LTC1865LAIS8 [Linear]

μPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; μPower , 3V , 16位,下150ksps 1和2通道ADC ,采用MSOP
LTC1865LAIS8
型号: LTC1865LAIS8
厂家: Linear    Linear
描述:

μPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP
μPower , 3V , 16位,下150ksps 1和2通道ADC ,采用MSOP

转换器 模数转换器 光电二极管
文件: 总16页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1864L/LTC1865L  
µPower, 3V, 16-Bit, 150ksps  
1- and 2-Channel ADCs in MSOP  
U
FEATURES  
DESCRIPTIO  
The LTC®1864L/LTC1865L are 16-bit A/D converters that  
are offered in MSOP and SO-8 packages and operate on a  
single 3V supply. At 150ksps, the supply current is only  
450µA. The supply current drops at lower speeds because  
the LTC1864L/LTC1865L automatically power down  
between conversions. These 16-bit switched capacitor  
successiveapproximationADCsincludesample-and-holds.  
The LTC1864L has a differential analog input with an  
external reference pin. The LTC1865L offers a software-  
selectable2-channelMUXandanexternalreferencepinon  
the MSOP version.  
16-Bit 150ksps ADCs in MSOP Package  
Single 3V Supply  
Low Supply Current: 450µA (Typ)  
Auto Shutdown Reduces Supply Current  
to 10µA at 1ksps  
True Differential Inputs  
1-Channel (LTC1864L) or 2-Channel (LTC1865L)  
Versions  
SPI/MICROWIRETM Compatible Serial I/O  
16-Bit Upgrade to 12-Bit LTC1285/LTC1288  
Pin Compatible with 12-Bit LTC1860L/LTC1861L  
No Minimum Data Transfer Rate  
The 3-wire, serial I/O, small MSOP or SO-8 package and  
extremely high sample rate-to-power ratio make these  
ADCs ideal choices for compact, low power, high speed  
systems.  
U
APPLICATIO S  
High Speed Data Acquisition  
Portable or Compact Instrumentation  
These ADCs can be used in ratiometric applications or  
with external references. The high impedance analog  
inputs and the ability to operate with reduced spans down  
to 1V full scale allow direct connection to signal sources  
in many applications, eliminating the need for external  
gain stages.  
Low Power Battery-Operated Instrumentation  
Isolated and/or Remote Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
U
TYPICAL APPLICATIO  
Supply Current vs Sampling Frequency  
Single 3V Supply, 150ksps, 16-Bit Sampling ADC  
1000  
CONV LOW = 2µs  
T
= 25°C  
A
1µF  
V
= 2.7V  
CC  
100  
3V  
LTC1864L  
10  
1
1
2
3
4
8
7
6
V
V
CC  
REF  
+
IN  
IN  
SCK  
SDO  
ANALOG INPUT  
0V TO 3V  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
5
GND  
CONV  
1864 TA01  
0.1  
0.01  
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
1864L/65L TA02  
sn18645L 18645Lfs  
1
LTC1864L/LTC1865L  
W W U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Operating Temperature Range  
Supply Voltage (VCC) ................................................. 7V  
Ground Voltage Difference  
LTC1864LC/LTC1865LC/  
LTC1864LAC/LTC1865LAC .................... 0°C to 70°C  
LTC1864LI/LTC1865LI/  
LTC1864LAI/LTC1865LAI ................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
AGND, DGND LTC1865L MSOP Package ......... ±0.3V  
Analog Input ............... (GND – 0.3V) to (VCC + 0.3V)  
Digital Input ................................(GND – 0.3V) to 7V  
Digital Output .............. (GND – 0.3V) to (VCC + 0.3V)  
Power Dissipation.............................................. 400mW  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
LTC1865LCMS  
LTC1864LCMS8  
LTC1864LIMS8  
LTC1864LACMS8  
LTC1864LAIMS8  
CONV  
CH0  
1
2
3
4
5
10  
9
V
V
SCK  
SDO  
SDI  
V
IN  
1
2
3
4
8 V  
CC  
REF  
CC  
REF  
+
7 SCK  
LTC1865LIMS  
LTC1865LACMS  
LTC1865LAIMS  
CH1  
8
6 SDO  
5 CONV  
IN¯  
AGND  
DGND  
7
6
GND  
MS8 PACKAGE  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTC7  
MS PART MARKING  
LTJ4  
TJMAX = 150°C, θJA = 210°C/W  
TJMAX = 150°C, θJA = 210°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CONV  
CH0  
V
CC  
V
V
CC  
REF  
+
LTC1864LCS8  
LTC1864LIS8  
LTC1864LACS8  
LTC1864LAIS8  
LTC1865LCS8  
LTC1865LIS8  
LTC1865LACS8  
LTC1865LAIS8  
SCK  
SDO  
SDI  
IN  
IN  
SCK  
CH1  
SDO  
CONV  
GND  
GND  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 150°C, θJA = 175°C/W  
TJMAX = 150°C, θJA = 175°C/W  
1864L 1864LA  
1864LI 864LAI  
1865L 1865LA  
1865LI 865LAI  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
U W  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
LTC1864L/LTC1865L  
LTC1864LA/LTC1865LA  
PARAMETER  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
16  
16  
No Missing Codes Resolution  
INL  
14  
15  
Bits  
(Note 3)  
±8  
±6  
LSB  
Transition Noise  
Gain Error  
2
2
LSB  
RMS  
±20  
±20  
mV  
sn18645L 18645Lfs  
2
LTC1864L/LTC1865L  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
U
U W  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
LTC1864L/LTC1865L  
LTC1864LA/LTC1865LA  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
mV  
Offset Error  
±2  
±5  
±2  
±5  
+
Input Differential Voltage  
Range  
V
= IN – IN  
0
V
REF  
0
V
REF  
V
IN  
+
Absolute Input Range  
IN Input  
0.05  
0.05  
V
+ 0.05  
0.05  
0.05  
V
+ 0.05  
V
V
CC  
V
CC  
V
IN Input  
/2  
/2  
CC  
CC  
V
Input Range  
LTC1864L SO-8 and MSOP, LTC1865L MSOP  
1
V
1
V
CC  
V
REF  
CC  
Analog Input Leakage Current (Note 4)  
±1  
±1  
µA  
C
Input Capacitance  
In Sample Mode  
During Conversion  
12  
5
12  
5
pF  
pF  
IN  
U W  
DY A IC ACCURACY  
TA = 25°C. VCC = 3V, VREF = 3V, fSAMPLE = 150kHz, unless otherwise noted.  
LTC1864L/LTC1865L  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
dB  
SNR  
Signal-to-Noise Ratio  
82  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
1kHz Input Signal  
82  
dB  
THD  
Total Hamonic Distortion Up to 5th Harmonic 1kHz Input Signal  
Full Power Bandwidth  
92  
dB  
10  
MHz  
kHz  
Full Linear Bandwidth  
S/(N + D) 75dB  
20  
U
DIGITAL A DDCELECTRICALCHARACTERISTICS  
The denotes specifications which apply  
over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, unless otherwise noted.  
LTC1864L/LTC1865L  
SYMBOL PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
V
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 3.3V  
= 2.7V  
1.9  
CC  
CC  
IN  
0.45  
2.5  
V
I
I
= V  
µA  
µA  
IH  
IL  
CC  
= 0V  
2.5  
IN  
V
OH  
V
CC  
V
CC  
= 2.7V, I = 10µA  
= 2.7V, I = 360µA  
2.3  
2.1  
2.6  
2.45  
V
V
O
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
= 2.7V, I = 400µA  
0.3  
V
µA  
OL  
CC  
O
I
I
I
I
CONV = V  
±3  
OZ  
CC  
V
OUT  
V
OUT  
= 0V  
6.5  
6.5  
mA  
mA  
SOURCE  
SINK  
= V  
CC  
Reference Current (LTC1864L SO-8 and  
MSOP, LTC1865L MSOP)  
CONV = V  
0.001  
0.01  
3
0.1  
µA  
mA  
REF  
CC  
f
= f  
SMPL  
SMPL(MAX)  
I
Supply Current  
CONV = V After Conversion  
0.5  
0.45  
10  
1.0  
µA  
mA  
CC  
CC  
f
= f  
SMPL  
SMPL(MAX)  
P
D
Power Dissipation  
f
= f  
SMPL(MAX)  
1.22  
mW  
SMPL  
sn18645L 18645Lfs  
3
LTC1864L/LTC1865L  
W U  
U
U
U
W
RECO E DED OPERATI G CO DITIO S The denotes specifications which apply over the  
full operating temperature range, otherwise specifications are TA = 25°C.  
LTC1864L/LTC1865L  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.6  
8
UNITS  
V
V
Supply Voltage  
2.7  
CC  
f
t
t
Clock Frequency  
DC  
MHz  
µs  
SCK  
CYC  
SMPL  
Total Cycle Time  
16 • SCK + t  
CONV  
Analog Input Sampling Time (Note 5)  
LTC1864L  
LTC1865L  
16  
14  
SCK  
SCK  
t
Setup Time CONVBefore First SCK↑  
(See Figure 1)  
60  
ns  
suCONV  
t
t
t
t
t
Hold Time SDI After SCK↑  
Setup Time SDI Stable Before SCK↑  
SCK High Time  
LTC1865L  
LTC1865L  
30  
30  
ns  
ns  
hDI  
suDI  
f
f
= f  
SCK(MAX)  
= f  
SCK(MAX)  
45%  
45%  
1/f  
1/f  
WHCLK  
WLCLK  
WHCONV  
SCK  
SCK  
SCK  
SCK Low Time  
SCK  
CONV High Time Between Data  
Transfer Cycles  
t
µs  
CONV  
t
t
CONV Low Time During Data Transfer  
16  
26  
SCK  
ns  
WLCONV  
hCONV  
Hold Time CONV Low After Last SCK↑  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. VCC = 2.7V, VREF = 2.5V, fSCK = fSCK(MAX) as defined in Recommended Operating  
Conditions, unless otherwise noted.  
LTC1864L/LTC1865L  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
t
f
t
Conversion Time (See Figure 1)  
Maximum Sampling Frequency  
Delay Time, SCKto SDO Data Valid  
3.7  
4.66  
CONV  
150  
kHz  
SMPL(MAX)  
dDO  
C
= 20pF  
45  
55  
60  
ns  
ns  
LOAD  
t
t
t
Delay Time, CONVto SDO Hi-Z  
55  
35  
15  
120  
120  
ns  
ns  
ns  
dis  
en  
Delay Time, CONVto SDO Enabled  
C
C
= 20pF  
= 20pF  
LOAD  
LOAD  
Time Output Data Remains  
Valid After SCK↓  
5
hDO  
t
t
SDO Rise Time  
SDO Fall Time  
C
C
= 20pF  
= 20pF  
25  
12  
ns  
ns  
r
f
LOAD  
LOAD  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Channel leakage current is measured while the part is in sample  
mode.  
Note 5: Assumes f  
= f  
In the case of the LTC1864L SCK does  
SCK(MAX)  
Note 2: All voltage values are with respect to GND.  
SCK  
not have to be clocked during this time if the SDO data word is not  
desired. In the case of the LTC1865L a minimum of 2 clocks are required  
on the SCK input after CONV falls to configure the MUX during this time.  
Note 3: Integral nonlinearity is defined as deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
sn18645L 18645Lfs  
4
LTC1864L/LTC1865L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Sampling  
Sleep Current vs Temperature  
Frequency  
Supply Current vs Temperature  
1000  
100  
600  
500  
400  
300  
200  
100  
0
20  
CONV LOW = 2µs  
f
V
V
= 150kHz  
= 2.7V  
CC  
f
V
V
= 150kHz  
= 2.7V  
REF  
S
S
CC  
T
= 25°C  
CC  
A
V
= 2.7V  
= 2.5V  
REF  
= 2.5V  
15  
10  
5
10  
1
0
0.1  
50  
TEMPERATURE (°C)  
100 125  
0.01  
0.1  
1
10  
100  
1000  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
SAMPLING FREQUENCY (kHz)  
1864L/65L G02  
1864L/65L G01  
1864L/65L G03  
Reference Current vs  
Sampling Rate  
Reference Current vs  
Temperature  
Reference Current vs  
Reference Voltage  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
f
V
V
= 150kHz  
= 2.7V  
REF  
CONV LOW = 2µs  
f
= 150kHz  
T = 25°C  
A
S
CC  
S
T
= 25°C  
A
CC  
REF  
= 2.5V  
V
V
= 2.7V  
V
= 3.6V  
CC  
= 2.5V  
0
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
25  
75  
100  
125  
150  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0  
50  
1.0  
SAMPLING FREQUENCY (kHz)  
REFERENCE VOLTAGE (V)  
1864L/65L G05  
1864L/65L G04  
1864L/65L G06  
Analog Input Leakage Current vs  
Temperature  
Typical INL Curve  
Typical DNL Curve  
100  
75  
50  
25  
0
4
2
1
CONV = 0V  
V
V
f
= 2.7V  
= 2.5V  
V
V
f
= 2.7V  
= 2.5V  
CC  
REF  
S
CC  
REF  
S
V
V
= 2.7V  
CC  
= 2.5V  
REF  
= 150kHz  
= 150kHz  
2
0
0
–2  
–4  
–1  
–2  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
32768  
CODE  
49152  
32768  
CODE  
49152  
0
65536  
0
65536  
16384  
16384  
1864L/65L G09  
1865 G02  
1865 G03  
sn18645L 18645Lfs  
5
LTC1864L/LTC1865L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Change in Gain Error vs  
Reference Voltage  
Change in Offset vs  
Reference Voltage  
Change in Offset vs Temperature  
5
4
5
4
20  
15  
V
V
= 2.7V  
CC  
= 2.5V  
REF  
f
= 150kHz  
f
= 150kHz  
S
= 25°C  
A
S
A
T
= 25°C  
T
V
V
= 3.6V  
= 3.6V  
CC  
CC  
3
3
10  
2
2
5
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–5  
–10  
–15  
–20  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
2
3
2
3
0
4
0
4
1
1
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1864L/65L G11  
1864L/65L G10  
1864L/65L G12  
Histogram of 4096 Conversions  
of a DC Input Voltage  
Change in Gain Error vs  
Temperature  
4096 Point FFT Nonaveraged  
5
4
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1200  
1000  
800  
600  
400  
200  
0
f
= 125kHz  
V
V
= 2.7V  
= 2.5V  
S
A
CC  
REF  
1040  
T
= 25°C  
V
V
V
= 3V  
CC  
IN  
3
= 0.946045kHz  
= 3V  
2
REF  
689  
648  
1
576  
0
–1  
–2  
–3  
–4  
–5  
407  
–90  
291  
–100  
–110  
–120  
–130  
169  
152  
52  
45  
20  
7
0
0 0  
50  
TEMPERATURE (°C)  
100 125  
0
30  
45  
–50 –25  
0
25  
75  
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  
5
10 15 20 25  
35 40  
50 55  
60  
65  
CODE  
INPUT FREQUENCY (kHz)  
1864L/65L G15  
1864L/65L G14  
1864L/65L G13  
SFDR vs Input Frequency  
SINAD vs Input Frequency  
THD vs Input Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 125kHz  
S
A
T
= 25°C  
SNR  
V
V
V
= 3V  
CC  
IN  
= 0dB  
= 3V  
REF  
SINAD  
f
= 125kHz  
= 25°C  
= 3V  
= 0dB  
= 3V  
f
T
V
V
V
= 125kHz  
= 25°C  
= 3V  
S
S
A
CC  
T
A
CC  
IN  
REF  
V
V
V
= 0dB  
= 3V  
IN  
REF  
1
10  
INPUT FREQUENCY (kHz)  
100  
1
10  
INPUT FREQUENCY (kHz)  
100  
1
10  
INPUT FREQUENCY (kHz)  
100  
1864L/65L G17  
1864L/65L G16  
1864L/65L G18  
sn18645L 18645Lfs  
6
LTC1864L/LTC1865L  
U
U
U
PI FU CTIO S  
LTC1864L  
VREF (Pin 1): Reference Input. The reference input defines  
the span of the A/D converter and must be kept free of  
noise with respect to GND.  
IN+, IN(Pins 2, 3): Analog Inputs. These inputs must be  
free of noise with respect to GND.  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this pin.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
V
CC (Pin 8): Positive Supply. This supply must be kept  
CONV (Pin 5): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
LTC1865L (MSOP Package)  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
SDO (Pin 7): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK(Pin8):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
VCC (Pin 9): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to AGND.  
AGND (Pin 4): Analog Ground. AGND should be tied  
directly to an analog ground plane.  
VREF (Pin 10): Reference Input. The reference input de-  
fines the span of the A/D converter and must be kept free  
of noise with respect to AGND.  
DGND (Pin 5): Digital Ground. DGND should be tied  
directly to an analog ground plane.  
SDI (Pin 6): Digital Data Input. The A/D configuration  
word is shifted into this input.  
LTC1865L (SO-8 Package)  
SDI (Pin 5): Digital Data Input. The A/D configuration  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
word is shifted into this input.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
VCC (Pin 8): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane. VREF is tied internally to this pin.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
sn18645L 18645Lfs  
7
LTC1864L/LTC1865L  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
V
CC  
(SDI) SCK  
CONV  
PIN NAMES IN  
PARENTHESES  
REFER TO LTC1865L  
SDO  
SERIAL  
PORT  
CONVERT  
CLK  
BIAS AND  
SHUTDOWN  
DATA IN  
16 BITS  
+
IN  
+
(CH0)  
16-BIT  
SAMPLING  
ADC  
DATA OUT  
IN  
(CH1)  
1864/65 BD  
GND  
V
REF  
TEST CIRCUITS  
Load Circuit for tdDO, tr, tf, tdis and ten  
Voltage Waveforms for SDO Rise and Fall Times, tr, tf  
TEST POINT  
V
OH  
SDO  
V
OL  
V
t
WAVEFORM 2, t  
en  
3k  
CC dis  
SDO  
t
dis  
WAVEFORM 1  
t
r
t
f
1864 TC04  
20pF  
1864 TC01  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
CONV  
V
CONV  
IH  
SDO  
1864 TC03  
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
90%  
10%  
t
en  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
Voltage Waveforms for SDO Delay Times, tdDO and thDO  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
SCK  
V
IL  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
t
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
dDO  
1864 TC05  
t
hDO  
V
V
OH  
OL  
SDO  
1864 TC02  
sn18645L 18645Lfs  
8
LTC1864L/LTC1865L  
W U U  
APPLICATIO S I FOR ATIO  
LTC1864L OPERATION  
U
Analog Inputs  
TheLTC1864Lhasaunipolardifferentialanaloginput.The  
converter will measure the voltage between the “IN+” and  
“IN” inputs. A zero code will occur when IN+ minus IN–  
equals zero. Full scale occurs when IN+ minus INequals  
VREF minus 1LSB. See Figure 2. Both the “IN+” and  
“IN” inputs are sampled at the same time, so common  
mode noise on the inputs is rejected by the ADC. If “IN”  
isgroundedandVREF istiedtoVCC, arail-to-railinputspan  
will result on “IN+” as shown in Figure 3.  
Operating Sequence  
The LTC1864L conversion cycle begins with the rising  
edge of CONV. After a period equal to tCONV, the conver-  
sion is finished. If CONV is left high after this time, the  
LTC1864L goes into sleep mode drawing only leakage  
current. On the falling edge of CONV, the LTC1864L goes  
into sample mode and SDO is enabled. SCK synchronizes  
the data transfer with each bit being transmitted from SDO  
on the falling SCK edge. The receiving system should  
capture the data from SDO on the rising edge of SCK. After  
completing the data transfer, if further SCK clocks are  
applied with CONV low, SDO will output zeros indefinitely.  
See Figure 1.  
Reference Input  
The voltage on the reference input of the LTC1864L  
defines the full-scale range of the A/D converter. The  
LTC1864LcanoperatewithreferencevoltagesfromVCC to  
1V.  
CONV  
t
SMPL  
8
SLEEP MODE  
t
CONV  
1
2
3
4
5
6
7
9 10 11 12 13 14 15 16  
DON'T CARE  
Hi-Z  
SCK  
SDO  
B14  
B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B15  
B13  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1854 F01  
Figure 1. LTC1864L Operating Sequence  
1µF  
V
CC  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
LTC1864L  
1
2
3
4
8
7
6
V
V
CC  
REF  
+
V
= 0V TO V  
CC  
IN  
IN  
SCK  
SDO  
IN  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
V *  
IN  
5
GND  
CONV  
1864 F03  
+
*V = IN – IN  
IN  
1864 F02  
Figure 2. LTC1864L Transfer Curve  
Figure 3. LTC1864L with Rail-to-Rail Input Span  
sn18645L 18645Lfs  
9
LTC1864L/LTC1865L  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1865L OPERATION  
single-ended mode, all input channels are measured with  
respect to GND. A zero code will occur when the “+” input  
minus the “–” input equals zero. Full scale occurs when  
the “+” input minus the “–” input equals VREF minus  
1LSB. See Figure 5. Both the “+” and “–” inputs are  
sampled at the same time so common mode noise is  
rejected. The input span in the SO-8 package is fixed at  
VREF = VCC. If the “–” input in differential mode is  
grounded, a rail-to-rail input span will result on the “+”  
input.  
Operating Sequence  
The LTC1865L conversion cycle begins with the rising  
edge of CONV. After a period equal to tCONV, the conver-  
sion is finished. If CONV is left high after this time, the  
LTC1865L goes into sleep mode drawing only leakage  
current. The LTC1865L’s 2-bit data word is clocked into  
the SDI input on the rising edge of SCK after CONV goes  
low. AdditionalinputsontheSDIpinarethenignoreduntil  
the next CONV cycle. The shift clock (SCK) synchronizes  
the data transfer with each bit being transmitted on the  
falling SCK edge and captured on the rising SCK edge in  
both transmitting and receiving systems. The data is  
transmitted and received simultaneously (full duplex).  
After completing the data transfer, if further SCK clocks  
are applied with CONV low, SDO will output zeros indefi-  
nitely. See Figure 4.  
Reference Input  
The reference input of the LTC1865L SO-8 package is  
internally tied to VCC. The span of the A/D converter is  
therefore equal to VCC. The voltage on the reference input  
of the LTC1865L MSOP package defines the span of the  
A/D converter. The LTC1865L MSOP package can operate  
with reference voltages from 1V to VCC.  
Table 1. Multiplexer Channel Selection  
Analog Inputs  
MUX ADDRESS  
CHANNEL #  
The two bits of the input word (SDI) assign the MUX  
configuration for the next requested conversion. For a  
given channel selection, the converter will measure the  
voltage between the two channels indicated by the  
“+” and “–” signs in the selected row of Table 1. In  
SGL/DIFF ODD/SIGN  
0
1
GND  
1
1
0
0
0
1
0
1
+
SINGLE-ENDED  
MUX MODE  
DIFFERENTIAL  
MUX MODE  
+
+
+
1864 TBL1  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
SDI  
S/D O/S  
DON’T CARE  
DON'T CARE  
DON’T CARE  
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
SCK  
SDO  
B0*  
B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1  
B14  
B15  
B13  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1864 F04  
Figure 4. LTC1865L Operating Sequence  
sn18645L 18645Lfs  
10  
LTC1864L/LTC1865L  
W U U  
APPLICATIO S I FOR ATIO  
U
induce errors or noise in the output code. Bypass the VCC  
and VREF pins directly to the analog ground plane with a  
minimum of 1µF tantalum. Keep the bypass capacitor  
leads as short as possible.  
GENERAL ANALOG CONSIDERATIONS  
Grounding  
The LTC1864L/LTC1865L should be used with an analog  
ground plane and single point grounding techniques. Do  
not use wire wrapping techniques to breadboard and  
evaluatethedevice.Toachievetheoptimumperformance,  
use a printed circuit board. The ground pins (AGND and  
DGND for the LTC1865L MSOP package and GND for the  
LTC1864L and LTC1865L SO-8 package) should be tied  
directly to the analog ground plane with minimum lead  
length.  
Analog Inputs  
Because of the capacitive redistribution A/D conversion  
techniques used, the analog inputs of the LTC1864L/  
LTC1865L have capacitive switching input current spikes.  
These current spikes settle quickly and do not cause a  
problem if source resistances are less than 200or high  
speed op amps are used (e.g., the LT®1211, LT1469,  
LT1807, LT1810, LT1630, LT1226orLT1215). Butiflarge  
source resistances are used, or if slow settling op amps  
drive the inputs, take care to ensure the transients caused  
by the current spikes settle completely before the conver-  
sion begins.  
Bypassing  
For good performance, the VCC and VREF pins must be free  
of noise and ripple. Any changes in the VCC/VREF voltage  
with respect to ground during the conversion cycle can  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
*
V
IN  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
*V = (SELECTED “+” CHANNEL) –  
IN  
1864 F05  
(SELECTED “–” CHANNEL)  
REFER TO TABLE 1  
Figure 5. LTC1865L Transfer Curve  
sn18645L 18645Lfs  
11  
LTC1864L/LTC1865L  
W U U  
U
APPLICATIO S I FOR ATIO  
sn18645L 18645Lfs  
12  
LTC1864L/LTC1865L  
W U U  
APPLICATIO S I FOR ATIO  
U
Component Side Silk Screen for LTC1864L Evaluation Circuit  
Component Side Showing Traces  
(Note Wider Traces on Analog Side)  
Bottom Side Showing Traces  
(Note Almost No Analog Traces on Board Bottom)  
Ground Layer with Separate Analog and Digital Grounds  
Supply Layer with 5V Digital Supply and Analog Ground Repeated  
sn18645L 18645Lfs  
13  
LTC1864L/LTC1865L  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn18645L 18645Lfs  
14  
LTC1864L/LTC1865L  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0802  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn18645L 18645Lfs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
15  
LTC1864L/LTC1865L  
U
TYPICAL APPLICATIO  
Tiny 2-Chip Data Acquisition System  
1µF  
3V  
3V  
0.1µF  
8
V
V
REF  
CC  
+
4
499  
3
1
+
IN  
IN  
SCK  
LTC1864L  
V
LTC6910-1  
IN  
5
270pF  
6
SDO  
7
2
GND  
CONV  
AGND  
1µF  
ADC  
CONTROL  
GAIN  
CONTROL  
LTC6910-1 (IN TSOT-23 PACKAGE) COMPACTLY ADDS 40dB OF INPUT GAIN  
RANGE TO THE LTC1864L (IN MSOP 8-PIN PACKAGE). SINGLE 3V SUPPLY  
1864L/65L TA03  
RELATED PARTS  
PART NUMBER  
12-Bit Serial I/O ADCs  
LTC1860L/LTC1861L  
LTC1860/LTC1861  
14-Bit Serial I/O ADCs  
LTC1417  
SAMPLE RATE  
POWER DISSIPATION  
DESCRIPTION  
150ksps  
250ksps  
1.22mW  
4.25mW  
Pin Compatible with LTC1864L/LTC1865L  
Pin Compatible with LTC1864/LTC1865  
400ksps  
200ksps  
20mW  
15mW  
16-Pin SSOP, Unipolar or Bipolar, Reference, 5V or ±5V  
Serial/Parallel I/O, Internal Reference, 5V or ±5V  
LTC1418  
16-Bit Serial I/O ADCs  
LTC1609  
200ksps  
250ksps  
65mW  
Configurable Bipolar or Unipolar Input Ranges, 5V  
MSOP, SO-8, 1- and 2-Channel, 5V Supply  
LTC1864/LTC1865  
References  
4.25mW  
LT1460  
Micropower Precision Series Reference  
Micropower Low Dropout Reference  
Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23  
60µA Supply Current, 10ppm/°C, SOT-23  
LT1790  
Op Amps  
LT1468/LT1469  
LT1806/LT1807  
LT1809/LT1810  
Single/Dual 90MHz, 16-Bit Accurate Op Amps  
Single/Dual 325MHz Low Noise Op Amps  
Single/Dual 180MHz Low Distortion Op Amps  
22V/µs Slew Rate, 75µV/125µV Offset  
140V/µs Slew Rate, 3.5nV/Hz Noise, 80dBc Distortion  
350V/µs Slew Rate, 90dBc Distortion at 5MHz  
sn18645L 18645Lfs  
LT/TP 0403 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC1865LAIS8#PBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1865LAIS8#TRPBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1865LCMS

Power, 16-Bit, 250ksps 1- and 2-Channel
Linear

LTC1865LCMS#PBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C
Linear

LTC1865LCMS#TRPBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C
Linear

LTC1865LCS8

μPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP
Linear

LTC1865LCS8#PBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1865LCS8#TR

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1865LCS8#TRPBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1865LIMS

Power, 16-Bit, 250ksps 1- and 2-Channel
Linear

LTC1865LIS8

μPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP
Linear

LTC1865LIS8#PBF

LTC1865L - µPower, 3V, 16-Bit, 150ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear