LTC2273CUJ [Linear]

16-Bit, 80Msps/65Msps Serial Output ADC; 16位,80Msps /支持65Msps串行输出ADC
LTC2273CUJ
型号: LTC2273CUJ
厂家: Linear    Linear
描述:

16-Bit, 80Msps/65Msps Serial Output ADC
16位,80Msps /支持65Msps串行输出ADC

转换器 模数转换器
文件: 总44页 (文件大小:766K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2273/LTC2272  
16-Bit, 80Msps/65Msps  
Serial Output ADC  
FEATURES  
DESCRIPTION  
The LTC®2273/LTC2272 are 80Msps/65Msps, 16-bit A/D  
converters with a high speed serial interface. They are  
designed for digitizing high frequency, wide dynamic  
range signals with an input bandwidth of 700MHz. The  
input range of the ADC can be optimized using the PGA  
front end. The output data is serialized according to the  
JEDEC serial interface for data converters specification  
(JESD204).  
n
High Speed Serial Interface (JESD204)  
n
Sample Rate: 80Msps/65Msps  
n
77.7dBFS Noise Floor  
100dB SFDR  
SFDR >90dB at 140MHz (1.5V Input Range)  
PGA Front End (2.25V or 1.5V Input Range)  
n
n
P-P  
n
P-P  
P-P  
n
n
n
n
n
n
700MHz Full Power Bandwidth S/H  
Optional Internal Dither  
Single 3.3V Supply  
The LTC2273/LTC2272 are perfect for demanding applica-  
tions where it is desirable to isolate the sensitive analog  
circuits from the noisy digital logic. The AC performance  
includes a 77.7dB Noise Floor and 100dB spurious free  
dynamic range (SFDR). Ultra low internal jitter of 80fs  
RMS allows undersampling of high input frequencies  
with excellent noise performance. Maximum DC specs  
include 4.5LSB ꢀNL and 1LSB DNL (no missing codes)  
over temperature.  
Power Dissipation: 1100mW/990mW  
Clock Duty Cycle Stabilizer  
Pin Compatible Family  
105Msps: LTC2274  
80Msps: LTC2273  
65Msps: LTC2272  
n
40-Pin 6mm × 6mm QFN Package  
APPLICATIONS  
+
The encode clock inputs, ENC and ENC , may be driven  
differentially or single-ended with a sine wave, PECL,  
LVDS, TTL or CMOS inputs. A clock duty cycle stabilizer  
allows high performance at full speed with a wide range  
of clock duty cycles.  
n
Telecommunications  
n
Receivers  
n
Cellular Base Stations  
n
Spectrum Analysis  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
ꢀmaging Systems  
n
ATE  
TYPICAL APPLICATION  
3.3V  
FAM  
SENSE  
+
SYNC  
128k Point FFT, fIN = 4.93MHz,  
SYNC–  
1.25V  
COMMON MODE  
BꢀAS VOLTAGE  
ꢀNTERNAL ADC  
REFERENCE  
GENERATOR  
–1dBFS, PGA = 0  
V
ASꢀC OR FPGA  
50Ω  
CM  
8B/10B  
ENCODER  
1.2V TO 3.3V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OV  
DD  
2.2μF  
16  
20  
0.1μF  
+
50Ω  
CMLOUT  
+
+
A
ꢀN  
SERꢀAL  
RECEꢀVER  
+
SERꢀALꢀZER  
16-BꢀT  
PꢀPELꢀNED  
ADC CORE  
ANALOG  
ꢀNPUT  
S/H  
AMP  
CORRECTꢀON  
LOGꢀC  
CMLOUT  
–90  
A
ꢀN  
CLOCK  
–100  
–110  
–120  
–130  
3.3V  
V
DD  
SCRAMBLER/  
PATTERN  
GENERATOR  
20X  
PLL  
CLOCK/DUTY  
CYCLE  
0
10  
20  
30  
40  
CONTROL  
0.1μF 0.1μF  
GND  
FREQUENCY (MHz)  
22732 G04  
22732 TA01  
+
ENC  
ENC  
PGA DꢀTH MSBꢀNV SHDN  
PAT1 PAT0 SCRAM SRR1 SRR0  
22732f  
1
LTC2273/LTC2272  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
OVDD = VDD (Notes 1, 2)  
TOP VꢀEW  
Supply Voltage (V ) ................................... –0.3V to 4V  
DD  
40 39 38 37 36 35 34 33 32 31  
Analog ꢀnput Voltage (Note 3).......–0.3V to (V + 0.3V)  
DD  
V
V
1
2
3
4
5
6
7
8
9
30  
29  
28  
GND  
DD  
DD  
Digital ꢀnput Voltage......................–0.3V to (V + 0.3V)  
DD  
+
SYNC  
SYNC  
Digital Output Voltage ................ –0.3V to (OV + 0.3V)  
GND  
+
DD  
A
27 GND  
26 GND  
ꢀN  
Power Dissipation.............................................2000mW  
A
ꢀN  
41  
Operating Temperature Range  
GND  
GND  
GND  
25  
OV  
DD  
+
24 CMLOUT  
LTC2273C/LTC2272C ............................... 0°C to 70°C  
LTC2273ꢀ/LTC2272ꢀ.............................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
23  
22  
21  
CMLOUT  
OV  
+
ENC  
DD  
GND  
ENC 10  
11 12 13 14 15 16 17 18 19 20  
Digital Output Supply Voltage (OV ).......... –0.3V to 4V  
DD  
UJ PACKAGE  
40-LEAD (6mm s 6mm) PLASTꢀC QFN  
T
= 150°C, θ = 22°C/W  
JA  
JMAX  
EXPOSED PAD (PꢀN 41) ꢀS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2273CUJ#PBF  
LTC2273ꢀUJ#PBF  
LTC2272CUJ#PBF  
LTC2272ꢀUJ#PBF  
LEAD BASED FINISH  
LTC2273CUJ  
TAPE AND REEL  
PART MARKING*  
LTC2273UJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2273CUJ#TRPBF  
LTC2273ꢀUJ#TRPBF  
LTC2272CUJ#TRPBF  
LTC2272ꢀUJ#TRPBF  
TAPE AND REEL  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
PACKAGE DESCRIPTION  
LTC2273UJ  
–40°C to 85°C  
0°C to 70°C  
LTC2272UJ  
LTC2272UJ  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
LTC2273UJ  
LTC2273CUJ#TR  
LTC2273ꢀUJ#TR  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
LTC2273ꢀUJ  
LTC2273UJ  
–40°C to 85°C  
0°C to 70°C  
LTC2272CUJ  
LTC2272CUJ#TR  
LTC2272ꢀUJ#TR  
LTC2272UJ  
LTC2272ꢀUJ  
LTC2272UJ  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.2  
1.5  
0.3  
1
MAX  
4
UNITS  
LSB  
ꢀntegral Linearity Error  
ꢀntegral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog ꢀnput (Note 5) T = 25°C  
A
l
l
l
Differential Analog ꢀnput (Note 5)  
Differential Analog ꢀnput  
(Note 6)  
4.5  
1
LSB  
LSB  
8.5  
mV  
Offset Drift  
10  
μV/°C  
%FS  
l
Gain Error  
External Reference  
0.2  
1.5  
Full-Scale Drift  
ꢀnternal Reference  
External Reference  
30  
15  
ppm/°C  
ppm/°C  
Transition Noise  
3
LSB  
RMS  
22732f  
2
LTC2273/LTC2272  
ANALOG INPUT The l denotes denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.5 or 2.25  
1.25  
MAX  
UNITS  
+
l
l
l
V
ꢀN  
3.135V ≤ V ≤ 3.465V  
V
Analog ꢀnput Range (A  
A
ꢀN  
)
DD  
P-P  
ꢀN  
V
Analog ꢀnput Common Mode  
Differential ꢀnput (Note 7)  
1
1.5  
1
V
μA  
μA  
ꢀN, CM  
+
Analog ꢀnput Leakage Current  
SENSE ꢀnput Leakage Current  
Analog ꢀnput Capacitance  
–1  
–3  
0V ≤ A  
,
A
≤ V (Note 10)  
ꢀN  
ꢀN  
ꢀN DD  
0V ≤ SENSE ≤ V (Note 11)  
3
SENSE  
DD  
+
C
ꢀN  
Sample Mode ENC < ENC  
Hold Mode ENC > ENC  
6.7  
1.8  
pF  
pF  
+
t
t
Sample-and-Hold  
1
ns  
AP  
Acquisition Delay Time  
Sample-and-Hold  
Acquisition Delay Time Jitter  
80  
fs  
RMS  
JꢀTTER  
+
CMRR  
Analog ꢀnput  
Common Mode Rejection Ratio  
1V < (A = A ) <1.5V  
80  
dB  
ꢀN  
ꢀN  
BW-3dB  
Full Power Bandwidth  
700  
MHz  
R ≤ 25Ω  
S
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
LTC2273  
TYP  
LTC2272  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
77.6  
75.4  
77.6  
75.4  
dBFS  
dBFS  
15MHz ꢀnput (2.25V Range, PGA = 0), T = 25°C  
76.5  
76.2  
77.5  
77.2  
75.3  
76.5  
76.2  
77.5  
77.2  
75.3  
dBFS  
dBFS  
dBFS  
A
l
l
15MHz ꢀnput (2.25V Range, PGA = 0)  
15MHz ꢀnput (1.5V Range, PGA = 1)  
70MHz ꢀnput (2.25V Range, PGA = 0)  
77.2  
75.1  
74.8  
77.2  
75.1  
74.8  
dBFS  
dBFS  
dBFS  
70MHz ꢀnput (1.5V Range, PGA = 1), T = 25°C  
74.5  
74.2  
74.5  
74.2  
A
70MHz ꢀnput (1.5V Range, PGA = 1)  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
76.3  
74.5  
76.3  
74.5  
dBFS  
dBFS  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
75.9  
74.3  
75.9  
74.3  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
100  
100  
dBc  
dBc  
nd  
rd  
Range 2 or 3 Harmonic  
15MHz ꢀnput (2.25V Range, PGA = 0), T = 25°C  
85  
84  
95  
95  
85  
84  
95  
95  
dBc  
dBc  
dBc  
A
l
l
15MHz ꢀnput (2.25V Range, PGA = 0)  
15MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
70MHz ꢀnput (2.25V Range, PGA = 0)  
86  
94  
92  
86  
94  
92  
dBc  
dBc  
dBc  
70MHz ꢀnput (1.5V Range, PGA = 1), T = 25°C  
84  
83  
84  
83  
A
70MHz ꢀnput (1.5V Range, PGA = 1)  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
85  
90  
85  
90  
dBc  
dBc  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
80  
85  
80  
85  
dBc  
dBc  
22732f  
3
LTC2273/LTC2272  
DYNAMIC ACCURACY  
The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS unless otherwise noted. (Note 4)  
LTC2273  
TYP  
LTC2272  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX UNITS  
SFDR  
Spurious Free Dynamic  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
100  
100  
dBc  
dBc  
th  
Range 4 Harmonic or  
Higher  
l
l
15MHz ꢀnput (2.25V Range, PGA = 0)  
15MHz ꢀnput (1.5V Range, PGA = 1)  
90  
90  
100  
100  
90  
90  
100  
100  
dBc  
dBc  
70MHz ꢀnput (2.25V Range, PGA = 0)  
70MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
100  
100  
dBc  
dBc  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
95  
100  
95  
100  
dBc  
dBc  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
90  
95  
90  
95  
dBc  
dBc  
S/(N+D) Signal-to-Noise  
Plus Distortion Ratio  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
77.5  
75.3  
77.5  
75.3  
dBFS  
dBFS  
15MHz ꢀnput (2.25V Range, PGA = 0), T = 25°C  
76.3  
75.9  
77.4  
77  
76.3  
75.9  
77.4  
77  
dBFS  
dBFS  
dBFS  
A
l
l
15MHz ꢀnput (2.25V Range, PGA = 0  
15MHz ꢀnput (1.5V Range, PGA = 1)  
75.2  
75.2  
70MHz ꢀnput (2.25V Range, PGA = 0)  
76.7  
75  
74.7  
76.7  
75  
74.7  
dBFS  
dBFS  
dBFS  
70MHz ꢀnput (1.5V Range, PGA = 1), T = 25°C  
74.4  
74.1  
74.4  
74.1  
A
70MHz ꢀnput (1.5V Range, PGA = 1)  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
75.3  
74.3  
75.3  
74.3  
dBFS  
dBFS  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
73.4  
73.4  
73.4  
73.4  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic  
Range at –25dBFS Dither  
“OFF”  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
105  
105  
105  
105  
dBFS  
dBFS  
15MHz ꢀnput (2.25V Range, PGA = 0)  
15MHz ꢀnput (1.5V Range, PGA = 1)  
105  
105  
105  
105  
dBFS  
dBFS  
70MHz ꢀnput (2.25V Range, PGA = 0)  
70MHz ꢀnput (1.5V Range, PGA = 1)  
105  
105  
105  
105  
dBFS  
dBFS  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
100  
100  
dBFS  
dBFS  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
100  
100  
100  
100  
dBFS  
dBFS  
SFDR  
Spurious Free Dynamic  
Range at –25dBFS Dither  
“ON”  
5MHz ꢀnput (2.25V Range, PGA = 0)  
5MHz ꢀnput (1.5V Range, PGA = 1)  
115  
115  
115  
115  
dBFS  
dBFS  
l
15MHz ꢀnput (2.25V Range, PGA = 0)  
15MHz ꢀnput (1.5V Range, PGA = 1)  
97  
115  
115  
97  
115  
115  
dBFS  
dBFS  
70MHz ꢀnput (2.25V Range, PGA = 0)  
70MHz ꢀnput (1.5V Range, PGA = 1)  
115  
115  
115  
115  
dBFS  
dBFS  
140MHz ꢀnput (2.25V Range, PGA = 0)  
140MHz ꢀnput (1.5V Range, PGA = 1)  
110  
110  
110  
110  
dBFS  
dBFS  
170MHz ꢀnput (2.25V Range, PGA = 0)  
170MHz ꢀnput (1.5V Range, PGA = 1)  
105  
105  
105  
105  
dBFS  
dBFS  
22732f  
4
LTC2273/LTC2272  
COMMON MODE BIAS CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.25  
40  
1
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
= 0  
= 0  
1.15  
1.35  
CM  
CM  
CM  
CM  
OUT  
OUT  
ppm/°C  
l
l
l
3.135V ≤ V ≤ 3.465V  
mV/V  
Ω
DD  
–1mA ≤ | ꢀ  
| ≤ 1mA  
2
OUT  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Encode Inputs (ENC , ENC )  
l
V
Differential ꢀnput Voltage  
(Note 7)  
0.2  
1.4  
V
V
ꢀD  
V
Common Mode ꢀnput Voltage ꢀnternally Set  
Externally Set (Note 7)  
1.6  
ꢀCM  
3.0  
R
ꢀnput Resistance  
(See Figure 2)  
6
3
k
Ω
ꢀN  
C
ꢀN  
ꢀnput Capacitance  
pF  
+
SYNC Inputs (SYNC , SYNC )  
l
V
SYNC Differential ꢀnput  
(Note 7)  
0.2  
1.1  
V
V
SꢀD  
Voltage  
V
SYNC Common Mode ꢀnput  
Voltage  
ꢀnternally Set  
Externally Set (Note 7)  
1.6  
SꢀCM  
2.2  
R
SYNC ꢀnput Resistance  
SYNC ꢀnput Capacitance  
16.5  
3
k
Ω
SꢀN  
C
SꢀN  
pF  
Logic Inputs (DITH, PGA, MSBINV, SCRAM, FAM, SHDN, SRR1, SRR0, ISMODE, PAT1, PAT0)  
l
l
l
V
High Level ꢀnput Voltage  
Low Level ꢀnput Voltage  
ꢀnput Current  
V
DD  
V
DD  
V
ꢀN  
= 3.3V  
= 3.3V  
2
V
V
ꢀH  
ꢀL  
V
0.8  
10  
= 0V to V  
μA  
pF  
ꢀN  
DD  
C
ꢀN  
ꢀnput Capacitance  
1.5  
+
High-Speed Serial Outputs (CMLOUT , CMLOUT )  
V
V
V
Output High Level  
Directly-Coupled 50Ω to OV  
OV  
DD  
DD  
OV – 0.2  
DD  
V
V
V
OH  
DD  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.2  
Output Low Level  
Directly-Coupled 50Ω to OV  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.4  
V
V
V
OL  
DD  
DD  
OV – 0.6  
DD  
OV – 0.6  
DD  
Output Common Mode  
Voltage  
Directly-Coupled 50Ω to OV  
Directly-Coupled 100Ω Differential  
AC-Coupled  
OV – 0.2  
V
V
V
OCM  
DD  
DD  
OV – 0.4  
DD  
OV – 0.4  
DD  
l
R
OUT  
Output Resistance  
Single-Ended Differential  
35  
50  
100  
65  
Ω
Ω
22732f  
5
LTC2273/LTC2272  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
LTC2273  
TYP  
3.3  
LTC2272  
TYP  
3.3  
SYMBOL PARAMETER  
CONDITIONS  
SHDN = V  
MIN  
MAX  
MIN  
MAX UNITS  
l
l
V
P
Analog Supply Voltage  
Shutdown Power  
3.135  
3.465 3.135  
3.465  
V
DD  
5
5
mW  
SHDN  
DD  
OV  
Output Supply Voltage  
CMLOUT Directly-Coupled, 50Ω to OV (Note 7)  
CMLOUT Directly-Coupled, 100Ω Diff. (Note 7)  
CMLOUT AC-Coupled (Note 7)  
1.2  
1.4  
1.4  
V
V
V
1.2  
1.4  
1.4  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
l
l
Analog Supply Current  
Output Supply Current  
DC ꢀnput  
233  
370  
300  
340  
mA  
VDD  
CMLOUT Directly-Coupled, 50Ω to OV  
CMLOUT Directly-Coupled, 100Ω Diff.  
CMLOUT AC-Coupled  
8
16  
16  
8
16  
16  
mA  
mA  
mA  
OVDD  
DD  
l
P
Power Dissipation  
DC ꢀnput  
1100 1221  
990  
1122  
mW  
DꢀS  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
LTC2273  
TYP  
LTC2272  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
MHz  
s
l
f
t
t
t
t
t
t
Sampling Frequency  
(Note 9)  
20  
80  
20  
65  
S
Conversion Period  
1/f  
S
1/f  
S
CONV  
L
l
l
ENC Clock Low Time  
(Note 7)  
(Note 7)  
4.06  
4.06  
6.25  
6.25  
0.7  
25  
25  
5.03  
5.03  
7.69  
7.69  
0.7  
25  
25  
ns  
ENC Clock High Time  
ns  
H
Sample-and-Hold Aperture Delay  
Period of a Serial Bit  
ns  
AP  
, Uꢀ  
t
/20  
CONV  
t
/20  
CONV  
s
BꢀT  
l
l
Total Jitter of CMLOUT (P-P)  
BER = 1E–12 (Note 7)  
0.35  
0.35  
Uꢀ  
JꢀT  
t , t  
R
Differential Rise and Fall Time of  
CMLOUT (20% to 80%)  
R
TERM  
= 50Ω, C = 2pF  
50  
110  
50  
110  
ps  
F
L
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
l
l
l
t
SU  
t
HD  
t
CS  
SYNC to ENC Clock Setup Time  
ENC Clock to SYNC Hold Time  
ENC Clock to SYNC Delay  
2
2
ns  
ns  
2.5  
2.5  
t
t
– t  
CONV SU  
t
t – t  
CONV SU  
ns  
HD  
HD  
LAT  
LAT  
LAT  
Pipeline Latency  
9
3
2
9
3
2
Cycles  
Cycles  
Cycles  
P
Latency from SYNC Active to COMMA Out  
Latency from SYNC Release to DATA Out  
SC  
SD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Offset error is the offset voltage measured from –1/2LSB when the  
output code flickers between 0000 0000 0000 0000 and 1111 1111 1111  
1111 in 2’s complement output mode.  
Note 7: Guaranteed by design, not subject to test.  
Note 2: All voltage values are with respect to GND (unless otherwise  
noted).  
Note 8: V = 3.3V, f  
= 80Msps (LTC2273) or 65Msps (LTC2272)  
SAMPLE  
DD  
input range = 2.25V with differential drive.  
P-P  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
DD  
Note 9: Recommended operating conditions.  
Note 10: The dynamic current of the switched capacitors analog inputs  
can be large compared to the leakage current and will vary with the sample  
rate.  
Note 11: Leakage current will have higher transient current at power up.  
Keep drive resistance at or below 1k.  
of greater than 100mA below GND or above V without latchup.  
DD  
+
Note 4: V = 3.3V, f  
= 105MHz differential ENC /ENC = 2V sine  
P-P  
DD  
SAMPLE  
wave with 1.6V common mode, input range = 2.25V with differential  
P-P  
drive (PGA = 0), unless otherwise specified.  
Note 5: ꢀntegral nonlinearity is defined as the deviation of a code from  
a “best fit straight line” to the transfer curve. The deviation is measured  
from the center of the quantization band.  
22732f  
6
LTC2273/LTC2272  
TIMING DIAGRAMS  
t
N + 9  
AP  
N + 2  
N + 10  
ANALOG ꢀNPUT  
N + 8  
N + 1  
N
t
CONV  
+
ENC  
t
H
t
L
ꢀNTERNAL  
PARALLEL DATA  
N – 6  
N – 5  
N – 8  
N – 4  
N – 7  
N + 3  
N
N + 4  
N + 1  
ꢀNTERNAL  
8B/10B DATA  
N – 9  
LAT  
P
t
BꢀT  
+
CMLOUT /CMLOUT  
N – 10  
N – 9  
N – 8  
N – 1  
N
22732 TD01  
Analog Input to Serial Data Out Timing  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
N + 5  
ANALOG INPUT  
N + 1  
t
t
t
HD  
SU  
+
ENC  
CS(MIN)  
+
SYNC  
LAT  
SC  
t
CS(MAX)  
+
CMLOUT /CMLOUT  
N – 10  
N – 9  
N – 8  
N – 7  
K28.5 (x2)  
K28.5 (x2)  
22732 TD02  
SYNC+ Falling Edge to Comma (K28.5) Timing  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
ANALOG INPUT  
N + 1  
t
t
SU  
HD  
+
ENC  
t
CS(MIN)  
+
SYNC  
LAT  
t
SD  
CS(MAX)  
+
CMLOUT /CMLOUT  
K28.5 (x2)  
K28.5 (x2)  
K28.5 (x2)  
N – 7  
N – 6  
22732 TD03  
SYNC+ Rising Edge to Data Timing  
22732f  
7
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 80Msps,  
unless otherwise noted.  
LTC2273: Integral Non-Linearity  
(INL) vs Output Code  
LTC2273: Differential Non-  
LTC2273: AC Grounded Input  
Linearity (DNL) vs Output Code  
Histogram  
2.0  
1.5  
1.0  
0.8  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.6  
1.0  
0.4  
0.5  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32769  
32779  
32789  
32799  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
22732 G01  
22732 G02  
22732 G03  
LTC2273: 128k Point FFT,  
fIN = 5.1MHz, –1dBFS, PGA = 0  
LTC2273: 64k Point FFT,  
fIN = 14.8MHz, –1dBFS, PGA = 0  
LTC2273: 64k Point FFT,  
fIN = 14.8MHz, –10dBFS, PGA = 0  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G04  
22732 G05  
22732 G06  
LTC2273: SFDR vs Input Level,  
IN = 15MHz, PGA = 0,  
Dither “Off”  
LTC2273: SFDR vs Input Level,  
fIN = 15MHz, PGA = 0,  
Dither “On”  
LTC2273: 64k Point 2-Tone FFT,  
fIN = 14.01MHz and 15.81MHz,  
–7dBFS, PGA = 0  
f
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
40  
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
22732 G09  
22732 G07  
22732 G08  
22732f  
8
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 80Msps,  
unless otherwise noted.  
LTC2273: 64k Point 2-Tone FFT,  
fIN = 14.01MHz and 15.8MHz,  
–15dBFS, PGA = 0  
LTC2273: 64k Point FFT,  
fIN = 70MHz, –1dBFS, PGA = 0  
LTC2273: 64k Point FFT,  
fIN = 70MHz, –1dBFS, PGA = 1  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
40  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G10  
22732 G11  
22732 G12  
LTC2273: 128k Point FFT,  
fIN = 70MHz, –20dBFS,  
PGA = 0, Dither “Off”  
LTC2273: 128k Point FFT,  
fIN = 70MHz, –20dBFS,  
PGA = 0, Dither “On”  
LTC2273: 64k Point FFT,  
fIN = 140.2MHz, –1dBFS, PGA = 1  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G13  
22732 G14  
22732 G15  
LTC2273: SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “Off”  
LTC2273: SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “On”  
LTC2273: 64k Point FFT,  
fIN = 170.2MHz, –1dBFS, PGA = 1  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
80  
80  
70  
70  
–90  
60  
60  
–100  
–110  
–120  
–130  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
22732 G18  
22732 G16  
22732 G17  
22732f  
9
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 80Msps,  
unless otherwise noted.  
LTC2273: 64k Point FFT,  
fIN = 250.2MHz, –1dBFS, PGA = 1  
LTC2273: SFDR vs Input  
Frequency  
LTC2273: SNR vs Input Frequency  
0
–10  
–20  
–30  
–40  
78  
105  
100  
95  
76  
90  
–50  
–60  
–70  
–80  
PGA = 0  
PGA = 1  
PGA = 1  
74  
72  
70  
85  
80  
PGA = 0  
–90  
75  
–100  
–110  
–120  
–130  
70  
65  
0
100  
200  
300  
400  
0
10  
20  
30  
40  
0
100  
200  
300  
400  
ꢀNPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
ꢀNPUT FREQUENCY (MHz)  
22732 G21  
22732 G19  
22732 G20  
LTC2273: SNR and SFDR vs  
Supply Voltage (VDD),  
fIN = 5.2MHz  
LTC2273: SNR and SFDR vs  
Sample Rate, fIN = 5.1MHz  
110  
105  
100  
95  
110  
SFDR  
105  
100  
95  
SFDR  
90  
90  
85  
85  
80  
SNR  
80  
SNR  
75  
75  
70  
70  
20  
40  
60  
80  
100  
120  
2.8  
3.0  
3.2  
3.4  
SAMPLE RATE (Msps)  
SUPPLY VOLTAGE (V)  
22732 G22  
22732 G23  
LTC2273: SFDR vs Analog Input  
Common Mode Voltage, 5MHz  
and 70MHz, –1dBFS  
LTC2273: IVDD vs Sample Rate,  
5MHz Sine, –1dBFS  
110  
105  
100  
95  
400  
360  
320  
280  
240  
5MHz  
V
= 3.3V  
DD  
V
DD  
= 3.47V  
90  
70MHz  
V
DD  
= 3.13V  
85  
80  
75  
70  
65  
60  
0.50 0.75 1.00 1.25 1.50 1.75 2.00  
20  
45  
70  
95  
120  
ANALOG ꢀNPUT COMMON MODE VOLTAGE (V)  
SAMPLE RATE (Msps)  
22732 G25  
22732 G24  
22732f  
10  
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 65Msps,  
unless otherwise noted.  
LTC2272: Integral Non-Linearity  
(INL) vs Output Code  
LTC2272: Differential Non-  
LTC2272: AC Grounded Input  
Linearity (DNL) vs Output Code  
Histogram  
2.0  
1.5  
1.0  
0.8  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.6  
1.0  
0.4  
0.5  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
16384  
32768  
49152  
65536  
32894  
32904  
32914  
32924  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
22732 G27  
22732 G28  
22732 G26  
LTC2272: 128k Point FFT,  
fIN = 5.1MHz, –1dBFS, PGA = 0  
LTC2272: 64k Point FFT,  
fIN = 14.8MHz, –1dBFS, PGA = 0  
LTC2272: 64k Point FFT,  
fIN = 14.8MHz, –10dBFS, PGA = 0  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
0
10  
20  
30  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G29  
22732 G30  
22732 G31  
LTC2272: SFDR vs Input Level,  
IN = 15MHz, PGA = 0,  
Dither “Off”  
LTC2272: SFDR vs Input Level,  
fIN = 15MHz, PGA = 0,  
Dither “On”  
LTC2272: 64k Point 2-Tone FFT,  
fIN = 14.01MHz and 15.8MHz,  
–7dBFS, PGA = 0  
f
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
22732 G34  
22732f  
22732 G32  
22732 G33  
11  
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 65Msps,  
unless otherwise noted.  
LTC2272: 64k Point FFT,  
fIN = 14.01MHz and 15.8MHz,  
–15dBFS, PGA = 0  
LTC2272: 64k Point FFT,  
fIN = 70MHz, –1dBFS, PGA = 0  
LTC2272: 64k Point FFT,  
fIN = 70MHz, –1dBFS, PGA = 1  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
0
10  
20  
30  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G35  
22732 G36  
22732 G37  
LTC2272: 128k Point FFT,  
fIN = 70MHz, –20dBFS,  
PGA = 0, Dither “Off”  
LTC2272: 128k Point FFT,  
fIN = 70MHz, –20dBFS,  
PGA = 0, Dither “On”  
LTC2272: 64k Point FFT,  
fIN = 140.2MHz, –1dBFS, PGA = 1  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
0
10  
20  
30  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
22732 G38  
22732 G39  
22732 G40  
LTC2272: SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “Off”  
LTC2272: SFDR vs Input Level,  
fIN = 140MHz, PGA = 1,  
Dither “On”  
LTC2272: 64k Point FFT,  
fIN = 170.2MHz, –1dBFS, PGA = 1  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
22732 G43  
22732 G41  
22732 G42  
22732f  
12  
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, FS = 65Msps,  
unless otherwise noted.  
LTC2272: 64k Point FFT,  
LTC2272: SFDR vs Input  
Frequency  
fIN = 250.2MHz, –1dBFS, PGA = 1  
LTC2272: SNR vs Input Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
110  
105  
100  
95  
78  
76  
74  
72  
70  
90  
85  
80  
–90  
–100  
–110  
–120  
–130  
75  
70  
65  
0
10  
20  
30  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
FREQUENCY (MHz)  
ꢀNPUT FREQUENCY (MHz)  
ꢀNPUT FREQUENCY (MHz)  
22732 G44  
22732 G46  
22732 G45  
LTC2272: SNR and SFDR vs  
Supply Voltage (VDD),  
fIN = 5.2MHz  
LTC2272: SNR and SFDR vs  
Sample Rate, fIN = 5.2MHz  
110  
105  
100  
95  
110  
105  
100  
95  
SFDR  
SFDR  
90  
90  
85  
85  
SNR  
80  
80  
SNR  
75  
75  
70  
70  
20  
40  
60  
80  
100  
2.8  
3.0  
3.2  
3.4  
SAMPLE RATE (Msps)  
SUPPLY VOLTAGE (V)  
22732 G47  
22732 G48  
LTC2272: SFDR vs Analog Input  
Common Mode Voltage, 5MHz  
and 70MHz, –1dBFS  
LTC2272: IVDD vs Sample Rate,  
5MHz Sine, –1dBFS  
110  
105  
100  
95  
360  
320  
280  
240  
5MHz  
V
DD  
= 3.3V  
90  
V
DD  
= 3.47V  
85  
70MHz  
V
DD  
= 3.13V  
80  
75  
70  
65  
60  
0.50 0.75 1.00 1.25 1.50 1.75 2.00  
20  
40  
60  
80  
100  
ANALOG ꢀNPUT COMMON MODE VOLTAGE (V)  
SAMPLE RATE (Msps)  
22732 G50  
22732 G49  
22732f  
13  
LTC2273/LTC2272  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3.3V, OVDD = 1.5V, TA = 25°C, unless  
otherwise noted.  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 400Mbps  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 1.3Gbps  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
1.0E  
10  
1.0E10  
1.0E–12  
1.0E–14  
1.0E–12  
1.0E–14  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
UNꢀT ꢀNTERVAL (Uꢀ)  
UNꢀT ꢀNTERVAL (Uꢀ)  
22732 G51  
22732 G52  
CMLOUT Dual-Dirac BER  
Bathtub Curve, 1.6Gbps  
CMLOUT Eye Diagram 400Mbps  
1.0E+00  
1.0E–02  
1.0E–04  
1.0E–06  
1.0E–08  
100mV/DꢀV  
1.0E10  
22732 G54  
416.7ps/DꢀV  
1.0E–12  
1.0E–14  
0
0.2  
0.4  
0.6  
0.8  
1.0  
UNꢀT ꢀNTERVAL (Uꢀ)  
22732 G53  
CMLOUT Eye Diagram 1.3Gbps  
CMLOUT Eye Diagram 1.6Gbps  
100mV/DꢀV  
100mV/DꢀV  
22732 G55  
22732 G56  
128.2ps/DꢀV  
104.2ps/DꢀV  
22732f  
14  
LTC2273/LTC2272  
PIN FUNCTIONS  
V
(Pins 1, 2, 12, 13 ): Analog 3.3V Supply. Bypass to  
SRR0 (Pin 17): Sample Rate Range Select Bit0. Used with  
the SRR1 pin to select the sample rate operating range.  
DD  
GND with 0.1μF ceramic chip capacitors.  
GND (Pins 3, 6, 7, 8, 11, 14, 21, 26, 27, 30, 37, 40,  
41): ADC Power Ground.  
SRR1 (Pin 18): Sample Rate Range Select Bit1. Used with  
the SRR0 pin to select the sample rate operating range.  
+
A
A
(Pin 4): Positive Differential Analog ꢀnput.  
SHDN (Pins 19, 20): Shutdown Pins. A high level on both  
pins will shut down the chip. A low level is required for  
normal operation.  
IN  
IN  
(Pin 5): Negative Differential Analog ꢀnput.  
+
ENC (Pin 9): Positive Differential Encode ꢀnput. The  
OV (Pins 22, 25): Positive Supply for the Output Driv-  
+
DD  
sampled analog input is held on the rising edge of ENC .  
ers. Typically 1.2V to 3.3V. The minimum supply is 1.4V  
when applying a differential termination on the CMLOUT  
pins or when AC-coupling the CMLOUT pins. Bypass to  
ground with 0.1μF ceramic chip capacitor.  
Thispinisinternallybiasedto1.6Vthrougha6.2kresistor.  
+
Output data can be latched on the falling edge of ENC .  
ENC (Pin 10): Negative Differential Encode ꢀnput. The  
sampled analog input is held on the falling edge of ENC-.  
This pin is internally biased to 1.6V through a 6.2kΩ  
resistor. Bypass to ground with a 0.1uF capacitor for a  
single-ended Encode signal.  
CMLOUT (Pin 23): Negative High-Speed CML Output.  
+
CMLOUT (Pin 24): Positive High-Speed CML Output.  
+
SYNC (Pin 28): Sync Request Positive ꢀnput (Active  
DITH (Pin 15): ꢀnternal Dither Enable Pin. DꢀTH = low  
disablesinternaldither.DꢀTH=highenablesinternaldither.  
RefertonternalDithersectionofthisdatasheetfordetails  
on dither operation.  
Low for Compatibility with JESD204). A low level on this  
pin for at least two sample clock cycles will initiate frame  
synchronization.  
SYNC (Pin 29): Sync Request Negative ꢀnput. A high  
ISMODE (Pin 16): ꢀdle Synchronization mode. When ꢀS-  
MODE is not asserted, synchronization is performed with  
a series of COMMAS (K28.5). When ꢀSMODE is asserted,  
a special ꢀdle SYNC mode is enabled where synchroniza-  
tion is performed by sending a COMMA (K28.5) followed  
by the appropriate data code-group (D5.6 or D16.2) for  
establishing a negative running disparity for the first data  
code-group after synchronization.  
level on this pin for at least two sample clock cycles will  
initiateframesynchronization.Forsingle-endedoperation,  
+
bypass to ground with a 0.1μF capacitor and use SYNC  
as the SYNC point.  
22732f  
15  
LTC2273/LTC2272  
PIN FUNCTIONS  
FAM (Pin 31): Frame Alignment Monitor Enable. A high  
level enables the substitution of predetermined data at the  
end of the frame with a K28.7 symbol for frame alignment  
monitoring.  
MSBINV (Pin 36): ꢀnvert the MSB. A high level will invert  
the MSB to enable the 2’s compliment format.  
SENSE (Pin 38): Reference Mode Select and External  
Reference ꢀnput. Tie SENSE to V to select the internal  
DD  
PAT0 (Pin 32): Pattern Select Bit0. Use with PAT1 to select  
a test pattern for the serial interface.  
2.5V bandgap reference. An external reference of 2.5V or  
1.25V may be used; both reference values will set a full  
scale ADC range of 2.25V (PGA = 0).  
PAT1 (Pin 33): Pattern Select Bit1. Use with PAT0 to select  
a test pattern for the serial interface.  
V
CM  
(Pin 39): 1.25V Output. Optimum voltage for input  
common mode. Must be bypassed to ground with a  
minimum of 2.2μF. Ceramic chip capacitors are recom-  
mended.  
SCRAM (Pin 34): Enable Data Scrambling. A high level on  
14  
15  
this pin will apply the polynomial 1 + x + x in scram-  
bling each ADC data sample. The scrambling takes place  
before the 8B/10B encoding.  
GND (Exposed Pad) (Pin 41): ADC Power Ground. The  
Exposed Pad on the bottom of the package needs to be  
soldered to ground.  
PGA (Pin 35): Programmable Gain Amplifier Control  
Pin. Low selects a front-end gain of 1, input range of  
2.25V . High selects a front-end gain of 1.5, input range  
P-P  
of 1.5V  
.
P-P  
22732f  
16  
LTC2273/LTC2272  
BLOCK DIAGRAM  
FAM  
PꢀPELꢀNED ADC STAGES  
+
SYNC  
+
+
A
A
ꢀN  
ꢀN  
S/H  
8B/10B  
ENCODER  
FꢀRST  
STAGE  
SECOND  
STAGE  
THꢀRD  
STAGE  
FOURTH  
STAGE  
FꢀFTH  
STAGE  
AND PGA  
SYNC  
16  
DꢀTHER SꢀGNAL  
GENERATOR  
20  
CORRECTꢀON  
LOGꢀC  
OV  
DD  
+
CMLOUT  
REFERENCE  
CONTROL  
SERꢀALꢀZER  
CMLOUT  
ADC  
REFERENCE  
SENSE  
0.5x  
20X CLK  
1x OR 2x  
V
CM  
CLOCK DRꢀVER  
WꢀTH DUTY CYCLE  
CONTROL  
SCRAMBLER/  
PATTERN  
GENERATOR  
V
DD  
2.5V  
REFERENCE  
PLL  
CONTROL LOGꢀC  
+
ENC  
ENC  
PGA  
DꢀTH  
MSBꢀNV  
SHDN  
PAT1  
PAT0  
SCRAM  
SRR1  
SRR0 GND  
22732 BD  
Figure 1. Functional Block Diagram  
22732f  
17  
LTC2273/LTC2272  
DEFINITIONS  
DYNAMIC PERFORMANCE TERMS  
Spurious Free Dynamic Range (SFDR)  
The ratio of the RMS input signal amplitude to the RMS  
value of the peak spurious spectral component expressed  
in dBc. SFDR may also be calculated relative to full scale  
and expressed in dBFS.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/(N+D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band lim-  
ited to frequencies above DC to below half the sampling  
frequency.  
Full Power Bandwidth  
The full power bandwidth is that input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full scale input signal.  
Signal-to-Noise Ratio  
The signal-to-noise (SNR) is the ratio between the RMS  
amplitudeofthefundamentalinputfrequencyandtheRMS  
amplitude of all other frequency components, except the  
first five harmonics.  
Aperture Delay Time  
+
ThetimefromwhenarisingENC equalstheENC voltage  
to the instant that the input signal is held by the sample-  
and-hold circuit.  
Total Harmonic Distortion  
Aperture Delay Jitter  
Total harmonic distortion is the ratio of the RMS sum  
of all harmonics of the input signal to the fundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
SNR  
= –20log (2π • f • t  
)
JꢀTTER  
ꢀN JꢀTTER  
2
2
2
2
THD = –20Log (  
(V + V + V + ... V )/V )  
2 3 4 N 1  
where V is the RMS amplitude of the fundamental fre-  
quencyandV throughV aretheamplitudesofthesecond  
1
SERIAL INTERFACE TERMS  
8B/10B Encoding  
2
N
through nth harmonics.  
A data encoding method designed to make an 8-bit data  
word (octet) more suitable for serial transmission. The  
resulting 10-bit word (code-group) has two fundamental  
strengths: 1) The receiver does not require a high-speed  
clock to capture the data. This is because the output  
code-groups are run-length limited, ensuring that there  
are enough transitions in the bit stream for the receiver  
to lock onto the data and recover the high-speed clock.  
2) AC coupling is permitted because the code-groups are  
generated in a way that ensures the data stream is DC  
balanced (see Running Disparity).  
Intermodulation Distortion  
ꢀf the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (ꢀMD) in addition to  
THD. ꢀMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
ꢀf two pure sine waves of frequencies fa and fb are applied  
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mfa nfb, where m and n = 0, 1, 2, 3, etc.  
For example, the 3rd order ꢀMD terms include (2fa + fb),  
(fa + 2fb), (2fa - fb) and (fa - 2fb). The 3rd order ꢀMD is  
defined as the ratio of the RMS value of either input tone  
to the RMS value of the largest 3rd order ꢀMD product.  
A table of the 256 possible input octets with the resulting  
10-bitcode-groupsisdocumentedinEEEStd802.3-2002  
part3 Table 36-1. The name associated with each of the  
256 data code-groups is formatted Dx.y, with x ranging  
from 0 to 31 and y ranging from 0 to 7. Table 36-2 of  
22732f  
18  
LTC2273/LTC2272  
DEFINITIONS  
the standard defines an additional set of 12 special code-  
groups for non-data characters such as commas. Special  
code-group names begin with K instead of D. A complete  
8B/10B description is found in Clause 36.2 of ꢀEEE Std  
802.3-2002 part3.  
whentheaveragenumberof1sand0sareequal,eliminat-  
ing the undesirable effects of DC wander on the receive  
side of the coupling capacitor. When 8B/10B coding is  
used, DC balance is achieved by following disparity rules  
(see Running Disparity).  
Current Mode Logic (CML)  
De-Scrambler  
Atechniqueusedtoimplementdifferentialhigh-speedlogic.  
CML employs differential pairs (usually n-type) to steer  
currentintoresistiveloads. ꢀtispossibletoimplementany  
logic function using CML. The output swing and offset is  
dependant on the bias current, the load resistance, and  
termination resistance.  
A logic block that restores scrambled data to its pre-  
scrambled state. A self aligning de-scrambler is based on  
the same pseudo random bit sequence as the scrambler,  
so it requires no alignment signals. ꢀn this product family  
the scrambler is based on the 1 + x + x polynomial,  
and the self aligning process results in an initial loss of  
one ADC sample.  
14  
15  
This product family uses CML drivers to transmit high-  
speed serial data to the outside world. The output driver  
bias current is typically 16mA, generating a signal swing  
Frame  
A group of octets or code-groups that make up one  
complete word. For this product family, a frame consists  
of two complete octets or code-groups, and constitutes  
one ADC sample.  
potential of 400mV (800mV diff.) across the com-  
P-P  
P-P  
bined internal and external termination resistance of 25Ω  
on each output.  
Code-Group  
Frame Alignment Monitoring (FAM)  
The 10-bit output from an 8B/10B encoder or the 10-bit  
input to the 8B/10B decoder.  
After initial frame synchronization has been established,  
frame alignment monitoring enables the receiver to verify  
that code-group alignment is maintained without the loss  
ofdata.ThisisdonebysubstitutingaK28.7commaforthe  
last code-group of the frame when certain conditions are  
met. The receiver uses this comma as a position marker  
within the frame for alignment verification. After decoding  
the data, the receiver replaces the K28.7 comma with the  
original data.  
Comma  
A special 8B/10B code-group containing the binary se-  
quence “0011111” or “1100000”. Commas are used for  
frame alignment and synchronization because a comma  
sequence cannot be generated by any combination of  
normal code-groups (unless a bit error occurs). There are  
three special code-groups that contain a comma, K28.1,  
K28.5, and K28.7.  
Idle Frame Synchronization Mode (ISMODE)  
For brevity, each of these three special code-groups are  
often called a comma, but in the strictest sense it is the  
first 7 bits of these code-groups that are designated a  
comma.  
A special synchronization mode where idle ordered sets  
are used to establish initial frame synchronization instead  
of K28.5 commas.  
An ꢀdle Ordered Set is defined in the ꢀEEE Std 802.3-2002  
part3, Clause 36.2.4.12. ꢀn general, it is a K28.5 comma  
followed by either a D5.6 or a D16.2. ꢀf the running dispar-  
ity after the transmission of the K28.5 comma is positive,  
DC Balanced Signal  
AspeciallyconditionedsignalthatmaybeACcoupledwith  
minimal degradation to the signal. DC balance is achieved  
22732f  
19  
LTC2273/LTC2272  
DEFINITIONS  
a D16.2 will be transmitted after the comma, otherwise  
a D5.6 will be transmitted. The result is that the ending  
disparity of an idle ordered set will always be negative.  
running disparity is calculated to determine which of the  
two code-groups should be transmitted to maintain DC  
balance.  
The disparity of a code-group is analyzed in two segments  
called sub-blocks. Sub-block1 consists of the first six bits  
of a code-group and sub-block2 consists of the last four  
bits of a code-group. When a sub-block is more heavily  
weightedwith1stherunningdisparityispositive,andwhen  
it is more heavily weighted with 0’s the running disparity  
is negative. When the number of 1’s and 0’s are equal in a  
sub-block, the running disparity remains unchanged.  
Initial Frame Synchronization  
The process of communicating frame synchroniza-tion  
informationtothereceiverupontherequestofthereceiver.  
For JESD204 compliance, K28.5 commas are transmitted  
as the preamble. Once the preamble has been detected  
the receiver terminates the synchronization request, and  
the preamble transmission continues until the end of the  
frame. The receiver designates the first normal data word  
after the preamble to be the start of the data frame.  
The polarity of the current running disparity determines  
which code-group should be transmitted to maintain DC  
balance.Foracompletedescriptionofdisparityrules,refer  
to ꢀEEE Std 802.3-2002 part3, Clause 36.2.4.4.  
Octet  
The 8-bit input to an 8B/10B encoder, or the 8-bit output  
from an 8B/10B decoder.  
Pseudo Random Bit Sequence (PRBS)  
A data sequence having a random nature over a finite  
interval. The most commonly used PRBS test patterns  
Run-Length Limited (RLL)  
m
The result of limiting the number of consecutive 1’s or  
0’s in a data stream by encoding the data prior to serial  
transmission.  
may be described by a polynomial in the form of 1 + x +  
n
n
x and have a random nature for the length of up to 2 – 1  
bits, where n indicates the order of the PRBS polynomial  
and m plays a role in maximizing the length of the random  
sequence.  
This process guarantees that there will be an adequate  
number of transitions in the serial data for the receiver  
to lock onto with a phase-locked loop and recover the  
high-speed clock.  
Scrambler  
A logic block that applies a pseudo random bit sequence  
to the input octets to minimize the tonal content of the  
high-speed serial bit stream.  
Running Disparity  
ꢀn order to maintain DC balance there are two possible  
8B/10B output code-groups for each input octet. The  
22732f  
20  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
ThepipelinedADCoftheLTC2273/LTC2272hastwophases  
of operation determined by the state of the differential  
The core of the LTC2273/LTC2272 are CMOS pipelined  
multi-step converters with a front-end PGA. As shown  
in Figure 1, the converter has five pipelined ADC stages.  
A sampled analog input will result in a digitized value  
nine clock cycles later (see the Timing Diagram section).  
+
ENC /ENC input pins. For brevity, the text will refer to  
+
+
ENC greater than ENC as ENC high and ENC less than  
ENC as ENC low.  
WhenENCislow, theanaloginputissampleddifferentially  
ontotheinputsample-and-holdcapacitors,insidetheS/H  
& PGA” block of Figure 1. On the rising edge of ENC, the  
voltage on the sample capacitors is held. While ENC is  
high, theheldinputvoltageisbufferedbytheS/Hamplifier  
which drives the first pipelined ADC stage. The first stage  
acquires the output of the S/H amplifier during the high  
phase of ENC. On the falling edge of ENC, the first stage  
producesitsresiduewhichisacquiredbythesecondstage.  
The process continues to the end of the pipeline.  
+
The analog input (A , A ) is differential for improved  
ꢀN  
ꢀN  
common mode noise immunity and to maximize the input  
range. Additionally, the differential input drive will reduce  
even order harmonics of the sample and hold circuit. The  
+
encode clock input (ENC , ENC ) is also differential for  
improved common mode noise immunity.  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC, and an error residue amplifier. The  
functionofeachstageistoproduceadigitalrepresentation  
of its input voltage along with the resulting analog error  
residue. The ADC of each stage provides the quantization,  
andtheresidueisproducedbytakingthedifferencebetween  
theinputvoltageandtheoutputofthereconstructionDAC.  
Theresidueisamplifiedbytheresidueamplifierandpassed  
on to the next stage. The successive stages of the pipeline  
operate on alternating phases of the clock so that when  
odd stages are outputting their residue, the even stages  
are acquiring that residue and vice versa.  
Each ADC stage following the first has additional error  
correctionrangetoaccommodateashandamplifieroffset  
errors. Results from all of the ADC stages are digitally  
delayed such that the results can be properly combined  
in the correction logic before being encoded, serialized,  
and sent to the output buffer.  
22732f  
21  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Input Drive Impedance  
As with all high performance, high speed ADCs the  
dynamic performance of the LTC2273/LTC2272 can be  
influenced by the input drive circuitry, particularly the  
second and third harmonics. Source impedance and in-  
put reactance can influence SFDR. At the falling edge of  
ENC the sample-and-hold circuit will connect the 4.9pF  
sampling capacitor to the input pin and start the sampling  
period. The sampling period ends when ENC rises, hold-  
ing the sampled input on the sampling capacitor. deally,  
the input circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
Sample/Hold Operation  
Figure 2 shows an equivalent circuit for the LTC2273/  
LTC2272 CMOS differential sample and hold. The differ-  
ential analog inputs are sampled directly onto sampling  
capacitors (C  
) through NMOS transistors. The  
SAMPLE  
capacitors shown attached to each input (C  
) are  
PARASꢀTꢀC  
the summation of all other capacitance associated with  
each input.  
During the sample phase when ENC is low, the NMOS  
transistors connect the analog inputs to the sampling  
capacitors and they charge to, and track, the differential  
input voltage. On the rising edge of ENC, the sampled  
input voltage is held on the sampling capacitors. During  
the hold phase when ENC is high, the sampling capacitors  
are disconnected from the input and the held voltage is  
passed to the ADC core for processing. As ENC transitions  
for high to low, the inputs are reconnected to the sampling  
capacitors to acquire a new sample. Since the sampling  
capacitorsstillholdtheprevioussample, achargingglitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. ꢀf the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. ꢀf the input change is large, such  
as the change seen with input frequencies near Nyquist,  
then a larger charging glitch will be seen.  
1/(2F  
); however, this is not always possible and the  
ENCODE  
incomplete settling may degrade the SFDR. The sampling  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
For the best performance it is recommended to have a  
source impedance of 100Ω or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
LTC2273/LTC2272  
V
DD  
C
SAMPLE  
4.9pF  
R
R
R
ON  
PARASꢀTꢀC  
3Ω  
20Ω  
+
A
ꢀN  
C
PARASꢀTꢀC  
1.8pF  
V
DD  
C
SAMPLE  
4.9pF  
Common Mode Bias  
R
PARASꢀTꢀC  
3Ω  
ON  
20Ω  
A
ꢀN  
TheADCsample-and-holdcircuitrequiresdifferentialdrive  
toachievespecifiedperformance.Eachinputshouldswing  
0.5625V for the 2.25V range (PGA = 0) or 0.375V for  
the 1.5V range (PGA = 1), around a common mode volt-  
C
PARASꢀTꢀC  
1.8pF  
V
DD  
age of 1.25V. The V output pin (Pin 39) is designed to  
CM  
1.6V  
6k  
provide the common mode bias level. V can be tied  
CM  
directly to the center tap of a transformer to set the DC  
input level or as a reference level to an op amp differential  
+
ENC  
ENC  
driver circuit. The V pin must be bypassed to ground  
CM  
close to the ADC with 2.2μF or greater.  
6k  
1.6V  
22732 F02  
Figure 2. Equivalent Input Circuit  
22732f  
22  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
high frequency distortion. A disadvantage of using a  
transformer is the loss of low frequency response. Most  
small RF transformers have poor performance at frequen-  
cies below 1MHz.  
Input Filtering  
A first order RC lowpass filter at the input of the ADC  
can serve two functions: limit the noise from input cir-  
cuitry and provide isolation from ADC S/H switching. The  
LTC2273/LTC2272 have very broadband S/H circuits, DC  
to 700MHz; it can be used in a wide range of applications;  
therefore, it is not possible to provide a single recom-  
mended RC filter.  
Center-tapped transformers provide a convenient means  
of DC biasing the secondary; however, they often show  
poor balance at high input frequencies, resulting in large  
2nd order harmonics.  
Figure 4a shows transformer coupling using a transmis-  
sion line balun transformer. This type of transformer has  
much better high frequency response and balance than  
flux coupled center tap transformers. Coupling capacitors  
are added at the ground and input primary terminals to  
allowthesecondaryterminalstobebiasedat1.25V. Figure  
4b shows the same circuit with components suitable for  
higher input frequencies.  
Figures 3, 4a and 4b show three examples of input RC  
filtering at three ranges of input frequencies. ꢀn general,  
it is desirable to make the capacitors as large as can be  
tolerated—this will help suppress random noise as well  
as noise coupled from the digital circuitry. The LTC2273/  
LTC2272donotrequireanyinputltertoachievedatasheet  
specifications;however,nolteringwillputmorestringent  
noise requirements on the input drive circuitry.  
V
CM  
2.2μF  
5Ω  
0.1μF  
0.1μF  
Transformer Coupled Circuits  
+
10Ω  
A
A
ꢀN  
ꢀN  
ANALOG  
ꢀNPUT  
LTC2273/  
LTC2272  
Figure 3 shows the LTC2273/LTC2272 being driven by  
an RF transformer with a center-tapped secondary. The  
secondary center tap is DC biased with V , setting the  
0.1μF  
25Ω  
25Ω  
4.7pF  
T1  
1:1  
4.7pF  
CM  
10Ω  
5Ω  
ADC input signal at its optimum DC level. Figure 3 shows  
a 1:1 turns ratio transformer. Other turns ratios can be  
used; however, as the turns ratio increases so does the  
impedance seen by the ADC. Source impedance greater  
than 50Ω can reduce the input bandwidth and increase  
4.7pF  
T1 = MA/COM ETC1-1-13  
22732 F04a  
RESꢀSTORS, CAPACꢀTORS  
ARE 0402 PACKAGE SꢀZE  
EXCEPT 2.2μF  
Figure 4a. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 100MHz to 250MHz  
V
CM  
2.2μF  
V
CM  
50Ω  
+
10Ω  
5Ω  
A
ꢀN  
ꢀN  
2.2μF  
5Ω  
T1  
0.1μF  
0.1μF  
LTC2273/  
LTC2272  
8.2pF  
+
A
A
ꢀN  
ꢀN  
ANALOG  
ꢀNPUT  
35Ω  
35Ω  
LTC2273/  
LTC2272  
8.2pF  
25Ω 0.1μF  
25Ω  
2.2pF  
0.1μF  
10Ω  
T1  
1:1  
5Ω  
8.2pF  
A
5Ω  
T1 = MA/COM ETC1-1T  
RESꢀSTORS, CAPACꢀTORS  
ARE 0402 PACKAGE SꢀZE  
EXCEPT 2.2μF  
22732 F03  
2.2pF  
T1 = MA/COM ETC1-1-13  
RESꢀSTORS, CAPACꢀTORS  
ARE 0402 PACKAGE SꢀZE  
EXCEPT 2.2μF  
22732 F04b  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer. Recommended for Input  
Frequencies from 5MHz to 150MHz  
Figure 4b. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 250MHz to 500MHz  
22732f  
23  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
Direct Coupled Circuits  
compensation capacitor for the reference; it will not be  
stable without this capacitor. The minimum value required  
for stability is 2.2μF.  
Figure 5 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. The advantage of this method is that it provides  
low frequency input response; however, the limited gain  
bandwidth of any op amp or closed-loop amplifier will de-  
gradetheADCSFDRathighinputfrequencies.Additionally,  
wideband op amps or differential amplifiers tend to have  
high noise. As a result, the SNR will be degraded unless  
the noise bandwidth is limited prior to the ADC input.  
The internal programmable gain amplifier provides the  
internal reference voltage for the ADC. This amplifier has  
very stringent settling requirements and is not accessible  
for external use.  
TheSENSEpincanbedriven 5%aroundthenominal2.5V  
or 1.25V external reference inputs. This adjustment range  
can be used to trim the ADC gain error or other system  
gain errors. When selecting the internal reference, the  
Reference Operation  
SENSE pin should be tied to V as close to the converter  
DD  
Figure 6 shows the LTC2273/LTC2272 reference circuitry  
consisting of a 2.5V bandgap reference, a programmable  
gain amplifier and control circuit. The LTC2273/LTC2272  
have three modes of reference operation: ꢀnternal Refer-  
ence, 1.25V external reference or 2.5V external reference.  
as possible. ꢀf the sense pin is driven externally it should  
be bypassed to ground as close to the device as possible  
with 1μF (or larger) ceramic capacitor.  
PGA Pin  
To use the internal reference, tie the SENSE pin to V . To  
The PGA pin selects between two gain settings for  
the ADC front-end. PGA = 0 selects an input range of  
DD  
use an external reference, simply apply either a 1.25V or  
2.5V reference voltage to the SENSE input pin. Both 1.25V  
and 2.5V applied to SENSE will result in a full scale range  
of 2.25V (PGA = 0). A 1.25V output V is provided  
2.25V ; PGA = 1 selects an input range of 1.5V . The  
P-P  
P-P  
2.25V input range has the best SNR; however, the distor-  
tion will be higher for input frequencies above 100MHz.  
For applications with high input frequencies, the low  
input range will have improved distortion; however, the  
SNR will be 2.4dB worse. See the Typical Performance  
Characteristics section of this datasheet.  
P-P  
CM  
for a common mode bias for input drive circuitry. An  
external bypass capacitor is required for the V output.  
CM  
This provides a high frequency low impedance path to  
ground for internal and external circuitry. This is also the  
LTC2273/LTC2272  
RANGE  
SELECT  
V
CM  
AND GAꢀN  
2.2μF  
12pF  
TꢀE TO V TO USE  
HꢀGH SPEED  
DꢀFFERENTꢀAL  
AMPLꢀFꢀER  
DD  
ꢀNTERNAL  
ADC  
REFERENCE  
CONTROL  
ꢀNTERNAL 2.5V  
+
25Ω  
25Ω  
A
A
REFERENCE  
OR ꢀNPUT FOR  
EXTERNAL 2.5V  
REFERENCE  
OR ꢀNPUT FOR  
EXTERNAL 1.25V  
REFERENCE  
ꢀN  
ꢀN  
LTC2273/  
LTC2272  
SENSE  
ANALOG  
ꢀNPUT  
+
+
1x OR 2x  
CM  
2.5V  
BANDGAP  
REFERENCE  
12pF  
AMPLꢀFꢀER = LTC6600-20,  
LTC1993, ETC.  
22732 F05  
V
CM  
1.25V  
BUFFER  
Figure 5. DC Coupled Input with Differential Amplifier  
2.2μF  
22732 F06  
Figure 6. Reference Circuit  
22732f  
24  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
LTC2273/LTC2272  
V
DD  
TO ꢀNTERNAL  
ADC CLOCK  
DRꢀVERS  
1.6V  
6k  
V
DD  
V
CM  
1.25V  
+
ENC  
2.2μF  
LTC2273/  
1.6V  
6k  
SENSE LTC2272  
V
DD  
6
2, 3  
3.3V  
1μF  
LTC6652-2.5  
2.2μF  
4, 5, 7 ,8  
ENC  
22732 F07  
22732 F08a  
Figure 7. A 2.25V Range ADC with  
an External 2.5V Reference  
Figure 8a. Equivalent Encode Input Circuit  
0.1μF  
+
T1  
ENC  
50Ω  
50Ω  
100Ω  
LTC2273/  
LTC2272  
+
ENC  
8.2pF  
V
= 1.6V  
THRESHOLD  
0.1μF  
LTC2273/  
LTC2272  
1.6V  
ENC  
0.1μF  
ENC  
0.1μF  
22732 F08b  
22732 F09  
T1 = MA/COM ETC1-1-13  
RESꢀSTORS AND CAPACꢀTORS  
ARE 0402 PACKAGE SꢀZE  
Figure 8b. Transformer Driven Encode  
Figure 9. Single-Ended ENC Drive,  
Not Recommended for Low Jitter  
3.3V  
3.3V  
MC100LVELT22  
130Ω  
Q0  
130Ω  
+
ENC  
D0  
LTC2273/  
LTC2272  
ENC  
Q0  
83Ω  
83Ω  
22732 F10  
Figure 10. ENC Drive Using a CMOS to PECL Translator  
22732f  
25  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
Driving the Encode Inputs  
For the ADC to operate properly, the internal CLK signal  
should have a 50% duty cycle. A duty cycle stabilizer cir-  
cuit has been implemented on chip to facilitate non-50%  
ENC duty cycles.  
The noise performance of the LTC2273/LTC2272 can  
depend on the encode signal quality as much as for the  
analog input. The encode inputs are intended to be driven  
differentially, primarily for noise immunity from common  
mode noise sources. Each input is biased through a 6k  
resistor to a 1.6V bias. The bias resistors set the DC oper-  
ating point for transformer coupled drive circuits and can  
set the logic threshold for single-ended drive circuits.  
Data Format  
The MSBꢀNV pin selects the ADC data format. A low level  
selectsoffsetbinaryformat(code0correspondstoFS,and  
code 65535 corresponds to +FS). A high level on MSBꢀNV  
selects2scomplementformat(code32768corresponds  
to –FS and code 32767 corresponds to +FS.  
Any noise present on the encode signal will result in ad-  
ditional aperture jitter that will be RMS summed with the  
inherent ADC aperture jitter.  
Shutdown Modes  
ꢀn applications where jitter is critical (high input frequen-  
cies), take the following into consideration:  
The assertion of both SHDN pins will shut down the ADC  
and the serial interface and place the chip in a low-cur-  
rent mode.  
1. Differential drive should be used.  
2. Use as large an amplitude possible. ꢀf using trans-  
former coupling, use a higher turns ratio to increase the  
amplitude.  
Internal Dither  
The LTC2273/LTC2272 are 16-bit ADC with a very linear  
transfer function; however, at low input levels even slight  
imperfectionsinthetransferfunctionwillresultinunwanted  
tones. Small errors in the transfer function are usually a  
result of ADC element mismatches. An optional internal  
dithermodecanbeenabledtorandomizetheinputlocation  
on the ADC transfer curve, resulting in improved SFDR  
for low signal levels.  
3. ꢀf the ADC is clocked with a fixed frequency sinusoidal  
signal, filter the encode signal to reduce wideband  
noise.  
4. Balance the capacitance and series resistance at both  
encode inputs such that any coupled noise will appear  
at both inputs as common mode noise.  
As shown in Figure 11, the output of the sample-and-hold  
amplifier is summed with the output of a dither DAC. The  
dither DAC is driven by a long sequence pseudo-random  
number generator; the random number fed to the dither  
DAC is also subtracted digitally from the ADC result. ꢀf the  
dither DAC is precisely calibrated to the ADC, very little  
of the dither signal will be seen at the output. The dither  
signal that does leak through will appear as white noise.  
The dither DAC is calibrated to result in less than 0.5dB  
elevation in the noise floor of the ADC, as compared to  
the noise floor with dither off.  
The encode inputs have a common mode range of 1.4V  
to 3V. Each input may be driven from ground to V for  
DD  
single-ended drive.  
Maximum and Minimum Conversion Rates  
The maximum conversion rate for the LTC2273 is  
80Msps. The maximum conversion rate for the LTC2272  
is 65Msps.  
The lower limit of the LTC2273/LTC2272 sample rate is  
determined by the PLL minimum operating frequency of  
20Msps.  
22732f  
26  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
LTC2273/LTC2272  
+
+
AꢀN  
CMLOUT  
16-BꢀT  
PꢀPELꢀNED  
ADC CORE  
DꢀGꢀTAL  
SUMMATꢀON  
8b10b  
ENCODER  
ANALOG  
ꢀNPUT  
S/H  
AMP  
SERꢀALꢀZER  
AꢀN  
CMLOUT  
CLOCK/DUTY  
CYCLE  
CONTROL  
MULTꢀBꢀT DEEP  
PSEUDO-RANDOM  
NUMBER  
PRECꢀSꢀON  
DAC  
GENERATOR  
22732 F11  
+
ENC  
ENC  
DꢀTH  
DꢀTHER ENABLE  
HꢀGH = DꢀTHER ON  
LOW = DꢀTHER OFF  
Figure 11. Functional Equivalent Block Diagram of Internal Dither Circuit  
SERIALIZED DATA FRAME  
Figure12illustratesthegenerationofonecomplete8B/10B  
frame. The 8 most significant bits of the ADC are assigned  
to the first half of the frame, and the remaining 8 bits  
to the second half of the frame. Next, the two resulting  
octets are optionally scrambled and encoded into their  
corresponding 8B/10B code. Finally, the two 10-bit code  
groups are serialized and transmitted beginning with Bit  
0 of code group 1.  
Prior to serialization, the ADC data is encoded into the  
8B/10B format, which is DC balanced, and run-length  
limited. The receiver is required to lock onto the data  
and recover the clock with the use of a PLL. The 8B/10B  
format requires that the ADC data be broken up into 8-bit  
blocks (octets), which is encoded into 10-bit code groups  
applying the 8B/10B rules (refer to ꢀEEE Std 802.3-2002  
Part 3, for a complete 8B/10B description).  
MSB  
ADC OUTPUT WORD  
LSB  
BꢀT  
15  
BꢀT  
14  
BꢀT  
13  
BꢀT  
12  
BꢀT  
11  
BꢀT  
10  
BꢀT  
9
BꢀT  
8
BꢀT  
7
BꢀT  
6
BꢀT  
5
BꢀT  
4
BꢀT  
3
BꢀT  
2
BꢀT  
1
BꢀT  
0
OCTET  
ASSꢀGNMENT  
H
G
F
E
D
C
B
A
H
G
F
E
D
C
B
A
BꢀT  
7
BꢀT  
6
BꢀT  
5
BꢀT  
4
BꢀT  
3
BꢀT  
2
BꢀT  
1
BꢀT  
0
BꢀT  
7
BꢀT  
6
BꢀT  
5
BꢀT  
4
BꢀT  
3
BꢀT  
2
BꢀT  
1
BꢀT  
0
FꢀRST OCTET  
SECOND OCTET  
OPTꢀONAL  
SCRAMBLER  
H
G
F
E
D
C
B
A
H
G
F
E
D
C
B
A
BꢀT  
7
BꢀT  
6
BꢀT  
5
BꢀT  
4
BꢀT  
3
BꢀT  
2
BꢀT  
1
BꢀT  
0
BꢀT  
7
BꢀT  
6
BꢀT  
5
BꢀT  
4
BꢀT  
3
BꢀT  
2
BꢀT  
1
BꢀT  
0
FꢀRST SCRAMBLED OCTET  
SECOND SCRAMBLED OCTET  
8B/10B  
ENCODER  
a
b
c
d
e
i
f
g
h
j
a
b
c
d
e
i
f
g
h
j
BꢀT  
0
BꢀT  
1
BꢀT  
2
BꢀT  
3
BꢀT  
4
BꢀT  
5
BꢀT  
6
BꢀT  
7
BꢀT  
8
BꢀT  
9
BꢀT  
0
BꢀT  
1
BꢀT  
2
BꢀT  
3
BꢀT  
4
BꢀT  
5
BꢀT  
6
BꢀT  
7
BꢀT  
8
BꢀT  
9
8B/10B CODE GROUP 1  
8B/10B CODE GROUP 2  
ONE FRAME  
SERꢀAL OUT  
BꢀT 0 OF CODE GROUP 1 ꢀS TRANSMꢀTTED FꢀRST  
22732 F12  
Figure 12. Evolution of One Transmitted Frame (Compare to IEEE Std 802.3-2002 Part 3, Figure 36-3)  
22732f  
27  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
t
AP  
N + 9  
N + 2  
N + 10  
ANALOG ꢀNPUT  
N
N + 8  
N + 1  
t
CONV  
+
ENC  
t
H
t
L
ꢀNTERNAL  
PARALLEL DATA  
N – 6  
N – 9  
N – 5  
N – 8  
N – 4  
N – 7  
N + 3  
N
N + 4  
N + 1  
ꢀNTERNAL  
8B/10B DATA  
LAT  
P
t
BꢀT  
SERꢀAL DATA OUT  
N – 10  
N – 9  
N – 8  
N – 1  
N
22732 F13  
Figure 13. Timing Relationship of Analog Sample to Serial Data Out  
Initial Frame Synchronization  
• The receiver searches for the expected preamble and  
waits for the correct reception of an adequate number  
of preamble characters.  
ꢀn the absence of a frame clock, it is necessary to deter-  
mine the start of each frame through a synchronization  
process. To establish frame synchronization, Figures 14  
and 15 illustrate the following sequence:  
• The receiver deactivates the synchronization request.  
• Upon detecting the deactivation of the synchronization  
request, theLTC2273/LTC2272continuetotransmitthe  
synchronization preamble until the end of the frame.  
• The receiver issues a synchronization request via the  
synchronization interface.  
• ꢀf the synchronization request is active for more than  
oneENCclockcycle,theLTC2273/LTC2272willtransmit  
a synchronization preamble. When the ꢀSMODE pin is  
low the transmitted preamble will consist of consecu-  
tive K28.5 comma symbols in conformance with the  
JESD204 specification. When the ꢀSMODE pin is high,  
a series of idle ordered sets will be transmitted. The  
idle ordered sets consist of a K28.5 comma followed by  
either D5.6 or D16.2 as defined in ꢀEEE Std 802.3-2002  
part3, Clause 36.2.4.12.  
• At the start of the next frame, the LTC2273/LTC2272  
will begin transmitting data characters.  
• Thereceiverdesignatestherstdatacharacterreceived  
after the preamble transmission to be the start of the  
frame. The first octet of the frame contains the most  
significant byte of the ADC’s output word.  
22732f  
28  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
N + 5  
ANALOG ꢀNPUT  
N + 1  
t
t
t
SU  
HD  
+
ENC  
CS(MꢀN)  
+
SYNC  
LAT  
t
SC  
CS(MAX)  
SERꢀAL DATA OUT  
N – 10  
N – 9  
N – 8  
N – 7  
K28.5 (x2)  
K28.5 (x2)  
22732 F14a  
Figure 14a. SYNC+ Low Transition to Comma Output Timing (ISMODE is Low)  
t
CONV  
N + 3  
N
N – 1  
N + 2  
N + 4  
ANALOG ꢀNPUT  
N + 1  
t
HD  
t
SU  
+
ENC  
t
CS(MꢀN)  
+
SYNC  
LAT  
t
SD  
CS(MAX)  
SERꢀAL DATA OUT  
K28.5 (x2)  
K28.5 (x2)  
K28.5 (x2)  
N – 7  
N – 6  
22732 F14b  
Figure 14b. SYNC+ High Transition to Data Output Timing (ISMODE is Low)  
22732f  
29  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
START  
WAꢀT FOR NEXT  
FRAME CLOCK  
SYNC  
REQUEST?  
NO  
YES  
NO  
YES  
ꢀS ꢀSMODE  
ENABLED?  
DATA TRANSMꢀSSꢀON  
FLOW (SEE FꢀGURE 18)  
NO  
YES  
NEGATꢀVE  
DꢀSPARꢀTY?  
TRANSMꢀT K28.5  
AS CODE GROUP 1  
TRANSMꢀT K28.5  
AS CODE GROUP 2  
(DꢀSPARꢀTY NOT OK)  
(DꢀSPARꢀTY ꢀS OK)  
TRANSMꢀT K28.5  
AS CODE GROUP 1  
TRANSMꢀT K28.5  
AS CODE GROUP 1  
(NEGATꢀVE DꢀSPARꢀTY)  
(POSꢀTꢀVE DꢀSPARꢀTY)  
TRANSMꢀT D5.6  
AS CODE GROUP 2  
TRANSMꢀT D16.2  
AS CODE GROUP 2  
(NEGATꢀVE DꢀSPARꢀTY)  
(NEGATꢀVE DꢀSPARꢀTY)  
22732 F15  
Figure 15. Initial Synchronization Flow Diagram  
Scrambling  
The scrambled data is converted into two valid 8B/10B  
code groups, constituting a complete frame. The 8B/10B  
code groups are then serialized and transmitted.  
To avoid spectral interference from the serial data output,  
an optional data scrambler is added between the ADC  
data and the 8B/10B encoder to randomize the spectrum  
of the serial link. The scrambler is enabled by setting the  
SCRAM pin to a high logic level. The polynomial used for  
the scrambler is 1 + x + x , which is a pseudo-random  
pattern repeating itself every 2 –1. Figure 16 illustrates  
The receiver is required to deserializing the data, decode  
the code-groups into octets and descramble them back  
to the original octets using the self-aligning descrambler  
shown in Figure 17. This descrambler is shown in 16-bit  
parallel form, which is an efficient implementation of the  
14  
15  
15  
14  
15  
the LTC2273/LTC2272 implementation of this polynomial  
in parallel form.  
(1 + x + x ) polynomial, operating at the frame clock  
rate (ADC sample rate).  
22732f  
30  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
SAMPLE_CLK  
Q
D0  
D1  
D2  
SS0  
D
C
FF  
SS1  
SS2  
SS3  
SS4  
SS5  
SS6  
SS7  
SF0  
SF1  
SF2  
SF3  
SF4  
SF5  
SF6  
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
D
C
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
D
C
D3  
SECOND  
OCTET  
SECOND  
SCRAMBLED  
OCTET  
D
C
D4  
D5  
D6  
D
C
D
C
D
C
D7  
FROM  
TO 8B/10B  
ENCODER  
D
C
ADC  
D8  
D
C
D9  
D10  
D11  
D
C
D
C
FꢀRST  
SCRAMBLED  
OCTET  
FꢀRST  
OCTET  
D
C
D12  
D13  
D13  
D
C
D
C
D
C
D15  
MSB  
SF7  
MSB  
22732 F16  
Figure 16. LTC2273/LTC2272 16-Bit 1 + x14 + x15 Parallel Scrambler  
22732f  
31  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
FRAME_CLK  
LSB  
D0  
SS0  
SS1  
SS2  
D
C
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
D1  
D2  
D3  
D4  
D5  
D
C
D
C
SS3  
SECOND  
SCRAMBLED  
OCTET  
D
C
SS4  
SS5  
SS6  
D
C
D
C
D6  
D7  
D
C
SS7  
FROM  
D
C
DESCRAMBLED  
ADC DATA  
8B/10B  
DECODER  
D8  
SF0  
SF1  
SF2  
D
C
D9  
D
C
D10  
D11  
D12  
D13  
D14  
D
C
SF3  
FꢀRST  
SCRAMBLED  
OCTET  
D
C
SF4  
SF5  
SF6  
D
C
D
C
D
C
D15  
MSB  
SF7  
MSB  
22732 F17  
Figure 17. Required 16-Bit 1 + x14 + x15 Parallel Descrambler  
22732f  
32  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
Frame Alignment Monitoring  
previous frame, the LTC2273/LTC2272 will replace the  
second code group with the control character K28.7  
before serialization. However, if a K28.7 symbol was  
already transmitted in the previous frame, the actual  
code group will be transmitted.  
Aftertheinitialsynchronizationhasbeenestablished,itmay  
be desirable to periodically verify that frame alignment is  
being maintained. The receiver may issue a synchroniza-  
tion request at any time, but data will be lost during the  
resynchronization interval.  
• Upon receiving a K28.7 symbol, the receiver is required  
to replace it with the data decoded at the same position  
of the previous frame.  
To verify frame alignment without the loss of data, frame  
alignment monitoring is enabled by setting the FAM pin  
to a high level. ꢀn this mode, predetermined data in the  
second code group of the frame is substituted with the  
control character K28.7. The receiver is required to detect  
the K28.7 character and replace it with the original data. ꢀn  
this way, the second code group may be discerned from  
the first, and the receiver is able to periodically verify the  
frame alignment without the loss of data (refer to Table 1  
and the flow diagram of Figure 18). There are two frame  
alignment monitoring modes summarized in Table 1.  
FAM mode 2 is implemented when FAM is high and  
SCRAM is high:  
• When the data in the second code group of the current  
frame equals D28.7, the LTC2273/LTC2272 will replace  
this data with K28.7 before serialization.  
• Upon receiving a K28.7 symbol, the receiver is required  
to replace it with D28.7.  
With FAM enabled the receiver is required to search for  
the presence of K28.7 symbols in the data stream. ꢀf two  
successive K28.7 symbols are detected at the same posi-  
tion other than the assumed end of frame, the receiver will  
realign its frame boundary to the new position.  
FAM mode 1 is implemented when FAM is high, and  
SCRAM is low:  
• When the data in the second code group of the current  
frame equals the data in the second code group of the  
Table 1. Frame Alignment Monitoring Modes  
SCRAM PIN  
DDSYNC PIN  
ACTION  
FAM Mode 1  
Low  
High  
The second code group is replaced with K28.7 if  
nd  
it is equal to the 2 Code Group of the previous  
frame  
FAM Mode 2  
High  
High  
The second code group is replaced with K28.7 if  
it is equal to D28.7  
FAM OFF  
X
Low  
No K28.7 substitutions will take place  
22732f  
33  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
START  
SCRAMBLE ADC DATA  
ꢀF SCRAM ꢀS ENABLED  
GENERATE 8B/10B  
CODE-GROUPS 1 AND 2  
NO  
YES (FRAME ALꢀGNMENT MONꢀTORꢀNG ꢀS ENABLED)  
ꢀS FAM  
ENABLED?  
TRANSMꢀT  
CODE GROUP 1  
TRANSMꢀT  
CODE GROUP 1  
NO  
YES  
NO  
(DATA SCRAMBLꢀNG ꢀS ENABLED)  
ꢀS CODE  
ꢀS SCRAM  
ENABLED?  
TRANSMꢀT  
CODE GROUP 2  
ꢀS CODE  
GROUP 2 =  
CODE GROUP 2  
OF LAST  
GROUP 2 =  
D28.7?  
YES  
NO  
YES  
FRAME?  
TRANSMꢀT  
CODE GROUP 2  
TRANSMꢀT  
CODE GROUP 2  
TRANSMꢀT K28.7  
AS CODE GROUP 2  
WAS K28.7  
TRANSMꢀTTED  
ꢀN LAST  
NO  
YES  
FRAME?  
TRANSMꢀT K28.7  
AS CODE GROUP 2  
TRANSMꢀT  
CODE GROUP 2  
END  
22732 F18  
Figure 18. Data Transmission Flow Diagram  
PLL Operation  
Serial Test Patterns  
ThePLL hasbeendesignedtoaccommodate awide range  
of sample rates. The SRR0 and SRR1 pins are used to  
configure the PLL for the intended sample rate range.  
Table 2 summarizes the sample clock ranges available  
to the user.  
Tofacilitatetestingoftheserialinterface,threetestpatterns  
are selectable via pins PAT0 and PAT1. The available test  
patterns are described in Table 3. A K28.5 comma may be  
usedasafourthtestpatternbyrequestingsynchronization  
+
through the SYNC /SYNC pins.  
Table 2. Sample Rate Ranges  
Table 3. Test Patterns  
SRR1  
SRR0  
SAMPLE RATE RANGE  
20Msps < FS ≤ 35Msps  
30Msps < FS ≤ 65Msps  
60Msps < FS ≤ 80Msps  
PAT1  
PAT0  
TEST PATTERNS  
0
1
1
x
0
1
0
0
0
1
ADC Data  
1010101010 Pattern  
(8B/10B Code Group D21.5)  
9
11  
1
1
0
1
1+ x + x Pseudo Random Pattern  
14  
15  
1+ x + x Pseudo Random Pattern  
22732f  
34  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
High Speed CML Outputs  
Grounding and Bypassing  
The CML outputs must be terminated for proper opera-  
TheLTC2273/LTC2272requireaprintedcircuitboardwitha  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTC2273/LTC2272 have been optimized for a flowthrough  
layout so that the interaction between inputs and digital  
outputs is minimized. Layout for the printed circuit board  
should ensure that digital and analog signal lines are  
separated as much as possible. ꢀn particular, care should  
be taken not to run any digital track alongside an analog  
signal track or underneath the ADC.  
tion. The OV supply voltage and the termination voltage  
DD  
determine the common mode output level of the CML  
outputs. ForproperoperationoftheCMLdriver, theoutput  
common mode voltage should be greater than 1V.  
The directly-coupled termination mode of Figure 19a is  
recommended when the receiver termination voltage is  
within the range of 1.2V to 3.3V. When the CML outputs  
are directly-coupled to the 50Ω termination resistors, the  
OV supply voltage serves as the receiver termination  
DD  
voltage, and the output common mode voltage will be  
High quality ceramic bypass capacitors should be used  
approximately 200mV lower than OV .  
DD  
at the V  
V
, and OV pins. Bypass capacitors must  
DD, CM DD  
be located as close to the pins as possible. The traces  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
The directly-coupled differential termination of Figure 19b  
maybeusedintheabsenceofareceiverterminationvoltage  
within the required range. ꢀn this case, the common mode  
voltage is shifted down to approximately 400mV below  
The LTC2273/LTC2272 differential inputs should run  
parallel and close to each other. The input traces should  
be as short as possible to minimize capacitance and to  
minimize noise pickup.  
OV , requiring an OV in the range of 1.4V to 3.3V.  
DD  
DD  
ꢀf the serial receiver’s common mode input requirements  
are not compatible with the directly-coupled termination  
modes, the DC balanced 8B/10B encoded data will permit  
the addition of DC blocking capacitors as shown in Figure  
19c. ꢀn this AC-coupled mode, the termination voltage is  
determined by the receiver’s requirements. The coupling  
capacitorsshouldbeselectedappropriatelyfortheintended  
operating bit-rate, usually between 1nF to 10nF. n the AC-  
coupled mode, the output common mode voltage will be  
Heat Transfer  
Most of the heat generated by the LTC2273/LTC2272 are  
transferred from the die through the bottom-side exposed  
pad. For good electrical and thermal performance, the  
exposed pad must be soldered to a large grounded pad  
on the PC board. ꢀt is critical that the exposed pad and all  
ground pins are connected to a ground plane of sufficient  
area with as many vias as possible.  
approximately 400mV below OV , so the OV supply  
DD  
DD  
voltage should be in the range of 1.4V to 3.3V.  
22732f  
35  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
SERꢀAL CML DRꢀVER  
SERꢀAL CML RECEꢀVER  
1.2V TO 3.3V  
OV  
DD  
+
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
TRANSMꢀSSꢀON LꢀNE  
CMLOUT  
CMLOUT  
+
DATA  
DATA  
50Ω  
TRANSMꢀSSꢀON LꢀNE  
16mA  
GND  
22732 F19a  
Figure 19a. CML Termination, Directly-Coupled Mode (Preferred)  
SERꢀAL CML DRꢀVER  
SERꢀAL CML RECEꢀVER  
OV  
DD  
+
1.4V TO 3.3V  
50Ω  
50Ω  
50Ω  
TRANSMꢀSSꢀON LꢀNE  
CMLOUT  
100Ω  
CMLOUT  
+
DATA  
DATA  
50Ω  
TRANSMꢀSSꢀON LꢀNE  
16mA  
GND  
22732 F19b  
Figure 19b. CML Termination, Directly-Coupled Differential Mode  
22732f  
36  
LTC2273/LTC2272  
APPLICATIONS INFORMATION  
SERꢀAL CML DRꢀVER  
SERꢀAL CML RECEꢀVER  
1.4V TO 3.3V  
VTERM  
OV  
DD  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
0.01μF  
TRANSMꢀSSꢀON LꢀNE  
+
CMLOUT  
CMLOUT  
0.01μF  
+
DATA  
DATA  
50Ω  
TRANSMꢀSSꢀON LꢀNE  
16mA  
GND  
22732 F19c  
Figure 19c. CML Termination, AC-Coupled Mode  
22732f  
37  
LTC2273/LTC2272  
TYPICAL APPLICATIONS  
Silkscreen Top  
Top Side  
22732f  
38  
LTC2273/LTC2272  
TYPICAL APPLICATIONS  
Inner Layer 2  
Inner Layer 3  
22732f  
39  
LTC2273/LTC2272  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5  
22732f  
40  
LTC2273/LTC2272  
TYPICAL APPLICATIONS  
Bottom Side  
Silkscreen Bottom  
22732f  
41  
LTC2273/LTC2272  
TYPICAL APPLICATIONS  
C C  
V
G N D  
C C  
V
S S  
V
D D  
V
S C R A M P 0  
S S  
V
M F A  
P D S E R  
P D A D C  
P 1  
P 2  
P 3  
M S B ꢀ N V P 4  
N C  
N C  
N C  
N C  
P G A  
1 T P A  
0 T P A  
P 5  
P 6  
P 7  
C C  
V
S S  
V
P B U S 1 5  
P B U S 1 4  
R X D 1 5  
R X D 1 4  
T X D 1 5  
G N D  
G N D  
P B U S 1 3  
P B U S 1 2  
R X D 1 3  
R X D 1 2  
T X D 1 4  
T X D 1 3  
T X D 1 2  
T X D 1 1  
G N D  
P B U S 1 1  
P B U S 1 0  
R X D 1 1  
R X D 1 0  
D D  
V
D D  
V
P B U S 9  
P B U S 8  
R X D 9  
R X D 8  
D ꢀ T H  
P 0  
T X D 1 0  
T X D 9  
S S  
V
ꢀ S M O D E P 1  
P L L 0  
P 2  
P 3  
P 4  
P 5  
P 6  
P 7  
T X D 8  
R X _ C L K  
R X D 7  
D D  
V
P L L 1  
P B U S 7  
R X _ E R  
N C  
N C  
N C  
N C  
G T X _ C L K  
T X D 7  
T X D 6  
G N D  
G N D  
P B U S 6  
P B U S 5  
R X D 6  
R X D 5  
T X D 5  
T X D 4  
T X D 3  
P B U S 4  
P B U S 3  
R X D 4  
R X D 3  
D D  
V
D D  
V
P B U S 2  
R X D 2  
T X D 2  
T X D 1  
T X D 0  
P B U S 1  
P B U S 0  
R X D 1  
R X D 0  
M S B ꢀ N V  
P G A  
1 T P A  
0 T P A  
S C R A M  
M F A  
P D S E R  
P D A D C  
P L L 1  
P L L 0  
ꢀ S M O D E  
D ꢀ T H  
G N D  
O G N D  
O G N D  
O G N D  
O G N D  
D D  
D D  
O V  
O V  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
D D  
V
D D  
V
D D  
V
D D  
V
G P  
G P  
G N D  
G N D  
G N D  
G N D  
22732f  
42  
LTC2273/LTC2272  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 p0.05  
6.50 p0.05  
5.10 p0.05  
4.42 p0.05  
4.50 p0.05  
(4 SꢀDES)  
4.42 p0.05  
PACKAGE OUTLꢀNE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PꢀTCH AND DꢀMENSꢀONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p 0.05  
R = 0.115  
6.00 p 0.10  
(4 SꢀDES)  
TYP  
R = 0.10  
TYP  
39 40  
0.40 p 0.10  
PꢀN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PꢀN 1 NOTCH  
R = 0.45 OR  
0.35 s 45o  
CHAMFER  
4.42 p0.10  
4.50 REF  
(4-SꢀDES)  
4.42 p0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VꢀEW—EXPOSED PAD  
1. DRAWꢀNG ꢀS A JEDEC PACKAGE OUTLꢀNE VARꢀATꢀON OF (WJJD-2)  
2. DRAWꢀNG NOT TO SCALE  
3. ALL DꢀMENSꢀONS ARE ꢀN MꢀLLꢀMETERS  
4. DꢀMENSꢀONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT ꢀNCLUDE  
MOLD FLASH. MOLD FLASH, ꢀF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SꢀDE, ꢀF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA ꢀS ONLY A REFERENCE FOR PꢀN 1 LOCATꢀON ON THE TOP AND BOTTOM OF PACKAGE  
22732f  
ꢀnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
43  
LTC2273/LTC2272  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1993-2  
LTC1994  
High Speed Differential Op Amp  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
Low Noise, Low Distortion Fully Differential ꢀnput/  
Output Amplifier/Driver  
LTC2215  
LTC2216  
LTC2217  
LTC2202  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
LTC2208  
LTC2209  
LTC2220  
LTC2220-1  
LTC2224  
LTC2249  
LTC2250  
LTC2251  
LTC2252  
LTC2253  
LTC2254  
LTC2255  
LTC2274  
16-Bit, 65Msps, Low Noise ADC  
16-Bit, 80Msps, Low Noise ADC  
16-Bit, 105Msps, Low Noise ADC  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
16-Bit, 25Msps, 3.3V ADC, Lowest Noise  
16-Bit, 40Msps, 3.3V ADC  
700mW, 81.5dB SNR, 100dB SFDR, 64-Pin QFN  
970mW, 81.3dB SNR, 100dB SFDR, 64-Pin QFN  
1190mW, 81.2dB SNR, 100dB SFDR, 64-Pin QFN  
140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
220mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
480mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
590mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
725mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
900mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Pin QFN  
1.45W, 77.1dB SNR, 100dB SFDR, 64-Pin QFN  
890mW, 67.5dB SNR, 9mm × 9mm QFN Package  
910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
230mW, 73dB SNR, 5mm × 5mm QFN Package  
320mW, 61.6dB SNR, 5mm × 5mm QFN Package  
395mW, 61.6dB SNR, 5mm × 5mm QFN Package  
320mW, 70.2dB SNR, 5mm × 5mm QFN Package  
395mW, 70.2dB SNR, 5mm × 5mm QFN Package  
320mW, 72.5dB SNR, 5mm × 5mm QFN Package  
395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN  
16-Bit, 65Msps, 3.3V ADC  
16-Bit, 80Msps, 3.3V ADC  
16-Bit, 105Msps, 3.3V ADC  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
16-Bit, 160Msps, ADC, LVDS Outputs  
12-Bit, 170Msps ADC  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High ꢀF Sampling  
14-Bit, 80Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 125Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
14-Bit, 105Msps ADC  
14-Bit, 125Msps, 3V ADC, Lowest Power  
16-Bit, 105Msps, Serial ADC  
1.3W, 100dB SFDR, High Speed Serial ꢀnterface (JESD204),  
6mm × 6mm QFN Package  
LTC2284  
LTC2299  
LTC5512  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
Dual 14-Bit, 80Msps ADC  
540mW, 72.4dB SNR, 88dB SFDR, 64-Pin QFN  
230mW, 71.6dB SNR, 5mm x 5mm QFN Package  
DC to 3GHz, 21dBm ꢀꢀP3, ꢀntegrated LO Buffer  
DC-3GHz High Signal Level  
Downconverting Mixer  
LTC5515  
LTC5516  
LTC5517  
LTC5522  
LTC5527  
LTC5579  
LTC6400-20  
1.5 GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
High ꢀꢀP3: 20dBm at 1.9GHz, ꢀntegrated LO Quadrature Generator  
High ꢀꢀP3: 21.5dBm at 900MHz, ꢀntegrated LO Quadrature Generator  
High ꢀꢀP3: 21dBm at 800MHz, ꢀntegrated LO Quadrature Generator  
800MHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
600MHz to 2.7GHz High Linearity Downconverting  
Mixer  
4.5V to 5.25V Supply, 25dBm ꢀꢀP3 at 900MHz,  
NF = 12.5dB, 50Ω Single-Ended RF and LO Ports  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 23.5dBm ꢀꢀP3 at 1900MHz, ꢀ = 78mA,  
CC  
Conversion Gain = 2dB  
1.5GHz to 3.8GHz High Linearity Upconverting  
Mixer  
3.3V Supply, 27.3dBm OꢀP3 at 2.14GHz, Conversion Gain = 2.6dB at 2.14GHz  
1.8GHz Low Noise, Low Distortion Differential ADC  
Driver for 300MHz ꢀF  
Fixed Gain 10V/V, 2.1nV√Hz Total ꢀnput Noise, 3mm × 3mm QFN-16 Package  
22732f  
LT 1208 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
44  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY