LTC2274CUJ-TRPBF [Linear]

16-Bit, 105Msps Serial Output ADC; 16位,105Msps串行输出ADC
LTC2274CUJ-TRPBF
型号: LTC2274CUJ-TRPBF
厂家: Linear    Linear
描述:

16-Bit, 105Msps Serial Output ADC
16位,105Msps串行输出ADC

文件: 总40页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2274  
16-Bit, 105Msps Serial  
Output ADC  
FEATURES  
DESCRIPTION  
The LTC®2274 is a 105Msps, 16-bit A/D converter with  
a high speed serial interface. It is designed for digitizing  
high frequency, wide dynamic range signals with an input  
bandwidth of 700MHz. The input range of the ADC can  
be optimized using the PGA front end. The output data is  
serialized according to the JEDEC Serial Interface for Data  
Converters specification (JESD204).  
n
High Speed Serial Interface (JESD204)  
n
Sample Rate: 105Msps  
n
77.7dBFS Noise Floor  
100dB SFDR  
SFDR >82dB at 250MHz (1.5V Input Range)  
PGA Front End (2.25V or 1.5V Input Range)  
n
n
P-P  
n
P-P  
P-P  
n
n
n
n
n
n
700MHz Full Power Bandwidth S/H  
Optional Internal Dither  
Single 3.3V Supply  
The LTC2274 is perfect for demanding applications where  
it is desirable to isolate the sensitive analog circuits from  
the noisy digital logic. The AC performance includes a  
77.7dBNoiseFloorand100dBspuriousfreedynamicrange  
(SFDR). Ultra low internal jitter of 80fs RMS allows under-  
sampling of high input frequencies with excellent noise  
performance. Maximum DC specs include 4.5LSB INL  
and 1LSB DNL (no missing codes) over temperature.  
Power Dissipation: 1300mW  
Clock Duty Cycle Stabilizer  
Pin Compatible Family  
105Msps: LTC2274  
80Msps: LTC2273  
65Msps: LTC2272  
n
40-Pin 6mm × 6mm QFN Package  
+
The encode clock inputs, ENC and ENC , may be driven  
differentially or single-ended with a sine wave, PECL,  
LVDS, TTL or CMOS inputs. A clock duty cycle stabilizer  
allows high performance at full speed with a wide range  
of clock duty cycles.  
APPLICATIONS  
n
Telecommunications  
n
Receivers  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
Cellular Base Stations  
n
Spectrum Analysis  
n
Imaging Systems  
n
ATE  
TYPICAL APPLICATION  
3.3V  
FAM  
SENSE  
+
SYNC  
128k Point FFT, fIN = 4.93MHz,  
SYNC–  
1.25V  
COMMON MODE  
BIAS VOLTAGE  
INTERNAL ADC  
REFERENCE  
GENERATOR  
–1dBFS, PGA = 0  
V
ASIC OR FPGA  
50Ω  
CM  
8B/10B  
ENCODER  
1.2V TO 3.3V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OV  
DD  
2.2μF  
16  
20  
0.1μF  
+
50Ω  
CMLOUT  
+
+
A
IN  
SERIAL  
RECEIVER  
+
SERIALIZER  
16-BIT  
PIPELINED  
ADC CORE  
ANALOG  
INPUT  
S/H  
AMP  
CORRECTION  
LOGIC  
CMLOUT  
–90  
A
IN  
CLOCK  
–100  
–110  
–120  
–130  
3.3V  
V
DD  
SCRAMBLER/  
PATTERN  
GENERATOR  
20X  
PLL  
CLOCK/DUTY  
CYCLE  
0
10  
20  
30  
40  
50  
CONTROL  
0.1μF 0.1μF  
GND  
FREQUENCY (MHz)  
2274 TA01b  
2274 TA01  
+
ENC  
ENC PGA DITH MSBINV SHDN  
PAT1 PAT0 SCRAM SRR1 SRR0  
2274f  
1
LTC2274  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
OVDD = VDD (Notes 1, 2)  
TOP VIEW  
Supply Voltage (V ) ................................... –0.3V to 4V  
DD  
40 39 38 37 36 35 34 33 32 31  
Analog Input Voltage (Note 3).......–0.3V to (V + 0.3V)  
DD  
V
V
1
2
3
4
5
6
7
8
9
30  
29  
28  
GND  
DD  
Digital Input Voltage......................–0.3V to (V + 0.3V)  
DD  
+
SYNC  
SYNC  
DD  
Digital Output Voltage ................ –0.3V to (OV + 0.3V)  
GND  
+
DD  
A
27 GND  
26 GND  
IN  
Power Dissipation.............................................2000mW  
A
IN  
41  
Operating Temperature Range  
GND  
GND  
GND  
25  
OV  
DD  
+
24 CMLOUT  
LTC2274C ................................................ 0°C to 70°C  
LTC2274I.............................................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
23  
22  
21  
CMLOUT  
OV  
+
ENC  
DD  
GND  
ENC 10  
11 12 13 14 15 16 17 18 19 20  
Digital Output Supply Voltage (OV ).......... –0.3V to 4V  
DD  
UJ PACKAGE  
40-LEAD (6mm s 6mm) PLASTIC QFN  
T
= 150°C, θ = 22°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2274CUJ#PBF  
LTC2274IUJ#PBF  
LEAD BASED FINISH  
LTC2274CUJ  
TAPE AND REEL  
LTC2274CUJ#TRPBF  
LTC2274IUJ#TRPBF  
TAPE AND REEL  
LTC2274CUJ#TR  
LTC2274IUJ#TR  
PART MARKING*  
LTC2274UJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
PACKAGE DESCRIPTION  
LTC2274UJ  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
LTC2274UJ  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
LTC2274IUJ  
LTC2274UJ  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.2  
1.5  
0.3  
1
MAX  
4
UNITS  
LSB  
Integral Linearity Error  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 5) T = 25°C  
A
l
l
l
Differential Analog Input (Note 5)  
Differential Analog Input  
(Note 6)  
4.5  
1
LSB  
LSB  
8.5  
mV  
Offset Drift  
10  
μV/°C  
%FS  
l
Gain Error  
External Reference  
0.2  
1.5  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
15  
ppm/°C  
ppm/°C  
Transition Noise  
3
LSB  
RMS  
2274f  
2
LTC2274  
ANALOG INPUT The l denotes denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.5 or 2.25  
1.25  
MAX  
UNITS  
+
l
l
l
V
3.135V ≤ V ≤ 3.465V  
V
Analog Input Range (A  
A
IN  
)
IN  
DD  
P-P  
IN  
V
I
Analog Input Common Mode  
Differential Input (Note 7)  
1
1.5  
1
V
μA  
μA  
IN, CM  
+
Analog Input Leakage Current  
SENSE Input Leakage Current  
Analog Input Capacitance  
–1  
–3  
0V ≤ A  
,
A
≤ V (Note 10)  
IN  
IN  
IN DD  
I
0V ≤ SENSE ≤ V (Note 11)  
3
SENSE  
DD  
+
C
IN  
Sample Mode ENC < ENC  
Hold Mode ENC > ENC  
6.7  
1.8  
pF  
pF  
+
t
t
Sample-and-Hold  
1
ns  
AP  
Acquisition Delay Time  
Sample-and-Hold  
Acquisition Delay Time Jitter  
80  
fs  
RMS  
JITTER  
+
CMRR  
Analog Input  
Common Mode Rejection Ratio  
1V < (A = A ) <1.5V  
80  
dB  
IN  
IN  
BW-3dB  
Full Power Bandwidth  
700  
MHz  
R ≤ 25Ω  
S
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
77.6  
75.4  
dBFS  
dBFS  
15MHz Input (2.25V Range, PGA = 0), T = 25°C  
76.5  
76.2  
77.5  
77.2  
75.3  
dBFS  
dBFS  
dBFS  
A
l
15MHz Input (2.25V Range, PGA = 0)  
15MHz Input (1.5V Range, PGA = 1)  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
77.2  
75.1  
dBFS  
dBFS  
140MHz Input (2.25V Range, PGA = 0)  
76.3  
74.5  
74.2  
dBFS  
dBFS  
dBFS  
140MHz Input (1.5V Range, PGA = 1), T = 25°C  
73.8  
73.4  
A
l
140MHz Input (1.5V Range, PGA = 1)  
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
75.9  
74.3  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic Range  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
100  
100  
dBc  
dBc  
nd  
rd  
2
or 3 Harmonic  
15MHz Input (2.25V Range, PGA = 0), T = 25°C  
85  
84  
95  
95  
100  
dBc  
dBc  
dBc  
A
l
15MHz Input (2.25V Range, PGA = 0)  
15MHz Input (1.5V Range, PGA = 1)  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
86  
94  
dBc  
dBc  
140MHz Input (2.25V Range, PGA = 0)  
85  
90  
89  
dBc  
dBc  
dBc  
140MHz Input (1.5V Range, PGA = 1), T = 25°C  
81  
80  
A
l
140MHz Input (1.5V Range, PGA = 1)  
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
80  
85  
dBc  
dBc  
2274f  
3
LTC2274  
DYNAMIC ACCURACY  
The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
th  
SFDR  
Spurious Free Dynamic Range 4  
Harmonic or Higher  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
100  
100  
dBc  
dBc  
l
15MHz Input (2.25V Range, PGA = 0)  
15MHz Input (1.5V Range, PGA = 1)  
90  
100  
100  
dBc  
dBc  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
100  
100  
dBc  
dBc  
140MHz Input (2.25V Range, PGA = 0)  
140MHz Input (1.5V Range, PGA = 1)  
95  
100  
dBc  
dBc  
l
85  
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
90  
95  
dBc  
dBc  
S/(N+D)  
Signal-to-Noise  
Plus Distortion Ratio  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
77.5  
75.3  
dBFS  
dBFS  
15MHz Input (2.25V Range, PGA = 0), T = 25°C  
76.3  
75.9  
77.4  
77  
75.2  
dBFS  
dBFS  
dBFS  
A
l
15MHz Input (2.25V Range, PGA = 0  
15MHz Input (1.5V Range, PGA = 1)  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
76.7  
74.2  
dBFS  
dBFS  
140MHz Input (2.25V Range, PGA = 0), T = 25°C  
75.3  
74.3  
74  
dBFS  
dBFS  
dBFS  
A
140MHz Input (1.5V Range, PGA = 1)  
140MHz Input (1.5V Range, PGA = 1)  
73.6  
73.2  
l
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
73.4  
73.4  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic Range  
at –25dBFS Dither “OFF”  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
105  
105  
dBFS  
dBFS  
15MHz Input (2.25V Range, PGA = 0)  
15MHz Input (1.5V Range, PGA = 1)  
105  
105  
dBFS  
dBFS  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
105  
105  
dBFS  
dBFS  
140MHz Input (2.25V Range, PGA = 0)  
140MHz Input (1.5V Range, PGA = 1)  
100  
100  
dBFS  
dBFS  
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
100  
100  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic Range  
at –25dBFS Dither “ON”  
5MHz Input (2.25V Range, PGA = 0)  
5MHz Input (1.5V Range, PGA = 1)  
115  
115  
dBFS  
dBFS  
l
15MHz Input (2.25V Range, PGA = 0)  
15MHz Input (1.5V Range, PGA = 1)  
97  
115  
115  
dBFS  
dBFS  
70MHz Input (2.25V Range, PGA = 0)  
70MHz Input (1.5V Range, PGA = 1)  
115  
115  
dBFS  
dBFS  
140MHz Input (2.25V Range, PGA = 0)  
140MHz Input (1.5V Range, PGA = 1)  
110  
110  
dBFS  
dBFS  
170MHz Input (2.25V Range, PGA = 0)  
170MHz Input (1.5V Range, PGA = 1)  
105  
105  
dBFS  
dBFS  
2274f  
4
LTC2274  
COMMON MODE BIAS CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.25  
40  
1
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
CM  
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
I
= 0  
= 0  
1.15  
1.35  
OUT  
OUT  
ppm/°C  
l
l
l
3.135V ≤ V ≤ 3.465V  
mV/V  
Ω
DD  
–1mA ≤ | I  
| ≤ 1mA  
2
OUT  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Encode Inputs (ENC , ENC )  
l
V
Differential Input Voltage  
(Note 7)  
0.2  
1.4  
V
V
ID  
V
Common Mode Input Voltage Internally Set  
Externally Set (Note 7)  
1.6  
ICM  
3.0  
R
Input Resistance  
(See Figure 2)  
6
3
k
Ω
IN  
C
Input Capacitance  
pF  
IN  
+
SYNC Inputs (SYNC , SYNC )  
l
V
SYNC Differential Input  
(Note 7)  
0.2  
1.1  
V
V
SID  
Voltage  
V
SYNC Common Mode Input  
Voltage  
Internally Set  
Externally Set (Note 7)  
1.6  
SICM  
2.2  
R
SYNC Input Resistance  
SYNC Input Capacitance  
16.5  
3
k
Ω
SIN  
C
pF  
SIN  
Logic Inputs (DITH, PGA, MSBINV, SCRAM, FAM, SHDN, SRR1, SRR0, ISMODE, PAT1, PAT0)  
l
l
l
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
DD  
V
DD  
V
IN  
= 3.3V  
= 3.3V  
2
V
V
IH  
IL  
V
0.8  
10  
I
= 0V to V  
μA  
pF  
IN  
DD  
C
IN  
Input Capacitance  
1.5  
+
High-Speed Serial Outputs (CMLOUT , CMLOUT )  
V
V
V
Output High Level  
Directly-Coupled 50Ω to OV  
OV  
DD  
DD  
OV – 0.2  
DD  
V
V
V
OH  
DD  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.2  
Output Low Level  
Directly-Coupled 50Ω to OV  
OV – 0.4  
V
V
V
OL  
DD  
DD  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.6  
DD  
OV – 0.6  
DD  
Output Common Mode  
Voltage  
Directly-Coupled 50Ω to OV  
OV – 0.2  
V
V
V
OCM  
DD  
DD  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.4  
DD  
OV – 0.4  
DD  
l
R
OUT  
Output Resistance  
Single-Ended Differential  
35  
50  
100  
65  
Ω
Ω
2274f  
5
LTC2274  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
3.3  
5
MAX  
UNITS  
V
l
V
P
Analog Supply Voltage  
Shutdown Power  
3.135  
3.465  
DD  
SHDN Pins = V  
mW  
SHDN  
DD  
l
l
l
OV  
Output Supply Range  
CMLOUT Directly-Coupled 50Ω to OV (Note 7)  
1.2  
1.4  
1.4  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
CMLOUT Directly-Coupled 100Ω Differential (Note 7)  
CMLOUT AC-Coupled (Note 7)  
l
I
I
Analog Supply Current  
Output Supply Current  
DC Input  
394  
450  
mA  
VDD  
CMLOUT Directly-Coupled, 50Ω to 0V  
CMLOUT Directly-Coupled 100Ω Differential  
CMLOUT AC-Coupled  
8
16  
16  
mA  
mA  
mA  
OVDD  
DD  
l
P
DIS  
Power Dissipation  
DC Input  
1300  
1485  
mW  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
s
l
f
t
t
t
t
t
t
Sampling Frequency  
(Note 9)  
20  
105  
S
Conversion Period  
1/f  
S
CONV  
L
l
l
ENC Clock Low Time  
(Note 7)  
(Note 7)  
3.1  
3.1  
4.762  
4.762  
0.7  
25  
25  
ns  
ENC Clock High Time  
ns  
H
Sample-and-Hold Aperture Delay  
Period of a Serial Bit  
ns  
AP  
, UI  
t
/20  
CONV  
s
BIT  
l
l
Total Jitter of CMLOUT (P-P)  
Differential Rise and Fall Time of CMLOUT (20% to 80%)  
BER = 1E–12 (Note 7)  
0.35  
UI  
JIT  
t , t  
R
R
TERM  
= 50Ω, C = 2pF  
50  
110  
ps  
F
L
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
l
l
l
t
SU  
t
HD  
t
CS  
SYNC to ENC Clock Setup Time  
ENC Clock to SYNC Hold Time  
ENC Clock to SYNC Delay  
2
ns  
ns  
2.5  
t
t
– t  
SU  
ns  
HD  
CONV  
LAT  
LAT  
LAT  
Pipeline Latency  
9
3
2
Cycles  
Cycles  
Cycles  
P
Latency from SYNC Active to COMMA Out  
Latency from SYNC Release to DATA Out  
SC  
SD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Offset error is the offset voltage measured from –1/2LSB when the  
output code flickers between 0000 0000 0000 0000 and 1111 1111 1111  
1111 in 2’s complement output mode.  
Note 7: Guaranteed by design, not subject to test.  
Note 2: All voltage values are with respect to GND (unless otherwise  
noted).  
Note 8: V = 3.3V, f  
differential drive.  
= 105MHz input range = 2.25V with  
P-P  
DD  
SAMPLE  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
DD  
Note 9: Recommended operating conditions.  
Note 10: The dynamic current of the switched capacitors analog inputs  
can be large compared to the leakage current and will vary with the sample  
rate.  
Note 11: Leakage current will have higher transient current at power up.  
Keep drive resistance at or below 1k.  
of greater than 100mA below GND or above V without latchup.  
DD  
+
Note 4: V = 3.3V, f  
= 105MHz differential ENC /ENC = 2V sine  
P-P  
DD  
SAMPLE  
wave with 1.6V common mode, input range = 2.25V with differential  
P-P  
drive (PGA = 0), unless otherwise specified.  
Note 5: Integral nonlinearity is defined as the deviation of a code from  
a “best fit straight line” to the transfer curve. The deviation is measured  
from the center of the quantization band.  
2274f  
6
LTC2274  
TIMING DIAGRAMS  
t
N + 9  
AP  
N + 2  
N + 10  
ANALOG INPUT  
N + 8  
N + 1  
N
t
CONV  
+
ENC  
t
H
t
L
INTERNAL  
PARALLEL DATA  
N – 6  
N – 5  
N – 8  
N – 4  
N – 7  
N + 3  
N
N + 4  
N + 1  
INTERNAL  
8B/10B DATA  
N – 9  
LAT  
P
t
BIT  
+
CMLOUT /CMLOUT  
N – 10  
N – 9  
N – 8  
N – 1  
N
2274 TD01  
Analog Input to Serial Data Out Timing  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
N + 5  
ANALOG INPUT  
N + 1  
t
t
t
HD  
SU  
+
ENC  
CS(MIN)  
+
SYNC  
LAT  
SC  
t
CS(MAX)  
+
CMLOUT /CMLOUT  
N – 10  
N – 9  
N – 8  
N – 7  
K28.5 (x2)  
K28.5 (x2)  
2274 TD02  
SYNC+ Falling Edge to Comma (K28.5) Timing  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
ANALOG INPUT  
N + 1  
t
t
SU  
HD  
+
ENC  
t
CS(MIN)  
+
SYNC  
LAT  
t
SD  
CS(MAX)  
+
CMLOUT /CMLOUT  
K28.5 (x2)  
K28.5 (x2)  
K28.5 (x2)  
N – 7  
N – 6  
2274 TD03  
SYNC+ Rising Edge to Data Timing  
2274f  
7
LTC2274  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 105Msps,  
unless otherwise noted.  
Integral Non-Linearity (INL)  
vs Output Code  
Differential Non-Linearity (DNL)  
vs Output Code  
AC Grounded Input Histogram  
2.0  
1.5  
1.0  
0.8  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.6  
1.0  
0.4  
0.5  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32777  
32787  
32797  
32807  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
2274 G01  
2274 G02  
2274 G03  
128k Point FFT, fIN = 4.93MHz,  
–1dBFS, PGA = 0  
64k Point FFT, fIN = 14.8MHz,  
–1dBFS, PGA = 0  
64k Point FFT, fIN = 14.8MHz,  
–10dBFS, PGA = 0  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2274 G04  
2274 G05  
2274 G06  
64k Point 2-Tone FFT,  
fIN = 14.2MHz and 15.8MHz,  
–7dBFS, PGA = 0  
SFDR vs Input Level, fIN  
=
SFDR vs Input Level, fIN  
=
15MHz, PGA = 0, Dither “Off”  
15MHz, PGA = 0, Dither “On”  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
40  
50  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
2274 G09  
2274 G07  
2274 G08  
2274f  
8
LTC2274  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 105Msps,  
unless otherwise noted.  
64k Point 2-Tone FFT,  
fIN = 14.2MHz and 15.8MHz,  
–15dBFS, PGA = 0  
64k FFT, fIN = 70.1MHz, –1dBFS,  
PGA = 0  
64k FFT, fIN = 70.1MHz, –1dBFS,  
PGA = 1  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2274 G10  
2274 G11  
2274 G12  
128k Point FFT, fIN = 70.1MHz,  
–20dBFS, PGA = 0, Dither “Off”  
128k Point FFT, fIN = 70.1MHz,  
–20dBFS, PGA = 0, Dither “On”  
64k Point FFT, fIN = 140.2MHz,  
–1dBFS, PGA = 1  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2274 G13  
2274 G14  
2274 G15  
SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “Off”  
SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “On”  
64k Point FFT, fIN = 170.2MHz,  
–1dBFS, PGA = 1  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
40  
50  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
2274 G18  
2274 G16  
2274 G17  
2274f  
9
LTC2274  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 105Msps,  
unless otherwise noted.  
64k Point FFT, fIN = 250.2MHz,  
–1dBFS, PGA = 1  
SFDR (HD2 and HD3) vs  
Input Frequency  
SNR vs Input Frequency  
0
–10  
–20  
–30  
–40  
105  
100  
95  
78  
76  
PGA = 0  
74  
90  
–50  
–60  
–70  
–80  
72  
PGA = 1  
PGA = 1  
85  
70  
68  
66  
64  
80  
PGA = 0  
–90  
75  
–100  
–110  
–120  
–130  
70  
65  
0
10  
20  
30  
40  
50  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2274 G19  
2274 G21  
2274 G20  
SNR and SFDR vs Sample Rate,  
IN = 5.1MHz  
SNR and SFDR vs Supply Voltage  
(VDD), fIN = 5.2MHz  
f
110  
105  
100  
95  
110  
105  
100  
95  
SFDR  
SFDR  
LIMIT  
LOWER LIMIT  
UPPER LIMIT  
90  
90  
85  
85  
SNR  
80  
80  
SNR  
75  
75  
70  
70  
20  
40  
60  
80  
100  
120  
2.8  
3.0  
3.2  
3.4  
SAMPLE RATE (Msps)  
SUPPLY VOLTAGE (V)  
2274 G22  
2274 G23  
SFDR vs Analog Input  
Common Mode Voltage, 5MHz  
and 70MHz, –1dBFS  
IVDD vs Sample Rate, 5MHz Sine,  
–1dBFS  
110  
105  
100  
95  
420  
410  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
290  
5MHz  
90  
85  
70MHz  
80  
75  
70  
65  
60  
0.50 0.75 1.00 1.25 1.50 1.75 2.00  
0
40  
80  
120  
ANALOG INPUT COMMON MODE VOLTAGE (V)  
SAMPLE RATE (Msps)  
2274 G25  
2274 G02  
2274f  
10  
LTC2274  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 105Msps,  
unless otherwise noted.  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 400Mbps  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 1.2Gbps  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
1.0E  
10  
1.0E10  
1.0E–12  
1.0E–14  
1.0E–12  
1.0E–14  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
UNIT INTERVAL (UI)  
UNIT INTERVAL (UI)  
2274 G26  
2274 G27  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 2.1Gbps  
CMLOUT Eye Diagram 400Mbps  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
100mV/DIV  
1.0E10  
2274 G29  
416.7ps/DIV  
1.0E–12  
1.0E–14  
0
0.2  
0.4  
0.6  
0.8  
1.0  
UNIT INTERVAL (UI)  
2274 G28  
CMLOUT Eye Diagram 1.2Gbps  
CMLOUT Eye Diagram 2.1Gbps  
100mV/DIV  
100mV/DIV  
2274 G30  
2274 G31  
138.9ps/DIV  
79.4ps/DIV  
2274f  
11  
LTC2274  
PIN FUNCTIONS  
V
(Pins 1, 2, 12, 13 ): Analog 3.3V Supply. Bypass to  
OV (Pins22,25):PositiveSupplyfortheOutputDrivers.  
DD  
DD  
GND with 0.1μF ceramic chip capacitors.  
This supply range is 1.2V to V for directly coupled CML  
DD  
outputs, or 1.4V to OV for AC-coupled or differentially  
DD  
GND (Pins 3, 6, 7, 8, 11, 14, 21, 26, 27, 30, 37, 40):  
ADC Power Ground.  
terminated CML outputs. Bypass to ground with 0.1μF  
ceramic chip capacitor.  
+
A
A
(Pin 4): Positive Differential Analog Input.  
(Pin 5): Negative Differential Analog Input.  
IN  
IN  
CMLOUT (Pin 23): Negative High-Speed CML Output.  
+
CMLOUT (Pin 24): Positive High-Speed CML Output.  
+
ENC (Pin 9): Positive Differential Encode Input. The  
+
SYNC (Pin 28): Sync Request Positive Input (Active  
+
sampled analog input is held on the rising edge of ENC .  
Low for Compatibility with JESD204). A low level on this  
pin for at least two sample clock cycles will initiate frame  
synchronization.  
Thispinisinternallybiasedto1.6Vthrougha6.2kΩresistor.  
+
Output data can be latched on the falling edge of ENC .  
ENC (Pin 10): Negative Differential Encode Input. The  
SYNC (Pin 29): Sync Request Negative Input. A high  
sampled analog input is held on the falling edge of ENC-.  
This pin is internally biased to 1.6V through a 6.2kΩ  
resistor. Bypass to ground with a 0.1uF capacitor for a  
single-ended Encode signal.  
level on this pin for at least two sample clock cycles will  
initiateframesynchronization.Forsingle-endedoperation,  
+
bypass to ground with a 0.1μF capacitor and use SYNC  
as the SYNC point.  
DITH (Pin 15): Internal Dither Enable Pin. DITH = low  
disablesinternaldither.DITH=highenablesinternaldither.  
RefertoInternalDithersectionofthisdatasheetfordetails  
on dither operation.  
FAM (Pin 31): Frame Alignment Monitor Enable. A high  
level enables the substitution of predetermined data at the  
end of the frame with a K28.7 symbol for frame alignment  
monitoring.  
ISMODE (Pin 16): Idle Synchronization mode. When IS-  
MODE is not asserted, synchronization is performed with  
a series of COMMAS (K28.5). When ISMODE is asserted,  
a special Idle SYNC mode is enabled where synchroniza-  
tion is performed by sending a COMMA (K28.5) followed  
by the appropriate data code-group (D5.6 or D16.2) for  
establishing a negative running disparity for the first data  
code-group after synchronization.  
PAT0 (Pin 32): Pattern Select Bit0. Use with PAT1 to select  
a test pattern for the serial interface.  
PAT1 (Pin 33): Pattern Select Bit1. Use with PAT0 to select  
a test pattern for the serial interface.  
SCRAM (Pin 34): Enable Data Scrambling. A high level on  
14  
15  
this pin will apply the polynomial 1 + x + x in scram-  
bling each ADC data sample. The scrambling takes place  
before the 8B/10B encoding.  
SRR0 (Pin 17): Sample Rate Range Select Bit0. Used with  
the SRR1 pin to select the sample rate operating range.  
PGA (Pin 35): Programmable Gain Amplifier Control  
SRR1 (Pin 18): Sample Rate Range Select Bit1. Used with  
the SRR0 pin to select the sample rate operating range.  
Pin. Low selects a front-end gain of 1, input range of  
2.25V . High selects a front-end gain of 1.5, input range  
P-P  
of 1.5V  
.
P-P  
SHDN (Pins 19, 20): Shutdown Pins. A high level on both  
pins will shut down the chip.  
MSBINV (Pin 36): Invert the MSB. A high level will invert  
the MSB to enable the 2’s complement format.  
2274f  
12  
LTC2274  
PIN FUNCTIONS  
SENSE (Pin 38): Reference Mode Select and External  
V
(Pin 39): 1.25V Output. Optimum voltage for input  
CM  
Reference Input. Tie SENSE to V to select the internal  
common mode. Must be bypassed to ground with a  
minimum of 2.2μF. Ceramic chip capacitors are recom-  
mended.  
DD  
2.5V bandgap reference. An external reference of 2.5V or  
1.25V may be used; both reference values will set a full  
scale ADC range of 2.25V (PGA = 0).  
GND (Exposed Pad) (Pin 41): ADC Power Ground. The  
Exposed Pad on the bottom of the package needs to be  
soldered to ground.  
BLOCK DIAGRAM  
FAM  
PIPELINED ADC STAGES  
+
SYNC  
+
+
A
A
IN  
IN  
S/H  
8B/10B  
ENCODER  
FIRST  
STAGE  
SECOND  
STAGE  
THIRD  
STAGE  
FOURTH  
STAGE  
FIFTH  
STAGE  
AND PGA  
SYNC  
16  
DITHER SIGNAL  
GENERATOR  
20  
CORRECTION  
LOGIC  
OV  
DD  
+
CMLOUT  
REFERENCE  
CONTROL  
SERIALIZER  
CMLOUT  
ADC  
REFERENCE  
SENSE  
0.5x  
20X CLK  
1x OR 2x  
V
CM  
CLOCK DRIVER  
WITH DUTY CYCLE  
CONTROL  
SCRAMBLER/  
PATTERN  
GENERATOR  
V
DD  
2.5V  
REFERENCE  
PLL  
CONTROL LOGIC  
+
ENC  
ENC  
PGA  
DITH  
MSBINV  
SHDN  
PAT1  
PAT0  
SCRAM  
SRR1  
SRR0 GND  
22743 BD  
Figure 1. Functional Block Diagram  
2274f  
13  
LTC2274  
DEFINITIONS  
DYNAMIC PERFORMANCE TERMS  
Spurious Free Dynamic Range (SFDR)  
The ratio of the RMS input signal amplitude to the RMS  
value of the peak spurious spectral component expressed  
in dBc. SFDR may also be calculated relative to full scale  
and expressed in dBFS.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/(N+D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band lim-  
ited to frequencies above DC to below half the sampling  
frequency.  
Full Power Bandwidth  
The full power bandwidth is that input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full scale input signal.  
Signal-to-Noise Ratio  
The signal-to-noise (SNR) is the ratio between the RMS  
amplitudeofthefundamentalinputfrequencyandtheRMS  
amplitude of all other frequency components, except the  
first five harmonics.  
Aperture Delay Time  
+
ThetimefromwhenarisingENC equalstheENC voltage  
to the instant that the input signal is held by the sample-  
and-hold circuit.  
Total Harmonic Distortion  
Aperture Delay Jitter  
Total harmonic distortion is the ratio of the RMS sum  
of all harmonics of the input signal to the fundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
SNR  
= –20log (2π • f • t  
)
JITTER  
IN JITTER  
2
2
2
2
THD = –20Log (  
(V + V + V + ... V )/V )  
2 3 4 N 1  
where V is the RMS amplitude of the fundamental fre-  
quencyandV throughV aretheamplitudesofthesecond  
1
SERIAL INTERFACE TERMS  
8B/10B Encoding  
2
N
through nth harmonics.  
A data encoding method designed to make an 8-bit data  
word (octet) more suitable for serial transmission. The  
resulting 10-bit word (code-group) has two fundamental  
strengths: 1) The receiver does not require a high-speed  
clock to capture the data. This is because the output  
code-groups are run-length limited, ensuring that there  
are enough transitions in the bit stream for the receiver  
to lock onto the data and recover the high-speed clock.  
2) AC coupling is permitted because the code-groups are  
generated in a way that ensures the data stream is DC  
balanced (see Running Disparity).  
Intermodulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
If two pure sine waves of frequencies fa and fb are applied  
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mfa nfb, where m and n = 0, 1, 2, 3, etc.  
For example, the 3rd order IMD terms include (2fa + fb),  
(fa + 2fb), (2fa - fb) and (fa - 2fb). The 3rd order IMD is  
defined as the ratio of the RMS value of either input tone  
to the RMS value of the largest 3rd order IMD product.  
A table of the 256 possible input octets with the resulting  
10-bitcode-groupsisdocumentedinIEEEStd802.3-2002  
part3 Table 36-1. The name associated with each of the  
256 data code-groups is formatted Dx.y, with x ranging  
from 0 to 31 and y ranging from 0 to 7. Table 36-2 of  
2274f  
14  
LTC2274  
DEFINITIONS  
the standard defines an additional set of 12 special code-  
groups for non-data characters such as commas. Special  
code-group names begin with K instead of D. A complete  
8B/10B description is found in Clause 36.2 of IEEE Std  
802.3-2002 part3.  
whentheaveragenumberof1sand0sareequal,eliminat-  
ing the undesirable effects of DC wander on the receive  
side of the coupling capacitor. When 8B/10B coding is  
used, DC balance is achieved by following disparity rules  
(see Running Disparity).  
Current Mode Logic (CML)  
De-Scrambler  
Atechniqueusedtoimplementdifferentialhigh-speedlogic.  
CML employs differential pairs (usually n-type) to steer  
currentintoresistiveloads. Itispossibletoimplementany  
logic function using CML. The output swing and offset is  
dependant on the bias current, the load resistance, and  
termination resistance.  
A logic block that restores scrambled data to its pre-  
scrambled state. A self aligning de-scrambler is based on  
the same pseudo random bit sequence as the scrambler,  
so it requires no alignment signals. In this product family  
the scrambler is based on the 1 + x + x polynomial,  
and the self aligning process results in an initial loss of  
one ADC sample.  
14  
15  
This product family uses CML drivers to transmit high-  
speed serial data to the outside world. The output driver  
bias current is typically 16mA, generating a signal swing  
Frame  
A group of octets or code-groups that make up one  
complete word. For this product family, a frame consists  
of two complete octets or code-groups, and constitutes  
one ADC sample.  
potential of 400mV (800mV diff.) across the com-  
P-P  
P-P  
bined internal and external termination resistance of 25Ω  
on each output.  
Code-Group  
Frame Alignment Monitoring (FAM)  
The 10-bit output from an 8B/10B encoder or the 10-bit  
input to the 8B/10B decoder.  
After initial frame synchronization has been established,  
frame alignment monitoring enables the receiver to verify  
that code-group alignment is maintained without the loss  
ofdata.ThisisdonebysubstitutingaK28.7commaforthe  
last code-group of the frame when certain conditions are  
met. The receiver uses this comma as a position marker  
within the frame for alignment verification. After decoding  
the data, the receiver replaces the K28.7 comma with the  
original data.  
Comma  
A special 8B/10B code-group containing the binary se-  
quence “0011111” or “1100000”. Commas are used for  
frame alignment and synchronization because a comma  
sequence cannot be generated by any combination of  
normal code-groups (unless a bit error occurs). There are  
three special code-groups that contain a comma, K28.1,  
K28.5, and K28.7.  
Idle Frame Synchronization Mode (ISMODE)  
For brevity, each of these three special code-groups are  
often called a comma, but in the strictest sense it is the  
first 7 bits of these code-groups that are designated a  
comma.  
A special synchronization mode where idle ordered sets  
are used to establish initial frame synchronization instead  
of K28.5 commas.  
An Idle Ordered Set is defined in the IEEE Std 802.3-2002  
part3, Clause 36.2.4.12. In general, it is a K28.5 comma  
followed by either a D5.6 or a D16.2. If the running dispar-  
ity after the transmission of the K28.5 comma is positive,  
DC Balanced Signal  
AspeciallyconditionedsignalthatmaybeACcoupledwith  
minimal degradation to the signal. DC balance is achieved  
2274f  
15  
LTC2274  
DEFINITIONS  
a D16.2 will be transmitted after the comma, otherwise  
a D5.6 will be transmitted. The result is that the ending  
disparity of an idle ordered set will always be negative.  
running disparity is calculated to determine which of the  
two code-groups should be transmitted to maintain DC  
balance.  
The disparity of a code-group is analyzed in two segments  
called sub-blocks. Sub-block1 consists of the first six bits  
of a code-group and sub-block2 consists of the last four  
bits of a code-group. When a sub-block is more heavily  
weightedwith1stherunningdisparityispositive,andwhen  
it is more heavily weighted with 0’s the running disparity  
is negative. When the number of 1’s and 0’s are equal in a  
sub-block, the running disparity remains unchanged.  
Initial Frame Synchronization  
The process of communicating frame synchronization  
informationtothereceiverupontherequestofthereceiver.  
For JESD204 compliance, K28.5 commas are transmitted  
as the preamble. Once the preamble has been detected  
the receiver terminates the synchronization request, and  
the preamble transmission continues until the end of the  
frame. The receiver designates the first normal data word  
after the preamble to be the start of the data frame.  
The polarity of the current running disparity determines  
which code-group should be transmitted to maintain DC  
balance.Foracompletedescriptionofdisparityrules,refer  
to IEEE Std 802.3-2002 part3, Clause 36.2.4.4.  
Octet  
The 8-bit input to an 8B/10B encoder, or the 8-bit output  
from an 8B/10B decoder.  
Pseudo Random Bit Sequence (PRBS)  
A data sequence having a random nature over a finite  
interval. The most commonly used PRBS test patterns  
Run-Length Limited (RLL)  
m
The act of limiting the number of consecutive 1’s or 0’s  
in a data stream by encoding the data prior to serial  
transmission.  
may be described by a polynomial in the form of 1 + x +  
n
n
x and have a random nature for the length of up to 2 – 1  
bits, where n indicates the order of the PRBS polynomial  
and m plays a role in maximizing the length of the random  
sequence.  
This process guarantees that there will be an adequate  
number of transitions in the serial data for the receiver  
to lock onto with a phase-locked loop and recover the  
high-speed clock.  
Scrambler  
A logic block that applies a pseudo random bit sequence  
to the input octets to minimize the tonal content of the  
high-speed serial bit stream.  
Running Disparity  
In order to maintain DC balance there are two possible  
8B/10B output code-groups for each input octet. The  
2274f  
16  
LTC2274  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
The pipelined ADC of the LTC2274 has two phases of  
operation determined by the state of the differential  
The core of the LTC2274 is a CMOS pipelined multi-step  
converter with a front-end PGA. As shown in Figure 1, the  
converterhasvepipelinedADCstages.Asampledanalog  
+
ENC /ENC input pins. For brevity, the text will refer to  
+
+
ENC greater than ENC as ENC high and ENC less than  
ENC as ENC low.  
input will result in a digitized value nine clock cycles later  
+
(see the Timing Diagram section). The analog input (A  
,
WhenENCislow, theanaloginputissampleddifferentially  
ontotheinputsample-and-holdcapacitors,insidetheS/H  
& PGA” block of Figure 1. On the rising edge of ENC, the  
voltage on the sample capacitors is held. While ENC is  
high, theheldinputvoltageisbufferedbytheS/Hamplifier  
which drives the first pipelined ADC stage. The first stage  
acquires the output of the S/H amplifier during the high  
phase of ENC. On the falling edge of ENC, the first stage  
producesitsresiduewhichisacquiredbythesecondstage.  
The process continues to the end of the pipeline.  
IN  
A
IN  
) is differential for improved common mode noise im-  
munity and to maximize the input range. Additionally, the  
differential input drive will reduce even order harmonics  
of the sample and hold circuit. The encode clock input  
+
(ENC , ENC ) is also differential for improved common  
mode noise immunity.  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC, and an error residue amplifier. The  
functionofeachstageistoproduceadigitalrepresentation  
of its input voltage along with the resulting analog error  
residue. The ADC of each stage provides the quantization,  
andtheresidueisproducedbytakingthedifferencebetween  
theinputvoltageandtheoutputofthereconstructionDAC.  
Theresidueisamplifiedbytheresidueamplifierandpassed  
on to the next stage. The successive stages of the pipeline  
operate on alternating phases of the clock so that when  
odd stages are outputting their residue, the even stages  
are acquiring that residue and vice versa.  
Each ADC stage following the first has additional error  
correctionrangetoaccommodateashandamplifieroffset  
errors. Results from all of the ADC stages are digitally  
delayed such that the results can be properly combined  
in the correction logic before being encoded, serialized,  
and sent to the output buffer.  
2274f  
17  
LTC2274  
APPLICATIONS INFORMATION  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Input Drive Impedance  
As with all high performance, high speed ADCs the dy-  
namic performance of the LTC2274 can be influenced  
by the input drive circuitry, particularly the second and  
third harmonics. Source impedance and input reactance  
can influence SFDR. At the falling edge of ENC the  
sample-and-hold circuit will connect the 4.9pF sampling  
capacitor to the input pin and start the sampling period.  
The sampling period ends when ENC rises, holding the  
sampled input on the sampling capacitor. Ideally, the  
input circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
Sample/Hold Operation  
Figure2showsanequivalentcircuitfortheLTC2274CMOS  
differentialsampleandhold. Thedifferentialanaloginputs  
are sampled directly onto sampling capacitors (C  
throughNMOStransistors.Thecapacitorsshownattached  
)
SAMPLE  
to each input (C  
) are the summation of all other  
PARASITIC  
capacitance associated with each input.  
During the sample phase when ENC is low, the NMOS  
transistors connect the analog inputs to the sampling  
capacitors and they charge to, and track, the differential  
input voltage. On the rising edge of ENC, the sampled  
input voltage is held on the sampling capacitors. During  
the hold phase when ENC is high, the sampling capacitors  
are disconnected from the input and the held voltage is  
passed to the ADC core for processing. As ENC transitions  
for high to low, the inputs are reconnected to the sampling  
capacitors to acquire a new sample. Since the sampling  
capacitorsstillholdtheprevioussample, achargingglitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. If the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. If the input change is large, such  
as the change seen with input frequencies near Nyquist,  
then a larger charging glitch will be seen.  
1/(2F  
); however, this is not always possible and the  
ENCODE  
incomplete settling may degrade the SFDR. The sampling  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
For the best performance it is recommended to have a  
source impedance of 100Ω or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
LTC2274  
V
DD  
C
SAMPLE  
4.9pF  
R
R
R
ON  
PARASITIC  
3Ω  
20Ω  
+
A
IN  
C
PARASITIC  
1.8pF  
V
Common Mode Bias  
DD  
C
SAMPLE  
4.9pF  
R
PARASITIC  
3Ω  
ON  
TheADCsample-and-holdcircuitrequiresdifferentialdrive  
toachievespecifiedperformance.Eachinputshouldswing  
0.5625V for the 2.25V range (PGA = 0) or 0.375V for  
the 1.5V range (PGA = 1), around a common mode volt-  
20Ω  
A
IN  
C
PARASITIC  
1.8pF  
V
DD  
age of 1.25V. The V output pin (Pin 39) is designed to  
CM  
provide the common mode bias level. V can be tied  
CM  
1.6V  
6k  
directly to the center tap of a transformer to set the DC  
input level or as a reference level to an op amp differential  
+
ENC  
ENC  
driver circuit. The V pin must be bypassed to ground  
CM  
close to the ADC with 2.2μF or greater.  
6k  
1.6V  
2274 F02  
Figure 2. Equivalent Input Circuit  
2274f  
18  
LTC2274  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
the input bandwidth and increase high frequency distor-  
tion. A disadvantage of using a transformer is the loss of  
lowfrequencyresponse.MostsmallRFtransformershave  
poor performance at frequencies below 1MHz.  
Input Filtering  
A first order RC lowpass filter at the input of the ADC can  
servetwofunctions:limitthenoisefrominputcircuitryand  
provide isolation from ADC S/H switching. The LTC2274  
has a very broadband S/H circuit, DC to 700MHz; it can  
be used in a wide range of applications; therefore, it is not  
possible to provide a single recommended RC filter.  
Center-tapped transformers provide a convenient means  
of DC biasing the secondary; however, they often show  
poor balance at high input frequencies, resulting in large  
2nd order harmonics.  
Figure 4a shows transformer coupling using a transmis-  
sion line balun transformer. This type of transformer has  
much better high frequency response and balance than  
flux coupled center tap transformers. Coupling capacitors  
are added at the ground and input primary terminals to  
allowthesecondaryterminalstobebiasedat1.25V. Figure  
4b shows the same circuit with components suitable for  
higher input frequencies.  
Figures 3, 4a and 4b show three examples of input RC  
filtering at three ranges of input frequencies. In general  
it is desirable to make the capacitors as large as can be  
tolerated—this will help suppress random noise as well  
as noise coupled from the digital circuitry. The LTC2274  
does not require any input filter to achieve data sheet  
specifications;however,nolteringwillputmorestringent  
noise requirements on the input drive circuitry.  
V
CM  
Transformer Coupled Circuits  
2.2μF  
5Ω  
0.1μF  
0.1μF  
+
10Ω  
Figure 3 shows the LTC2274 being driven by an RF trans-  
former with a center-tapped secondary. The secondary  
center tap is DC biased with V , setting the ADC input  
signal at its optimum DC level. Figure 3 shows a 1:1 turns  
ratio transformer. Other turns ratios can be used; however,  
astheturnsratioincreasessodoestheimpedanceseenby  
the ADC. Source impedance greater than 50Ω can reduce  
A
A
IN  
IN  
ANALOG  
INPUT  
LTC2274  
0.1μF  
25Ω  
25Ω  
4.7pF  
T1  
1:1  
CM  
4.7pF  
10Ω  
5Ω  
4.7pF  
T1 = MA/COM ETC1-1-13  
2274 F04a  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
EXCEPT 2.2μF  
V
CM  
Figure 4a. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 100MHz to 250MHz  
2.2μF  
50Ω  
+
10Ω  
5Ω  
A
IN  
IN  
T1  
V
CM  
8.2pF  
LTC2274  
35Ω  
35Ω  
2.2μF  
5Ω  
8.2pF  
0.1μF  
0.1μF  
0.1μF  
10Ω  
+
A
A
IN  
IN  
ANALOG  
INPUT  
5Ω  
8.2pF  
A
LTC2274  
25Ω 0.1μF  
25Ω  
2.2pF  
T1  
1:1  
T1 = MA/COM ETC1-1T  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
EXCEPT 2.2μF  
2274 F03  
5Ω  
2.2pF  
T1 = MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
EXCEPT 2.2μF  
2274 F04b  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer. Recommended for Input  
Frequencies from 5MHz to 150MHz  
Figure 4b. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 250MHz to 500MHz  
2274f  
19  
LTC2274  
APPLICATIONS INFORMATION  
Direct Coupled Circuits  
reference; it will not be stable without this capacitor. The  
minimum value required for stability is 2.2μF.  
Figure 5 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. The advantage of this method is that it provides  
low frequency input response; however, the limited gain  
bandwidth of any op amp or closed-loop amplifier will de-  
gradetheADCSFDRathighinputfrequencies.Additionally,  
wideband op amps or differential amplifiers tend to have  
high noise. As a result, the SNR will be degraded unless  
the noise bandwidth is limited prior to the ADC input.  
The internal programmable gain amplifier provides the  
internal reference voltage for the ADC. This amplifier has  
very stringent settling requirements and is not accessible  
for external use.  
TheSENSEpincanbedriven 5%aroundthenominal2.5V  
or 1.25V external reference inputs. This adjustment range  
can be used to trim the ADC gain error or other system  
gain errors. When selecting the internal reference, the  
SENSE pin should be tied to V as close to the converter  
DD  
Reference Operation  
as possible. If the sense pin is driven externally it should  
be bypassed to ground as close to the device as possible  
with 1μF (or larger) ceramic capacitor.  
Figure6showstheLTC2274referencecircuitryconsisting  
of a 2.5V bandgap reference, a programmable gain ampli-  
fier and control circuit. The LTC2274 has three modes of  
reference operation: Internal Reference, 1.25V external  
reference or 2.5V external reference. To use the internal  
PGA Pin  
The PGA pin selects between two gain settings for  
the ADC front-end. PGA = 0 selects an input range of  
reference, tie the SENSE pin to V . To use an external  
DD  
reference, simply apply either a 1.25V or 2.5V reference  
2.25V ; PGA = 1 selects an input range of 1.5V . The  
P-P  
P-P  
voltagetotheSENSEinputpin.Both1.25Vand2.5Vapplied  
2.25V input range has the best SNR; however, the distor-  
tion will be higher for input frequencies above 100MHz.  
For applications with high input frequencies, the low  
input range will have improved distortion; however, the  
SNR will be 2.4dB worse. See the Typical Performance  
Characteristics section of this datasheet.  
to SENSE will result in a full scale range of 2.25V (PGA  
P-P  
= 0). A 1.25V output V is provided for a common mode  
CM  
biasforinputdrivecircuitry.Anexternalbypasscapacitoris  
requiredfortheV output.Thisprovidesahighfrequency  
CM  
low impedance path to ground for internal and external  
circuitry. This is also the compensation capacitor for the  
LTC2274  
RANGE  
SELECT  
V
CM  
AND GAIN  
2.2μF  
12pF  
TIE TO V TO USE  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
DD  
INTERNAL  
ADC  
CONTROL  
INTERNAL 2.5V  
+
25Ω  
25Ω  
A
A
REFERENCE  
OR INPUT FOR  
EXTERNAL 2.5V  
REFERENCE  
OR INPUT FOR  
EXTERNAL 1.25V  
REFERENCE  
IN  
IN  
REFERENCE  
SENSE  
LTC2274  
ANALOG  
INPUT  
+
+
1x OR 2x  
CM  
2.5V  
BANDGAP  
REFERENCE  
12pF  
AMPLIFIER = LTC6600-20,  
LTC1993, ETC.  
2274 F05  
V
CM  
1.25V  
BUFFER  
Figure 5. DC Coupled Input with Differential Amplifier  
2.2μF  
2274 F06  
Figure 6. Reference Circuit  
2274f  
20  
LTC2274  
APPLICATIONS INFORMATION  
LTC2274  
V
DD  
TO INTERNAL  
ADC CLOCK  
DRIVERS  
1.6V  
6k  
V
DD  
V
CM  
1.25V  
+
ENC  
2.2μF  
LTC2274  
1.6V  
6k  
SENSE  
2.2μF  
V
DD  
6
2, 3  
3.3V  
1μF  
LTC6652-2.5  
4, 5, 7, 8  
ENC  
2274 F07  
2274 F08a  
Figure 7. A 2.25V Range ADC with  
an External 2.5V Reference  
Figure 8a. Equivalent Encode Input Circuit  
0.1μF  
+
T1  
ENC  
50Ω  
50Ω  
100Ω  
+
ENC  
LTC2274  
8.2pF  
V
= 1.6V  
THRESHOLD  
0.1μF  
LTC2274  
1.6V  
ENC  
0.1μF  
ENC  
0.1μF  
2274 F09  
2274 F08b  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 8b. Transformer Driven Encode  
Figure 9. Single-Ended ENC Drive,  
Not Recommended for Low Jitter  
3.3V  
3.3V  
MC100LVELT22  
130Ω  
Q0  
130Ω  
+
ENC  
D0  
LTC2274  
ENC  
Q0  
83Ω  
83Ω  
2274 F10  
Figure 10. ENC Drive Using a CMOS to PECL Translator  
2274f  
21  
LTC2274  
APPLICATIONS INFORMATION  
Driving the Encode Inputs  
For the ADC to operate properly, the internal CLK signal  
should have a 50% duty cycle. A duty cycle stabilizer cir-  
cuit has been implemented on chip to facilitate non-50%  
ENC duty cycles.  
The noise performance of the LTC2274 can depend on  
the encode signal quality as much as for the analog input.  
The encode inputs are intended to be driven differentially,  
primarily for noise immunity from common mode noise  
sources. Each input is biased through a 6k resistor to a  
1.6V bias. The bias resistors set the DC operating point  
fortransformercoupleddrivecircuitsandcansetthelogic  
threshold for single-ended drive circuits.  
Data Format  
The MSBINV pin selects the ADC data format. A low level  
selectsoffsetbinaryformat(code0correspondstoFS,and  
code 65535 corresponds to +FS). A high level on MSBINV  
selects2scomplementformat(code32768corresponds  
to –FS and code 32767 corresponds to +FS.  
Any noise present on the encode signal will result in ad-  
ditional aperture jitter that will be RMS summed with the  
inherent ADC aperture jitter.  
Shutdown  
In applications where jitter is critical (high input frequen-  
cies), take the following into consideration:  
A high level on both SHDN pins will shutdown the ADC  
and the serial interface and place the chip in a low cur-  
rent state.  
1. Differential drive should be used.  
2. Use as large an amplitude possible. If using trans-  
former coupling, use a higher turns ratio to increase the  
amplitude.  
Internal Dither  
The LTC2274 is a 16-bit ADC with a very linear transfer  
function;however,atlowinputlevelsevenslightimperfec-  
tions in the transfer function will result in unwanted tones.  
Small errors in the transfer function are usually a result  
of ADC element mismatches. An optional internal dither  
mode can be enabled to randomize the input location on  
the ADC transfer curve, resulting in improved SFDR for  
low signal levels.  
3. If the ADC is clocked with a fixed frequency sinusoidal  
signal, filter the encode signal to reduce wideband  
noise.  
4. Balance the capacitance and series resistance at both  
encode inputs such that any coupled noise will appear  
at both inputs as common mode noise.  
As shown in Figure 11, the output of the sample-and-hold  
amplifier is summed with the output of a dither DAC. The  
dither DAC is driven by a long sequence pseudo-random  
number generator; the random number fed to the dither  
DAC is also subtracted digitally from the ADC result. If the  
dither DAC is precisely calibrated to the ADC, very little  
of the dither signal will be seen at the output. The dither  
signal that does leak through will appear as white noise.  
The dither DAC is calibrated to result in less than 0.5dB  
elevation in the noise floor of the ADC, as compared to  
the noise floor with dither off.  
The encode inputs have a common mode range of 1.2V  
to V . Each input may be driven from ground to V for  
DD  
DD  
single-ended drive.  
Maximum and Minimum Conversion Rates  
The maximum conversion rate is 105Msps for the  
LTC2274.  
The lower limit of the LTC2274 sample rate is determined  
by the PLL minimum operating frequency of 20Msps.  
2274f  
22  
LTC2274  
APPLICATIONS INFORMATION  
LTC2274  
+
+
AIN  
CMLOUT  
16-BIT  
PIPELINED  
ADC CORE  
DIGITAL  
SUMMATION  
8b10b  
ENCODER  
ANALOG  
INPUT  
S/H  
AMP  
SERIALIZER  
AIN  
CMLOUT  
CLOCK/DUTY  
CYCLE  
CONTROL  
MULTIBIT DEEP  
PSEUDO-RANDOM  
NUMBER  
PRECISION  
DAC  
GENERATOR  
2274 F11  
+
ENC  
ENC  
DITH  
DITHER ENABLE  
HIGH = DITHER ON  
LOW = DITHER OFF  
Figure 11. Functional Equivalent Block Diagram of Internal Dither Circuit  
SERIALIZED DATA FRAME  
Figure12illustratesthegenerationofonecomplete8B/10B  
frame. The 8 most significant bits of the ADC are assigned  
to the first half of the frame, and the remaining 8 bits  
to the second half of the frame. Next, the two resulting  
octets are optionally scrambled and encoded into their  
corresponding 8B/10B code. Finally, the two 10-bit code  
groups are serialized and transmitted beginning with Bit  
0 of code group 1.  
Prior to serialization, the ADC data is encoded into the  
8B/10B format, which is DC balanced, and run-length  
limited. The receiver is required to lock onto the data  
and recover the clock with the use of a PLL. The 8B/10B  
format requires that the ADC data be broken up into 8-bit  
blocks (octets), which is encoded into 10-bit code groups  
applying the 8B/10B rules (refer to IEEE Std 802.3-2002  
Part 3, for a complete 8B/10B description).  
MSB  
ADC OUTPUT WORD  
LSB  
BIT  
15  
BIT  
14  
BIT  
13  
BIT  
12  
BIT  
11  
BIT  
10  
BIT  
9
BIT  
8
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
OCTET  
ASSIGNMENT  
H
G
F
E
D
C
B
A
H
G
F
E
D
C
B
A
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
FIRST OCTET  
SECOND OCTET  
OPTIONAL  
SCRAMBLER  
H
G
F
E
D
C
B
A
H
G
F
E
D
C
B
A
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
FIRST SCRAMBLED OCTET  
SECOND SCRAMBLED OCTET  
8B/10B  
ENCODER  
a
b
c
d
e
i
f
g
h
j
a
b
c
d
e
i
f
g
h
j
BIT  
0
BIT  
1
BIT  
2
BIT  
3
BIT  
4
BIT  
5
BIT  
6
BIT  
7
BIT  
8
BIT  
9
BIT  
0
BIT  
1
BIT  
2
BIT  
3
BIT  
4
BIT  
5
BIT  
6
BIT  
7
BIT  
8
BIT  
9
8B/10B CODE GROUP 1  
8B/10B CODE GROUP 2  
ONE FRAME  
SERIAL OUT  
BIT 0 OF CODE GROUP 1 IS TRANSMITTED FIRST  
2274 F12  
Figure 12. Evolution of One Transmitted Frame (Compare to IEEE Std 802.3-2002 Part 3, Figure 36-3)  
2274f  
23  
LTC2274  
APPLICATIONS INFORMATION  
t
N + 9  
AP  
N + 2  
N + 10  
ANALOG INPUT  
N
N + 8  
N + 1  
t
CONV  
+
ENC  
t
H
t
L
INTERNAL  
PARALLEL DATA  
N – 6  
N – 9  
N – 5  
N – 8  
N – 4  
N – 7  
N + 3  
N
N + 4  
N + 1  
INTERNAL  
8B/10B DATA  
LAT  
P
t
BIT  
SERIAL DATA OUT  
N – 10  
N – 9  
N – 8  
N – 1  
N
2274 F13  
Figure 13. Timing Relationship of Analog Sample to Serial Data Out  
Initial Frame Synchronization  
• The receiver searches for the expected preamble and  
waits for the correct reception of an adequate number  
of preamble characters.  
In the absence of a frame clock, it is necessary to deter-  
mine the start of each frame through a synchronization  
process. To establish frame synchronization, Figures 14  
and 15 illustrate the following sequence:  
• The receiver deactivates the synchronization request.  
• Upon detecting the deactivation of the synchroniza-  
tion request, the LTC2274 continues to transmit the  
synchronization preamble until the end of the frame.  
• The receiver issues a synchronization request via the  
synchronization interface.  
• If the synchronization request is active for more than  
one ENC clock cycle, the LTC2274 will transmit a  
synchronization preamble. When the ISMODE pin is  
low the transmitted preamble will consist of consecu-  
tive K28.5 comma symbols in conformance with the  
JESD204 specification. When the ISMODE pin is high,  
a series of idle ordered sets will be transmitted. The  
idle ordered sets consist of a K28.5 comma followed by  
either D5.6 or D16.2 as defined in IEEE Std 802.3-2002  
part3, Clause 36.2.4.12.  
• At the start of the next frame, the LTC2274 will begin  
transmitting data characters.  
• Thereceiverdesignatestherstdatacharacterreceived  
after the preamble transmission to be the start of the  
frame. The first octet of the frame contains the most  
significant byte of the ADC’s output word.  
2274f  
24  
LTC2274  
APPLICATIONS INFORMATION  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
N + 5  
ANALOG INPUT  
N + 1  
t
t
t
SU  
HD  
+
ENC  
CS(MIN)  
+
SYNC  
LAT  
t
SC  
CS(MAX)  
SERIAL DATA OUT  
N – 10  
N – 9  
N – 8  
N – 7  
K28.5 (x2)  
K28.5 (x2)  
2274 F14a  
Figure 14a. SYNC+ Low Transition to Comma Output Timing (ISMODE is Low)  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
ANALOG INPUT  
N + 1  
t
t
SU  
HD  
+
ENC  
t
CS(MIN)  
+
SYNC  
LAT  
t
SD  
CS(MAX)  
SERIAL DATA OUT  
K28.5 (x2)  
K28.5 (x2)  
K28.5 (x2)  
N – 7  
N – 6  
2274 F14b  
Figure 14b. SYNC+ High Transition to Data Output Timing (ISMODE is Low)  
2274f  
25  
LTC2274  
APPLICATIONS INFORMATION  
START  
WAIT FOR NEXT  
FRAME CLOCK  
SYNC  
REQUEST?  
NO  
YES  
NO  
YES  
IS ISMODE  
ENABLED?  
DATA TRANSMISSION  
FLOW (SEE FIGURE 18)  
NO  
YES  
NEGATIVE  
DISPARITY?  
TRANSMIT K28.5  
AS CODE GROUP 1  
TRANSMIT K28.5  
AS CODE GROUP 2  
(DISPARITY NOT OK)  
(DISPARITY IS OK)  
TRANSMIT K28.5  
AS CODE GROUP 1  
TRANSMIT K28.5  
AS CODE GROUP 1  
(NEGATIVE DISPARITY)  
(POSITIVE DISPARITY)  
TRANSMIT D5.6  
AS CODE GROUP 2  
TRANSMIT D16.2  
AS CODE GROUP 2  
(NEGATIVE DISPARITY)  
(NEGATIVE DISPARITY)  
2274 F15  
Figure 15. Initial Synchronization Flow Diagram  
Scrambling  
The scrambled data is converted into two valid 8B/10B  
code groups, constituting a complete frame. The 8B/10B  
code groups are then serialized and transmitted.  
To avoid spectral interference from the serial data output,  
an optional data scrambler is added between the ADC  
data and the 8B/10B encoder to randomize the spectrum  
of the serial link. The scrambler is enabled by setting the  
SCRAM pin to a high logic level. The polynomial used for  
the scrambler is 1 + x + x , which is a pseudo-random  
pattern repeating itself every 2 –1. Figure 16 illustrates  
The receiver is required to deserialize the data, decode  
the code-groups into octets and descramble them back  
to the original octets using the self-aligning descrambler  
shown in Figure 17. This descrambler is shown in 16-bit  
parallel form, which is an efficient implementation of the  
14  
15  
15  
14  
15  
the LTC2274 implementation of this polynomial in parallel  
form.  
(1 + x + x ) polynomial, operating at the frame clock  
rate (ADC sample rate).  
2274f  
26  
LTC2274  
APPLICATIONS INFORMATION  
SAMPLE_CLK  
Q
D0  
D1  
D2  
SS0  
SS1  
SS2  
SS3  
SS4  
SS5  
SS6  
SS7  
SF0  
SF1  
SF2  
SF3  
SF4  
SF5  
SF6  
D
C
FF  
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
D
C
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
D
C
D3  
SECOND  
OCTET  
SECOND  
SCRAMBLED  
OCTET  
D
C
D4  
D5  
D6  
D
C
D
C
D
C
D7  
FROM  
TO 8B/10B  
ENCODER  
D
C
ADC  
D8  
D
C
D9  
D10  
D11  
D
C
D
C
FIRST  
SCRAMBLED  
OCTET  
FIRST  
OCTET  
D
C
D12  
D13  
D13  
D
C
D
C
D
C
D15  
MSB  
SF7  
MSB  
2274 F16  
Figure 16. LTC2274 16-Bit 1 + x14 + x15 Parallel Scrambler  
2274f  
27  
LTC2274  
APPLICATIONS INFORMATION  
FRAME_CLK  
LSB  
D0  
SS0  
SS1  
SS2  
D
C
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
D1  
D2  
D3  
D4  
D5  
D
C
D
C
SS3  
SECOND  
SCRAMBLED  
OCTET  
D
C
SS4  
SS5  
SS6  
D
C
D
C
D6  
D7  
D
C
SS7  
FROM  
D
C
DESCRAMBLED  
ADC DATA  
8B/10B  
DECODER  
D8  
SF0  
SF1  
SF2  
D
C
D9  
D
C
D10  
D11  
D12  
D13  
D14  
D
C
SF3  
FIRST  
SCRAMBLED  
OCTET  
D
C
SF4  
SF5  
SF6  
D
C
D
C
D
C
D15  
MSB  
SF7  
MSB  
2274 F17  
Figure 17. Required 16-Bit 1 + x14 + x15 Parallel Descrambler  
2274f  
28  
LTC2274  
APPLICATIONS INFORMATION  
Frame Alignment Monitoring  
previous frame, the LTC2274 will replace the second  
code group with the control character K28.7 before  
serialization. However, if a K28.7 symbol was already  
transmittedinthepreviousframe,theactualcodegroup  
will be transmitted.  
Aftertheinitialsynchronizationhasbeenestablished,itmay  
be desirable to periodically verify that frame alignment is  
being maintained. The receiver may issue a synchroniza-  
tion request at any time, but data will be lost during the  
resynchronization interval.  
• Upon receiving a K28.7 symbol, the receiver is required  
to replace it with the data decoded at the same position  
of the previous frame.  
To verify frame alignment without the loss of data, frame  
alignment monitoring is enabled by setting the FAM pin  
to a high level. In this mode, predetermined data in the  
second code group of the frame is substituted with the  
control character K28.7. The receiver is required to detect  
the K28.7 character and replace it with the original data. In  
this way, the second code group may be discerned from  
the first, and the receiver is able to periodically verify the  
frame alignment without the loss of data (refer to Table 1  
and the flow diagram of Figure 18). There are two frame  
alignment monitoring modes summarized in Table 1.  
FAM mode 2 is implemented when FAM is high and  
SCRAM is high:  
• When the data in the second code group of the current  
frame equals D28.7, the LTC2274 will replace this data  
with K28.7 before serialization.  
• Upon receiving a K28.7 symbol, the receiver is required  
to replace it with D28.7.  
With FAM enabled the receiver is required to search for  
the presence of K28.7 symbols in the data stream. If two  
successive K28.7 symbols are detected at the same posi-  
tion other than the assumed end of frame, the receiver will  
realign its frame boundary to the new position.  
FAM mode 1 is implemented when FAM is high, and  
SCRAM is low:  
• When the data in the second code group of the current  
frame equals the data in the second code group of the  
Table 1. Frame Alignment Monitoring Modes  
SCRAM PIN  
DDSYNC PIN  
ACTION  
FAM Mode 1  
Low  
High  
The second code group is replaced with K28.7 if  
nd  
it is equal to the 2 Code Group of the previous  
frame  
FAM Mode 2  
High  
High  
The second code group is replaced with K28.7 if  
it is equal to D28.7  
FAM OFF  
X
Low  
No K28.7 substitutions will take place  
2274f  
29  
LTC2274  
APPLICATIONS INFORMATION  
START  
SCRAMBLE ADC DATA  
IF SCRAM IS ENABLED  
GENERATE 8B/10B  
CODE-GROUPS 1 AND 2  
NO  
YES (FRAME ALIGNMENT MONITORING IS ENABLED)  
IS FAM  
ENABLED?  
TRANSMIT  
CODE GROUP 1  
TRANSMIT  
CODE GROUP 1  
NO  
YES  
NO  
(DATA SCRAMBLING IS ENABLED)  
IS CODE  
IS SCRAM  
ENABLED?  
TRANSMIT  
CODE GROUP 2  
IS CODE  
GROUP 2 =  
CODE GROUP 2  
OF LAST  
GROUP 2 =  
D28.7?  
YES  
NO  
YES  
FRAME?  
TRANSMIT  
CODE GROUP 2  
TRANSMIT  
CODE GROUP 2  
TRANSMIT K28.7  
AS CODE GROUP 2  
WAS K28.7  
TRANSMITTED  
IN LAST  
NO  
YES  
FRAME?  
TRANSMIT K28.7  
AS CODE GROUP 2  
TRANSMIT  
CODE GROUP 2  
END  
2274 F18  
Figure 18. Data Transmission Flow Diagram  
PLL Operation  
Serial Test Patterns  
ThePLL hasbeendesignedtoaccommodate awide range  
of sample rates. The SRR0 and SRR1 pins are used to  
configure the PLL for the intended sample rate range.  
Table 2 summarizes the sample clock ranges available  
to the user.  
Tofacilitatetestingoftheserialinterface,threetestpatterns  
are selectable via pins PAT0 and PAT1. The available test  
patterns are described in Table 3. A K28.5 comma may be  
usedasafourthtestpatternbyrequestingsynchronization  
+
through the SYNC /SYNC pins.  
Table 2. Sample Rate Ranges  
Table 3. Test Patterns  
SRR1  
SRR0  
SAMPLE RATE RANGE  
20Msps > FS ≥ 35Msps  
30Msps > FS ≥ 65Msps  
60Msps > FS ≥ 105Msps  
PAT1  
PAT0  
TEST PATTERNS  
0
1
1
x
0
1
0
0
0
1
ADC Data  
1010101010 Pattern  
(8B/10B Code Group D21.5)  
9
11  
1
1
0
1
1+ x + x Pseudo Random Pattern  
14  
15  
1+ x + x Pseudo Random Pattern  
2274f  
30  
LTC2274  
APPLICATIONS INFORMATION  
High Speed CML Outputs  
Grounding and Bypassing  
The CML outputs must be terminated for proper opera-  
The LTC2274 require a printed circuit board with a  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTC2274 has been optimized for a flowthrough layout so  
that the interaction between inputs and digital outputs is  
minimized. Layout for the printed circuit board should  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
tion. The OV supply voltage and the termination voltage  
DD  
determine the common mode output level of the CML  
outputs. ForproperoperationoftheCMLdriver, theoutput  
common mode voltage should be greater than 1V.  
The directly-coupled termination mode of Figure 19a is  
recommended when the receiver termination voltage is  
within the range of 1.2V to 3.3V. When the CML outputs  
are directly-coupled to the 50Ω termination resistors, the  
OV supply voltage serves as the receiver termination  
DD  
voltage, and the output common mode voltage will be  
High quality ceramic bypass capacitors should be used  
approximately 200mV lower than OV .  
DD  
at the V  
V
, and OV pins. Bypass capacitors must  
DD, CM DD  
be located as close to the pins as possible. The traces  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
The directly-coupled differential termination of Figure 19b  
maybeusedintheabsenceofareceiverterminationvoltage  
within the required range. In this case, the common mode  
voltage is shifted down to approximately 400mV below  
The LTC2274 differential inputs should run parallel and  
close to each other. The input traces should be as short  
as possible to minimize capacitance and to minimize  
noise pickup.  
OV , requiring an OV in the range of 1.4V to 3.3V.  
DD  
DD  
If the serial receiver’s common mode input requirements  
are not compatible with the directly-coupled termination  
modes, the DC balanced 8B/10B encoded data will permit  
the addition of DC blocking capacitors as shown in Figure  
19c. In this AC-coupled mode, the termination voltage is  
determined by the receiver’s requirements. The coupling  
capacitorsshouldbeselectedappropriatelyfortheintended  
operating bit-rate, usually between 1nF to 10nF. In the AC-  
coupled mode, the output common mode voltage will be  
Heat Transfer  
Most of the heat generated by the LTC2274 is transferred  
from the die through the bottom-side exposed pad. For  
good electrical and thermal performance, the exposed  
pad must be soldered to a large grounded pad on the PC  
board. It is critical that the exposed pad and all ground  
pins are connected to a ground plane of sufficient area  
with as many vias as possible.  
approximately 400mV below OV , so the OV supply  
DD  
DD  
voltage should be in the range of 1.4V to 3.3V.  
2274f  
31  
LTC2274  
APPLICATIONS INFORMATION  
SERIAL CML DRIVER  
SERIAL CML RECEIVER  
1.2V TO 3.3V  
OV  
DD  
+
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
TRANSMISSION LINE  
CMLOUT  
CMLOUT  
+
DATA  
DATA  
50Ω  
TRANSMISSION LINE  
16mA  
GND  
2274 F19a  
Figure 19a. CML Termination, Directly-Coupled Mode (Preferred)  
SERIAL CML DRIVER  
SERIAL CML RECEIVER  
OV  
DD  
+
1.4V TO 3.3V  
50Ω  
50Ω  
50Ω  
TRANSMISSION LINE  
CMLOUT  
100Ω  
CMLOUT  
+
DATA  
DATA  
50Ω  
TRANSMISSION LINE  
16mA  
GND  
2274 F19b  
Figure 19b. CML Termination, Directly-Coupled Differential Mode  
2274f  
32  
LTC2274  
APPLICATIONS INFORMATION  
SERIAL CML DRIVER  
SERIAL CML RECEIVER  
1.4V TO 3.3V  
VTERM  
OV  
DD  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
0.01μF  
TRANSMISSION LINE  
+
CMLOUT  
CMLOUT  
0.01μF  
+
DATA  
DATA  
50Ω  
TRANSMISSION LINE  
16mA  
GND  
2274 F19c  
Figure 19c. CML Termination, AC-Coupled Mode  
2274f  
33  
LTC2274  
TYPICAL APPLICATIONS  
Silkscreen Top  
Top Side  
2274f  
34  
LTC2274  
TYPICAL APPLICATIONS  
Inner Layer 2  
Inner Layer 3  
2274f  
35  
LTC2274  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5  
2274f  
36  
LTC2274  
TYPICAL APPLICATIONS  
Bottom Side  
Silkscreen Bottom  
2274f  
37  
LTC2274  
TYPICAL APPLICATIONS  
C C  
V
G N D  
C C  
V
S S  
V
D D  
V
S C R A M P 0  
S S  
V
M F A  
P D S E R  
P D A D C  
P 1  
P 2  
P 3  
M S B I N V P 4  
N C  
N C  
N C  
N C  
P G A  
1 T P A  
0 T P A  
P 5  
P 6  
P 7  
C C  
V
S S  
V
P B U S 1 5  
P B U S 1 4  
R X D 1 5  
R X D 1 4  
T X D 1 5  
G N D  
G N D  
P B U S 1 3  
P B U S 1 2  
R X D 1 3  
R X D 1 2  
T X D 1 4  
T X D 1 3  
T X D 1 2  
T X D 1 1  
G N D  
P B U S 1 1  
P B U S 1 0  
R X D 1 1  
R X D 1 0  
D D  
V
D D  
V
P B U S 9  
P B U S 8  
R X D 9  
R X D 8  
D I T H  
P 0  
T X D 1 0  
T X D 9  
S S  
V
I S M O D E P 1  
P L L 0  
P 2  
P 3  
P 4  
P 5  
P 6  
P 7  
T X D 8  
R X _ C L K  
R X D 7  
D D  
V
P L L 1  
P B U S 7  
R X _ E R  
N C  
N C  
N C  
N C  
G T X _ C L K  
T X D 7  
T X D 6  
G N D  
G N D  
P B U S 6  
P B U S 5  
R X D 6  
R X D 5  
T X D 5  
T X D 4  
T X D 3  
P B U S 4  
P B U S 3  
R X D 4  
R X D 3  
D D  
V
D D  
V
P B U S 2  
R X D 2  
T X D 2  
T X D 1  
T X D 0  
P B U S 1  
P B U S 0  
R X D 1  
R X D 0  
M S B I N V  
P G A  
1 T P A  
0 T P A  
S C R A M  
M F A  
P D S E R  
P D A D C  
P L L 1  
P L L 0  
I S M O D E  
D I T H  
G N D  
O G N D  
O G N D  
O G N D  
O G N D  
D D  
D D  
O V  
O V  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
D D  
V
D D  
V
D D  
V
D D  
V
G P  
G P  
G N D  
G N D  
G N D  
G N D  
2274f  
38  
LTC2274  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 p0.05  
6.50 p0.05  
5.10 p0.05  
4.42 p0.05  
4.50 p0.05  
(4 SIDES)  
4.42 p0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p 0.05  
R = 0.115  
TYP  
6.00 p 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 p 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 s 45o  
CHAMFER  
4.42 p0.10  
4.50 REF  
(4-SIDES)  
4.42 p0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
2274f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
39  
LTC2274  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1993-2  
LTC1994  
High Speed Differential Op Amp  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
Low Noise, Low Distortion Fully Differential Input/  
Output Amplifier/Driver  
LTC2215  
LTC2216  
LTC2217  
LTC2202  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
LTC2208  
LTC2209  
LTC2220  
LTC2220-1  
LTC2224  
LTC2249  
LTC2250  
LTC2251  
LTC2252  
LTC2253  
LTC2254  
LTC2255  
LTC2284  
LTC2299  
LTC5512  
16-Bit, 65Msps, Low Noise ADC  
16-Bit, 80Msps, Low Noise ADC  
16-Bit, 105Msps, Low Noise ADC  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
16-Bit, 25Msps, 3.3V ADC, Lowest Noise  
16-Bit, 40Msps, 3.3V ADC  
700mW, 81.5dB SNR, 100dB SFDR, 64-Pin QFN  
970mW, 81.3dB SNR, 100dB SFDR, 64-Pin QFN  
1190mW, 81.2dB SNR, 100dB SFDR, 64-Pin QFN  
140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
220mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
480mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
590mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
725mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
900mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Pin QFN  
1.45W, 77.1dB SNR, 100dB SFDR, 64-Pin QFN  
890mW, 67.5dB SNR, 9mm × 9mm QFN Package  
910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
230mW, 73dB SNR, 5mm × 5mm QFN Package  
320mW, 61.6dB SNR, 5mm × 5mm QFN Package  
395mW, 61.6dB SNR, 5mm × 5mm QFN Package  
320mW, 70.2dB SNR, 5mm × 5mm QFN Package  
395mW, 70.2dB SNR, 5mm × 5mm QFN Package  
320mW, 72.5dB SNR, 5mm × 5mm QFN Package  
395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN  
540mW, 72.4dB SNR, 88dB SFDR, 64-Pin QFN  
230mW, 71.6dB SNR, 5mm x 5mm QFN Package  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
16-Bit, 65Msps, 3.3V ADC  
16-Bit, 80Msps, 3.3V ADC  
16-Bit, 105Msps, 3.3V ADC  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
16-Bit, 160Msps, ADC, LVDS Outputs  
12-Bit, 170Msps ADC  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High IF Sampling  
14-Bit, 80Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 125Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
14-Bit, 105Msps ADC  
14-Bit, 125Msps, 3V ADC, Lowest Power  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
Dual 14-Bit, 80Msps ADC  
DC-3GHz High Signal Level  
Downconverting Mixer  
LTC5515  
LTC5516  
LTC5517  
LTC5522  
LTC5527  
LTC5579  
LTC6400-20  
1.5 GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 20dBm at 1.9GHz, Integrated LO Quadrature Generator  
High IIP3: 21.5dBm at 900MHz, Integrated LO Quadrature Generator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
800MHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
600MHz to 2.7GHz High Linearity Downconverting  
Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz,  
NF = 12.5dB, 50Ω Single-Ended RF and LO Ports  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 23.5dBm IIP3 at 1900MHz, I = 78mA,  
CC  
Conversion Gain = 2dB  
1.5GHz to 3.8GHz High Linearity Upconverting  
Mixer  
3.3V Supply, 27.3dBm OIP3 at 2.14GHz, Conversion Gain = 2.6dB at 2.14GHz  
1.8GHz Low Noise, Low Distortion Differential ADC  
Driver for 300MHz IF  
Fixed Gain 10V/V, 2.1nV√Hz Total Input Noise, 3mm × 3mm QFN-16 Package  
2274f  
LT 1008 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY