LTC1865L [Linear]

12-/16-Bit, 8-Channel 200ksps ADCs; 12位/ 16位, 8通道200ksps的模数转换器
LTC1865L
型号: LTC1865L
厂家: Linear    Linear
描述:

12-/16-Bit, 8-Channel 200ksps ADCs
12位/ 16位, 8通道200ksps的模数转换器

转换器 模数转换器
文件: 总16页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1863/LTC1867  
12-/16-Bit, 8-Channel  
200ksps ADCs  
U
FEATURES  
DESCRIPTIO  
The LTC®1863/LTC1867 are pin-compatible, 8-channel  
12-/16-bit A/D converters with serial I/O, and an internal  
reference. The ADCs typically draw only 1.3mA from a  
single 5V supply.  
Sample Rate: 200ksps  
16-Bit No Missing Codes and ±2LSB Max INL  
8-Channel Multiplexer with:  
Single Ended or Differential Inputs and  
Unipolar or Bipolar Conversion Modes  
The 8-channel input multiplexer can be configured for  
either single-ended or differential inputs and unipolar  
or bipolar conversions (or combinations thereof). The  
automatic nap and sleep modes benefit power sensitive  
applications.  
SPI/MICROWIRETM Serial I/O  
Signal-to-Noise Ratio: 89dB  
Single 5V Operation  
On-Chip or External Reference  
Low Power: 1.3mA at 200ksps, 0.76mA at 100ksps  
The LTC1867’s DC performance is outstanding with a  
±2LSB INL specification and no missing codes over tem-  
perature. The signal-to-noise ratio (SNR) for the LTC1867  
is typically 89dB, with the internal reference.  
Sleep Mode  
Automatic Nap Mode Between Conversions  
16-Pin Narrow SSOP Package  
U
APPLICATIO S  
Housed in a compact, narrow 16-pin SSOP package, the  
LTC1863/LTC1867 can be used in space-sensitive as well  
as low-power applications.  
Industrial Process Control  
High Speed Data Acquisition  
Battery Operated Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corp.  
Multiplexed Data Acquisition Systems  
Imaging Systems  
W
BLOCK DIAGRA  
Integral Nonlinearity vs Output Code  
(LTC1867)  
2.0  
1.5  
1.0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
LTC1863/LTC1867  
V
GND  
SDI  
SDO  
SCK  
CS/CONV  
CH0  
CH1  
CH2  
CH3  
CH4  
DD  
12-/16-BIT  
200ksps  
ADC  
ANALOG  
INPUT  
MUX  
+
SERIAL  
PORT  
0.5  
0
CH5  
CH6  
V
REF  
INTERNAL  
2.5V REF  
– 0.5  
– 1.0  
– 1.5  
– 2.0  
CH7/COM  
9
REFCOMP  
18637 BD  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
18637 GO1  
18637f  
1
LTC1863/LTC1867  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Notes 1, 2)  
ORDER PART  
NUMBER  
TOP VIEW  
Supply Voltage (VDD)................................... –0.3V to 6V  
Analog Input Voltage  
CH0-CH7/COM (Note 3) .......... 0.3V to (VDD + 0.3V)  
VREF, REFCOMP (Note 4)......... 0.3V to (VDD + 0.3V)  
Digital Input Voltage (SDI, SCK, CS/CONV)  
(Note 4) .................................................0.3V to 10V  
Digital Output Voltage (SDO) ....... 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1863C/LTC1867C/LTC1867AC .......... 0°C to 70°C  
LTC1863I/LTC1867I/LTC1867AI ........ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
CH0  
CH1  
1
2
3
4
5
6
7
8
16  
V
DD  
15 GND  
LTC1863CGN  
LTC1863IGN  
LTC1867CGN  
LTC1867IGN  
LTC1867ACGN  
LTC1867AIGN  
CH2  
14  
13  
12  
11  
10  
9
SDI  
CH3  
SDO  
CH4  
SCK  
CH5  
CS/CONV  
CH6  
V
REF  
CH7/COM  
REFCOMP  
GN PART MARKING  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
1863  
1867  
TJMAX = 110°C, θJA = 95°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With external reference (Notes 5, 6)  
LTC1863  
TYP  
LTC1867  
TYP  
LTC1867A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
Resolution  
No Missing Codes  
Integral Linearity Error  
12  
15  
16  
Bits  
Unipolar (Note 7)  
Bipolar  
±1  
±1  
±4  
±4  
±2  
±2.5  
LSB  
LSB  
Differential Linearity Error  
Transition Noise  
Offset Error  
±1  
–2  
3
–1  
1.75  
LSB  
0.1  
0.74  
0.74  
LSB  
RMS  
Unipolar (Note 8)  
Bipolar  
±3  
±4  
±32  
±64  
±32  
±64  
LSB  
LSB  
Offset Error Match  
Unipolar  
Bipolar  
±1  
±1  
±2  
±2  
±2  
±2  
LSB  
LSB  
Offset Error Drift  
Gain Error  
±0.5  
±0.5  
±0.5  
ppm/°C  
Unipolar  
Bipolar  
±6  
±6  
±96  
±96  
±64  
±64  
LSB  
LSB  
Gain Error Match  
±1  
±4  
±2  
LSB  
Gain Error Tempco  
Internal Reference  
External Reference  
±15  
±2.7  
±15  
±2.7  
±15  
±2.7  
ppm/°C  
ppm/°C  
V
= 4.75V – 5.25V  
±1  
±5  
±5  
LSB  
Power SuU pply SeW nsitivity  
DD  
DY A IC ACCURACY  
(Note 5)  
LTC1863  
TYP  
LTC1867/LTC1867A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
1kHz Input Signal  
1kHz Input Signal  
73.6  
73.5  
89  
dB  
S/(N+D)  
Signal-to-(Noise + Distortion) Ratio  
88  
dB  
18637f  
2
LTC1863/LTC1867  
U W  
(Note 5)  
DY A IC ACCURACY  
LTC1863  
LTC1867/LTC1867A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
–94.5  
–94.5  
–100  
1.25  
MAX  
MIN  
TYP  
– 95  
95  
–117  
1.25  
MAX  
UNITS  
dB  
THD  
Total Harmonic Distortion  
1kHz Input Signal, Up to 5th Harmonic  
1kHz Input Signal  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Isolation  
dB  
100kHz Input Signal  
–3dB Point  
dB  
MHz  
U
Full Power BU andwidth  
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
LTC1863/LTC1867/LTC1867A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Input Range  
Unipolar Mode (Note 9)  
Bipolar Mode  
0-4.096  
±2.048  
V
V
C
Analog Input Capacitance for CH0 to  
CH7/COM  
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
32  
4
pF  
pF  
IN  
t
Sample-and-Hold Acquisition Time  
Input Leakage Current  
U
1.5  
1.1  
µs  
ACQ  
On Channels, CHX = 0V or V  
±1  
µA  
DD  
U U  
(Note 5)  
I TER AL REFERE CE CHARACTERISTICS  
LTC1863/LTC1867/LTC1867A  
MIN  
PARAMETER  
CONDITIONS  
TYP  
2.500  
±15  
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
I
= 0  
= 0  
2.480  
2.520  
REF  
REF  
REF  
REF  
OUT  
OUT  
ppm/°C  
mV/V  
kΩ  
4.75V V 5.25V  
0.43  
6
DD  
I
0.1mA  
OUT  
REFCOMP Output Voltage  
I
= 0  
4.096  
V
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863/LTC1867/LTC1867A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage (SDO)  
2
IN  
V
V
= 4.75V, I = –10µA  
= 4.75V, I = –200µA  
4.75  
4.74  
V
V
OH  
DD  
DD  
O
4
O
V
Low Level Output Voltage (SDO)  
V
V
= 4.75V, I = 160µA  
= 4.75V, I = 1.6mA  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
0.4  
O
I
I
Output Source Current  
Output Sink Current  
SDO = 0V  
SDO = V  
–32  
19  
mA  
mA  
SOURCE  
SINK  
DD  
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
CS/CONV = High, SDO = 0V or V  
CS/CONV = High (Note 10)  
±10  
15  
µA  
pF  
DD  
Data Format  
Unipolar  
Bipolar  
Straight Binary  
Two’s Complement  
18637f  
3
LTC1863/LTC1867  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863/LTC1867/LTC1867A  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
1.8  
UNITS  
V
(Note 9)  
4.75  
V
DD  
I
f
= 200ksps  
SAMPLE  
1.3  
150  
0.2  
mA  
µA  
µA  
DD  
NAP Mode  
SLEEP Mode  
3
9
P
Power Dissipation  
6.5  
mW  
DISS  
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863/LTC1867/LTC1867A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.5  
40  
UNITS  
kHz  
µs  
f
t
t
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
200  
SAMPLE  
3
CONV  
Acquisition Time  
1.5  
40  
5
1.1  
µs  
ACQ  
SCK  
1
SCK Frequency  
MHz  
ns  
CS/CONV High Time  
Short CS/CONV Pulse Mode  
100  
13  
11  
10  
–6  
4
SDO Valid After SCK↓  
C = 25pF (Note 11)  
L
22  
ns  
2
SDO Valid Hold Time After SCK↓  
SDO Valid After CS/CONV↓  
SDI Setup Time Before SCK↑  
SDI Hold Time After SCK↑  
SLEEP Mode Wake-Up Time  
Bus Relinquish Time After CS/CONV↑  
C = 25pF  
L
ns  
3
C = 25pF  
L
30  
ns  
4
15  
10  
ns  
5
ns  
6
C
= 10µF, C = 2.2µF  
VREF  
60  
20  
ms  
ns  
7
REFCOMP  
C = 25pF  
L
40  
8
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Linearity, offset and gain error specifications apply for both  
unipolar and bipolar modes. The INL and DNL are tested in bipolar mode.  
Note 2: All voltage values are with respect to GND (unless otherwise  
noted).  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
of greater than 100mA without latchup.  
Note 4: When these pin voltages are taken below GND, they will be  
clamped by internal diodes. This product can handle input currents of  
greater than 100mA below GND without latchup. These pins are not  
Note 8: Unipolar offset is the offset voltage measured from +1/2LSB  
when the output code flickers between 0000 0000 0000 0000 and  
0000 0000 0000 0001 for LTC1867 and between 0000 0000 0000 and  
0000 0000 0001 for LTC1863. Bipolar offset is the offset voltage  
measured from –1/2LSB when output code flickers between 0000 0000  
0000 0000 and 1111 1111 1111 1111 for LTC1867, and between  
0000 0000 0000 and 1111 1111 1111 for LTC1863.  
clamped to V  
.
DD  
Note 5: V = 5V, f  
= 200ksps at 25°C, t = t = 5ns and  
r f  
DD  
SAMPLE  
Note 9: Recommended operating conditions. The input range of ±2.048V  
V
– = 2.5V for bipolar mode unless otherwise specified.  
IN  
for bipolar mode is measured with respect to V – = 2.5V.  
IN  
Note 10: Guaranteed by design, not subject to test.  
Note 11: t of 25ns maximum allows f  
up to 20MHz for rising capture  
2
SCK  
with 50% duty cycle and f  
up to 40MHz for falling capture (with 3ns  
SCK  
setup time for the receiving logic).  
18637f  
4
LTC1863/LTC1867  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1867)  
Integral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
Histogram for 4096 Conversions  
2.0  
1.5  
2.0  
1.5  
2500  
2152  
2000  
1.0  
1.0  
0.5  
0.5  
1500  
0
0
935  
–1  
1000  
500  
0
– 0.5  
– 1.0  
– 1.5  
– 2.0  
– 0.5  
– 1.0  
– 1.5  
– 2.0  
579  
1
276  
122  
2
26  
–4 –3 –2  
5
3
1
0
4
0
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
OUTPUT CODE  
CODE  
18637 GO1  
18637 GO2  
18637 GO3  
4096 Points FFT Plot (fIN = 1kHz,  
REFCOMP = External 5V)  
4096 Points FFT Plot (fIN = 1kHz)  
Crosstalk vs Input Frequency  
0
–20  
0
–20  
–80  
–90  
SNR = 88.8dB  
SINAD = 87.9dB  
THD = 95dB  
SNR = 90dB  
SINAD = 88.5dB  
THD = 94dB  
f
= 200ksps  
f
= 200ksps  
SAMPLE  
SAMPLE  
–40  
–40  
INTERNAL REFERENCE  
V
= 0V  
REF  
–100  
–110  
–120  
–130  
–140  
REFCOMP = EXT 5V  
–60  
–60  
ADJACENT PAIR  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
NONADJACENT PAIR  
25  
50  
100  
25  
50  
100  
0
75  
0
75  
1
10  
100  
1000  
ACTIVE CHANNEL INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
18637 G04  
18637 G05  
18637 G06  
Signal-to-Noise Ratio vs  
Frequency  
Signal-to-(Noise + Distortion) vs  
Input Frequency  
Total Harmonic Distortion vs  
Input Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
INPUT FREQUENCY (kHz)  
100  
1
10  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
18637 G07  
18637 G08  
18637 G09  
18637f  
5
LTC1863/LTC1867  
U W  
(LTC1863/LTC1867)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs fSAMPLE  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
= 5V  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
f
= 200ksps  
f
= 200ksps  
SAMPLE  
SAMPLE  
–50  
0
25  
50  
75  
100  
1
10  
f
100  
(ksps)  
1000  
4.75  
5.0  
5.25  
–25  
4.5  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SAMPLE  
18637 G12  
18637 G10  
18637 G11  
Integral Nonlinearity vs Output  
Code (LTC1863)  
Differential Nonlinearity vs  
Output Code (LTC1863)  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
2560 4096  
3072 3584  
0
2048  
0
2048  
3072 3584  
4096  
512 1024 1536  
512 1024 1536  
2560  
OUTPUT CODE  
OUTPUT CODE  
18637 G14  
18637 G13  
18637f  
6
LTC1863/LTC1867  
U
U
U
PI FU CTIO S  
CHO-CH7/COM (Pins 1-8): Analog Input Pins. Analog  
inputs must be free of noise with respect to GND. CH7/  
COM can be either a separate channel or the common  
minus input for the other channels.  
SCK (Pin 12): Shift Clock. This clock synchronizes the  
serial data transfer.  
SDO (Pin 13): Digital Data Output. The A/D conversion  
result is shifted out of this output. Straight binary format  
for unipolar mode and two’s complement format for  
bipolar mode.  
REFCOMP(Pin9):ReferenceBufferOutputPin.Bypassto  
GND with 10µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor (4.096V Nominal). To overdrive  
REFCOMP, tie VREF to GND.  
SDI (Pin 14): Digital Data Input Pin. The A/D configuration  
word is shifted into this input.  
VREF (Pin10):2.5VReferenceOutput. Thispincanalsobe  
used as an external reference buffer input for improved  
accuracy and drift. Bypass to GND with 2.2µF tantalum  
capacitor in parallel with 0.1µF ceramic capacitor.  
GND (Pin 15): Analog and Digital GND.  
V
DD (Pin 16): Analog and Digital Power Supply. Bypass to  
GND with 10µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor.  
CS/CONV (Pin 11): This input provides the dual function  
of initiating conversions on the ADC and also frames the  
serial data transfer.  
U
U
U U U  
TYPICAL CO ECTIO DIAGRA  
+
5V  
CH0  
V
DD  
±2.048V  
DIFFERENTIAL  
INPUTS  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
GND  
SDI  
LTC1863/  
LTC1867  
SDO  
SCK  
DIGITAL  
I/O  
4.096V  
SINGLE-ENDED  
INPUT  
+
CS/CONV  
2.5V  
V
REF  
2.2µF  
CH7/COM REFCOMP  
4.096V  
10µF  
18637 TCD  
TEST CIRCUITS  
Load Circuits for Access Timing  
Load Circuits for Output Float Delay  
5V  
5V  
3k  
3k  
DN  
DN  
DN  
DN  
3k  
C
C
L
3k  
C
C
L
L
L
(A) V TO Hi-Z  
OH  
(B) V TO Hi-Z  
OL  
(A) Hi-Z TO V AND V TO V  
OH OL  
(B) Hi-Z TO V AND V TO V  
OL OH  
OH  
OL  
18637 TC02  
18637 TC01  
18637f  
7
LTC1863/LTC1867  
W U  
W
TI I G DIAGRA S  
t
(For Short Pulse Mode)  
t (SDO Valid Before SCK),  
2
1
t (SDO Valid Hold Time After SCK)  
3
t
1
t
2
50%  
50%  
CS/CONV  
SCK  
SDO  
0.4V  
t
3
2.4V  
0.4V  
t (SDI Setup Time Before SCK),  
5
t (SDO Valid After CONV)  
4
t (SDI Hold Time After SCK)  
6
t
t
6
t
4
5
2.4V  
CS/CONV  
SDO  
SCK  
SDI  
0.4V  
Hi-Z  
2.4V  
0.4V  
2.4V  
0.4V  
2.4V  
0.4V  
t (SLEEP Mode Wake-Up Time)  
7
t (BUS Relinquish Time)  
8
t
t
7
8
2.4V  
SCK  
50%  
CS/CONV  
SDO  
SLEEP BIT (SLP = 0)  
READ-IN  
90%  
10%  
Hi-Z  
CS/CONV  
50%  
1867 TD  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
The LTC1863/LTC1867 are complete, low power multi-  
plexed ADCs. They consist of a 12-/16-bit, 200ksps ca-  
pacitive successive approximation A/D converter, a preci-  
sion internal reference, a configurable 8-channel analog  
input multiplexer (MUX) and a serial port for data transfer.  
During the conversion, the internal differential 16-bit  
capacitive DAC output is sequenced by the SAR from the  
most significant bit (MSB) to the least significant bit  
(LSB). The input is sucessively compared with the binary  
weighted charges supplied by the differential capacitive  
DAC. Bit decisions are made by a low-power, differential  
comparator. At the end of a conversion, the DAC output  
balances the analog input. The SAR contents (a 12-/16-bit  
data word) that represent the analog input are loaded into  
the 12-/16-bit output latches.  
Conversions are started by a rising edge on the CS/CONV  
input. Once a conversion cycle has begun, it cannot be  
restarted.Betweenconversions,theADCsreceiveaninput  
word for channel selection and output the conversion  
result, and the analog input is acquired in preparation for  
thenextconversion.Intheacquirephase,aminimumtime  
of1.5µswillprovideenoughtimeforthesample-and-hold  
capacitors to acquire the analog signal.  
18637f  
8
LTC1863/LTC1867  
W U U  
APPLICATIO S I FOR ATIO  
U
Changing the MUX Assignment “On the Fly”  
Analog Input Multiplexer  
1st Conversion  
2nd Conversion  
The analog input multiplexer is controlled by a 7-bit input  
data word. The input data word is defined as follows:  
+
+
CH2  
CH3  
+
CH2  
CH3  
SD OS S1 S0 COM UNI SLP  
SD = SINGLE/DIFFERENTIAL BIT  
OS = ODD/SIGN BIT  
{
{
{
{
CH4  
CH5  
+
+
CH4  
CH5  
CH7/COM  
(UNUSED)  
CH7/COM (  
)
S1 = ADDRESS SELECT BIT 1  
S0 = ADDRESS SELECT BIT 0  
COM = CH7/COM CONFIGURATION BIT  
UNI = UNIPOLAR/BIPOLAR BIT  
SLP = SLEEP MODE BIT  
18637 AI02  
Tables 1 and 2 show the configurations when COM = 0,  
and COM = 1.  
Table 1. Channel Configuration (When COM = 0, CH7/COM Pin  
Is Used as CH7)  
Channel Configuration  
SD  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
OS  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
S1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
S0 COM  
“+”  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
“-”  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Examples of Multiplexer Options  
4 Differential  
8 Single-Ended  
CH0  
CH1  
+
+
(
(
)
)
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7/COM  
+
+
+
+
+
+
+
+
{
{
{
{
+
(
(
)
)
CH2  
CH3  
+
+
+
(
(
)
)
CH4  
CH5  
+
CH6  
(
(
)
)
CH7/COM  
+
GND ( )  
7 Single-Ended  
to CH7/COM  
Combinations of Differential  
and Single-Ended  
CH0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
+
+
+
+
+
+
+
+
{
CH1  
CH2  
CH3  
{
+
+
+
+
+
CH4  
CH5  
CH6  
CH7/COM  
Table 2. Channel Configuration (When COM = 1, CH7/COM Pin  
Is Used as COMMON)  
CH7/COM (  
)
GND ( )  
Channel Configuration  
"+"  
18637 AI01  
SD  
1
OS  
0
S1  
0
S0 COM  
"-"  
0
1
0
1
0
1
0
1
1
1
1
1
1
1
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
18637f  
9
LTC1863/LTC1867  
W U U  
U
APPLICATIO S I FOR ATIO  
Driving the Analog Inputs  
The analog inputs of the LTC1863/LTC1867 are easy to  
drive. Each of the analog inputs can be used as a single-  
ended input relative to the GND pin (CH0-GND, CH1-GND,  
etc)orinpairs(CH0andCH1, CH2andCH3, CH4andCH5,  
CH6 and CH7) for differential inputs. In addition, CH7 can  
act as a COM pin for both single-ended and differential  
modes if the COM bit in the input word is high. Regardless  
of the MUX configuration, the “+” and “–” inputs are  
sampled at the same instant. Any unwanted signal that is  
common mode to both inputs will be reduced by the  
common mode rejection of the sample-and-hold circuit.  
The inputs draw only one small current spike while charg-  
ing the sample-and-hold capacitors during the acquire  
mode. In conversion mode, the analog inputs draw only a  
small leakage current. If the source impedance of the  
driving circuit is low then the LTC1863/LTC1867 inputs  
can be driven directly. More acquisition time should be  
allowed for a higher impedance source.  
LT1360 - 37MHz voltage feedback amplifier. 3.8mA sup-  
ply current. ±5V to ±15V supplies. Good AC/DC specs.  
LT1363 - 50MHz voltage feedback amplifier. 6.3mA sup-  
ply current. Good AC/DC specs.  
LT1364/LT1365 - Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good  
AC/DC specs.  
LT1468 - 90MHz, 22V/µs 16-bit accurate amplifier  
LT1469 - Dual LT1468  
Input Filtering  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1863/LTC1867 noise and distortion. Noisy input  
circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications. For instance, Figure 1 shows a 50Ω  
source resistor and a 2000pF capacitor to ground on the  
input will limit the input bandwidth to 1.6MHz. The source  
impedance has to be kept low to avoid gain error and  
degradation in the AC performance. The capacitor also  
acts as a charge reservoir for the input sample-and-hold  
and isolates the ADC input from sampling glitch sensitive  
circuitry. High quality capacitors and resistors should be  
usedsincethesecomponentscanadddistortion.NPOand  
silver mica type dielectric capacitors have excellent linear-  
ity. Carbon surface mount resistors can also generate  
distortion from self heating and from damage that may  
occur during soldering. Metal film surface mount resis-  
tors are much less susceptible to both problems.  
The following list is a summary of the op amps that are  
suitable for driving the LTC1863/LTC1867. More detailed  
information is available in the Linear Technology data  
books or Linear Technology website.  
LT1007 - Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
LT1097 - Low cost, low power precision amplifier. 300µA  
supply current. ±5V to ±15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
LT1227-140MHzvideocurrentfeedbackamplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
18637f  
10  
LTC1863/LTC1867  
W U U  
APPLICATIO S I FOR ATIO  
U
50  
Dynamic Performance  
ANALOG  
INPUT  
CH0  
LTC1863/  
LTC1867  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise at  
the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental.  
2000pF  
GND  
REFCOMP  
10µF  
1867 F01a  
Figure 1a. Optional RC Input Filtering for Single-Ended Input  
Signal-to-Noise Ratio  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 3 shows a typical SINAD of 87.9dB with  
a 200kHz sampling rate and a 1kHz input. When an  
external 5V is applied to REFCOMP (tie VREF to GND), a  
signal-to-noise ratio of 90dB can be achieved.  
1000pF  
50  
CH0  
DIFFERENTIAL  
LTC1863/  
ANALOG  
1000pF  
LTC1867  
50Ω  
INPUTS  
CH1  
1000pF  
REFCOMP  
10µF  
1867 F01b  
Figure 1b. Optional RC Input Filtering for Differential Inputs  
0
SNR = 88.8dB  
SINAD = 87.9dB  
–20  
THD = 95dB  
DC Performance  
f
= 200ksps  
SAMPLE  
–40  
–60  
INTERNAL REFERENCE  
Onewayofmeasuringthetransitionnoiseassociatedwith  
a high resolution ADC is to use a technique where a DC  
signal is applied to the input of the ADC and the resulting  
output codes are collected over a large number of conver-  
sions. For example, in Figure 2 the distribution of output  
codes is shown for a DC input that had been digitized 4096  
times. The distribution is Gaussian and the RMS code  
transition noise is about 0.74LSB.  
–80  
–100  
–120  
–140  
25  
50  
100  
0
75  
FREQUENCY (kHz)  
18637 G04  
2500  
2152  
2000  
Figure 3. LTC1867 Nonaveraged 4096 Point FFT Plot  
Total Harmonic Distortion  
1500  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
935  
1000  
500  
0
579  
1
276  
122  
2
26  
–4 –3 –2  
5
3
1
0
4
–1  
0
CODE  
2
V22 + V32 + V42... + VN  
18637 GO3  
THD = 20log  
V1  
Figure 2. LTC1867 Histogram for 4096 Conversions  
18637f  
11  
LTC1863/LTC1867  
W U U  
U
APPLICATIO S I FOR ATIO  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
Digital Interface  
The LTC1863/LTC1867 have very simple digital interface  
that is enabled by the control input, CS/CONV. A logic  
rising edge applied to the CS/CONV input will initiate a  
conversion. Aftertheconversion, takingCS/CONVlowwill  
enable the serial port and the ADC will present digital data  
in two’s complement format in bipolar mode or straight  
binary format in unipolar mode, through the SCK/SDO  
serial port.  
Internal Reference  
TheLTC1863/LTC1867hasanon-chip, temperaturecom-  
pensated, curvature corrected, bandgap reference that is  
factory trimmed to 2.5V. It is internally connected to a  
reference amplifier and is available at VREF (Pin 10). A 6k  
resistor is in series with the output so that it can be easily  
overdriven by an external reference if better drift and/or  
accuracy are required as shown in Figure 4. The reference  
amplifier gains the VREF voltage by 1.638V to 4.096V at  
REFCOMP (Pin 9). This reference amplifier compensation  
pin, REFCOMP, must be bypassed with a 10µF ceramic or  
tantalum in parallel with a 0.1µF ceramic for best noise  
performance.  
Internal Clock  
The internal clock is factory trimmed to achieve a typical  
conversion time of 3µs and a maximum conversion time,  
3.5µs, over the full operating temperature range. The  
typical acquisition time is 1.1µs, and a throughput sam-  
pling rate of 200ksps is tested and guaranteed.  
Automatic Nap Mode  
R1  
6k  
V
10  
2.2µF  
9
REF  
TheLTC1863/LTC1867gointoautomaticnapmode when  
CS/CONV is held high after the conversion is complete.  
With a typical operating current of 1.3mA and automatic  
150µA nap mode between conversions, the power dissi-  
pation drops with reduced sample rate. The ADC only  
keeps the VREF and REFCOMP voltages active when the  
part is in the automatic nap mode. The slower the sample  
rate allows the power dissipation to be lower (see  
Figure 5).  
BANDGAP  
2.5V  
REFERENCE  
REFCOMP  
REFERENCE  
AMP  
4.096V  
10µF  
R2  
R3  
GND  
15  
LTC1863/LTC1867  
1867 F04a  
2.0  
V
= 5V  
DD  
Figure 4a. LT1867 Reference Circuit  
1.5  
1.0  
0.5  
0
5V  
V
IN  
LT1019A-2.5  
10  
2.2µF  
9
V
V
OUT  
REF  
LTC1863/  
LTC1867  
REFCOMP  
+
10µF  
0.1µF  
15  
1
10  
100  
(ksps)  
1000  
GND  
f
SAMPLE  
18637 G10  
1867 F04b  
Figure 5. Supply Current vs fSAMPLE  
Figure 4b. Using the LT1019-2.5 as an External Reference  
18637f  
12  
LTC1863/LTC1867  
W U U  
APPLICATIO S I FOR ATIO  
U
If the CS/CONV returns low during a bit decision, it can  
create a small error. For best performance ensure that the  
CS/CONVreturnsloweitherwithin100nsaftertheconver-  
sion starts (i.e. before the first bit decision) or after the  
conversion ends. If CS/CONV is low when the conversion  
ends, the MSB bit will appear on SDO at the end of the  
conversion and the ADC will remain powered up.  
All analog inputs should be screened by GND. VREF  
,
REFCOMP and VDD should be bypassed to this ground  
plane as close to the pin as possible; the low impedance of  
the common return for these bypass capacitors is essen-  
tial to the low noise operation of the ADC. The width for  
these tracks should be as wide as possible.  
Timing and Control  
Sleep Mode  
Conversion start is controlled by the CS/CONV digital  
input. The rising edge transition of the CS/CONV will start  
aconversion.Onceinitiated,itcannotberestarteduntilthe  
conversion is complete. Figures 6 and 7 show the timing  
diagrams for two types of CS/CONV pulses.  
If the SLP = 1 is selected in the input word, the ADC will  
enter SLEEP mode and draw only leakage current (pro-  
vided that all the digital inputs stay at GND or VDD). After  
releasefromtheSLEEPmode,theADCneed60mstowake  
up (2.2µF/10µF bypass capacitors on VREF/REFCOMP  
pins).  
Example 1 (Figure 6) shows the LTC1863/LTC1867 oper-  
ating in automatic nap mode with CS/CONV signal staying  
HIGH after the conversion. Automatic nap mode provides  
power reduction at reduced sample rate. The ADCs can  
also operate with the CS/CONV signal returning LOW  
before the conversion ends. In this mode (Example 2,  
Figure 7), the ADCs remain powered up.  
Broad Layout and Bypassing  
To obtain the best performance, a printed circuit board  
with a ground plane is required. Layout for the printed  
circuit board should ensure digital and analog signal lines  
are separated as much as possible. In particular, care  
should be taken not to run any digital signal alongside an  
analog signal.  
Figures 8 and 9 are the transfer characteristics for the  
bipolar and unipolar mode.  
1/f  
SCK  
CS/CONV  
t
NAP MODE  
CONV  
NOT NEEDED FOR LTC1863  
12 13 14 15 16  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
DON'T CARE  
DON'T CARE  
SD 0S  
MSB  
S1 S0 COM UNI SLP  
Hi-Z  
Hi-Z  
SDO  
(LTC1863)  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
(LTC1867)  
1867 F06  
Figure 6. Example 1, CS/CONV Starts a Conversion and Remains HIGH Until Next Data Transfer. With CS/CONV Remaining HIGH after  
the Conversion, Automatic Nap Modes Provides Power Reduction at Reduced Sample Rate.  
18637f  
13  
LTC1863/LTC1867  
U
W U U  
APPLICATIO S I FOR ATIO  
t
CS/CONV  
ACQ  
NOT NEEDED FOR LTC1863  
12 13 14 15 16  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
SD 0S  
S1 S0 COM UNI SLP  
DON'T CARE  
DON'T CARE  
t
CONV  
SDO  
MSB = D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(LTC1863)  
Hi-Z  
Hi-Z  
t
CONV  
SDO  
(LTC1867)  
MSB = D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
1867 F07  
Figure 7. Example 2, CS/CONV Starts a Conversion with Short Active HIGH Pulse.  
With CS/CONV Returning LOW Before the Conversion, the ADC Remains Powered Up.  
111...111  
011...111  
111...110  
BIPOLAR  
ZERO  
011...110  
100...001  
100...000  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
UNIPOLAR  
ZERO  
FS = 4.096  
FS = 4.096  
n
000...001  
000...000  
n
1LSB = FS/2  
100...001  
100...000  
1LSB = FS/2  
1LSB = (LTC1863) = 1mV  
1LSB = (LTC1867) = 62.5µV  
1LSB = (LTC1863) = 1mV  
1LSB = (LTC1867) = 62.5µV  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FS/2  
FS/2 – 1LSB  
0V  
FS – 1LSB  
LSB  
INPUT VOLTAGE (V)  
1867 F09  
1867 F08  
Figure 8. LTC1863/LTC1867 Bipolar Transfer  
Characteristics (Two’s Complement)  
Figure 9. LTC1863/LTC1867 Unipolar Transfer  
Characteristics (Straight Binary)  
18637f  
14  
LTC1863/LTC1867  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18637f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1863/LTC1867  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1417  
14-Bit, 400ksps Serial ADC  
20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
Bandgap, 130µA Supply Current, 10ppm/°C, SOT-23 Package  
Low Input Offset: 75µV/125µV  
LT1460  
Micropower Precision Series Reference  
Single/Dual 90MHz, 22V/µs, 16-Bit Accurate Op Amps  
16-Bit, 200ksps Serial ADC  
LT1468/LT1469  
LTC1609  
65mW, Configurable Bipolar and Unipolar Input Ranges, 5V Supply  
60µA Supply Current, 10ppm/°C, SOT-23 Package  
LT1790  
Micropower Low Dropout Reference  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
10-Bit/12-Bit, 8-Channel, 400ksps ADC  
12-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
Parallel Output, Programmable MUX and Sequencer, 5V Supply  
Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
LTC1860L/LTC1861L 3V, 12-Bit, 1-/2-Channel 150ksps ADC  
LTC1864/LTC1865 16-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel 150ksps ADC in MSOP  
18637f  
LT/TP 0504 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY