LTC1754-5_15 [Linear]

Micropower, Regulated 3.3V/5V Charge Pump with Shutdown in SOT-23;
LTC1754-5_15
型号: LTC1754-5_15
厂家: Linear    Linear
描述:

Micropower, Regulated 3.3V/5V Charge Pump with Shutdown in SOT-23

文件: 总12页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1754-3.3/LTC1754-5  
Micropower, Regulated  
3.3V/5V Charge Pump with  
Shutdown in SOT-23  
U
FEATURES  
DESCRIPTIO  
Ultralow Power: IIN = 13  
µA  
The LTC®1754 is a micropower charge pump DC/DC  
converter that produces a regulated output. The input  
voltage range is 2V to 4.4V for 3.3V output and 2.7V to  
5.5V for 5V output. Extremely low operating current and a  
low external parts count (one flying capacitor and two  
smallbypasscapacitorsatVINandVOUT)maketheLTC1754  
ideally suited for small, battery-powered applications. The  
total component area of the application circuit shown  
below is only 0.052 inch2.  
TheLTC1754operatesasaBurstModeTM switchedcapaci-  
tor voltage doubler to produce a regulated output. It has  
thermalshutdowncapabilityandcansurviveacontinuous  
short circuit from VOUT to GND.  
Regulated Output Voltage: 3.3V  
±
4%, 5V  
3.0V)  
2.5V)  
±4%  
5V Output Current: 50mA (VIN  
3.3V Output Current: 40mA (VIN  
No Inductors Needed  
Very Low Shutdown Current: <1µA  
Shutdown Disconnects Load from VIN  
Internal Oscillator: 600kHz  
Short-Circuit and Overtemperature Protected  
Ultrasmall Application Circuit: (0.052 Inch2)  
6-Pin SOT-23 Package  
U
APPLICATIO S  
The LTC1754 is available in a 6-pin SOT-23 package.  
SIM Interface Supplies for GSM Cellular Telephones  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
White LED Power Supplies  
Burst Mode is a trademark of Linear Technology Corporation.  
Li-Ion Battery Backup Supplies  
Handheld Computers  
Smart Card Readers  
PCMCIA Local 5V Supplies  
U
TYPICAL APPLICATIO  
LTC1754-3.3  
Output Voltage vs Supply Voltage  
LTC1754-5  
Output Voltage vs Supply Voltage  
1
2
3
6
5
4
+
V
OUT  
V
C
OUT  
LTC1754-X  
3.40  
3.35  
3.30  
3.25  
3.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
1µF  
10µF  
I
C
C
= 20mA  
= 10µf  
= 1µF  
OUT  
OUT  
FLY  
I
C
C
= 25mA  
= 10µF  
= 1µF  
OUT  
OUT  
FLY  
V
GND  
V
IN  
IN  
10µF  
ON/OFF  
SHDN  
C
1754 TA01  
T
= 85°C  
= 25°C  
A
A
T
A
= 85°C  
T
= 25°C  
A
Regulated 3.3V Output from 2V to 4.4V Input  
T
V
= 3.3V ±4%  
OUT  
T
= –40°C  
T
A
= –40°C  
A
I
I
= 0mA TO 20mA, V > 2.0V  
IN  
= 0mA TO 40mA, V > 2.5V  
OUT  
OUT  
IN  
Regulated 5V Output from 2.7V to 5.5V Input  
V
= 5V ±4%  
OUT  
I
I
= 0mA TO 25mA, V > 2.7V  
IN  
= 0mA TO 50mA, V > 3.0V  
IN  
OUT  
OUT  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2.5  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1754 TA02  
1574 TA03  
1
LTC1754-3.3/LTC1754-5  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
VIN to GND .................................................. 0.3V to 6V  
VOUT to GND ............................................... 0.3V to 6V  
SHDN to GND.............................................. 0.3V to 6V  
TOP VIEW  
NUMBER  
+
V
1
6 C  
5 V  
4 C  
OUT  
LTC1754ES6-3.3  
LTC1754ES6-5  
GND 2  
IN  
I
OUT (Note 4) ......................................................... 75mA  
SHDN 3  
VOUT Short-Circuit Duration ............................ Indefinite  
Operating Temperature Range (Note 3) ... 40°C to 85°C  
Storage Temperature Range .................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................... 300°C  
S6 PART MARKING  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
TJMAX = 150°C, θJA = 230°C/ W  
LTGK  
LTLW  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. CFLY = 1µF (Note 2), CIN = 10µF, COUT = 10µF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LTC1754-3.3  
V
V
Input Supply Voltage  
Output Voltage  
2.0  
4.4  
V
IN  
2.0V V 4.4V, I  
20mA  
40mA  
3.17  
3.17  
3.30  
3.30  
3.43  
3.43  
V
V
OUT  
IN  
OUT  
OUT  
2.5V V 4.4V, I  
IN  
I
Operating Supply Current  
Output Ripple  
2.0V V 4.4V, I  
= 0mA, SHDN = V  
IN  
11  
23  
30  
µA  
CC  
IN  
OUT  
V
V
V
= 2.5V, I  
= 2.0V, I  
= 40mA  
= 20mA  
mV  
P-P  
R
IN  
IN  
OUT  
OUT  
η
Efficiency  
82  
%
f
t
I
Switching Frequency  
Oscillator Free Running  
600  
0.8  
118  
kHz  
ms  
mA  
OSC  
ON  
V
Turn-On Time  
V
V
= 2.0V, I = 0mA  
OUT  
OUT  
IN  
IN  
Output Short-Circuit Current  
= 2.5V, V  
= 0V, SHDN = 2.5V  
SC  
OUT  
LTC1754-5  
V
V
Input Supply Voltage  
Output Voltage  
2.7  
5.5  
V
IN  
2.7V V 5.5V, I  
25mA  
50mA  
4.8  
4.8  
5.0  
5.0  
5.2  
5.2  
V
V
OUT  
IN  
OUT  
OUT  
3.0V V 5.5V, I  
IN  
I
Operating Supply Current  
Output Ripple  
2.7V V 5.5V, I  
= 0mA, SHDN = V  
IN  
13  
65  
30  
µA  
CC  
IN  
OUT  
V
V
V
= 3V, I  
= 3V, I  
= 50mA  
= 50mA  
mV  
P-P  
R
IN  
IN  
OUT  
OUT  
η
Efficiency  
82.7  
700  
0.4  
%
f
t
I
Switching Frequency  
Oscillator Free Running  
kHz  
ms  
mA  
OSC  
ON  
V
Turn-On Time  
V
V
= 3V, I  
= 0mA  
OUT  
IN  
IN  
OUT  
Output Short-Circuit Current  
= 3V, V  
= 0V, SHDN = 3V  
OUT  
150  
SC  
LTC1754-3.3/LTC1754-5  
I
Shutdown Supply Current  
V
3.6V, I  
= 0mA, V  
= 0mA, V  
= 0V  
= 0V  
0.01  
1
2.5  
µA  
µA  
SHDN  
IN  
OUT  
SHDN  
SHDN  
3.6V < V , I  
IN OUT  
V
V
SHDN Input Threshold (High)  
SHDN Input Threshold (Low)  
SHDN Input Current (High)  
SHDN Input Current (Low)  
1.4  
V
V
IH  
IL  
0.3  
1
I
I
SHDN = V  
–1  
–1  
µA  
µA  
IH  
IL  
IN  
SHDN = 0V  
1
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
a device may be impaired.  
Note 3: The LTC1754ES6-X is guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 2: 0.6µF is the minimum required C capacitance for rated output  
FLY  
current capability. Depending on the choice of capacitor material, a  
somewhat higher value of capacitor may be required to attain 0.6µF over  
temperature.  
Note 4: Based on long term current density limitations.  
2
LTC1754-3.3/LTC1754-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LTC1754-3.3, TA = 25°C unless otherwise noted.  
No Load Supply Current  
vs Supply Voltage  
Output Voltage vs Output Current  
Supply Current vs VSHDN  
20  
15  
10  
5
20  
15  
10  
5
3.40  
3.35  
3.30  
3.25  
3.20  
I
C
V
= 0µA  
= 1µF  
= V  
T
I
= 25°C  
= 0µA  
T
C
C
= 25°C  
OUT  
FLY  
SHDN  
A
OUT  
A
= 10µF  
OUT  
FLY  
= 1µF  
IN  
V
IN  
= 4.5V  
T
T
= 85°C  
= 25°C  
V
IN  
= 2.5V  
A
V
= 2.5V  
IN  
V
= 2V  
IN  
A
V
= 2V  
IN  
T
A
= 40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
3
4
1
5
0
20  
40  
60  
80  
100  
2
SUPPLY VOLTAGE (V)  
V
SHDN  
CONTROL VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1754 G02  
1754 G03  
1754 G01  
VOUT Short-Circuit Current  
vs Supply Voltage  
Efficiency vs Load Current  
100  
180  
160  
T
A
= 25°C  
= 1µF  
T
V
C
= 25°C  
A
90  
80  
70  
C
= 2V  
FLY  
IN  
= 1µF  
FLY  
140  
120  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.001  
0.01  
0.1  
1
10  
100  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
1754 G05  
1735 G04  
Load Transient Response  
Output Ripple  
Start-Up Time  
IOUT  
0mA to 20mA  
10mA/DIV  
SHDN  
1V/DIV  
VOUT  
AC COUPLED  
20mV/DIV  
VOUT  
1V/DIV  
VOUT  
AC COUPLED  
20mV/DIV  
VIN = 2V  
COUT = 10µF  
200µs/DIV  
1754 G9  
VIN = 2V  
COUT = 10µF  
50µs/DIV  
1754 G07  
VIN = 2V  
COUT = 10µF  
IOUT = 20mA  
5µs/DIV  
1754 G08  
3
LTC1754-3.3/LTC1754-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LTC1754-5, TA = 25°C unless otherwise noted.  
No Load Supply Current  
vs Supply Voltage  
Output Voltage vs Output Current  
Supply Current vs VSHDN  
5.15  
5.10  
20  
15  
10  
5
25  
20  
15  
10  
5
T
C
C
= 25°C  
A
T
I
= 25°C  
= 0µA  
I
C
V
= 0µA  
= 1µF  
A
OUT  
FLY  
= 10µF  
OUT  
FLY  
OUT  
V
V
= 5.5V  
= 1µF  
IN  
= V  
SHDN  
IN  
T
= 85°C  
= 25°C  
A
= 3.3V  
= 2.7V  
IN  
5.05  
5.00  
V
= 3V  
IN  
V
IN  
T
V
= 2.7V  
A
IN  
4.95  
4.90  
4.85  
T
= –40°C  
A
0
0
20  
40  
60  
80  
100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
3
4
5
6
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
V
CONTROL VOLTAGE (V)  
SHDN  
1574-5 G02  
1754 G11  
1574 G12  
VOUT Short-Circuit Current  
vs Supply Voltage  
Efficiency vs Load Current  
100  
220  
200  
180  
160  
140  
120  
100  
V
T
= 3V  
= 25°C  
= 1µF  
T
= 25°C  
= 1µF  
IN  
A
90  
80  
70  
C
A
FLY  
C
FLY  
60  
50  
40  
30  
20  
10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.001  
0.01  
0.1  
1
10  
100  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
1754-5 G05  
1754 G13  
Load Transient Response  
Output Ripple  
Start-Up Time  
IOUT  
0mA to 50mA  
25mA/DIV  
SHDN  
5V/DIV  
VOUT  
AC COUPLED  
20mV/DIV  
VOUT  
1V/DIV  
VOUT  
AC COUPLED  
50mV/DIV  
V
IN = 3V  
100µs/DIV  
1754 G18  
V
IN = 3V  
50µs/DIV  
1754 G16  
VIN = 3V  
COUT = 10µF  
IOUT = 50mA  
5µs/DIV  
1754 G17  
COUT = 10µF  
COUT = 10µF  
4
LTC1754-3.3/LTC1754-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1754-3.3. LTC1754-5, TA = 25°C unless otherwise noted.  
Oscillator Frequency  
vs Supply Voltage  
VSHDN Threshold Voltage  
vs Supply Voltage  
Efficiency vs Supply Voltage  
850  
100  
90  
0.95  
0.90  
T
= 25°C  
FLY  
A
C
= 1µF  
800  
750  
T
= 85°C  
= 25°C  
A
A
T
= –40°C  
= 25°C  
A
80  
70  
60  
50  
40  
LTC1754-5  
= 25mA  
0.85  
0.80  
700  
650  
600  
550  
500  
I
T
OUT  
A
T
T
= 85°C  
A
0.75  
0.70  
0.65  
LTC1754-3.3  
= 20mA  
T
= –40°C  
A
I
OUT  
450  
30  
2.5  
3.0  
4.0 4.5 5.0 5.5  
2.0  
3.5  
4.0  
5.0 5.5  
4.0  
5.0 5.5  
2.0 2.5  
3.0 3.5  
4.5  
2.0 2.5 3.0 3.5  
4.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1754 G20  
1754 G19  
1754 G21  
U
U
U
PI FU CTIO S  
C(Pin 4): Flying Capacitor Negative Terminal.  
VOUT (Pin 1): Regulated Output Voltage. For best perfor-  
mance, VOUT should be bypassed with a 6.8µF (min) low  
ESR capacitor as close as possible to the pin.  
VIN (Pin 5): Input Supply Voltage. VIN should be bypassed  
with a 6.8µF (min) low ESR capacitor.  
C+ (Pin 6): Flying Capacitor Positive Terminal.  
GND (Pin 2): Ground. Should be tied to a ground plane for  
best performance.  
SHDN (Pin 3): Active Low Shutdown Input. A low on  
SHDN disables the LTC1754. SHDN must not be allowed  
to float.  
W
W
SI PLIFIED BLOCK DIAGRA  
*
+
C
V
OUT  
2
C
OUT  
10µF  
C
FLY  
1µF  
1
V
IN  
C
IN  
10µF  
+
COMP1  
CONTROL  
2
C
1
V
REF  
SHDN  
1754 BD  
*CHARGE PUMP SHOWN IN PHASE 1, THE CHARGING PHASE.  
PHASE 1 IS ALSO THE SHUTDOWN PHASE  
5
LTC1754-3.3/LTC1754-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Operation (Refer To Block Diagram)  
VIN = 3V, IOUT = 25mA and VOUT regulating to 5V, has a  
measuredefficiencyof82.7%,whichisincloseagreement  
with the theoretical 83.3% calculation. The LTC1754 con-  
tinues to maintain good efficiency even at fairly light loads  
because of its inherently low power design.  
The LTC1754 uses a switched-capacitor charge pump to  
boost VIN to a regulated output voltage. Regulation is  
achievedbysensingtheoutputvoltagethroughaninternal  
resistor divider and enabling the charge pump when the  
divided output drops below the lower trip point of COMP1.  
When the charge pump is enabled, a two-phase  
nonoverlappingclockactivatesthechargepumpswitches.  
The flying capacitor is charged to VIN on phase one of the  
clock. On phase two of the clock it is stacked in series with  
VIN andconnectedtoVOUT. Thissequenceofchargingand  
discharging the flying capacitor continues at a free run-  
ning frequency of 600kHz (typ). Once the attenuated  
output voltage reaches the upper trip point of COMP1, the  
charge pump is disabled. When the charge pump is  
disabled the LTC1754 draws only 13µA from VIN thus  
providing high efficiency under low load conditions.  
Short-Circuit/Thermal Protection  
During short-circuit conditions, the LTC1754 will draw  
between 100mA and 400mA from VIN causing a rise in the  
junctiontemperature. On-chipthermalshutdowncircuitry  
disables the charge pump once the junction temperature  
exceeds approximately 150°C and reenables the charge  
pump once the junction temperature drops back to ap-  
proximately 140°C. The LTC1754 will cycle in and out of  
thermal shutdown indefinitely without latchup or damage  
until the short circuit on VOUT is removed.  
Capacitor Selection  
In shutdown mode all circuitry is turned off and the  
LTC1754 draws only leakage current from the VIN supply.  
Furthermore, VOUT is disconnected from VIN. The SHDN  
pin is a CMOS input with a threshold voltage of approxi-  
mately0.8V, butmaybedriventoalogiclevelthatexceeds  
VIN. The LTC1754 is in shutdown when a logic low is  
applied to the SHDN pin. Since the SHDN pin is a high  
impedance CMOS input, it should never be allowed to  
float. To ensure that its state is defined, it must always be  
driven with a valid logic level.  
The style and value of capacitors used with the  
LTC1754determineseveralimportantparameterssuchas  
output ripple, charge pump strength and turn-on time.  
To reduce noise and ripple, it is recommended that low  
ESR (<0.1) capacitors be used for both CIN and COUT  
.
Thesecapacitorsshouldbeeitherceramicortantalumand  
be 6.8µF or greater. Aluminum capacitors are not recom-  
mended because of their high ESR. If the source imped-  
ance to VIN is very low up to several megahertz, CIN may  
not be needed.  
Power Efficiency  
Aceramiccapacitorisrecommendedfortheflyingcapaci-  
tor with a value in the range of 1µF to 2.2µF. Note that a  
large value flying capacitor (>2.2µF) will increase output  
ripple unless COUT is also increased. For very low load  
applications, CFLY may be reduced to 0.01µF to 0.047µF.  
This will reduce output ripple at the expense of maximum  
output current and efficiency.  
The efficiency (η) of the LTC1754 is similar to that of a  
linear regulator with an effective input voltage of twice the  
actualinputvoltage.Thisresultsbecausetheinputcurrent  
foravoltagedoublingchargepumpisapproximatelytwice  
the output current. In an ideal voltage doubling regulator  
the power efficiency would be given by:  
In order to achieve the rated output current it is necessary  
to have at least 0.6µF of capacitance for the flying capaci-  
tor. Capacitors of different material lose their capacitance  
overtemperatureatdifferentrates.Forexample,aceramic  
capacitor made of X7R material will retain most of its  
capacitance from 40°C to 85°C, whereas a Z5U or Y5V  
stylecapacitorwillloseconsiderablecapacitanceoverthat  
VOUT IOUT  
(
)(  
)
POUT  
P
IN  
VOUT  
η =  
=
=
2V  
V
IN)(  
2IOUT  
IN  
(
)
Atmoderate-to-highoutputpower,theswitchinglossesand  
quiescent current of the LTC1754 are negligible and the  
expressionaboveisvalid.Forexample,anLTC1754-5with  
6
LTC1754-3.3/LTC1754-5  
W U U  
APPLICATIO S I FOR ATIO  
range. The capacitor manufacturer’s data sheet should be  
consulted to determine what style and value of capacitor  
is needed to ensure 0.6µF at all temperatures.  
U
V
V
OUT  
OUT  
+
+
15µF  
1µF  
LTC1754-X  
TANTALUM  
CERAMIC  
2  
Output Ripple  
V
V
OUT  
OUT  
+
10µF  
TANTALUM  
10µF  
LTC1754-X  
Low frequency regulation mode ripple exists due to the  
hysteresis in the sense comparator and propagation delay  
in the charge pump control circuit. The amplitude and  
frequency of this ripple are heavily dependent on the load  
current, the input voltage and the output capacitor size.  
For large VIN the ripple voltage can become substantial  
becausetheincreasedstrengthofthechargepumpcauses  
fast edges that may outpace the regulation circuitry.  
Generally the regulation ripple has a sawtooth shape  
associated with it.  
TANTALUM  
1754 F01  
Figure 1. Output Ripple Reduction Techniques  
In low load or high VIN applications, smaller values for the  
flying capacitor may be used to reduce output ripple. A  
smaller flying capacitor (0.01µF to 0.47µF) delivers less  
charge per clock cycle to the output capacitor resulting in  
lower output ripple. However, with a smaller flying capaci-  
tor, the maximum available output current will be reduced  
along with the efficiency.  
A high frequency ripple component may also be present  
on the output capacitor due to the charge transfer action  
of the charge pump. In this case the output can display a  
voltage pulse during the charging phase. This pulse  
results from the product of the charging current and the  
ESR of the output capacitor. It is proportional to the input  
voltage, thevalueoftheflyingcapacitorandtheESRofthe  
output capacitor.  
Note that when using a larger output capacitor the turn on  
time of the device will increase.  
Inrush Currents  
During normal operation VIN will experience current tran-  
sients in the 50mA to 100mA range whenever the charge  
pump is enabled. However during start-up, inrush cur-  
rentsmayapproach250mA. Forthisreasonitisimportant  
to minimize the source impedance between the input  
supply and the VIN pin. Too much source impedance may  
result in regulation problems or prevent start-up.  
Typical combined output ripple for the LTC1754-5 with  
VIN =3Vundermaximumloadis65mVP-P usingalowESR  
10µF output capacitor. A smaller output capacitor and/or  
larger output current load will result in higher ripple due to  
higher output voltage slew rates.  
Thereareseveralwaystoreduceoutputvoltageripple. For  
applications requiring higher VIN or lower peak-to-peak  
ripple, a larger COUT capacitor (22µF or greater) is recom-  
mended. A larger capacitor will reduce both the low and  
high frequency ripple due to the lower charging and  
discharging slew rates, as well as the lower ESR typically  
foundwithhighervalue(largercasesize)capacitors.Alow  
ESR ceramic output capacitor will minimize the high  
frequency ripple, but will not reduce the low frequency  
ripple unless a high capacitance value is used. To reduce  
both the low and high frequency ripple, a reasonable  
compromise is to use a 10µF to 22µF tantalum capacitor  
Ultralow Quiescent Current Regulated Supply  
The LTC1754 contains an internal resistor divider (refer to  
the Simplified Block Diagram) that typically draws 1.5µA  
from VOUT. During no-load conditions, this internal load  
causes a droop rate of only 150mV per second on VOUT  
withCOUT =10µF. Applyinga2Hzto100Hz, 2%to5%duty  
cycle signal to the SHDN pin ensures that the circuit of  
Figure 2 comes out of shutdown frequently enough to  
maintain regulation. Since the LTC1754 spends nearly the  
entire time in shutdown, the no-load quiescent current is  
approximately (VOUT)(1.5µA)/(ηVIN).  
in parallel with a 1µF to 3.3µF ceramic capacitor on VOUT  
.
The LTC1754 must be out of shutdown for a minimum  
durationof200µstoallowenoughtimetosensetheoutput  
voltage and keep it in regulation. A 2Hz, 2% duty cycle  
An R-C filter may also be used to reduce high frequency  
voltage spikes (see Figure 1).  
7
LTC1754-3.3/LTC1754-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Layout Considerations  
signal will keep VOUT in regulation under no-load condi-  
tions. As the VOUT load current increases, the frequency  
with which the LTC1754 is taken out of shutdown must  
also be increased.  
Due to high switching frequency and high transient cur-  
rents produced by the LTC1754, careful board layout is  
necessary. A true ground plane and short connections to  
allcapacitorswillimproveperformanceandensureproper  
regulationunderallconditions.Figure4showstherecom-  
mended layout configuration  
1
2
3
6
5
4
+
V
V
C
OUT  
OUT  
1µF  
10µF  
LTC1754-X  
V
IN  
GND  
V
IN  
SHDN PIN  
WAVEFORM  
V
IN  
10µF  
SHDN  
C
V
OUT  
1µF  
LOW I MODE (2Hz TO 100Hz, 2% TO 5% DUTY CYCLE) 1754 F02  
Q
10µF  
10µF  
GND  
Figure 2. Ultralow Quiescent Current Regulated Supply  
LTC1754-X  
SHDN  
1754-5 F04  
6
T
OUT  
C
= 25°C  
A
Figure 4. Recommended Layout  
I
= 0µA  
= 1µF  
5
4
3
FLY  
Thermal Management  
LTC1754-5  
For higher input voltages and maximum output current,  
therecanbesubstaintialpowerdissipationintheLTC1754.  
Ifthejunctiontemperatureincreasesaboveapproximately  
150°C, the thermal shutdown circuitry will automatically  
deactivate the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
is recommended. Connecting the GND pin (Pin 2) to a  
ground plane and maintaining a solid ground plane under  
thedeviceonatleasttwolayersofthePCboardcanreduce  
the thermal resistance of the package and PC board  
system to about 150°C/W.  
LTC1754-3.3  
2
1
0
4.0  
2.0 2.5 3.0 3.5  
SUPPLY VOLTAGE (V)  
5.0 5.5  
4.5  
1754 F03  
Figure 3. No-Load Supply Current vs Supply Voltage  
for the Circuit Shown in Figure 2  
8
LTC1754-3.3/LTC1754-5  
U
TYPICAL APPLICATIO S  
Low Power Battery Backup with Autoswitchover and No Reverse Current  
3
1
LTC1521-3.3  
2
1µF  
4
6
+
C
C
1N4148  
V
I
= 3.3V  
75k  
OUT  
OUT  
OUT  
5
1
V
IN  
300mA  
V
V
OUT  
IN  
5V  
I
20mA BACKUP  
+
10µF  
10µF  
2-CELL  
NiCd  
BATTERY  
LTC1754-3.3  
SHDN  
3
10µF  
GND  
2
7
1.2M  
475k  
4
3
6
8
HIGH = BACKUP MODE  
LTC1540  
10k  
1M  
5
175433 TA03  
2
1
USB Port to Regulated 5V Power Supply  
1µF  
4
6
5
3
1
LTC1754-5  
V
OUT  
10µF  
10µF  
5V ±4%  
50mA  
2
1754 TA06  
9
LTC1754-3.3/LTC1754-5  
U
TYPICAL APPLICATIO S  
5V, 100mA Step-Up Generator from 3V  
1µF  
4
6
+
C
C
V
OUT  
5
3
1
2
V
IN  
5V  
V
V
OUT  
LTC1754-5  
IN  
3V  
100mA  
10µF  
SHDN  
GND  
1µF  
4
6
+
C
C
5
3
1
2
V
V
OUT  
LTC1754-5  
IN  
10µF  
ON/OFF  
SHDN  
GND  
1754 TA07  
Lithium-Ion Battery to 5V White or Blue LED Driver  
1µF  
4
6
+
C
C
5
3
1
2
V
V
OUT  
IN  
3V TO 4.4V  
Li-Ion  
BATTERY  
100Ω  
100Ω  
100Ω  
10µF  
10µF  
LTC1754-5  
ON/OFF  
SHDN  
GND  
1754 TA08  
3.3V and 5V Step-Up Generator from 2V  
V
OUT1  
3.3V  
1µF  
1µF  
I
+ 2I 20mA  
5
3.3  
3.3I + 5I  
(2I + 4I )  
IN 3.3  
3.3  
5
η
4
6
+
4
6
+
V
5
C
C
V
C
C
V
5
3
1
2
5
3
1
2
V
V
OUT2  
IN  
V
V
IN  
OUT  
IN  
OUT  
5V  
2V  
10µF  
LTC1754-3.3  
LTC1754-5  
10µF  
10µF  
ON/OFF  
SHDN  
GND  
SHDN  
GND  
1754 TA09  
10  
LTC1754-3.3/LTC1754-5  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters), unless otherwise noted.  
S6 Package  
6-Lead Plastic SOT-23  
(LTC DWG # 05-08-1634)  
2.80 – 3.00  
(0.110 – 0.118)  
(NOTE 3)  
0.95  
(0.037)  
REF  
1.90  
(0.074)  
REF  
2.6 – 3.0  
(0.110 – 0.118)  
1.50 – 1.75  
(0.059 – 0.069)  
0.00 – 0.15  
(0.00 – 0.006)  
0.90 – 1.45  
(0.035 – 0.057)  
0.35 – 0.55  
(0.014 – 0.022)  
0.35 – 0.50  
(0.014 – 0.020)  
SIX PLACES (NOTE 2)  
0.90 – 1.30  
(0.035 – 0.051)  
S6 SOT-23 0898  
0.09 – 0.20  
(0.004 – 0.008)  
(NOTE 2)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DIMENSIONS ARE INCLUSIVE OF PLATING  
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
4. MOLD FLASH SHALL NOT EXCEED 0.254mm  
5. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1754-3.3/LTC1754-5  
U
TYPICAL APPLICATIO  
Low Power Battery Backup with Autoswitchover and No Reverse Current  
Si4435DY  
1µF  
4
6
+
C
C
1N4148  
75k  
5
1
3
V
V
I
= 5V  
50mA  
IN  
OUT  
OUT  
V
V
OUT  
IN  
5V  
+
10µF  
10µF  
3-CELL  
NiCd  
BATTERY  
LTC1754-5  
SHDN  
10µF  
GND  
2
BAT54C  
7
1.43M  
475k  
4
3
6
8
LTC1540  
10k  
1M  
5
2
1
1754 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Up to 100mA Output, V = 3.5V to 15V, SO-8 Package  
LT1054  
High Power Doubler Charge Pump  
Charge Pump Inverter with Shutdown  
IN  
LTC1144  
V = 2V to 18V, 15V to –15V Supply  
IN  
LTC1262  
12V, 30mA Flash Memory Prog. Supply  
Regulated 12V ±5% Output, I = 500µA  
Q
LTC1514/LTC1515  
LTC1516  
Buck/Boost Charge Pumps with I = 60µA  
50mA Output at 3V, 3.3V or 5V; 2V to 10V Input  
Q
Micropower 5V Charge Pump  
I = 12µA, Up to 50mA Output, V = 2V to 5V  
Q IN  
LTC1517-5/LTC1517-3.3 Micropower 5V/3.3V Doubler Charge Pumps  
I = 6µA, Up to 20mA Output  
Q
LTC1522  
LT1615  
Micropower 5V Doubler Charge Pump  
Step-Up Switching Regulator in SOT-23  
Low Noise Doubler Charge Pump  
I = 6µA, Up to 20mA Output  
Q
I = 20µA, V = 1.2V to 15V, Up to 34V Output  
Q
IN  
LTC1682  
Output Noise = 60µV  
, 2.5V to 5.5V Output  
RMS  
175435f LT/TP 0400 4K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

LTC1754ES6-3.3

Micropower, Regulated 3.3V/5V Charge Pump with Shutdown in SOT-23
Linear

LTC1754ES6-3.3#TRMPBF

LTC1754 - Micropower, Regulated 3.3V/5V Charge Pump with Shutdown in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1754ES6-5

Micropower, Regulated 3.3V/5V Charge Pump with Shutdown in SOT-23
Linear

LTC1755

Smart Card Interface
Linear

LTC1755EGN

Smart Card Interface
Linear

LTC1755_1

Smart Card Interface
Linear

LTC1755_15

Smart Card Interface
Linear

LTC1756

Smart Card Interface
Linear

LTC1756EGN

Smart Card Interface
Linear

LTC1756EGN#TR

LTC1756 - Smart Card Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1756_15

Smart Card Interface
Linear

LTC1757-1CMS8

AMP POWER CONTROLLER
ETC