systems  
n
Automotive  
TYPICAL APPLICATION  
12-Bit TSOT23-6/-8 ADC Family  
DATA OUTPUT RATE  
3Msps  
1Msps  
500ksps  
250ksps  
100ksps  
Part Number  
LTC2366 LTC2365 LTC2362 LTC2361 LTC2360  
Single 3V Supply, 500ksps, 12-Bit Sampling ADC  
Supply Current vs Sample Rate  
1200  
1000  
800  
V
A
= 3.6V  
DD  
T
= 25°C  
3V  
2.2μF  
LTC2362  
LTC2361  
V
V
CONV  
SCK  
DD  
600  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTORS  
LTC2362  
REF  
400  
GND SDO  
OV  
LTC2360  
DIGITAL OUTPUT SUPPLY  
1V TO 3.6V  
ANALOG INPUT  
0V TO 3V  
A
200  
0
IN  
DD  
2.2μF  
1
10  
100  
1000  
236012 TA01a  
SAMPLE RATE (ksps)  
236012 TA01b  
236012f  
1
LTC2360/LTC2361/LTC2362  
(Notes 1, 2)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V , OV )........................................4V  
REF  
Operating Temperature Range  
DD  
DD  
V
and Analog Input Voltage  
LTC2360C/LTC2361C/LTC2362C .............. 0°C to 70°C  
LTC2360I/LTC2361I/LTC2362I.............. –40°C to 85°C  
LTC2360H/LTC2361H/LTC2362H (Note 12).. –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
(Note 3).........................................–0.3V to (V + 0.3V)  
DD  
Digital Input Voltage......................–0.3V to (V + 0.3V)  
DD  
Digital Output Voltage ...................–0.3V to (V + 0.3V)  
DD  
Power Dissipation...............................................100mW  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
1
2
8 CONV  
7 SCK  
6 SDO  
DD  
V
1
6 CONV  
5 SDO  
4 SCK  
DD  
V
REF  
GND 2  
GND 3  
A
A
3
IN  
4
5 OV  
DD  
IN  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T = 150°C, θ = 250°C/W  
JMAX  
T
= 150°C, θ = 250°C/W  
JMAX  
JA  
JA  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC2362CTS8#TRMPBF  
LTC2362ITS8#TRMPBF  
LTC2362HTS8#TRMPBF  
LTC2362CS6#TRMPBF  
LTC2362IS6#TRMPBF  
LTC2362HS6#TRMPBF  
LTC2361CTS8#TRMPBF  
LTC2361ITS8#TRMPBF  
LTC2361HTS8#TRMPBF  
LTC2361CS6#TRMPBF  
LTC2361IS6#TRMPBF  
LTC2361HS6#TRMPBF  
LTC2360CTS8#TRMPBF  
LTC2360ITS8#TRMPBF  
LTC2360HTS8#TRMPBF  
LTC2360CS6#TRMPBF  
LTC2360IS6#TRMPBF  
LTC2360HS6#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LTDBV  
PACKAGE DESCRIPTION  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
8-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
6-Lead Plastic TSOT23  
TEMPERATURE RANGE  
LTC2362CTS8#TRPBF  
LTC2362ITS8#TRPBF  
0°C to 70°C  
LTDBV  
-40°C to 85°C  
-40°C to 125°C  
0°C to 70°C  
LTC2362HTS8#TRPBF  
LTC2362CS6#TRPBF  
LTC2362IS6#TRPBF  
LTC2362HS6#TRPBF  
LTC2361CTS8#TRPBF  
LTC2361ITS8#TRPBF  
LTC2361HTS8#TRPBF  
LTC2361CS6#TRPBF  
LTC2361IS6#TRPBF  
LTC2361HS6#TRPBF  
LTC2360CTS8#TRPBF  
LTC2360ITS8#TRPBF  
LTC2360HTS8#TRPBF  
LTC2360CS6#TRPBF  
LTC2360IS6#TRPBF  
LTC2360HS6#TRPBF  
LTDBV  
LTDGP  
LTDGP  
LTDGP  
LTDGM  
LTDGM  
LTDGM  
LTDGN  
LTDGN  
LTDGN  
LTDGJ  
-40°C to 85°C  
-40°C to 125°C  
0°C to 70°C  
-40°C to 85°C  
-40°C to 125°C  
0°C to 70°C  
-40°C to 85°C  
-40°C to 125°C  
0°C to 70°C  
LTDGJ  
-40°C to 85°C  
-40°C to 125°C  
0°C to 70°C  
LTDGJ  
LTDGK  
LTDGK  
LTDGK  
-40°C to 85°C  
-40°C to 125°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
236012f  
2
LTC2360/LTC2361/LTC2362  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Transition Noise  
12  
(Notes 5, 6)  
(Note 6)  
(Note 7)  
(Note 6)  
(Note 6)  
(Note 6)  
0.25  
0.25  
0.25  
1
1
1
LSB  
LSB  
LSB  
RMS  
l
l
l
Offset Error  
3.5  
2
LSB  
Gain Error  
0.1  
LSB  
LSB  
Total Unadjusted Error  
1.1  
3.5  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
IN  
Analog Input Voltage  
S6 Package  
TS8 Package  
–0.05  
–0.05  
V
REF  
+ 0.05  
+ 0.05  
V
DD  
V
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
CONV = High  
1
μA  
IN  
C
Between Conversions  
During Conversions  
20  
4
pF  
pF  
IN  
l
l
V
Reference Input Voltage  
TS8 Package  
TS8 Package  
TS8 Package  
1.4  
V
+ 0.05  
1
V
μA  
pF  
ns  
ns  
REF  
REF  
DD  
I
Reference Input Leakage Current  
Reference Input Capacitance  
C
20  
1
REF  
t
t
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
AP  
JITTER  
0.3  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINAD  
Signal-to-(Noise + Distortion) Ratio  
f
IN  
f
IN  
= 49kHz for LTC2360/LTC2361,  
= 100kHz for LTC2362  
72  
dB  
SNR  
Signal-to-Noise Ratio  
f
f
= 49kHz for LTC2360/LTC2361,  
= 100kHz for LTC2362  
73  
–85  
86  
dB  
dB  
dB  
dB  
IN  
IN  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
f
IN  
f
IN  
= 49kHz for LTC2360/LTC2361,  
= 100kHz for LTC2362  
SFDR  
IMD  
f
IN  
f
IN  
= 49kHz for LTC2360/LTC2361,  
= 100kHz for LTC2362  
f
IN1  
f
IN1  
= 97kHz, f = 100kHz for LTC2362  
–75  
IN2  
= 47kHz, f = 49kHz for LTC2360/LTC2361  
IN2  
at 3dB  
at 0.1dB  
10  
2
MHz  
MHz  
Full-Linear Bandwidth  
SINAD ≥ 68dB  
1
MHz  
236012f  
3
LTC2360/LTC2361/LTC2362  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
2.7V < V ≤ 3.6V  
MIN  
TYP  
MAX  
UNITS  
l
l
V
High Level Input Voltage  
2
1.7  
V
V
IH  
DD  
2.35V ≤ V ≤ 2.7V  
DD  
l
l
V
IL  
Low Level Input Voltage  
2.7V < V ≤ 3.6V  
0.8  
0.7  
V
V
DD  
2.35V ≤ V ≤ 2.7V  
DD  
l
l
I
I
High Level Input Current  
Low Level Input Current  
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage  
V
= V  
DD  
2.5  
μA  
μA  
pF  
V
IH  
IN  
IN  
V
= 0V  
–2.5  
IL  
C
V
V
2
IN  
l
l
l
V
V
= 2.35V to 3.6V, I  
= 2.35V to 3.6V, I  
= 200μA  
V
DD  
– 0.2  
OH  
OL  
DD  
SOURCE  
= 200μA  
0.2  
3
V
DD  
SINK  
I
OZ  
CONV = V  
CONV = V  
μA  
pF  
mA  
mA  
DD  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
4
OZ  
I
I
V
= 0V  
–10  
10  
SOURCE  
SINK  
OUT  
OUT  
V
= V  
DD  
POWER REQUIREMENT The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2.35  
1.0V  
TYP  
MAX  
3.6  
UNITS  
l
l
V
DD  
Supply Voltage  
3.0  
V
V
OV  
Digital Output Supply Voltage  
3.6  
DD  
I
DD  
Supply Current  
l
l
l
l
l
l
Operational Mode, LTC2362  
Operational Mode, LTC2361  
Operational Mode, LTC2360  
Sleep Mode  
f
f
f
= 500ksps  
= 250ksps  
= 100ksps  
1.1  
0.75  
0.5  
0.1  
0.1  
0.1  
2
1.5  
1
mA  
mA  
mA  
μA  
SMPL  
SMPL  
SMPL  
0°C to 70°C  
2
Sleep Mode  
Sleep Mode  
–40°C to 85°C  
–40°C to 125°C  
2
5
μA  
μA  
P
Power Dissipation  
Operational Mode, LTC2362  
Operational Mode, LTC2361  
Operational Mode, LTC2360  
Sleep Mode  
D
l
l
l
l
l
l
f
f
f
= 500ksps  
= 250ksps  
= 100ksps  
3.3  
2.25  
1.5  
0.3  
0.3  
0.3  
7.2  
5.4  
3.6  
7.2  
7.2  
18  
mW  
mW  
mW  
μW  
SMPL  
SMPL  
SMPL  
0°C to 70°C  
Sleep Mode  
–40°C to 85°C  
–40°C to 125°C  
μW  
Sleep Mode  
μW  
236012f  
4
LTC2360/LTC2361/LTC2362  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
LTC2360  
LTC2361  
LTC2362  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 8, 9)  
(Notes 8, 9)  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
l
l
l
l
l
l
l
l
l
l
f
f
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Shift Clock Frequency  
Shift Clock Period  
100  
100  
250  
40  
500  
20  
kHz  
MHz  
ns  
SMPL(MAX)  
10  
10  
25  
4
50  
2
SCK  
SCK  
Minimum Throughput Time, t  
Acquisition Time  
+ t  
CONV  
μs  
THROUGHPUT  
ACQ  
2
8
1
3
0.5  
1.5  
1.5  
16  
μs  
ACQ  
Conversion Time  
μs  
CONV  
Minimum Positive CONV Pulse Width  
SCKSetup Time After CONV↓  
SDO Enabled Time After CONV↓  
(Note 8)  
8
3
μs  
1
2
3
4
5
6
7
8
(Note 8)  
16  
16  
ns  
(Notes 8, 9)  
16  
8
16  
8
16  
8
ns  
SDO Data Valid Access Time After SCK(Notes 8, 9, 10)  
ns  
SCK Low Time  
(Note 11)  
40%  
40%  
4
40%  
40%  
4
40%  
40%  
4
t
t
SCK  
SCK High Time  
(Note 11)  
SCK  
SDO Data Valid Hold Time After SCK↓  
(Notes 8, 9, 10)  
ns  
SDO Into Hi-Z State Time After CONV(Notes 8, 9)  
6
6
6
ns  
Note 6: Linearity, offset and gain specifications apply for a single-ended  
input with respect to GND.  
Note 7: Typical RMS noise at code transitions.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
A
IN  
Note 8: Guaranteed by characterization. All input signals are specified with  
Note 2: All voltage values are with respect to GND.  
t = t = 2ns (10% to 90% of V ) and timed from a voltage level of 1.6V.  
r
f
DD  
Note 3: When pins A and V are taken below GND or above V ,  
IN  
REF  
DD  
Note 9: All timing specifications given are with a 10pF capacitance load.  
With a capacitance load greater than this value, a digital buffer or latch  
must be used.  
they will be clamped by internal diodes. These products can handle input  
currents greater than 100mA below GND or above V without latch-up.  
DD  
Note 4: V = OV = V = 2.35V to 3.6V, f  
= f  
and  
SMPL(MAX)  
DD  
DD  
REF  
SMPL  
Note 10: The time required for the output to cross the V or V voltage.  
Note 11: Guaranteed by design, not subject to test.  
Note 12: High temperatures degrade operating lifetimes. Operating lifetime  
is derated at temperatures greater than 105°C.  
IH  
IL  
f
= f  
unless otherwise specified.  
SCK  
SCK(MAX)  
Note 5: Integral linearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
236012f  
5
LTC2360/LTC2361/LTC2362  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = OVDD = VREF (LTC2360, Note 4)  
Differential Nonlinearity  
vs Output Code  
Integral and Differential Nonlinearity  
vs Reference Voltage (TS8 Package)  
Integral Nonlinearity  
vs Output Code  
1
0.8  
1
0.8  
1
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
V
= 3.6V  
DD  
0.6  
0.6  
0.6  
MAX DNL  
MAX INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
MIN INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
MIN DNL  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
OUTPUT CODE  
OUTPUT CODE  
REFERENCE VOLTAGE (V)  
236012 G01  
236012 G02  
236012 G03  
Reference Current vs Sample  
Rate (TS8 Package)  
Histogram for 16384 Conversions  
Supply Current vs Sample Rate  
500  
400  
300  
200  
100  
0
10000  
8000  
6000  
4000  
2000  
0
20.0  
16.0  
12.0  
8.0  
V
= 3V  
V
= 3.6V  
V
DD  
= 3.6V  
DD  
DD  
4.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100  
2045 2046 2047 2048 2049 2050  
CODE  
0
10 20 30 40 50 60 70 80 90 100  
SAMPLING FREQUENCY (ksps)  
SAMPLE RATE (ksps)  
236012 G05  
236012 G04  
236012 G06  
THD vs Input Frequency  
48kHz Sine Wave 8192 FFT Plot  
SINAD vs Input Frequency  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–92  
0
–20  
74  
73  
72  
71  
70  
69  
V
= 3.6V  
V
f
= 3V  
SMPL  
DD  
DD  
= 100ksps  
V
= 2.35V  
–40  
V
= 3.0V  
DD  
DD  
V
= 2.35V  
DD  
–60  
V
= 3.6V  
–80  
DD  
–100  
–120  
–140  
V
= 3.0V  
DD  
1
10  
100  
0
10  
20  
30  
40  
50  
1
10  
INPUT FREQUENCY (kHz)  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
236012 G08  
2306012 G09  
236012 G07  
236012f  
6
LTC2360/LTC2361/LTC2362  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = OVDD = VREF (LTC2361, Note 4)  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
Integral and Differential Nonlinearity  
vs Reference Voltage (TS8 Package)  
1
0.8  
1
0.8  
1
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
V
= 3.6V  
DD  
0.6  
0.6  
0.6  
MAX DNL  
MAX INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
MIN INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
MIN DNL  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
REFERENCE VOLTAGE (V)  
OUTPUT CODE  
OUTPUT CODE  
236012 G12  
236012 G10  
236012 G11  
Reference Current vs Sample  
Rate (TS8 Package)  
Histogram for 16384 Conversions  
Supply Current vs Sample Rate  
800  
600  
400  
200  
0
10000  
8000  
6000  
4000  
2000  
0
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
= 3V  
DD  
V
DD  
= 3.6V  
V
DD  
= 3.6V  
0
50  
100  
150  
200  
250  
2045 2046 2047 2048 2049 2050  
CODE  
0
50  
100  
150  
200  
250  
SAMPLE RATE (ksps)  
SAMPLE RATE (ksps)  
236012 G14  
236012 G13  
236012 G15  
THD vs Input Frequency  
124kHz Sine Wave 8192 FFT Plot  
SINAD vs Input Frequency  
74  
73  
72  
71  
70  
69  
0
–20  
–71  
–73  
–75  
–77  
–79  
–81  
–83  
–85  
–87  
–89  
–91  
V
SMPL  
= 3V  
DD  
V
= 3.6V  
DD  
f
= 250ksps  
–40  
V
= 2.35V  
DD  
V
= 3.0V  
DD  
–60  
V
= 2.35V  
DD  
–80  
–100  
–120  
–140  
V
= 3.6V  
DD  
V
= 3.0V  
DD  
1
10  
100  
1000  
0
25  
50  
75  
100  
125  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
2306012 G16  
2306012 G18  
236012 G17  
236012f  
7
LTC2360/LTC2361/LTC2362  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = OVDD = VREF (LTC2362, Note 4)  
Integral Nonlinearity  
vs Output Code  
Integral and Differential Nonlinearity  
vs Reference Voltage (TS8 Package)  
Differential Nonlinearity  
vs Output Code  
1
0.8  
1
0.8  
1
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
V
= 3.6V  
DD  
0.6  
0.6  
0.6  
MAX DNL  
MAX INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
MIN INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
MIN DNL  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
OUTPUT CODE  
OUTPUT CODE  
REFERENCE VOLTAGE (V)  
236012 G20  
236012 G19  
236012 G21  
Reference Current vs Sample  
Rate (TS8 Package)  
Supply Current vs Sample Rate  
Histogram for 16384 Conversions  
1200  
1000  
800  
600  
400  
200  
0
10000  
8000  
6000  
4000  
2000  
0
80.0  
60.0  
40.0  
20.0  
0.0  
V
= 3V  
DD  
V
DD  
= 3.6V  
V
DD  
= 3.6V  
0
100  
200  
300  
400  
500  
2045 2046 2047 2048 2049 2050  
CODE  
0
50 100 150 200 250 300 350 400 450 500  
SAMPLE RATE (ksps)  
SAMPLE RATE (ksps)  
236012 G23  
236012 G22  
236012 G24  
THD vs Input Frequency  
248kHz Sine Wave 8192 FFT Plot  
SINAD vs Input Frequency  
–67  
–71  
–75  
–79  
–83  
–87  
–91  
0
–20  
74  
73  
72  
71  
70  
69  
V
SMPL  
= 3V  
DD  
V
V
= 3.6V  
= 3.0V  
DD  
f
= 500ksps  
DD  
–40  
V
= 2.35V  
DD  
–60  
V
= 2.35V  
= 3.0V  
DD  
–80  
V
DD  
–100  
–120  
–140  
V
= 3.6V  
DD  
1
10  
100  
1000  
0
50  
100  
150  
200  
250  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
2306012 G26  
2306012 G27  
2306012 G25  
236012f  
8
LTC2360/LTC2361/LTC2362  
PIN FUNCTIONS  
S6 Package  
TS8 Package  
V
(Pin 1): Positive Supply. The V range is 2.35V to  
V
(Pin 1): Positive Supply. The V range is 2.35V to  
DD  
DD  
DD DD  
3.6V. V also defines the input span of the ADC, 0V to  
DD  
3.6V. Bypass to GND and to a solid ground plane with a  
2.2ꢀF ceramic capacitor (or 2.2ꢀF tantalum in parallel  
with 0.1ꢀF ceramic).  
DD  
V . Bypass to GND and to a solid ground plane with a  
2.2ꢀF ceramic capacitor (or 2.2ꢀF tantalum in parallel  
with 0.1ꢀF ceramic).  
V
REF  
(Pin 2): Reference Input. V  
defines the input  
REF  
REF  
GND (Pin 2): Ground. The GND pin must be tied directly  
to a solid ground plane.  
span of the ADC, 0V to V . The V  
range is 1.4V to  
REF  
V . Bypass to GND and to a solid ground plane with a  
DD  
2.2ꢀF ceramic capacitor (or 2.2ꢀF tantalum in parallel  
A (Pin 3): Analog Input. A is a single-ended input with  
respect to GND with a range from 0V to V .  
IN  
IN  
with 0.1ꢀF ceramic).  
DD  
GND (Pin 3): Ground. The GND pin must be tied directly  
to a solid ground plane.  
SCK (Pin 4): Shift Clock Input. The SCK serial clock syn-  
chronizes the serial data transfer. SDO data transitions on  
the falling edge of SCK.  
A (Pin 4): Analog Input. A is a single-ended input with  
IN  
IN  
respect to GND with a range from 0V to V  
.
REF  
SDO (Pin 5): Three-State Serial Data Output. The A/D  
conversion result is shifted out on SDO as a serial data  
stream with MSB first. The data stream consists of 12 bits  
of conversion data followed by trailing zeros.  
OV (Pin 5): Output Driver Supply for SDO. The OV  
DD  
DD  
range is 1V to 3.6V. Bypass to GND and to a solid ground  
plane with a 2.2ꢀF ceramic capacitor (or 2.2ꢀF tantalum in  
parallelwith0.1ꢀFceramic).OV canbedrivenseparately  
DD  
CONV (Pin 6): Convert Input. This active high signal starts  
a conversion on the rising edge. The device automatically  
powers down after conversion. A logic low on this input  
enables the SDO pin, allowing the data to be shifted out.  
from V and OV can be higher than V .  
DD  
DD  
DD  
SDO (Pin 6): Three-State Serial Data Output. The A/D  
conversion result is shifted out on SDO as a serial data  
stream with MSB first. The data stream consists of 12 bits  
of conversion data followed by trailing zeros.  
SCK (Pin 7): Shift Clock Input. The SCK serial clock syn-  
chronizes the serial data transfer. SDO data transitions on  
the falling edge of SCK.  
CONV (Pin 8): Convert Input. This active high signal starts  
a conversion on the rising edge. The device automatically  
powers down after conversion. A logic low on this input  
enables the SDO pin, allowing the data to be shifted out.  
236012f  
9
LTC2360/LTC2361/LTC2362  
BLOCK DIAGRAM  
2.2μF  
2.2μF  
+
+
1
5
V
OV  
DD  
DD  
ANALOG  
INPUT  
A
IN  
4
THREE-STATE  
SERIAL  
OUTPUT  
PORT  
RANGE  
SDO  
0V TO V  
REF  
S AND H  
12-BIT ADC  
6
V
REF  
2
3
SCK  
7
8
2.2μF  
TIMING  
LOGIC  
GND  
CONV  
TS8 PACKAGE  
236012 BD  
TIMING DIAGRAMS  
t
8
t
7
CONV  
SDO  
1.6V  
SCK  
1.6V  
Hi-Z  
236012 F01  
V
IH  
SDO  
V
IL  
236012 F02  
Figure 1. SDO Into Hi-Z State After CONV Rising Edge  
Figure 2. SDO Data Valid Hold Time After SCK Falling Edge  
t
4
SCK  
SDO  
1.6V  
V
V
IH  
IL  
236012 F03  
Figure 3. SDO Data Valid Acess Time After SCK Falling Edge  
236012f  
10  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
DC PERFORMANCE  
DYNAMIC PERFORMANCE  
The noise of an ADC can be evaluated in two ways: sig-  
nal-to-noise ratio (SNR) in the frequency domain and  
histogram in the time domain. The LTC2360/LTC2361/  
LTC2362 excel in both. Figure 5 demonstrates that the  
LTC2360/LTC2361/LTC2362 have an SNR of over 73dB.  
The noise in the time domain histogram is the transition  
noise associated with a 12-bit resolution ADC which can  
be measured with a fixed DC signal applied to the input of  
the ADC. The resulting output codes are collected over a  
large number of conversions. The shape of the distribu-  
tion of codes will give an indication of the magnitude of  
the transition noise. In Figure 4, the distribution of output  
codes is shown for a DC input that has been digitized  
16384 times. The distribution is Gaussian and the RMS  
code transition is about 0.32LSB. This corresponds to a  
noise level of 73dB relative to a full scale of 3V.  
TheLTC2360/LTC2361/LTC2362haveexcellenthighspeed  
sampling capability. Fast fourier transform (FFT) test  
techniquesareusedtotesttheADCsfrequencyresponse,  
distortion and noise at the rated throughput. By applying  
a low distortion sine wave and analyzing the digital output  
using an FFT algorithm, the ADCs’ spectral content can  
be examined for frequencies outside the fundamental.  
Figures 5 and 6 show typical LTC2361 and LTC2362 FFT  
plots respectively.  
10000  
V
= 3V  
DD  
8000  
6000  
4000  
2000  
0
2045 2046 2047 2048 2049 2050  
CODE  
236012 F04  
Figure 4. Histogram for 16384 Conversions  
0
–20  
0
V
= 3V  
V
= 3V  
DD  
DD  
f
f
= 250ksps  
f
f
= 500ksps  
SMPL  
IN  
SINAD = 73dB  
THD = –84dB  
SMPL  
–20  
–40  
= 124kHz  
= 248kHz  
IN  
SINAD = 73dB  
THD = –81dB  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
236012 F05  
236012 F06  
Figure 5. LTC2361 FFT Plot  
Figure 6. LTC2362 FFT Plot  
236012f  
11  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
Signal-to-Noise plus Distortion Ratio  
rate of 500kHz, the LTC2362 maintains ENOB above 11  
bits up to the Nyquist input frequency of 250kHz (refer  
to Figure 7).  
The signal-to-noise plus distortion ratio (SINAD) is the  
ratio between the RMS amplitude of the fundamental  
input frequency to the RMS amplitude of all other fre-  
quency components at the A/D output. The output is band  
limited to frequencies from above DC and below half the  
sampling frequency. Figure 6 shows a typical FFT with a  
500kHz sampling rate and a 248kHz input. The dynamic  
performance is excellent for input frequencies up to and  
beyond the Nyquist frequency of 250kHz.  
Total Harmonic Distortion  
Thetotalharmonicdistortion(THD)istheratiooftheRMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
2
2
2
2
V2 + V3 + V4 +...Vn  
Effective Number of Bits  
THD= 20log  
V1  
The effective number of bits (ENOB) is a measurement of  
the resolution of an ADC and is directly related to SINAD  
by the equation:  
where V is the RMS amplitude of the fundamental  
frequency and V through V are the amplitudes of the  
second through nth harmonics. THD vs. Input Frequency  
is shown in Figure 8. The LTC2362 has excellent distortion  
performance up to the Nyquist frequency and beyond.  
1
2
n
SINAD1.76  
ENOB =  
6.02  
where ENOB is the effective number of bits of resolution  
and SINAD is expressed in dB. At the maximum sampling  
74  
73  
72  
71  
70  
69  
68  
67  
12  
–67  
–71  
–75  
V
= 3.6V  
= 3.0V  
DD  
V
DD  
11.67  
11.34  
11  
V
= 2.35V  
DD  
V
= 2.35V  
= 3.0V  
DD  
–79  
–83  
–87  
–91  
V
DD  
V
= 3.6V  
DD  
1
10  
100  
1000  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
2306012 F07  
2306012 F08  
Figure 7. LTC2362 ENOB and SINAD vs Input Frequency  
Figure 8. LTC2362 THD vs Input Frequency  
236012f  
12  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
Intermodulation Distortion  
Peak Harmonic or Spurious Noise  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermoduation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
Thepeakharmonicorspuriousnoiseisthelargestspectral  
component excluding the input signal and DC. This value  
is expressed in decibels relative to the RMS value of a  
full-scale input signal.  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is that input frequency at which  
the amplitude of reconstructed fundamental is reduced by  
3dB for full-scale input signal.  
If two pure sine waves of frequencies f and f are applied  
a
b
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mf nf , where m and n = 0, 1, 2, 3, etc.  
a
b
Thefull-linearbandwidthistheinputfrequencyatwhichthe  
SINADhasdroppedto68dB(11effectivebits).TheLTC2362  
hasbeendesignedtooptimizeinputbandwidth,allowingthe  
ADC to undersample input signals with frequencies above  
the converter’s Nyquist frequency. The noise floor stays  
very low at high frequencies; SINAD becomes dominated  
by distortion at frequencies far beyond Nyquist.  
For example, the 2nd order IMD terms include (f f ).  
a
b
If the two input sine waves are equal in magnitude, the  
value (in decibels) of the 2nd order IMD products can be  
expressed by the following formula:  
Amplitude at f ± f  
(
)
a
b
IMD f ± f = 20log  
(
)
a
b
Amplitude at fa  
0
V
= 3.6V  
DD  
f
f
f
= 500ksps  
SMPL  
a
b
–20  
–40  
= 99kHz  
= 101kHz  
IMD = –76.5dB  
–60  
–80  
–100  
–120  
0
50  
100  
150  
200  
250  
INPUT FREQUENCY (kHz)  
236012 F09  
Figure 9. LTC2362 Intermodulation Distortion Plot  
236012f  
13  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
OVERVIEW  
Data Transfer  
The LTC2360/LTC2361/LTC2362 use a successive ap-  
proximationalgorithmandinternalsample-and-holdcircuit  
to convert an analog signal to a 12-bit serial output. All  
devices operate from a single 2.35V to 3.6V supply. The  
conversion time of the devices is controlled by an internal  
oscillator, which allows the LTC2360/LTC2361/LTC2362  
to sample at a rate of 100ksps, 250ksps and 500ksps  
respectively.  
A rising CONV edge starts a conversion and disables SDO.  
Aftertheconversion,theADCautomaticallygoesintosleep  
mode, drawing only leakage current.  
CONV going low enables SDO and clocks out the MSB bit,  
B11. SCK then synchronizes the data transfer with each  
bit being transmitted on the falling SCK edge and can be  
captured on the rising SCK edge. After completing the  
data transfer, if further SCK clocks are applied with CONV  
low, SDO will output zeros indefinitely (see Figure 10). For  
example, 16-clocks at SCK will produce the 12-bit data  
and four trailing zeros on SDO.  
TheLTC2360/LTC2361/LTC2362containa12-bit,switched-  
capacitor ADC, a sample-and-hold, a serial interface(see  
Block Diagram) and are available in tiny 6- or 8-lead  
TSOT-23 packages.  
SLEEP MODE  
The S6 package of the LTC2360/LTC2361/LTC2362 uses  
DD  
V
as the reference and has an analog input range of 0V  
The LTC2360/LTC2361/LTC2362 enter sleep mode to save  
poweraftereachconversionifCONVremainshigh.Insleep  
mode, all bias currents are shut down and only leakage  
currents remain (about 0.1μA). The sample-and-hold is  
in hold mode while the ADC is in sleep mode. The ADC  
returns to sample mode after the falling edge of CONV  
during power-up (see Figure 10).  
to V . The ADC samples the analog input with respect to  
DD  
GND and outputs the result through the serial interface.  
TheTS8packageprovidestwoadditionalpins:areference  
pin, V , and an output supply pin, OV . The ADC can  
REF  
DD  
operate with reduced spans down to 1.4V and achieve  
342ꢀV resolution. OV controls the output swing of the  
DD  
digital output pin, SDO, and allows the device to com-  
Exiting Sleep Mode and Power-Up Time  
municate with 1.8V, 2.5V or 3V digital systems.  
By taking CONV low, the ADC powers up and acquires an  
input signal completely after the aquisition time (t ).  
SERIAL INTERFACE  
ACQ  
Aftert , theADCcanperformaconversionasdescribed  
ACQ  
TheLTC2360/LTC2361/LTC2362communicatewithmicro-  
controllers, DSPs and other external circuitry via a 3-wire  
interface. Figure 10 shows the operating sequence of the  
serial interface.  
in the Serial Interface section (see Figure 10).  
BY TAKING CONV LOW, THE DEVICE POWERS UP  
AND ACQUIRES AN INPUT ACCURATELY AFTER t  
ACQ  
CONV  
t
SLEEP MODE  
RECOMMENDED HIGH OR LOW  
CONV  
t
t
2
6
1
2
3
4
9
10  
11  
12  
SCK  
SDO  
t
5
t
t
t
t
8
3
4
7
Hi-Z STATE  
B11  
B10  
B9  
B3  
B2  
B1  
B0*  
236012 F10  
(MSB)  
t
1
t
ACQ  
t
THROUGHPUT  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
Figure 10. LTC2360/LTC2361/LTC2362 Serial Interface Timing Diagram  
236012f  
14  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
current.Toobtainthelowestsupplycurrent,bringtheCONV  
ACHIEVING MICROPOWER PERFORMANCE  
pin to GND when it is low and to V when it is high.  
DD  
With typical operating currents of 0.5mA, 0.75mA and  
1.1mA for the LTC2360/LTC2361/LTC2362 and automati-  
cally entering sleep mode right after a conversion, these  
devices achieve extremely low power consumption over  
a wide range of sample rates (see Figure 11). The sleep  
mode allows the supply current to drop with reduced  
sample rate. Several things must be taken into account  
to achieve such low power consumption.  
AftertheconversionwithCONVstayinghigh,theconverter  
isinsleepmodeanddrawsonlyleakagecurrent.Thestatus  
of the SCK input has no effect on supply current during  
this time. For the best performance, hold SCK either high  
or low while the ADC is converting.  
Minimize the Device Active Time  
Insystemsthathavesignificanttimebetweenconversions,  
the ADC draws a minimal amount of power. Figures 12  
and 13 show two ways to minimize the amount of time  
the ADC draws power. In Figure 12, the ADC draws power  
Minimize Power Consumption in Sleep Mode  
The LTC2360/LTC2361/LTC2362 enter sleep mode after  
each conversion if CONV remains high and draw only  
leakage current (see Figure 10). If the CONV input is not  
runningrail-to-rail, theinputlogicbufferwilldrawcurrent.  
This current may be large compared to the typical supply  
during t  
and t  
and is in sleep mode for the rest of  
ACQ  
CONV  
the time. The conversion results are available at the next  
CONV falling edge. In Figure 13, the ADC draws twice the  
power than that in Figure 12, but the conversion results  
are available during t  
. The user can use the fastest  
DATA  
SCK available in the system to shorten data transfer time,  
as long as t and t are not violated.  
1200  
V
A
= OV = V  
= 3.6V  
REF  
DD  
DD  
t
DATA  
4
7
T
= 25°C  
1000  
800  
600  
400  
SDO Loading  
Capacitiveloadingonthedigitaloutputcanincreasepower  
consumption. A 100pF capacitor on the SDO pin can add  
more than 50μA to the supply current at a 200kHz clock  
frequency. An extra 50μA or so of current goes into charg-  
ing and discharging the load capacitor. The same goes for  
digital lines driven at a high frequency by any logic. The  
C • V • f currents must be evaluated with the troublesome  
ones minimized.  
LTC2361  
LTC2362  
LTC2360  
200  
0
1
10  
100  
1000  
SAMPLE RATE (ksps)  
236012 TA01b  
Figure 11. Supply Current vs Sample Rate  
EXECUTING A CONVERSION AND PUTTING  
THE DEVICE INTO SLEEP MODE  
SAMPLING INPUT AND  
TRANSFERRING DATA  
CONV  
t
t
CONV  
SLEEP MODE  
RECOMMENDED HIGH OR LOW  
ACQ  
SCK  
SDO  
1
2
3
4
9
10  
B2  
11  
12  
Hi-Z STATE  
B11 B10 B9  
B3  
B1 B0  
236012 F12  
t
= t  
+ t  
+ t  
THROUGHPUT ACQ CONV SLEEPMODE  
Figure 12. Minimize the Time When the Device Draws Power, While the Conversion Results are Available After the Device Wakes Up  
236012f  
15  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
EXECUTE CONVERSION  
EXECUTING A DUMMY CONVERSION AND  
PUT THE DEVICE INTO SLEEP MODE  
ACQUIRE  
INPUT  
DATA TRANSFER  
CONV  
SCK  
t
t
t
t
CONV  
SLEEP MODE  
ACQ  
CONV  
DATA  
RECOMMENDED HIGH OR LOW  
RECOMMENDED HIGH OR LOW  
1
2
3
4
9
10  
11  
12  
Hi-Z STATE  
SDO  
B11 B10 B9  
B3  
= t  
B2  
B1 B0  
+ t  
236012 F13  
t
+ 2 • t  
+ t  
CONV DATA SLEEPMODE  
THROUGHPUT ACQ  
Figure 13. Minimize the Time When the Device Draws Power, While the Conversion Results are Available Right After Conversion  
SINGLE-ENDED ANALOG INPUT  
Driving the Analog Input  
used, more time for settling can be provided by increasing  
the time between conversions. The best choice for an op  
amp to drive the LTC2360/LTC2361/LTC2362 will depend  
on the application. Generally, applications fall into two  
categories: AC applications where dynamic specifications  
are most critical and time domain applications where DC  
accuracy and settling time are most critical. The follow-  
ing list is a summary of the op amps that are suitable for  
driving the LTC2360/LTC2361/LTC2362. (More detailed  
informationisavailableontheLinearTechnologywebsiteat  
www.linear.com.)  
The analog input of the LTC2360/LTC2361/LTC2362 is  
easy to drive. The input draws only one small current  
spike while charging the sample-and-hold capacitor with  
the ADC going into track mode. During the conversion,  
the analog input draws only a small leakage current. If  
the source impedance of the driving circuit is low, then  
the input of the LTC2360/LTC2361/LTC2362 can be driven  
directly. As source impedance increases, so will acquisi-  
tion time. For minimum acquisition time with high source  
impedance, a buffer amplifier should be used. The main  
requirement is that the amplifier driving the analog input  
must settle after the small current spike before the next  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
pass Filter.  
LT®1630: Dual 30MHz Rail-to-Rail Voltage FB Amplifier.  
2.7Vto 15Vsupplies. VeryhighAVOL, 500μVoffsetand  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
conversion starts (settling time must be less than t  
ACQ  
for full throughput rate). While choosing an input ampli-  
fier, also keep in mind the amount of noise and harmonic  
distortion the amplifier contributes.  
are –93dB to 40kHz and below 1LSB to 320kHz (A =  
V
1, 2V into 1k, V = 5V), making the part excellent for  
P-P  
S
AC applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
Choosing an Input Amplifier  
LTC6241: Dual 18MHz, Low Noise, Rail-to-Rail, CMOS  
VoltageFBAmplifier.2.8Vto6Vsupplies.VeryhighAVOL  
and125μVoffset.Itissuitableforapplicationswithasingle  
5V supply. Quad version is available as LTC6242.  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (<100Ω) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain  
of 1 and has a unity-gain bandwidth of 10MHz, then the  
output impedance at 10MHz must be less than 100Ω. The  
secondrequirementisthattheclosed-loopbandwidthmust  
be greater than 8MHz to ensure adequate small-signal  
settling for full throughput rate. If slower op amps are  
LT1797: Unity-Gain Stable 10MHz, Rail-to-Rail Voltage  
Feedback Amplifier.  
LT1801: 180MHz GBWP, 75dBc at 500kHz, 2mA/Ampli-  
fier, 8.5nV/√Hz.  
LT6203:100MHzGBWP,80dBcDistortionat1MHz,Unity-  
Gain Stable, R-R In and Out, 3mA/Amplifier, 1.9nV/√Hz.  
236012f  
16  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
Input Filtering and Source Impedance  
Reference Input  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC2360/LTC2361/LTC2362 noise and distortion. The  
small-signal bandwidth of the sample-and-hold circuit is  
10MHz. Any noise or distortion products that are pres-  
ent at the analog inputs will be summed over this entire  
bandwidth. Noisy input circuitry should be filtered prior  
to the analog inputs to minimize noise. A simple 1-pole  
RC filter is sufficient for many applications. For example,  
On the TS8 package of the LTC2360/LTC2361/LTC2362,  
the voltage on the V  
pin defines the full-scale range  
REF  
of the ADC. The reference voltage can range from V  
down to 1.4V.  
DD  
Input Range  
The analog input of the LTC2360/LTC2361/LTC2362 is  
driven single-ended with respect to GND from a single  
supply. The input may swing up to V for the S6 package  
DD  
Figure 14 shows a 220pF capacitor from A to ground  
IN  
and to V for the TS8 package. The 0V to 2.5V range is  
REF  
and a 51Ω source resistor to limit the input bandwidth  
to 10MHz. The 220pF capacitor also acts as a charge  
reservoir for the input sample-and-hold and isolates the  
ADC input from sampling-glitch sensitive circuitry. High  
qualitycapacitorsandresistorsshouldbeusedsincethese  
components can add distortion. NPO and silvermica type  
dielectriccapacitorshaveexcellentlinearity.Carbonsurface  
mount resistors can generate distortion from self heating  
and from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible to  
both problems. When high amplitude unwanted signals  
are close in frequency to the desired signal frequency,  
a multiple pole filter is required. High external source  
resistance, combined with the 20pF of input capacitance,  
will reduce the rated 10MHz bandwidth and increase  
acquisition time beyond 500ns.  
also ideally suited for single-ended input use with V or  
DD  
V
=2.5Vforsinglesupplyapplications. Ifthedifference  
REF  
between the A input and GND exceeds V for the S6  
IN  
REF  
DD  
package or V for the TS8 package, the output code will  
stay fixed at all ones, and if this difference goes below 0V,  
the output code will stay fixed at all zeros.  
Figure 15 shows the ideal input/output characteristics for  
the LTC2360/LTC2361/LTC2362. The code transitions oc-  
cur midway between successive integer LSB values (i.e.,  
0.5LSB, 1.5LSB, 2.5LSB, …, FS – 1.5LSB). The output  
code is straight binary with 1LSB = V /4096 for the S6  
DD  
package and 1LSB = V /4096 for the TS8 package.  
REF  
111...111  
111...110  
LTC2362  
1
2
3
6
5
4
V
CONV  
GND SDO  
SCK  
DD  
2.2μF  
220pF  
A
IN  
51Ω  
000...001  
236012 F14  
000...000  
0
1LSB  
FS – 1LSB  
INPUT VOLTAGE (V)  
Figure 14. RC Input Filter  
236012 F15  
Figure 15. Transfer Characteristics  
236012f  
17  
LTC2360/LTC2361/LTC2362  
APPLICATIONS INFORMATION  
BOARD LAYOUT AND BYPASSING  
connecting the pins and the bypass capacitors must be  
kept short and should be made as wide as possible.  
Wirewrapboardsarenotrecommendedforhighresolution  
and/or high speed A/D converters. To obtain the best per-  
formance from the LTC2360/LTC2361/LTC2362, a printed  
circuit board with ground plane is required. Layout for the  
printed circuit board should ensure that digital and analog  
signallinesareseparatedasmuchaspossible.Inparticular,  
care should be taken not to run any digital track alongside  
an analog signal track or underneath the ADC. The analog  
input should be screened by the ground plane.  
Figure 16 shows the recommended system ground con-  
nections.Allanalogcircuitrygroundsshouldbeterminated  
at the LTC2360/LTC2361/LTC2362. The ground return  
from the LTC2360/LTC2361/LTC2362 to the power supply  
should be low impedance for noise free operation. Digital  
circuitry grounds must be connected to the digital supply  
common.  
InapplicationswheretheADCdataoutputsandcontrolsig-  
nalsareconnectedtoacontinuouslyactivemicroprocessor  
bus, it is possible to get errors in the conversion results.  
These errors are due to feedthrough from the micropro-  
cessor to the successive approximation comparator. The  
problem can be eliminated by forcing the microprocessor  
into a wait state during conversion or by using three-state  
buffers to isolate the ADC data bus.  
High quality tantalum and ceramic bypass capacitors  
should be used at the V pin as shown in the Block  
DD  
Diagram on the first page of this data sheet. For optimum  
performance, a 2.2μF surface mount AVX capacitor with  
a 0.1μF ceramic is recommended for the V and V  
DD  
REF  
pins. Alternatively, 2.2μF ceramic chip capacitors such as  
MurataGRM235Y5V106Z016maybeused.Thecapacitors  
mustbelocatedasclosetothepinsaspossible.Thetraces  
CV  
DD  
+
2.2μF  
PIN 1  
V
CONV  
SDO  
SCK  
DD  
GND  
CA  
IN  
A
IN  
VIAS TO GROUND PLANE  
236012 F16  
Figure 16. Power Supply Ground Practice  
236012f  
18  
LTC2360/LTC2361/LTC2362  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
3. DIMENSIONS ARE INCLUSIVE OF PLATING 6. JEDEC PACKAGE REFERENCE IS MO-193  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
236012f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2360/LTC2361/LTC2362  
TYPICAL APPLICATION  
Recommended AC Test Circuitry for the LTC2362  
3V  
+
+
4.7μF  
2.2μF  
1k  
1%  
V
DD  
50Ω  
5%  
4.7μF  
CONV  
SCK  
1.5V AC INPUT  
TO  
A
IN  
LTC2362  
MCU  
220pF  
SDO  
GND  
1k  
1%  
2200pF  
236012 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1403/LTC1403A  
LTC1407/LTC1407A  
LTC1860  
12-/14-Bit, 2.8Msps Serial Sampling ADC  
3V, Differential Input, 12mW, MSOP Package  
12-/14-Bit, 3Msps Simultaneous Sampling ADC 3V, 2-Channel Differential, 14mW, MSOP Package  
12-Bit, 250ksps Serial ADC  
5V Supply, 1-Channel, 4.3mW, MSOP-8 Package  
3V Supply, 1-Channel, 1.3mW, MSOP-8 Package  
5V Supply, 2-Channel, 4.3mW, MSOP-8 Package  
3V Supply, 2-Channel, 1.3mW, MSOP-8 Package  
LTC1860L  
12-Bit, 150ksps Serial ADC  
LTC1861  
12-Bit, 250ksps Serial ADC  
LTC1861L  
12-Bit, 150ksps Serial ADC  
LTC1863  
12-Bit, 200ksps Serial ADC 8-Channel ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible to LTC1863L,  
LTC1867  
LTC1863L  
12-Bit, 250ksps Serial ADC 8-Channel ADC  
5V Supply, 2.2mW, SSOP-16 Package, Pin Compatible to LTC1863,  
LTC1867L  
LTC1864/LTC1865  
LTC1867  
16-Bit, 250ksps Serial ADC  
5V Supply, 1 and 2 Channel, 4.3mW, MSOP Package  
16-Bit, 200ksps Serial ADC 8-Channel ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible to LTC1863,  
LTC1867L  
LTC1867L  
16-Bit, 175ksps Serial ADC 8-Channel ADC  
3V Supply, 2.2mW, SSOP-16 Package, Pin Compatible to LTC1863L,  
LTC1867  
LTC2355/LTC2356  
LTC2365/LTC2366  
12-/14-Bit, 3.5Msps Serial ADCs  
3.3V Supply, Differential Input, 18mW, MSOP Package  
12-Bit, 1/3 Msps Serial ADCs in TSOT23  
2.35V to 3.6V Supply, Pin and Software Compatible to  
LTC2360/LTC2361/LTC2362  
DACs  
LTC1592  
16-Bit, Serial SoftSpan™ I  
DAC  
1LSB INL/DNL, Software Selectable Spans  
87dB SFDR, 20ns Settling Time  
OUT  
LTC1666/LTC1667/LTC1668 12-/14-/16-Bit, 50Msps DACs  
LTC2630  
12-/10-/8-Bit Single V  
DACs  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
References  
LT1460-2.5  
LT1461-2.5  
LT1790-2.5  
LT6660  
Micropower Series Voltage Reference  
Precision Voltage Reference  
0.1% Initial Accuracy, 10ppm Drift  
0.05% Initial Accuracy, 3ppm Drift  
Micropower Series Reference in SOT-23  
Ultra-Tiny Micropower Series Reference  
0.05% Initial Accuracy, 10ppm Drift  
2mm × 2mm DFN Package, 0.2% Initial Accuracy, 10ppm Drift  
SoftSpan is a trademark of Linear Technology Corporation.  
236012f  
LT 0408 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY