LTC1864IS8#TRPBF [Linear]

LTC1864 - µPower, 16-Bit, 250ksps 1- and 2-Channel ADCs in SOIC; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LTC1864IS8#TRPBF
型号: LTC1864IS8#TRPBF
厂家: Linear    Linear
描述:

LTC1864 - µPower, 16-Bit, 250ksps 1- and 2-Channel ADCs in SOIC; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总24页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1864/LTC1865  
µPower, 16-Bit, 250ksps  
1- and 2-Channel  
ADCs in MSOP  
FEATURES  
DESCRIPTION  
The LTC®1864/LTC1865 are 16-bit A/D converters that  
are offered in MSOP and SO-8 packages and operate  
on a single 5V supply. At 250ksps, the supply current is  
only 850μA. The supply current drops at lower speeds  
becausetheLTC1864/LTC1865automaticallypowerdown  
between conversions. These 16-bit switched capacitor  
successive approximation ADCs include sample-and-  
holds. The LTC1864 has a differential analog input with an  
adjustable reference pin. The LTC1865 offers a software-  
selectable 2-channel MUX and an adjustable reference pin  
on the MSOP version.  
n
16-Bit 250ksps ADCs in MSOP Package  
n
Single 5V Supply  
n
Low Supply Current: 850μA (Typ)  
Auto Shutdown Reduces Supply Current  
n
to 2μA at 1ksps  
True Differential Inputs  
1-Channel (LTC1864) or 2-Channel (LTC1865)  
n
n
Versions  
n
SPI/MICROWIRE™ Compatible Serial I/O  
n
16-Bit Upgrade to 12-Bit LTC1286/LTC1298  
n
Pin Compatible with 12-Bit LTC1860/LTC1861  
n
Guaranteed Operation to +125°C (MSOP Package)  
The 3-wire, serial I/O, small MSOP or SO-8 package and  
extremely high sample rate-to-power ratio make these  
ADCs ideal choices for compact, low power, high speed  
systems.  
APPLICATIONS  
n
High Speed Data Acquisition  
Portable or Compact Instrumentation  
Low Power Battery-Operated Instrumentation  
Isolated and/or Remote Data Acquisition  
TheseADCscanbeusedinratiometricapplicationsorwith  
external references. The high impedance analog inputs  
and the ability to operate with reduced spans down to  
1V full scale, allow direct connection to signal sources  
in many applications, eliminating the need for external  
gain stages.  
n
n
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Single 5V Supply, 250ksps, 16-Bit Sampling ADC  
Supply Current vs Sampling Frequency  
1000  
1μF  
5V  
100  
10  
LTC1864  
1
2
3
4
8
7
6
V
V
CC  
REF  
+
1
IN  
IN  
SCK  
SDO  
ANALOG INPUT  
0V TO 5V  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
5
0.1  
GND  
CONV  
18645 TA01  
0.01  
0.01  
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
18645 TA02  
18645fb  
1
LTC1864/LTC1865  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Supply Voltage (V ) .................................................7V  
Operating Temperature Range  
CC  
Ground Voltage Difference  
LTC1864C/LTC1865C/  
AGND, DGND LTC1865 MSOP Package............ 0.3V  
LTC1864AC/LTC1865AC...........................0°C to 70°C  
LTC1864I/LTC1865I/  
LTC1864AI/LTC1865AI ...................... 40°C to 85°C  
LTC1864H/LTC1865H  
Analog Input ................ (GND – 0.3V) to (V + 0.3V)  
CC  
Digital Input ................................ (GND – 0.3V) to 7V  
Digital Output .............. (GND – 0.3V) to (V + 0.3V)  
CC  
Power Dissipation.............................................. 400mW  
LTC1864AH/LTC1865AH ................. 40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ..................300°C  
PIN CONFIGURATION  
LTC1864  
LTC1865  
TOP VIEW  
TOP VIEW  
CONV  
CH0  
1
2
3
4
5
10  
9
V
V
SCK  
SDO  
SDI  
REF  
CC  
V
1
2
3
4
8 V  
CC  
REF  
+
IN  
7 SCK  
CH1  
8
6 SDO  
5 CONV  
IN¯  
AGND  
DGND  
7
6
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
T
= 150°C, θ = 210°C/W  
JMAX  
JA  
T
= 150°C, θ = 210°C/W  
JMAX  
JA  
LTC1864  
LTC1865  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
CONV  
CH0  
1
2
3
4
8
7
6
5
V
V
V
CC  
REF  
CC  
+
IN  
IN  
SCK  
SCK  
SDO  
CONV  
CH1  
SDO  
SDI  
GND  
GND  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 175°C/W  
T
= 150°C, θ = 175°C/W  
JMAX JA  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1864CMS8#PBF  
LTC1864IMS8#PBF  
LTC1864HMS8#PBF  
LTC1864ACMS8#PBF  
LTC1864AIMS8#PBF  
LTC1864AHMS8#PBF  
LTC1864CS8#PBF  
LTC1864IS8#PBF  
TAPE AND REEL  
PART MARKING  
LTHQ  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1864CMS8#TRPBF  
LTC1864IMS8#TRPBF  
LTC1864HMS8#TRPBF  
LTHQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTHQ  
LTC1864ACMS8#TRPBF LTHQ  
LTC1864AIMS8#TRPBF LTHQ  
LTC1864AHMS8#TRPBF LTHQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1864CS8#TRPBF  
LTC1864IS8#TRPBF  
LTC1864ACS8#TRPBF  
LTC1684AIS8#TRPBF  
LTC1865CMS#TRPBF  
LTC1865IMS#TRPBF  
1864  
1864I  
1864A  
1864AI  
LTHS  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTC1864ACS8#PBF  
LTC1684AIS8#PBF  
LTC1865CMS#PBF  
LTC1865IMS#PBF  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
LTHS  
–40°C to 85°C  
18645fb  
2
LTC1864/LTC1865  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1865HMS#PBF  
LTC1865ACMS#PBF  
LTC1865AIMS#PBF  
LTC1865AHMS#PBF  
LTC1865CS8#PBF  
LTC1865IS8#PBF  
LTC1865ACS8#PBF  
LTC1865AIS8#PBF  
LEAD BASED FINISH  
LTC1864CMS8  
LTC1864IMS8  
TAPE AND REEL  
PART MARKING  
LTHS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
0°C to 70°C  
LTC1865HMS#TRPBF  
LTC1865ACMS#TRPBF  
LTC1865AIMS#TRPBF  
LTC1865AHMS#TRPBF  
LTC1865CS8#TRPBF  
LTC1865IS8#TRPBF  
LTC1865ACS8#TRPBF  
LTC1865AIS8#TRPBF  
TAPE AND REEL  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
LTHS  
LTHS  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTHS  
1865  
1865I  
1865A  
1865AI  
PART MARKING  
LTHQ  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
LTC1864CMS8#TR  
LTC1864IMS8#TR  
LTC1864HMS8#TR  
LTC1864ACMS8#TR  
LTC1864AIMS8#TR  
LTC1864AHMS8#TR  
LTC1864CS8#TR  
LTHQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1864HMS8  
LTC1864ACMS8  
LTC1864AIMS8  
LTC1864AHMS8  
LTC1864CS8  
LTHQ  
LTHQ  
LTHQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTHQ  
1864  
LTC1864IS8  
LTC1864IS8#TR  
1864I  
1864A  
1864AI  
LTHS  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTC1864ACS8  
LTC1864ACS8#TR  
LTC1684AIS8#TR  
LTC1865CMS#TR  
LTC1865IMS#TR  
8-Lead Plastic SO  
LTC1684AIS8  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTC1865CMS  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
LTC1865IMS  
LTHS  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1865HMS  
LTC1865HMS#TR  
LTC1865ACMS#TR  
LTC1865AIMS#TR  
LTC1865AHMS#TR  
LTC1865CS8#TR  
LTHS  
LTC1865ACMS  
LTC1865AIMS  
LTHS  
LTHS  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1865AHMS  
LTC1865CS8  
LTHS  
1865  
LTC1865IS8  
LTC1865IS8#TR  
1865I  
1865A  
1865AI  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTC1865ACS8  
LTC1865ACS8#TR  
LTC1865AIS8#TR  
8-Lead Plastic SO  
LTC1865AIS8  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
18645fb  
3
LTC1864/LTC1865  
CONVERTER AND MULTIPILEXER CHARACTERISTICS  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
LTC1864/LTC1865  
LTC1864A/LTC1865A  
PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes Resolution  
INL  
14  
15  
Bits  
l
l
(Note 3)  
H-Grade (Note 3)  
8
8.5  
6
6.5  
LSB  
LSB  
Transition Noise  
Gain Error  
1.1  
1.1  
LSB  
RMS  
l
20  
20  
mV  
l
l
Offset Error  
LTC1864 SO-8 and MSOP, LTC1865 MSOP  
LTC1865 SO-8  
2
3
5
7
2
3
5
7
mV  
mV  
+
l
Input Differential Voltage Range V = IN – IN  
0
V
REF  
0
V
REF  
V
IN  
+
Absolute Input Range  
IN Input  
–0.05  
–0.05  
V
CC  
V
+ 0.05 –0.05  
CC  
V
CC  
V
+ 0.05  
CC  
V
V
IN Input  
/2  
–0.05  
/2  
V
REF  
Input Range  
LTC1864 SO-8 and MSOP,  
LTC1865 MSOP  
1
V
CC  
1
V
CC  
V
l
Analog Input Leakage Current  
Input Capacitance  
(Note 4)  
1
1
μA  
C
In Sample Mode  
During Conversion  
12  
5
12  
5
pF  
pF  
IN  
DYNAMIC ACCURACY  
TA = 25°C. VCC = 5V, VREF = 5V, fSAMPLE = 250kHz, unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL  
SNR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Signal-to-Noise Ratio  
87  
dB  
S/(N + D)  
Signal-to-Noise Plus Distortion Ratio  
10kHz Input Signal  
100kHz Input Signal  
83  
76  
dB  
dB  
THD  
Total Harmonic Distortion Up to 5th Harmonic 10kHz Input Signal  
100kHz Input Signal  
88  
77  
dB  
dB  
Full Power Bandwidth  
20  
MHz  
kHz  
Full Linear Bandwidth  
S/(N+D) ≥ 75dB  
125  
18645fb  
4
LTC1864/LTC1865  
DIGITAL AND DC ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply  
over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
l
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 5.25V  
= 4.75V  
2.4  
IH  
IL  
CC  
CC  
IN  
V
0.8  
2.5  
V
I
I
= V  
μA  
μA  
IH  
CC  
= 0V  
–2.5  
IL  
IN  
l
l
V
V
CC  
V
CC  
= 4.75V, I = 10μA  
= 4.75V, I = 360μA  
4.5  
2.4  
4.74  
4.72  
V
V
OH  
OL  
O
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
CC  
= 4.75V, I = 1.6mA  
0.4  
3
V
μA  
O
I
I
I
I
CONV = V  
CC  
OZ  
V
= 0V  
–25  
20  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
V
= V  
CC  
Reference Current (LTC1864 SO-8 and MSOP, CONV = VCC  
LTC1865 MSOP)  
0.001  
0.05  
3
0.1  
μA  
mA  
REF  
f
= f  
SMPL  
SMPL(MAX)  
I
Supply Current  
CONV = V After Conversion  
0.001  
0.001  
0.85  
3
5
1.3  
μA  
μA  
mA  
CC  
CC  
CONV = V After Conversion, H-Grade  
CC  
f
= f  
SMPL  
SMPL(MAX)  
P
Power Dissipation  
f
= f  
4.25  
mW  
D
SMPL  
SMPL(MAX)  
18645fb  
5
LTC1864/LTC1865  
RECOMMENDED OPERATING CONDITIONS  
The denotes specifications which apply over the  
full operating temperature range, otherwise specifications are TA = 25°C.  
LTC1864/LTC1865  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
Clock Frequency  
4.75  
5.25  
V
CC  
f
20  
16.7  
MHz  
MHz  
SCK  
H-Grade  
t
t
Total Cycle Time  
16 • SCK + t  
μs  
CYC  
CONV  
Analog Input Sampling Time  
LTC1864 (Note 5)  
LTC1865 (Note 5)  
16  
14  
SCK  
SCK  
SMPL  
t
Setup Time CONVBefore First SCK↑  
60  
65  
30  
30  
ns  
ns  
suCONV  
(See Figure 1)  
H-Grade  
LTC1865  
LTC1865  
t
t
t
t
t
Hold Time SDI After SCK↑  
Setup Time SSDI Stable Before SCK↑  
SCK High Time  
15  
15  
ns  
ns  
hDI  
suDI  
f
f
= f  
= f  
40%  
40%  
1/f  
1/f  
WHCLK  
WLCLK  
WHCONV  
SCK  
SCK  
SCK(MAX)  
SCK(MAX)  
SCK  
SCK Low Time  
SCK  
CONV High Time Between Data Transfer  
Cycles  
(Note 5)  
t
μs  
CONV  
t
t
CONV Low Time During Data Transfer  
(Note 5)  
16  
SCK  
ns  
WLCONV  
Hold Time CONV Low After Last SCK↑  
13  
hCONV  
18645fb  
6
LTC1864/LTC1865  
TIMING CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions,  
unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL  
PARAMETER  
CONDITIONS  
H-Grade  
MIN  
TYP  
MAX  
UNITS  
t
f
t
Conversion Time (See Figure 1)  
2.75  
2.75  
3.2  
3.3  
μs  
μs  
CONV  
Maximum Sampling Frequency  
250  
234  
kHz  
kHz  
SMPL(MAX)  
dDO  
H-Grade  
Delay Time, SCKto SDO Data Valid  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
15  
20  
25  
30  
ns  
ns  
ns  
= 20pF  
= 20pF, H-Grade  
t
t
Delay Time, CONVto SDO Hi-Z  
30  
30  
60  
65  
ns  
ns  
dis  
en  
H-Grade  
Delay Time, CONVto SDO Enabled  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF, H-Grade  
30  
30  
60  
65  
ns  
ns  
t
t
t
Time Output Data Remains Valid After SCKC  
= 20pF  
= 20pF  
= 20pF  
5
10  
8
ns  
ns  
ns  
hDO  
LOAD  
LOAD  
LOAD  
SDO Rise Time  
SDO Fall Time  
C
C
r
f
4
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Integral nonlinearity is defined as deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 4: Channel leakage current is measured while the part is in sample  
mode.  
Note 5: Guaranteed by design, not subject to test.  
Note 2: All voltage values are with respect to GND.  
18645fb  
7
LTC1864/LTC1865  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Sampling  
Frequency  
Supply Current vs Temperature  
Sleep Current vs Temperature  
1000  
800  
600  
400  
200  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
CONV = V = 5V  
CC  
V
A
= 5V  
CC  
T
= 25°C  
CONV LOW = 800ns  
1
V
V
f
= 5V  
CC  
0.1  
= 5V  
REF  
= 250kHz  
SAMPLE  
CONV HIGH = 3.2μS  
50  
75 100 125  
TEMPERATURE (°C)  
0.01  
–50  
0
25  
–25  
–50  
0
25  
50  
75  
125  
–25  
100  
0.01  
0.1  
1.0  
10  
100  
1000  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kHz)  
18645 G02  
18645 G03  
18645 G01  
Reference Current vs  
Sampling Rate  
Reference Current vs  
Temperature  
Reference Current vs  
Reference Voltage  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
V
f
= 5V  
= 5V  
V
T
S
= 5V  
V
T
= 5V  
= 25°C  
= 5V  
CC  
REF  
CC  
A
CC  
= 25°C  
A
= 250kHz  
f
= 250kHz  
V
REF  
S
CONV LOW = 800ns  
0
1
2
3
4
5
0
50  
100  
150  
200  
250  
–50  
0
25  
50  
75  
125  
–25  
100  
V
(V)  
SAMPLE RATE (kHz)  
TEMPERATURE (°C)  
REF  
18645 G06  
18645 G04  
18645 G05  
Analog Input Leakage Current vs  
Temperature  
Typical INL Curve  
Typical DNL Curve  
4
2
2
1
100  
75  
50  
25  
0
V
V
= 5V  
= 5V  
V
T
= 5V  
V
T
= 5V  
CC  
REF  
CONV = 0V  
CC  
A
CC  
A
V
= 25°C  
= 25°C  
V
= 5V  
= 5V  
REF  
REF  
0
0
–2  
–4  
–1  
–2  
0
16384  
32768  
CODE  
65536  
49152  
0
16384  
32768  
CODE  
65536  
–25  
0
25  
50  
75  
125  
49152  
–50  
100  
TEMPERATURE (°C)  
18645 G07  
18645 G08  
18645 G09  
18645fb  
8
LTC1864/LTC1865  
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in Offset Error vs  
Reference Voltage  
Change in Gain Error vs  
Change in Offset vs Temperature  
Reference Voltage  
20  
75  
50  
25  
0
5
4
V
T
= 5V  
V
V
= 5V  
= 5V  
V
T
= 5V  
CC  
A
CC  
REF  
CC  
= 25°C  
= 25°C  
15  
10  
A
3
2
5
1
0
0
–1  
–2  
–3  
–4  
–5  
–5  
–10  
–15  
–20  
–25  
0
2
3
4
5
0
1
2
3
4
5
1
–50  
0
25  
50  
75 100 125  
–25  
REFERENCE VOLTAGE(V)  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
18645 G12  
18645 G10  
18645 G11  
Change in Gain Error vs  
Temperature  
Histogram of 4096 Conversions of  
a DC Input Voltage  
4096 Point FFT Nonaveraged  
5
4
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
–20  
V
T
= 5V  
V
V
= 5V  
= 5V  
CC  
A
f
f
V
V
T
= 203.125kHz  
= 99.72763kHz  
CC  
REF  
S
IN  
= 25°C  
1534  
V
= 5V  
REF  
= 5V  
CC  
3
= 5V  
REF  
–40  
2
= 25°C  
1178  
A
1
–60  
0
729  
–80  
–1  
–2  
–3  
–4  
–5  
516  
2
–100  
–120  
–140  
127  
0
0
12  
3
0
0
5
0
CODE  
–4 –3 –2 –1  
1
4
–50  
0
25  
50  
75 100 125  
–25  
0
40  
60  
80  
100  
120  
20  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
18645 G14  
18645 G13  
18645 G15  
SINAD vs Frequency  
THD vs Frequency  
SFDR vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNR  
SINAD  
V
= 5V  
REF  
= 25°C  
V
V
T
= 5V  
= 5V  
V
= 5V  
CC  
CC  
REF  
CC  
V
T
= 5V  
V
T
= 5V  
REF  
= 25°C  
= 25°C  
A
A
A
V = 0dB  
V
= 0dB  
V
= 0dB  
IN  
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
F
(kHz)  
F
(kHz)  
F
(kHz)  
IN  
IN  
IN  
18645 G17  
18645 G16  
18645 G18  
18645fb  
9
LTC1864/LTC1865  
PIN FUNCTIONS  
LTC1864  
V
(Pin 1): Reference Input. The reference input defines  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
REF  
the span of the A/D converter and must be kept free of  
noise with respect to GND.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this pin.  
+
IN , IN (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
SCK (Pin 7): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
V
(Pin 8): Positive Supply. This supply must be kept  
CONV (Pin 5): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
frCeCe of noise and ripple by bypassing directly to the  
analog ground plane.  
LTC1865 (MSOP Package)  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
SDO (Pin 7): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK (Pin 8): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
V
(Pin 9): Positive Supply. This supply must be kept  
frCeCe of noise and ripple by bypassing directly to the  
analog ground plane.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to AGND.  
AGND(Pin4):AnalogGround.AGNDshouldbetieddirectly  
to an analog ground plane.  
V
(Pin10):ReferenceInput.Thereferenceinputdefines  
REF  
the span of the A/D converter and must be kept free of  
DGND(Pin5):DigitalGround.DGNDshouldbetieddirectly  
to an analog ground plane.  
noise with respect to AGND.  
SDI (Pin 6): Digital Data Input. The A/D configuration  
word is shifted into this input.  
LTC1865 (SO-8 Package)  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
SDI (Pin 5): Digital Data Input. The A/D configuration  
word is shifted into this input.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK (Pin 7): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
V
(Pin 8): Positive Supply. This supply must be kept  
frCeCeofnoiseandripplebybypassingdirectlytotheanalog  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
ground plane. V is tied internally to this pin.  
REF  
18645fb  
10  
LTC1864/LTC1865  
FUNCTIONAL BLOCK DIAGRAM  
V
(SDI) SCK  
CONV  
CC  
PIN NAMES IN  
PARENTHESES  
REFER TO LTC1865  
SDO  
SERIAL  
PORT  
CONVERT  
CLK  
BIAS AND  
SHUTDOWN  
DATA IN  
16 BITS  
+
IN  
+
(CH0)  
16-BIT  
SAMPLING  
ADC  
DATA OUT  
IN  
(CH1)  
18645 BD  
GND  
V
REF  
18645fb  
11  
LTC1864/LTC1865  
TEST CIRCUITS  
Load Circuit for tdDO, tr, tf, tdis and ten  
Voltage Waveforms for SDO Rise and Fall Times, tr, tf  
TEST POINT  
V
OH  
SDO  
V
OL  
V
t
WAVEFORM 2, t  
3k  
CC dis  
en  
SDO  
t
r
t
f
18645 TC04  
t
WAVEFORM 1  
dis  
20pF  
18645 TC01  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
CONV  
V
CONV  
IH  
SDO  
18645 TC03  
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
90%  
10%  
t
en  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
Voltage Waveforms for SDO Delay Times,tdDO and thDO  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
SCK  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
V
IL  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
t
18645 TC05  
dDO  
t
hDO  
V
V
OH  
SDO  
OL  
18645 TC02  
18645fb  
12  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
LTC1864 OPERATION  
Analog Inputs  
The LTC1864 has a unipolar differential analog input. The  
Operating Sequence  
+
converter will measure the voltage between the “IN ”  
+
The LTC1864 conversion cycle begins with the rising edge  
of CONV. After a period equal to t  
and “IN ” inputs. A zero code will occur when IN minus  
+
, the conversion is  
CONV  
IN equals zero. Full scale occurs when IN minus IN  
+
finished. If CONV is left high after this time, the LTC1864  
goesintosleepmodedrawingonlyleakagecurrent. Onthe  
falling edge of CONV, the LTC1864 goes into sample mode  
and SDO is enabled. SCK synchronizes the data transfer  
with each bit being transmitted from SDO on the falling  
SCK edge. The receiving system should capture the data  
from SDO on the rising edge of SCK. After completing the  
data transfer, if further SCK clocks are applied with CONV  
low, SDO will output zeros indefinitely. See Figure 1.  
equals V minus 1LSB. See Figure 2. Both the “IN ” and  
REF  
“IN ” inputs are sampled at the same time, so common  
mode noise on the inputs is rejected by the ADC. If “IN ”  
is grounded and V  
span will result on “IN ” as shown in Figure 3.  
is tied to V , a rail-to-rail input  
REF  
CC  
+
Reference Input  
The voltage on the reference input of the LTC1864 defines  
the full-scale range of the A/D converter. The LTC1864 can  
operate with reference voltages from V to 1V.  
CC  
t
suCONV  
CONV  
t
SMPL  
8
SLEEP MODE  
t
CONV  
1
2
3
4
5
6
7
9 10 11 12 13 14 15 16  
SCK  
SDO  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2 B1 B0*  
B15 B14 B13 B12  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
18645 F01  
Figure 1. LTC1864 Operating Sequence  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
1μF  
V
CC  
LTC1864  
V
1
2
3
4
8
7
6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
V
V
*
REF  
CC  
IN  
+
V
= 0V TO V  
CC  
IN  
IN  
SCK  
IN  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
+
SDO  
*V = IN – IN  
IN  
5
GND  
CONV  
18645 F02  
18645 F03  
Figure 2. LTC1864 Transfer Curve  
Figure 3. LTC1864 with Rail-to-Rail Input Span  
18645fb  
13  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
LTC1865 OPERATION  
single-ended mode, all input channels are measured  
with respect to GND. A zero code will occur when the  
“+” input minus the “–” input equals zero. Full scale oc-  
curs when the “+” input minus the “–” input equals VREF  
minus 1LSB. See Figure 5. Both the “+” and “–” inputs  
are sampled at the same time so common mode noise  
is rejected. The input span in the SO-8 package is fixed  
at VREF = VCC. If the “–” input in differential mode is  
grounded, a rail-to-rail input span will result on the “+”  
input.  
Operating Sequence  
The LTC1865 conversion cycle begins with the rising edge  
of CONV. After a period equal to t  
, the conversion is  
CONV  
finished. If CONV is left high after this time, the LTC1865  
goes into sleep mode drawing only leakage current. The  
LTC1865’s 2-bit data word is clocked into the SDI input  
on the rising edge of SCK after CONV goes low. Additional  
inputs on the SDI pin are then ignored until the next CONV  
cycle. Theshiftclock(SCK)synchronizesthedatatransfer  
witheachbitbeingtransmittedonthefallingSCKedgeand  
captured on the rising SCK edge in both transmitting and  
receiving systems. The data is transmitted and received  
simultaneously (full duplex). After completing the data  
transfer, if further SCK clocks are applied with CONV low,  
SDO will output zeros indefinitely. See Figure 4.  
Reference Input  
The reference input of the LTC1865 SO-8 package is  
internally tied to V . The span of the A/D converter is  
CC  
therefore equal to V . The voltage on the reference  
CC  
input of the LTC1865 MSOP package defines the span  
of the A/D converter. The LTC1865 MSOP package can  
operate with reference voltages from 1V to V .  
CC  
Analog Inputs  
Table 1. Multiplexer Channel Selection  
The two bits of the input word (SDI) assign the MUX  
configuration for the next requested conversion. For a  
given channel selection, the converter will measure the  
voltage between the two channels indicated by the “+”  
and “–” signs in the selected row of the following table. In  
MUX ADDRESS  
CHANNEL #  
SGL/DIFF ODD/SIGN  
0
1
GND  
1
1
0
0
0
1
0
1
+
SINGLE-ENDED  
MUX MODE  
DIFFERENTIAL  
MUX MODE  
+
+
+
18645 TBL1  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
SDI  
S/D O/S  
DON’T CARE  
DON’T CARE  
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
SCK  
SDO  
B0*  
B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1  
B14  
B15  
B13  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
18645 F04  
Figure 4. LTC1865 Operating Sequence  
18645fb  
14  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
GENERAL ANALOG CONSIDERATIONS  
induce errors or noise in the output code. Bypass the V  
CC  
and V  
pins directly to the analog ground plane with  
REF  
Grounding  
a minimum of 1μF tantalum. Keep the bypass capacitor  
leads as short as possible.  
The LTC1864/LTC1865 should be used with an analog  
groundplaneandsinglepointgroundingtechniques.Donot  
use wire wrapping techniques to breadboard and evaluate  
the device. To achieve the optimum performance, use a  
printed circuit board. The ground pins (AGND and DGND  
for the LTC1865 MSOP package and GND for the LTC1864  
and LTC1865 SO-8 package) should be tied directly to the  
analog ground plane with minimum lead length.  
Analog Inputs  
Because of the capacitive redistribution A/D conversion  
techniquesused,theanaloginputsoftheLTC1864/LTC1865  
have capacitive switching input current spikes. These cur-  
rent spikes settle quickly and do not cause a problem if  
source resistances are less than 200Ω or high speed op  
ampsareused(e.g.,theLT®1211,LT1469,LT1807,LT1810,  
LT1630,LT1226orLT1215).Butiflargesourceresistances  
are used, or if slow settling op amps drive the inputs, take  
care to ensure the transients caused by the current spikes  
settle completely before the conversion begins.  
Bypassing  
For good performance, the V and V pins must be free  
CC  
REF  
of noise and ripple. Any changes in the V /V voltage  
CC REF  
with respect to ground during the conversion cycle can  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
*
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
V
IN  
*V = (SELECTED “+” CHANNEL) –  
IN  
18645 F05  
(SELECTED “–” CHANNEL)  
REFER TO TABLE 1  
Figure 5. LTC1865 Transfer Curve  
18645fb  
15  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
18645fb  
16  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
Component Side Silk Screen for LTC1864 Evaluation Circuit  
Component Side Showing Traces  
(Note Sider Traces on Analog Side)  
Bottom Side Showing Traces  
(Note Almost No Analog Traces on Board Bottom)  
Ground Layer with Separate Analog and Digital Grounds  
Supply Layer with 5V Digital Supply and  
Analog Ground Repeated  
18645fb  
17  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
U11  
5V  
AN  
5V  
DIG  
15V  
LT1121CST-5  
R4  
2Ω  
1
3
V
V
OUT  
IN  
C26  
GND  
2
10μF  
6.3V  
1206  
5V  
AN  
C3  
10μF  
6.3V  
1206  
C4  
0.1μF  
5V  
5V  
DIG  
15V  
DIG  
LTC1485  
RO V  
RN1  
330  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1V to 5V REFERENCE  
0V to V INPUT  
V
IN  
IN  
V
CC  
SCK  
SDO  
REF  
CC  
B
A
1
2
3
4
8
7
6
5
+
REF  
RE  
DE  
DI  
GND  
CONV  
GND  
120Ω  
U3  
LTC1864CMS8  
ANALOG GROUND PLANE  
4 CONDUCTOR  
TELEPHONE WIRES  
TO RECEIVER  
C23  
0.1μF  
C24  
0.1μF  
5V  
DIG  
5V  
DIG  
4
2
1
500Ω  
5V  
5
U12A  
U12B  
16  
16  
74AC109  
2
74AC109  
U9B  
74AC00  
3
6
7
14  
10  
9
V
V
CC  
CC  
J
K
Q
Q
J
K
Q
Q
3
4
1
5
13  
12  
15  
11  
MC74VHC1G66  
CLK  
CLK  
CLR  
PRE  
CLR  
PRE  
8
8
GND  
5V  
GND  
5V  
DIG  
DIG  
U9A  
74AC00  
C16  
0.1μF  
C17  
0.1μF  
5V  
5V  
DIG  
DIG  
5V  
DIG  
74AC74  
Q
74AC86  
U6  
U7  
C18  
PRE  
D
CLK  
CLR  
5V  
DIG  
74HC163AD  
74HC163AD  
0.1μF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
RESET  
CLK  
P0  
P1  
P2  
P3  
ENP  
GND  
RESET  
CLK  
P0  
P1  
P2  
P3  
ENP  
GND  
V
RCO  
V
CC  
RCO  
CC  
15  
14  
13  
12  
11  
10  
9
U10  
Q
LTC1799  
Q0  
Q1  
Q2  
Q3  
Q0  
Q1  
Q2  
Q3  
100k  
5
4
1
2
3
+
V
5V  
DIG  
OUT  
DIV  
GND  
SET  
74AC74  
Q
ENT  
LO  
ENT  
LO  
PRE  
D
CLK  
CLR  
U13C  
74AC32  
Q
CLK  
18645 AI2  
U13B  
74AC32  
Figure 6. LTC1864 Manchester Transmitter  
18645fb  
18  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
V
V
V
CC  
CC  
CC  
IC3A  
IC2B  
IC4B  
74AC08  
74AC74  
74AC74  
IC2A  
5
6
IC6D  
IC5C  
4
IC4A  
74AC08  
9
8
10  
12  
11  
13  
PRE  
D
CLK  
CLR  
Q
74AC74  
V
V
CC  
74AC32  
CC IC1A  
74AC74  
PRE  
D
CLK  
CLR  
Q
2
3
1
74AC86  
5
6
4
PRE  
D
CLK  
CLR  
Q
CLK  
CLK  
2
3
1
5
6
4
2
3
1
PRE  
D
CLK  
CLR  
Q
CLK  
Q
DATA IN  
CLK  
Q
9
8
Q
10  
PRE  
D
CLK  
Q
12  
11  
13  
Q
CLK  
IC6C  
74LS32D  
CLR  
DATA  
Q
DATA  
IC1B  
74AC74  
V
IC3B  
CC  
IC4D  
74AC08  
74AC74  
IC4C  
74AC08  
10  
12  
11  
13  
9
8
PRE  
D
CLK  
CLR  
Q
STROBE  
CLK  
Q
IC8  
74AC595  
RECEIVE CLOCK AT  
8 X TRANSMIT  
CLOCK FREQUENCY  
14  
15  
1
2
3
4
5
6
7
9
SER  
SCK  
SCL  
RCK  
8
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
QHIN  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
11  
10  
12  
13  
U1  
LTC1485  
V
CC  
V
CC  
1
2
3
4
8
7
6
5
RO  
RE  
DE  
DI  
V
CC  
B
A
D8  
GND  
OPTIONAL SERIAL TO  
PARALLEL CONVERTER  
V
CC  
IC9  
15V SUPPLY TO  
TRANSMITTER  
74AC595  
14  
11  
10  
12  
13  
15  
1
2
3
4
5
6
7
9
SER  
SCK  
SCL  
RCK  
8
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
QHIN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
STROBE  
IC7B  
74AC109  
4 CONDUCTOR  
TELEPHONE WIRES  
TO TRANSMITTER  
R1  
120Ω  
11  
10  
Q
PRE  
14  
J
12  
CLK  
13  
K
DATA  
15  
9
CLR  
Q
18645 AI3  
Figure 7. LTC1864 Manchester Receiver  
18645fb  
19  
LTC1864/LTC1865  
APPLICATIONS INFORMATION  
Transmit LTC1864 Data Over Modular Telephone Wire  
Using Simple Transmitter/Receiver  
zeros, a start bit, followed by the 16 data bits (one sample  
every 48 clock cycles) at a clock frequency of 1MHz set by  
the LTC1799 oscillator. Sending at least 18 zeros before  
each start bit ensures that if synchronization is lost, the  
receiver can resynchronize to a start bit under all condi-  
tions. The serial to parallel converter shown in Figure 7  
requires 18 zeros to avoid triggering on data bits.  
Figure 6 shows a simple Manchester encoder and dif-  
ferential transmitter suitable for use with the LTC1864.  
This circuit allows transmission of data over inexpensive  
telephone wire. This is useful for measuring a remote  
sensor, particularlywhenthecostofpreservingtheanalog  
signal over a long distance is high.  
The Manchester receiver shown in Figure 7 was adopted  
from Xilinx application note 17-30 and would typically be  
implemented in an FPGA. The decoder clock frequency is  
nominally 8 times the transmit clock frequency and is very  
tolerant of frequency errors. The outputs of the decoder  
are data and a strobe that indicates a valid data bit. The  
data can be deserialized using shift registers as shown.  
The start bit resets the J-K/flip-flop on its way into the  
Manchester encoding is a clock signal that is modulated  
by exclusive ORing with the data signal. The resulting  
signal contains both clock and data information and has  
anaveragedutycycleof50%, thatalsoallowstransformer  
coupling. In practice, generating a Manchester encoded  
signal with an XOR gate will often produce glitches due  
to the skew between data and clock transitions. The D  
flip-flops in this encoder retime the clock and data such  
that the respective edges are closely aligned, effectively  
suppressing glitches. The retimed data and clock are then  
XORed to produce the Manchester encoded data, which  
is interfaced to telephone wire with an LTC1485 RS485  
transceiver.  
first shift register. When it appears at the QH output of  
IN  
the second shift register, it sets the flip-flop that loads the  
parallel data into the output register.  
With AC family CMOS logic at 5V the receiver clock fre-  
quencyislimitedto20MHz;thecorrespondingtransmitter  
clock frequency is 2.5MHz. If the receiver is implemented  
in an FPGA that can be clocked at 160MHz, the LTC1864  
can be clocked at its rated clock frequency of 20MHz.  
In order to synchronize to incoming data, the receiver  
needs a sequence to indicate the start of a data word. The  
transmitter schematic shows logic that will produce 31  
18645fb  
20  
LTC1864/LTC1865  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.52  
(.206)  
REF  
8
7 6 5  
5.23  
3.2 – 3.45  
(.206)  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.88 ± 0.1  
(.192 ± .004)  
(.126 – .136)  
MIN  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
0.13 ± 0.05  
(.005 ± .002)  
0.65  
(.0256)  
BCS  
MSOP (MS8) 1001  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18645fb  
21  
LTC1864/LTC1865  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
5.23  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
3.2 – 3.45  
(.206)  
4.88 ± 0.10  
(.192 ± .004)  
(.126 – .136)  
MIN  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
0.13 ± 0.05  
(.005 ± .002)  
MSOP (MS) 1001  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
TYP  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18645fb  
22  
LTC1864/LTC1865  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
SO8 1298  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18645fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC1864/LTC1865  
TYPICAL APPLICATION  
Sample Two Channels Simultaneously with a Single Input ADC  
4096 Point FFT of Output  
0
10  
20  
30  
40  
50  
60  
70  
80  
f
f
f
= 7.507324kHz AT 530mV  
= 45.007324kHz AT 1.7V  
1
2
S
P-P  
P-P  
5V  
0.1μF  
f
= 100kHz  
1
+
(0V TO 0.66V)  
0.1μF  
0.1μF  
1μF  
1μF  
4.096V  
REF  
100Ω  
1/2  
LT1492  
4.096V  
REF  
100pF  
5k  
5k  
20k  
5pF  
8
1
28.7k  
V
REF  
7
6
5
CC  
90  
10k  
2
3
SCK  
+
100  
110  
120  
130  
IN  
10k  
1μF  
LTC1864  
SDO  
IN  
5V  
CONV  
GND  
4
0.1μF  
0
5
10 15 20 25 30 35 40 45 50  
FREQUENCY (kHz)  
0.1μF  
f
8
2
+
(0V TO 2V)  
100Ω  
1/2  
LT1492  
18645 TA03b  
100pF  
4
18645 TA03a  
RELATED PARTS  
PART NUMBER  
14-Bit Serial I/O ADCs  
LTC1417  
SAMPLE RATE  
POWER DISSIPATION  
DESCRIPTION  
400ksps  
200ksps  
20mW  
15mW  
16-Pin SSOP, Unipolar or Bipolar, Reference, 5V or 5V  
Serial/Parallel I/O, Internal Reference, 5V or 5V  
LTC1418  
16-Bit Serial I/O ADCs  
LTC1609  
200ksps  
65mW  
Configurable Bipolar or Unipolar Input Ranges, 5V  
References  
LT1460  
Micropower Precision Series Reference  
Micropower Low Dropout Reference  
Bandgap, 130μA Supply Current, 10ppm/°C, Available in SOT-23  
60μA Supply Current, 10ppm/°C, SOT-23  
LT1790  
Op Amps  
LT1468/LT1469  
LT1806/LT1807  
LT1809/LT1810  
Single/Dual 90MHz, 16-Bit Accurate Op Amps  
Single/Dual 325MHz Low Noise Op Amps  
Single/Dual 180MHz Low Distortion Op Amps  
22V/μs Slew Rate, 75μV/125μV Offset  
140V/μs Slew Rate, 3.5nV/√Hz Noise, –80dBc Distortion  
350V/μs Slew Rate, –90dBc Distortion at 5MHz  
18645fb  
LT 1207 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY