LTC1609ISW [Linear]

16-Bit, 200ksps, Serial ADC with Multiple Input Ranges; 16位, 200ksps的,具有多种输入范围的串行ADC
LTC1609ISW
型号: LTC1609ISW
厂家: Linear    Linear
描述:

16-Bit, 200ksps, Serial ADC with Multiple Input Ranges
16位, 200ksps的,具有多种输入范围的串行ADC

文件: 总24页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1609  
16-Bit, 200ksps, Serial ADC  
with Multiple Input Ranges  
U
FEATURES  
DESCRIPTIO  
The LTC®1609 is a 200ksps, serial sampling 16-bit A/D  
converterthatdrawsonly65mW(typical)fromasingle5V  
supply. This easy-to-use device includes a sample-and-  
hold, a precision reference, a switched capacitor succes-  
sive approximation A/D and trimmed internal clock.  
Sample Rate: 200ksps  
Input Ranges  
Unipolar: 0V to 10V, 0V to 5V and 0V to 4V  
Bipolar: ±10V, ±5V and ±3.3V  
Guaranteed No Missing Codes  
Serial I/O  
Single 5V Supply  
Power Dissipation: 65mW Typ  
Power Down Mode: 50µW  
SNR: 87dB Typ  
The input range is specified for bipolar inputs of ±10V,  
±5V and ±3.3V and unipolar inputs of 0V to 10V, 0V to 5V  
and 0V to 4V. Maximum DC specs include ±2LSB INL and  
16-bit no missing codes over temperature. It has a typical  
signal-to-noise ratio of 87dB.  
Operates with Internal or External Reference  
The ADC has a high speed serial interface. The serial  
output data can be clocked out using either the internal  
serial shift clock or be clocked out by an external shift  
clock.Aseparateconvertstartinput(R/C)andadataready  
signal (BUSY) ease connections to FIFOs, DSPs and  
microprocessors.  
28-Pin SSOP and 20-Pin SO Packages  
Improved 2nd Source to ADS7809 and AD977A  
U
APPLICATIO S  
Industrial Process Control  
Multiplexed Data Acquisition Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
High Speed Data Acquisition for PCs  
Digital Signal Processing  
U
TYPICAL APPLICATIO  
200kHz, 16-Bit Serial Sampling ADC Configured for ±10V Inputs  
200  
100Ω  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ANALOG INPUT  
10V TO 10V  
R1  
V
5V  
IN  
DIG  
+
Nonaveraged 4096 Point FFT Plot  
AGND1  
V
ANA  
0.1µF  
10µF  
3
0
–20  
–40  
–60  
–80  
–100  
R2  
R3  
PWRD  
BUSY  
CS  
IN  
f
f
= 200kHz  
33.2k  
SAMPLE  
IN  
4
= 1kHz  
IN  
SINAD = 87.2dB  
THD = –100.1dB  
5
NC  
2.5V  
LTC1609  
6
CAP  
REF  
NC  
NC  
+
2.5V  
7
2.2µF  
+
8
2.2µF  
NC  
R/C  
NC  
9
AGND2  
NC  
10  
11  
12  
13  
14  
TAG  
NC  
SERIAL INTERFACE  
NC  
SB/BTC  
DATA  
–120  
–130  
EXT/INT DATACLK  
DGND  
SYNC  
25  
50  
FREQUENCY (kHz)  
100  
0
75  
1609 G06  
1609 TA01  
1609fa  
1
LTC1609  
ABSOLUTE MAXIMUM RATINGS  
W W  
U W  
(Notes 1, 2)  
VANA .......................................................................... 7V  
DIG to VANA ........................................................... 0.3V  
VDIG ........................................................................... 7V  
Ground Voltage Difference  
Digital Input Voltage (Note 4) ........ DGND – 0.3V to 10V  
Digital Output Voltage........ DGND – 0.3V to VDIG + 0.3V  
Power Dissipation.............................................. 500mW  
Operating Ambient Temperature Range  
V
DGND, AGND1 and AGND2 .............................. ±0.3V  
Analog Inputs (Note 3)  
LTC1609AC/LTC1609C............................ 0°C to 70°C  
LTC1609AI/LTC1609I ......................... – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
R1IN, R2IN, R3IN ................................................ ±25V  
CAP ............................ VANA + 0.3V to AGND2 – 0.3V  
REF....................................Indefinite Short to AGND2  
Momentary Short to VANA  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
NUMBER  
TOP VIEW  
NUMBER  
1
2
V
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
R1  
DIG  
IN  
TOP VIEW  
AGND1  
ANA  
LTC1609CG  
LTC1609IG  
LTC1609CSW  
R1  
1
2
3
4
5
6
7
8
9
20  
19  
V
V
IN  
DIG  
3
PWRD  
BUSY  
CS  
R2  
IN  
LTC1609ISW  
LTC1609ACSW  
LTC1609AISW  
AGND1  
ANA  
4
R3  
IN  
R2  
IN  
18 PWRD  
17 BUSY  
16 CS  
5
NC  
CAP  
R3  
IN  
6
NC  
CAP  
REF  
7
NC  
REF  
15 R/C  
8
R/C  
NC  
AGND2  
SB/BTC  
EXT/INT  
14 TAG  
9
NC  
AGND2  
NC  
13 DATA  
12 DATACLK  
11 SYNC  
10  
11  
12  
13  
14  
TAG  
NC  
NC  
DGND 10  
DATA  
DATACLK  
SYNC  
SB/BTC  
EXT/INT  
DGND  
SW PACKAGE  
20-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 130°C/W  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 95°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CONVERTER CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With external reference (Notes 5, 6).  
LTC1609  
TYP  
LTC1609A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
Resolution  
No Missing Codes  
Transition Noise  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero Error  
15  
16  
Bits  
0.9  
0.9  
LSB  
RMS  
(Note 7)  
±3  
3
±2  
LSB  
–2  
–1  
1.75  
±10  
LSB  
mV  
External Reference = 2.5V (Note 8), Bipolar Ranges  
±10  
1609fa  
2
LTC1609  
U
CONVERTER CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With external reference (Notes 5, 6).  
LTC1609  
TYP  
LTC1609A  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
ppm/°C  
mV  
Bipolar Zero Error Drift  
Unipolar Zero Error  
Unipolar Zero Error Drift  
Full-Scale Error Drift  
Full-Scale Error  
Bipolar Ranges  
±2  
±2  
External Reference = 2.5V, Unipolar Ranges  
Unipolar Ranges  
±10  
±10  
±2  
±7  
±2  
±7  
ppm/°C  
ppm/°C  
%
External Reference = 2.5V (Notes 12, 13)  
External Reference = 2.5V  
±0.50  
±8  
±0.25  
±8  
Full-Scale Error Drift  
Power Supply Sensitivity  
±2  
±2  
ppm/°C  
V
= V = V  
V = 5V ±5% (Note 9)  
DD  
LSB  
ANA  
U
DIG  
DD  
U
A ALOG I PUT  
The indicates specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 5)  
LTC1609/LTC1609A  
SYMBOL PARAMETER  
CONDITIONS  
4.75V V  
MIN  
TYP  
MAX  
UNITS  
V
Analog Input Range (Note 9)  
5.25V, 4.75V V 5.25V,  
±10, 0V to 5V, etc.  
(See Tables 1a and 1b)  
V
IN  
ANA  
DIG  
C
Analog Input Capacitance  
10  
pF  
IN  
R
See Tables 1a and 1b  
kΩ  
U AnaloW g Input Impedance  
IN  
DY A IC ACCURACY  
(Notes 5, 14)  
LTC1609  
TYP  
LTC1609A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
S/(N + D) Signal-to-(Noise  
+ Distortion) Ratio  
1kHz Input Signal (Note 14)  
10kHz Input Signal  
20kHz, 60dB Input Signal  
87.5  
87  
30  
85  
87.5  
87  
30  
dB  
dB  
dB  
THD  
Total Harmonic  
Distortion  
1kHz Input Signal, First 5 Harmonics  
10kHz Input Signal, First 5 Harmonics  
– 100  
94  
– 100 –96  
94  
dB  
dB  
Peak Harmonic or  
Spurious Noise  
1kHz Input Signal  
10kHz Input Signal  
102  
94  
102  
94  
dB  
dB  
Full-Power Bandwidth (Note 15)  
–3dB Input Bandwidth  
Aperture Delay  
275  
1
275  
1
kHz  
MHz  
ns  
40  
40  
Aperture Jitter  
Sufficient to Meet AC Specs Sufficient to Meet AC Specs  
Transient Response  
Full-Scale Step (Note 9)  
2
2
µs  
Overvoltage Recovery  
150  
150  
ns  
U U  
(UNote 16)  
INTERNAL REFERENCE CHARACTERISTICS  
The indicates specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1609/LTC1609A  
PARAMETER CONDITIONS  
MIN  
TYP  
2.500  
±5  
MAX  
UNITS  
V
V
Output Voltage  
Output Tempco  
I
I
= 0  
= 0  
2.470  
2.520  
V
ppm/°C  
µA  
REF  
REF  
OUT  
OUT  
Internal Reference Source Current  
External Reference Voltage for Specified Linearity  
External Reference Current Drain  
CAP Output Voltage  
1
(Notes 9, 10)  
2.30  
2.50  
2.70  
100  
V
External Reference = 2.5V (Note 9)  
µA  
I
= 0  
2.50  
V
1609fa  
OUT  
3
LTC1609  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The indicates specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1609/LTC1609A  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
DD  
= 4.75V  
DD  
= 0V to V  
IN  
2.4  
IH  
IL  
0.8  
V
I
±10  
µA  
pF  
V
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
V
= 4.75V  
= 4.75V  
I = –10µA  
4.5  
OH  
DD  
DD  
O
I = 200µA  
O
4.0  
V
V
Low Level Output Voltage  
I = 160µA  
O
0.05  
0.10  
–10  
10  
V
OL  
I = 1.6mA  
O
0.4  
V
I
I
Output Source Current  
Output Sink Current  
V
V
= 0V  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
= V  
DD  
W U  
TI I G CHARACTERISTICS  
The indicates specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1609/LTC1609A  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
µs  
ns  
ns  
t
t
t
t
t
t
t
Convert Pulse Width  
(Note 11)  
40  
1
2
3
4
5
6
7
R/C, CS to BUSY Delay  
C = 25pF  
L
80  
3
BUSY Low Time  
BUSY Delay After End of Conversion  
Aperture Delay  
100  
5
Conversion Time  
3
5
Acquisition Time  
2
t + t  
6
Throughput Time  
7
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
R/C Low to DATACLK Delay  
DATACLK Period  
260  
150  
8
9
DATA Valid Setup Time  
15  
40  
50  
20  
20  
15  
10  
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DATA Valid Hold Time  
External DATACLK Period  
External DATACLK High  
External DATACLK Low  
R/C, CS to External DATACLK Setup Time  
R/C to CS Setup Time  
t
12  
External DATACLK to SYNC Delay  
External DATACLK to DATA Valid Delay  
CS to External DATACLK Rising Edge Delay  
Previous DATA Valid After CS, R/C Low  
BUSY to External DATACLK Setup Time  
BUSY Falling Edge to Final External DATACLK  
TAG Valid Setup Time  
50  
50  
10  
10  
2.2  
5
(Note 9)  
(Note 9)  
(Notes 10, 17)  
1.2  
0
TAG Valid Hold Time  
15  
1609fa  
4
LTC1609  
W U  
POWER REQUIREMENTS  
otherwise specifications are at TA = 25°C. (Note 5)  
The indicates specifications which apply over the full operating temperature range,  
LTC1609/LTC1609A  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 9, 10)  
PWRD = Low  
MIN  
TYP  
MAX  
5.25  
20  
UNITS  
V
V
Positive Supply Voltage  
Positive Supply Current  
Power Dissipation  
4.75  
DD  
I
13  
mA  
DD  
P
PWRD = Low  
PWRD = High  
65  
50  
100  
mW  
µW  
DIS  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with DGND, AGND1  
and AGND2 wired together (unless otherwise noted).  
Note 11: With CS low the falling R/C edge starts a conversion. If R/C  
returns high at a critical point during the conversion it can create small  
errors. For best results ensure that R/C returns high within 1.2µs after the  
start of the conversion.  
Note 3: When these pin voltages are taken below ground or above V  
=
ANA  
V
= V , they will be clamped by internal diodes. This product can  
DIG  
DD  
handle input currents of greater than 100mA below ground or above V  
without latch-up.  
Note 12: As measured with fixed 1% resistors shown in Figures 3a and  
3b. Adjustable to zero with external potentiometer.  
DD  
Note 4: When these pin voltages are taken below ground, they will be  
clamped by internal diodes. This product can handle input currents of  
90mA below ground without latchup. These pins are not clamped to V  
Note 13: Full-scale error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions, divided by the transition  
voltage (not divided by the full-scale range) and includes the effect of  
offset error. For unipolar input ranges full-scale error is the deviation of  
the last code transition from ideal divided by the transiton voltage and  
includes the effect of offset error.  
.
DD  
Note 5: V = 5V, f  
= 200kHz, t = t = 5ns unless otherwise  
r f  
DD  
SAMPLE  
specified.  
Note 6: Linearity, offset and full-scale specifications apply for a V input  
IN  
Note 14: All specifications in dB are referred to a full-scale ±5V input.  
with respect to ground.  
Note 15: Full-power bandwidth is defined as full-scale input frequency at  
which a signal-to-(noise + distortion) degrades to 60dB or 10 bits of  
accuracy.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 16: Recovers to specified performance after (2FS) input  
overvoltage.  
Note 17: When data is shifted out during a conversion, with an external  
data clock, complete the process within 1.2µs from the start of the  
conversion (BUSY falling). This will help keep any external disturbances  
from causing an error in the conversion result.  
Note 8: Bipolar zero error is the offset voltage measured from 0.5 LSB  
when the output code flickers between 0000 0000 0000 0000 and 1111  
1111 1111 1111. Unipolar zero error is the offset voltage measured from  
0.5LSB when the output codes flickers between 0000. . .0000 and 0000. .  
.0001.  
1609fa  
5
LTC1609  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Change in CAP Voltage  
vs Load Current  
Power Supply Rejection  
vs Ripple Frequency  
Supply Current vs Supply Voltage  
0.05  
0.04  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
f
= 200kHz  
f
= 200kHz  
SAMPLE  
SAMPLE  
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–14 –12 –10 –8 –6 –4 –2  
LOAD CURRENT (mA)  
0
2
4
5.0  
4.75  
SUPPLY VOLTAGE (V)  
4.5  
5.25  
5.5  
1
10  
100  
1k  
10k 100k 1M  
RIPPLE FREQUENCY (Hz)  
1609 G03  
1609 G02  
1609 G01  
Nonaveraged 4096 Point FFT Plot  
Typical INL Curve  
Typical DNL Curve  
0
–20  
–40  
–60  
–80  
–100  
2.0  
1.5  
2.0  
1.5  
f
f
= 200kHz  
SAMPLE  
IN  
= 1kHz  
SINAD = 87.2dB  
THD = –100.1dB  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–120  
–130  
32768  
CODE  
32768  
CODE  
25  
50  
100  
0
16384  
49152  
65535  
0
16384  
49152  
65535  
0
75  
FREQUENCY (kHz)  
1609 G04  
1609 G05  
1609 G06  
SINAD vs Input Frequency  
THD vs Input Frequency  
95  
90  
85  
80  
75  
70  
65  
60  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1
100  
1
100  
10  
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1609 G07  
1609 G08  
1609fa  
6
LTC1609  
U
U
U
(20-Pin SO/28-Pin SSOP)  
PIN FUNCTIONS  
R1IN (Pin 1/Pin 1): Analog Input. See Table 1 and Figure 1  
for input range connections.  
low, 16 clock pulses are output during each conversion.  
The pin will stay low between conversions.  
AGND1(Pin2/Pin2):AnalogGround.Tietoanalogground  
DATA (Pin 13/Pin 17): Serial Data Output. The output data  
is synchronized to the DATACLK and the format is deter-  
minedbySB/BTC.Intheexternalshiftclockmode,after16  
bits of data have been shifted out and CS is low and R/C is  
high, the level in the TAG pin will be outputted. This can be  
used to daisy-chain the serial data output from several  
LTC1609s. If EXT/INT is low, the output data is valid on  
both the rising and falling edge of the internal shift clock  
which is outputted on DATACLK. In between conversions,  
DATA will stay at the level of the TAG input when the  
conversion was started.  
plane.  
R2IN (Pin 3/Pin 3): Analog Input. See Table 1 and Figure 1  
for input range connections.  
R3IN (Pin 4/Pin 4): Analog Input. See Table 1 and Figure 1  
for input range connections.  
NC (28-Pin SSOP Only—Pins 5, 8, 10, 11, 18, 20, 22,  
23): No Connect.  
CAP (Pin 5/Pin 6): Reference Buffer Output. Bypass with  
2.2µF tantalum capacitor.  
TAG(Pin14/Pin19):Taginputisusedintheexternalclock  
mode. If EXT/INT is high, digital inputs applied to TAG will  
be shifted out on DATA delayed 16 DATACLK pulses as  
long as CS is low and R/C is high.  
REF (Pin 6/Pin 7): 2.5V Reference Output. Bypass with  
2.2µF tantalum capacitor. Can be driven with an external  
reference.  
AGND2 (Pin 7/Pin 9): Analog Ground. Tie to analog  
R/C (Pin 15/Pin 21): Read/Convert Input. With CS low, a  
falling edge on R/C puts the internal sample-and-hold into  
the hold state and starts a conversion. With CS low, a  
rising edge on R/C enables the serial output data.  
ground plane.  
SB/BTC (Pin 8/Pin 12): Select straight binary or two’s  
complement data output format. Tie pin high for straight  
binary or tie low for two’s complement format.  
CS (Pin 16/Pin 24): Chip Select. Internally OR’d with R/C.  
WithR/Clow,afallingedgeonCSwillinitiateaconversion.  
With R/C high, a falling edge on CS will enable the serial  
output data.  
EXT/INT (Pin 9/Pin 13): Select external or internal clock  
for shifting out the output data. Tie the pin high to  
synchronize the output data to the clock that is applied to  
theDATACLKpin.Ifthepinistiedlow,aconvertcommand  
will start transmitting the output data from the previous  
conversion synchronized to 16 clock pulses that are  
outputted on the DATACLK pin.  
BUSY (Pin 17/Pin 25): Output Shows Converter Status. It  
is low when a conversion is in progress. Data valid on the  
rising edge of BUSY. CS or R/C must be high when BUSY  
rises or another conversion will start without time for  
signal acquisition.  
DGND (Pin 10/Pin 14): Digital Ground.  
PWRD(Pin18/Pin26):PowerDownInput.Ifthepinistied  
high, conversionsareinhibitedandpowerconsumptionis  
reduced(10µAtyp). Resultsfromthepreviousconversion  
are maintained in the output shift register.  
SYNC (Pin 11/Pin 15): Sync Output. If EXT/INT is high,  
either a rising edge on R/C with CS low or a falling edge on  
CS with R/C high will output a pulse on SYNC synchro-  
nized to the external clock applied on the DATACLK pin.  
V
ANA(Pin19/Pin27):5VAnalogSupply.Bypasstoground  
DATACLK (Pin 12/Pin 16): Either an input or an output  
depending on the level set on EXT/INT. The output data is  
synchronized to this clock. When EXT/INT is high an  
externalshiftclockisappliedtothispin.IfEXT/INTistaken  
with a 0.1µF ceramic and a 10µF tantalum capacitor.  
VDIG (Pin 20/Pin 28): 5V Digital Supply. Connect directly  
to VANA  
.
1609fa  
7
LTC1609  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
C
SAMPLE  
SAMPLE  
20k  
R1  
R2  
R3  
IN  
IN  
IN  
10k  
5k  
V
V
ANA  
DIG  
20k  
ZEROING SWITCHES  
4k  
REF  
2.5V REF  
+
REF BUF  
COMP  
16-BIT CAPACITIVE DAC  
CAP  
(2.5V)  
DATA  
SUCCESSIVE APPROXIMATION  
REGISTER  
DATACLK  
SYNC  
SERIAL INTERFACE  
AGND1  
AGND2  
DGND  
INTERNAL  
CLOCK  
CONTROL LOGIC  
1609 BD  
CS  
R/C  
PWRD BUSY  
SB/BTC EXT/INT  
TAG  
W U U  
U
APPLICATIO S I FOR ATIO  
the analog signal. During the convert phase, the autozero  
switches open, putting the comparator into the compare  
mode. The input switch switches CSAMPLE to ground,  
injecting the analog input charge onto the summing junc-  
tion. This input charge is successively compared with the  
binary-weighted charges supplied by the capacitive DAC.  
Bit decisions are made by the high speed comparator. At  
Conversion Details  
The LTC1609 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analogsignaltoa16-bitserialoutput.TheADCiscomplete  
with a precision reference and an internal clock. The  
control logic provides easy interface to microprocessors  
and DSPs. (Please refer to the Digital Interface section for  
timing information.)  
SAMPLE  
Conversion start is controlled by the CS and R/C inputs. At  
the start of conversion the successive approximation  
register(SAR)isreset. Onceaconversioncyclehasbegun  
it cannot be restarted.  
SI  
C
SAMPLE  
R
SAMPLE  
HOLD  
IN1  
V
IN  
+
R
IN2  
C
V
DAC  
COMPARATOR  
During the conversion, the internal 16-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, VIN is connected through the resistor divider to  
the sample-and-hold capacitor during the acquire phase  
andthecomparatoroffsetisnulledbytheautozeroswitches.  
In this acquire phase, a minimum delay of 2µs will provide  
enough time for the sample-and-hold capacitor to acquire  
DAC  
DAC  
S
A
R
16-BIT  
SHIFT REGISTER  
1609 F01  
Figure 1. LTC1609 Simplified Equivalent Circuit  
1609fa  
8
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
the end of a conversion, the DAC output balances the VIN  
input charge. The SAR contents (a 16-bit data word) that  
represents the VIN are loaded into the 16-bit output shift  
register.  
LT1363 - 50MHz voltage feedback amplifier. 6.3mA sup-  
ply current. Good AC/DC specs.  
LT1364/LT1365 - Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good  
AC/DC specs.  
Driving the Analog Inputs  
LT1468 - 90MHz, 22V/µs 16-bit accurate amplifier  
The LTC1609 analog input ranges, along with the nominal  
input impedances, are shown in Tables 1a and 1b. The  
inputs are overvoltage protected to ±25V. The input im-  
pedance can get as low as 10k, therefore, it should be  
driven with a low impedance source. Wideband noise  
coupling into the input can be minimized by placing a  
1000pF capacitor at the input as shown in Figure 2. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If an  
amplifier is to be used to drive the input, care should be  
takentoselectanamplifierwithadequateaccuracy,linear-  
ity and noise for the application. The following list is a  
summary of the op amps that are suitable for driving the  
LTC1609. More detailed information is available in the  
LinearTechnologydatabooksandLinearViewTM CD-ROM.  
LT1469 - Dual LT1468  
Offset and Gain Adjustments  
The LTC1609 is specified to operate with three unipolar  
and three bipolar input ranges. Pins R1IN, R2IN and R3IN  
are connected as shown in Tables 1a and 1b for the  
different input ranges. The tables also list the nominal  
input impedance for each range. Table 1c shows the  
output codes for the ideal input voltages of each of the six  
input ranges.  
TheLTC1609offsetandfull-scaleerrorshavebeentrimmed  
at the factory with the external resistors shown in Figures  
3aand3b.Thisallowsforexternaladjustmentofoffsetand  
full scale in applications where absolute accuracy is im-  
portant. The offset and gain adjustment circuits for the six  
input ranges are also shown in Figures 3a and 3b. To  
adjust the offset for a bipolar input range, apply an input  
voltage equal to 0.5LSB where 1LSB = (+FS – FS)/  
65536 and change the offset resistor so the output code is  
changing between 1111 1111 1111 1111 and 0000 0000  
0000 0000. The gain is trimmed by applying an input  
voltage of +FS – 1.5LSB and adjusting the gain trim resis-  
tor until the output code is changing between 0111 1111  
1111 1110 and 0111 1111 1111 1111. In both cases the  
data is in two’s complement format (SB/BTC = LOW)  
200  
A
IN1  
A
IN2  
A
IN3  
R1  
IN  
1000pF  
1000pF  
1000pF  
LTC1609  
100Ω  
R2  
IN  
IN  
R3  
1609 F02  
Figure 2. Analog Input Filtering  
LT1007 - Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
To adjust the offset for a unipolar input range, apply an  
input voltage equal to +0.5LSB where 1LSB = +FS/65536.  
Then adjust the offset trim resistor until the output code  
changes between 0000 0000 0000 0000 and 0000 0000  
00000001.Toadjustthegain,applyaninputvoltageequal  
to +FS – 1.5LSB and vary the gain trimming resistor until  
theoutputcodeischangingbetween1111111111111110  
and 1111 1111 1111 1111. In the unipolar case, the data  
is in straight binary format (SB/BTC = HIGH). Figures 4a  
and 4b show the transfer characteristics of the LTC1609.  
LT1097 - Low cost, low power precision amplifier. 300µA  
supply current. ±5V to ±15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
LT1227-140MHzvideocurrentfeedbackamplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
LT1360 - 37MHz voltage feedback amplifier. 3.8mA sup-  
ply current. ±5V to ±15V supplies. Good AC/DC specs.  
LinearView is a trademark of Linear Technology Corporation.  
1609fa  
9
LTC1609  
APPLICATIO S I FOR ATIO  
W U U  
U
WITH TRIM  
INPUT RANGE  
WITHOUT TRIM  
(ADJUST OFFSET FIRST AT 0V, THEN ADJUST GAIN)  
LTC1609  
R1  
LTC1609  
R1  
IN  
IN  
200  
200Ω  
AGND1  
AGND1  
100Ω  
100Ω  
V
33.2k V  
IN  
R2  
IN  
R2  
IN  
IN  
5V  
OFFSET  
TRIM  
R3  
IN  
R3  
IN  
0V TO 10V  
50k  
33.2k  
+
+
2.2µF  
576k  
CAP  
CAP  
5V  
GAIN  
TRIM  
REF  
REF  
50k  
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
LTC1609  
R1  
LTC1609  
R1  
IN  
IN  
200Ω  
200Ω  
AGND1  
AGND1  
100Ω  
100Ω  
5V  
33.2k  
R2  
IN  
R3  
IN  
R2  
R3  
IN  
IN  
OFFSET  
TRIM  
50k  
V
V
0V TO 5V  
IN  
IN  
33.2k  
CAP  
CAP  
5V  
576k  
+
GAIN  
TRIM  
REF  
REF  
2.2µF  
50k  
+
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
LTC1609  
R1  
LTC1609  
R1  
200Ω  
200Ω  
V
IN  
V
IN  
IN  
IN  
AGND1  
AGND1  
100Ω  
100Ω  
R2  
IN  
R3  
IN  
R2  
R3  
IN  
IN  
0V TO 4V  
33.2k  
33.2k  
+
CAP  
CAP  
5V  
5V  
2.2µF  
576k  
GAIN  
TRIM  
OFFSET  
TRIM  
REF  
REF  
50k  
50k  
+
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
1609 F03a  
Figure 3a. Offset/Gain Circuits for Unipolar Input Ranges  
Table 1a. Analog Input Range Connections for Figure 3a  
ANALOG INPUT  
RANGE  
CONNECT R1  
CONNECT R2  
CONNECT R3  
TO  
INPUT  
IMPEDANCE  
IN  
IN  
IN  
VIA 200TO  
VIA 100TO  
0V to 10V  
0V to 5V  
0V to 4V  
AGND  
V
AGND  
13.3kΩ  
IN  
AGND  
AGND  
AGND  
V
IN  
V
IN  
10kΩ  
V
IN  
10.7kΩ  
1609fa  
10  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
WITH TRIM  
INPUT RANGE  
WITHOUT TRIM  
(ADJUST OFFSET FIRST AT 0V, THEN ADJUST GAIN)  
LTC1609  
LTC1609  
200  
200Ω  
V
IN  
R1  
R1  
IN  
V
IN  
IN  
AGND1  
AGND1  
R2  
R3  
R2  
R3  
IN  
IN  
IN  
IN  
100Ω  
100Ω  
±10V  
33.2k  
+
33.2k  
2.2µF  
5V  
CAP  
CAP  
5V  
576k  
OFFSET  
GAIN  
TRIM  
REF  
REF  
50k  
50k  
+
+
TRIM  
+
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
LTC1609  
R1  
LTC1609  
R1  
IN  
IN  
200Ω  
200Ω  
AGND1  
AGND1  
33.2k  
V
100Ω  
100Ω  
V
R2  
IN  
R2  
IN  
IN  
IN  
5V  
OFFSET  
TRIM  
R3  
IN  
R3  
IN  
50k  
±5V  
+
33.2k  
2.2µF  
5V  
CAP  
CAP  
576k  
GAIN  
TRIM  
REF  
REF  
50k  
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
LTC1609  
R1  
LTC1609  
R1  
200Ω  
200Ω  
V
V
IN  
IN  
IN  
IN  
100Ω  
AGND1  
AGND1  
100Ω  
R2  
R3  
R2  
R3  
IN  
IN  
IN  
IN  
33.2k  
+
±3.3V  
33.2k  
2.2µF  
5V  
CAP  
CAP  
5V  
576k  
GAIN  
TRIM  
OFFSET  
TRIM  
REF  
REF  
50k  
50k  
+
+
2.2µF 2.2µF  
2.2µF  
AGND2  
AGND2  
1609 F03b  
Figure 3b. Offset/Gain Circuits for Bipolar Input Ranges  
Table 1b. Analog Input Range Connections for Figure 3b  
ANALOG INPUT  
RANGE  
CONNECT R1  
CONNECT R2  
CONNECT R3  
TO  
INPUT  
IMPEDANCE  
IN  
IN  
IN  
VIA 200TO  
VIA 100TO  
±10V  
±5V  
V
AGND  
CAP  
CAP  
CAP  
22.9kΩ  
IN  
AGND  
V
V
13.3kΩ  
IN  
IN  
±3.3V  
V
10.7kΩ  
IN  
1609fa  
11  
LTC1609  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1c. LTC1609 Output Codes for Ideal Input Voltages  
TWO’S COMPLEMENT  
(SB/BTC LOW)  
STRAIGHT BINARY  
(SB/BTC HIGH)  
DESCRIPTION  
ANALOG INPUT  
Full-Scale Range  
Least Significant Bit  
±10V  
±5V  
±3.34  
102µV  
0V to 10V  
0V to 5V  
0V to 4V  
61µV  
305µV  
153µV  
153µV  
76µV  
+Full Scale (FS – 1LSB) 9.999695V 4.999847V 3.339898V 9.999847V 4.999924V 3.999939V 0111 1111 1111 1111 1111 1111 1111 1111  
Midscale  
0V  
0V  
–153µV  
5V  
0V  
5V  
2.5V  
2V  
0000 0000 0000 0000 1000 0000 0000 0000  
1LSB Below Midscale  
Full Scale  
305µV  
–10V  
–102µV  
4.999847V 2.499924V 1.999939V 1111 1111 1111 1111 0111 1111 1111 1111  
3.340000V  
0V  
0V  
0V  
1000 0000 0000 0000 0000 0000 0000 0000  
011...111  
011...110  
111...111  
BIPOLAR  
ZERO  
111...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
011...111  
011...110  
100...001  
100...000  
000...001  
000...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
1LSB = FS/65536  
FS – 1LSB  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
0V  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1609 F04a  
1609 F04b  
Figure 4a. LTC1609 Bipolar Transfer Characteristics  
Figure 4b. LTC1609 Unipolar Transfer Characteristics  
2000  
Theideal±FSvalueforthe±3.3Vrangeis3.340000V1LSB  
and3.340000V, respectively. Theexternal33.2kresistor  
that is connected between the CAP pin and the R2IN pin,  
slightly attenuates the input signal applied to R2IN. With-  
out the 33.2k resistor the ±FS value would be 3.333333V  
– 1LSB and 3.333333V (zero volt offset), respectively.  
1500  
1000  
500  
DC Performance  
Onewayofmeasuringthetransitionnoiseassociatedwith  
a high resolution ADC is to use a technique where a DC  
signal is applied to the input of the ADC and the resulting  
output codes are collected over a large number of conver-  
sions. For example in Figure 5 the distribution of output  
code is shown for a DC input that has been digitized 4096  
times. The distribution is Gaussian and the RMS code  
transition is about 0.9LSB.  
0
–3  
–2  
–1  
0
1
2
3
CODE  
1609 F05  
Figure 5. Histogram for 4096 Conversions  
1609fa  
12  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
Dynamic Performance  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
for frequencies outside the fundamental. Figure 6 shows  
a typical LTC1609 FFT plot which yields a SINAD of  
87.2dB and THD of 100dB.  
Internal Voltage Reference  
The LTC1609 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
trimmed to 2.50V. The full-scale range of the ADC scales  
with VREF. The output of the reference is connected to the  
input of a unity-gain buffer through a 4k resistor (see  
Figure 7). The input to the buffer or the output of the  
reference is available at REF. The internal reference can be  
overdriven with an external reference if more accuracy is  
needed. The buffer output drives the internal DAC and is  
available at CAP. The CAP pin can be used to drive a steady  
DC load of less than 2mA. Driving an AC load is not  
recommended because it can cause the performance of  
the converter to degrade.  
Signal-to-Noise Ratio  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 6 shows a typical SINAD of 87.2dB with  
a 200kHz sampling rate and a 1kHz input.  
For minimum code transition noise the REF pin and the  
CAP pin should each be decoupled with a capacitor to  
filter wideband noise from the reference and the buffer  
(2.2µF tantalum).  
0
f
f
= 200kHz  
SAMPLE  
IN  
= 1kHz  
–20  
–40  
SINAD = 87.2dB  
THD = –100.1dB  
–60  
4k  
7
REF  
(2.5V)  
BANDGAP  
REFERENCE  
–80  
S
V
ANA  
2.2µF  
–100  
+
–120  
–130  
25  
50  
FREQUENCY (kHz)  
100  
0
75  
6
CAP  
(2.5V)  
S
1609 F06  
INTERNAL  
CAPACITOR  
DAC  
2.2µF  
Figure 6. LTC1609 Nonaveraged 4096 Point FFT Plot  
1609 F07  
Total Harmonic Distortion  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
Figure 7. Internal or External Reference Source  
2
2
V22 + V32 + V4 ... + VN  
THD = 20log  
V1  
1609fa  
13  
LTC1609  
W U U  
U
APPLICATIO S I FOR ATIO  
Power Shutdown  
the sample-and-hold into the hold mode bring CS and  
R/C low for no less than 40ns. Once initiated it cannot be  
restarted until the conversion is complete. Converter  
statusisindicatedbytheBUSYoutputandthisislowwhile  
the conversion is in progress.  
When the PWRD pin is tied high, power consumption  
drops to a typical value of 50µW from a specified maxi-  
mum of 100mW. In the power shutdown mode, the result  
from the previous conversion is still available in the  
internal shift register, assuming the data had not been  
clocked out before going into power shutdown.  
The conversion result is clocked out serially on the DATA  
pin. Itcanbesynchronizedbyusingtheinternaldataclock  
or by using an external clock provided by the user. Tying  
the EXT/INT pin high puts the LTC1609 in the external  
clock mode and the DATACLK pin is a digital input. Tying  
theEXT/INTpinlowputsthepartintheinternalclockmode  
and the DATACLK pin becomes a digital output.  
The internal reference buffer and the reference are shut  
down, so the power-up recovery time will be dependent  
upon how fast the bypass capacitors on these pins can be  
charged. If the internal reference is used, the 4k resistor in  
series with the output and the external bypass capacitor,  
typically 2.2µF, will be the main time constant for the  
power-up recovery time. If an external reference is used,  
the reference buffer output will be able to ramp from 0V to  
2.5V in 1ms, while charging a typical bypass capacitor of  
2.2µF. The recovery time will be less if the bypass capaci-  
tor has not completely discharged.  
Internal Clock Mode  
With the EXT/INT pin tied low, the LTC1609 provides the  
data clock on the DATACLK pin. The timing diagram is  
shown in Figure 8. Typically, CS is tied low and the R/C  
pin is used to start a conversion. During the conversion  
a 16-bit word will be shifted out MSB-first on the DATA  
pin. This word represents the result from the previous  
conversion. The DATACLK pin outputs 16 clock pulses  
used to synchronize the data. The output data is valid on  
both the rising and falling edges of the clock. After the  
LSB bit has been clocked out, the DATA pin will take on  
the state of the TAG pin at the start of the conversion. The  
DATACLK pin goes low until the next conversion is  
requested. The data clock is derived from the internal  
conversion clock. To avoid errors from occurring during  
the current conversion, minimize the loading on the  
DATACLK pin and the DATA pin. For the best conversion  
results the external clock mode is recommended.  
DIGITAL INTERFACE  
Internal Conversion Clock  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 2.7µs. No external adjust-  
mentsarerequiredand, withthetypicalacquisitiontimeof  
1.5µs, throughput performance of 200ksps is assured.  
Timing and Control  
Conversion start and data read are controlled by two  
digital inputs: CS and R/C. To start a conversion and put  
t
8
R/C  
t
9
t
1
DATACLK  
1
2
3
14  
B2  
15  
B1  
16  
B0  
t
11  
t
10  
B15  
(MSB)  
DATA  
BUSY  
B14  
B13  
t
2
t
3
1609 F08  
Figure 8. Serial Data Timing Using Internal Clock (CS, EXT/INT and TAG Tied Low)  
1609fa  
14  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
External Clock Mode  
pulse on the SYNC pin will be generated on the rising edge  
of DATACLK #0. The SYNC output can be captured on the  
falling edge of DATACLK #0 or on the rising edge of  
DATACLK #1. After the rising edge of DATACLK #1, the  
SYNC output will go low and the MSB will be clocked out  
ontheDATApin. Thisbitcanbelatchedonthefallingedge  
of DATACLK #1 or on the rising edge of DATACLK #2. The  
LSBwillbevalidonthefallingedgeofDATACLK#16orthe  
rising edge of DATACLK #17. After the rising edge of  
DATACLK #17 the DATA pin will take on the value of the  
TAG pin that occurred at the rising edge of DATACLK #1.  
A minimum of 17 clock pulses are required if the data is  
captured on falling clock edges.  
With the EXT/INT pin tied high, the DATACLK pin becomes  
a digital input and the LTC1609 can accept an externally  
supplied data clock. There are several ways in which the  
conversion results can be clocked out. The data can be  
clocked out during or after a conversion with a continuous  
or discontinuous data clock. Figures 9 to 12 show the  
timing diagram for each of these methods.  
External Discontinuous Data Clock Data Read  
After the Conversion  
Figure 9 shows how the result from the current conver-  
sion can be read out after the conversion has been  
completed. The externally supplied data clock is running  
discontinuously. R/C is used to initiate a conversion with  
CS tied low. The conversion starts on the falling edge of  
R/C. R/C should be returned high within 1.2µs to prevent  
the transition from disturbing the conversion. After the  
conversion has been completed (BUSY returning high), a  
Using the highest frequency permitted for DATACLK  
(20MHz), shifting the data out after the conversion will  
not degrade the 200kHz throughput. This method mini-  
mizes the possible external disturbances that can occur  
while a conversion is in progress and will yield the best  
performance.  
t
12  
t
14  
t
13  
0
1
2
3
15  
16  
17  
EXTERNAL  
DATACLK  
t
1
R/C  
t
t
21  
2
t
3
BUSY  
t
17  
SYNC  
DATA  
t
12  
t
18  
B15  
(MSB)  
B14  
B13  
B1  
B0  
TAG0  
TAG1  
TAG2  
t
24  
t
23  
TAG  
TAG0  
TAG1  
TAG2  
TAG3  
TAG15  
TAG16  
TAG17  
TAG18  
TAG19  
1606 F09  
Figure 9. Conversion and Read Timing Using an External Discontinuous Data Clock  
(EXT/INT Tied High, CS Tied Low). Read Conversion Result After the Conversion  
1609fa  
15  
LTC1609  
W U U  
U
APPLICATIO S I FOR ATIO  
External Data Clock Data Read After the Conversion  
Using the highest frequency permitted for DATACLK  
(20MHz), shifting the data out after the conversion will not  
degrade the 200kHz throughput.  
Figure 10 shows how the result from the current conver-  
sion can be read out after the conversion has been com-  
pleted. The externally supplied data clock is running  
continuously. CS and R/C are first used together to initiate  
a conversion and then CS is used to read the result. The  
conversion starts on the falling edge of CS with R/C low.  
Both CS and R/C should be returned high within 1.2µs to  
prevent the transition from disturbing the conversion.  
After the conversion has been completed (BUSY returning  
high), a pulse on the SYNC pin will be generated after the  
first rising edge of DATACLK #1 that occurs after CS goes  
low (R/C high). The SYNC output can be captured on the  
falling edge of DATACLK #1 or on the rising edge of  
DATACLK #2. After the rising edge of DATACLK #2, the  
SYNC output will go low and the MSB will be clocked out  
on the DATA pin. This bit can be latched on the falling edge  
of DATACLK #2 or on the rising edge of DATACLK #3. The  
LSBwillbevalidonthefallingedgeofDATACLK#17orthe  
rising edge of DATACLK #18. After the rising edge of  
DATACLK #18 the DATA pin will take on the value of the  
TAG pin that occurred at the rising edge of DATACLK #2.  
External Discontinuous Data Clock Data Read  
During the Conversion  
Figure 11 shows how the result from the previous conver-  
sion can be read out during the current conversion. The  
externally supplied data clock is running discontinuously.  
R/C is used to initiate a conversion with CS tied low. The  
conversion starts on the falling edge of R/C. R/C should be  
returned high within 1.2µs to prevent the transition from  
disturbing the conversion. A pulse on the SYNC pin will be  
generated on rising edge of DATACLK #0. The SYNC  
output can be captured on the falling edge of DATACLK #0  
or on the rising edge of DATACLK #1. After the rising edge  
of DATACLK #1, the SYNC output will go low and the MSB  
will be clocked out on the DATA pin. This bit can be latched  
on the falling edge of DATACLK #1 or on the rising edge of  
DATACLK #2. The LSB will be valid on the falling edge of  
DATACLK #16. Another clock pulse would be needed if the  
LSB is captured on a rising edge. A minimum of 17 clock  
pulses are required if the data is captured on falling clock  
edges.  
t
12  
t
14  
t
13  
0
1
2
3
4
17  
18  
EXTERNAL  
DATACLK  
t
19  
t
t
1
15  
CS  
t
t
16  
16  
R/C  
t
t
3
2
BUSY  
t
17  
SYNC  
DATA  
t
12  
t
18  
B15  
(MSB)  
B14  
B1  
B0  
TAG0  
TAG1  
t
24  
t
23  
TAG  
TAG0  
TAG1  
TAG2  
TAG15  
TAG16  
TAG17  
TAG18  
TAG19  
1606 F10  
Figure 10. Conversion and Read Timing with External Clock (EXT/INT Tied High). Read After Conversion  
1609fa  
16  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
t
12  
t
14  
t
13  
0
1
2
15  
16  
EXTERNAL  
DATACLK  
t
15  
t
1
R/C  
t
2
t
3
t
21  
BUSY  
t
22  
t
17  
SYNC  
DATA  
t
18  
B15  
(MSB)  
B14  
B1  
B0  
1606 F11  
Figure 11. Conversion and Read Timing Using a Discontinuous Data Clock (EXT/INT Tied High, CS Tied Low).  
Read Previous Conversion Result During the Conversion. For Best Performance, Complete Read in Less Than 1.2µs  
To minimize the possible external disturbances that can  
occur while a conversion is in progress, the data needs to  
be shifted out within 1.2µs from the start of the conver-  
sion. Using the maximum data clock frequency of 20MHz  
will ensure this condition is met.  
To minimize the possible external disturbances that can  
occur while a conversion is in progress, the data needs to  
be shifted out within 1.2µs from the start of the conver-  
sion. Using the maximum data clock frequency of 20MHz  
willensurethisconditionismet.Sincethereisnothrough-  
put penalty for clocking the data out after the conversion,  
clocking the data out during the conversion is not recom-  
mended.  
External Data Clock Data Read During the Conversion  
Figure 12 shows how the result from the previous conver-  
sion can be read out during the current conversion. The  
externally supplied data clock is running continuously. CS  
and R/C are used to initiate a conversion and read the data  
from the previous conversion. The conversion starts on  
the falling edge of CS after R/C is low. A pulse on the SYNC  
pin will be generated on the first rising edge of DATACLK  
#1 after R/C has returned high. The SYNC output can be  
captured on the falling edge of DATACLK #1 or on the  
rising edge of DATACLK #2. After the rising edge of  
DATACLK#2theSYNCoutputwillgolowandtheMSBwill  
be clocked out on the DATA pin. This bit can be latched on  
the falling edge of DATACLK #2 or on the rising edge of  
DATACLK #3. The LSB will be valid on the falling edge of  
DATACLK #17 or the rising edge of DATACLK #18. After  
the rising edge of DATACLK #18 the DATA pin will take on  
the value of the TAG pin that occurred at the rising edge of  
DATACLK #2.  
Use of the TAG Input  
The TAG input pin is used to daisy-chain multiple convert-  
ers. This is useful for applications where hardware con-  
straints may limit the number of lines needed to interface  
to a large number of converters. This mode of operation  
works only using the external clock method of shifting out  
the data.  
Figure13showshowthisfeaturecanbeused. R/C, CSand  
the DATACLK are tied together on both LTC1609s. CS can  
begroundedifadiscontinuousdataclockisused. Afalling  
edge on R/C will allow both LTC1609s to capture their  
respective analog input signals simultaneously. Once the  
conversion has been completed the external data clock  
DCLKisstarted. TheMSBfromdevice#1willbevalidafter  
the rising edge of DCLK #1. Once the LSB from device #1  
has been shifted out on the rising edge of DCLK #16, a null  
1609fa  
17  
LTC1609  
APPLICATIO S I FOR ATIO  
W U U  
U
t
12  
t
14  
t
t
19  
13  
0
1
2
3
4
16  
17  
18  
EXTERNAL  
DATACLK  
CS  
R/C  
t
t
15  
16  
t
2
t
3
BUSY  
t
17  
SYNC  
DATA  
t
12  
t
18  
B15  
(MSB)  
B14  
B13  
B1  
B0  
TAG0  
TAG1  
t
24  
t
23  
TAG  
TAG0  
TAG1  
TAG2  
TAG3  
TAG15  
TAG16  
TAG17  
TAG18  
TAG19  
1606 F12  
Figure 12. Conversion and Read Timing Using an External Data Clock (EXT/INT Tied High).  
Read Previous Conversion Result During the Conversion. For Best Performance, Complete Read in Less Than 1.2µs  
bit will be shifted out on the following clock pulse before  
LTC1609  
#2  
LTC1609  
#1  
the MSB from device #2 becomes available (Figure 14).  
The reason for this is the MSB from device #2 will not be  
valid soon enough to meet the minimum setup time of  
device #1’s TAG input. A minimum of 34 clock pulses are  
needed to shift out the results from both LTC1609s  
assuming the data is captured on the falling clock edge.  
Using the highest frequency permitted for DATACLK  
(20MHz), a 200kHz throughput can still be achieved.  
TAG  
DATA  
TAG  
DATA  
DATA OUT  
CS  
R/C  
CS  
R/C  
DCLK  
DCLK  
DCLK IN  
R/C IN  
CS IN  
1609 F13  
Figure 13. Two LTC1609s Cascaded  
Together Using the TAG Input  
1609fa  
18  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
R/C  
BUSY  
DCLK  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
• • •  
• • •  
NULL  
BIT  
DATA  
OUT  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B15 B14 B13 B12 B11 B10  
1609 F14  
DEVICE DATA #1  
DEVICE DATA #2  
Figure 14. Data Output from Cascading Two (CS = Low, TAG (#2) = Low) LTC1609s Together  
Output Data Format  
Pay particular attention to the design of the analog and  
digital ground planes. Placing the bypass capacitor as  
close as possible to the VDIG and VANA pins, the REF pin  
and reference buffer output is very important. Low imped-  
ance common returns for these bypass capacitors are  
essential to low noise operation of the ADC, and the foil  
width for these tracks should be as wide as possible. Also,  
since any potential difference in grounds between the  
signal source and ADC appears as an error voltage in  
series with the input signal, attention should be paid to  
reducing the ground circuit impedance as much as pos-  
sible. The digital output latches and the onboard sampling  
clock have been placed on the digital ground plane. The  
two ground planes are tied together at the power supply  
ground connection.  
The SB/BTC pin controls the format of the serial digital  
output word. With the pin tied high the format is straight  
binary. With the pin tied low the data format is two’s  
complement. See Table 1c.  
Board Layout, Power Supplies and Decoupling  
Wire wrap boards are not recommended for high resolu-  
tion or high speed A/D converters. To obtain the best  
performance from the LTC1609, a printed circuit board is  
required. Layout for the printed circuit board should  
ensure the digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track or  
underneath the ADC. The analog input should be screened  
by AGND.  
A “postage stamp” (1.6in × 1.5in) evaluation board is  
availableandallowsfastin-situevaluationoftheLTC1609.  
See Figures 15a through 15d, inclusive.  
1609fa  
19  
LTC1609  
W U U  
U
APPLICATIO S I FOR ATIO  
C6  
2.2µF  
E14  
GND  
C4  
1000pF  
C5  
2.2µF  
C2  
1000pF  
C3  
1000pF  
E8  
5V  
C1  
C7  
R4  
10µF  
0.1µF  
200Ω  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
E15  
R1  
V
DIG  
IN  
R4  
E13  
R5  
100Ω  
AGND1  
V
ANA  
PWRD  
R1 10k  
R2 10k  
3
E16  
R5  
R2  
R3  
PWRD  
BUSY  
CS  
IN  
IN  
E12  
CS  
4
E1  
IN  
E3  
BUSY  
R3  
5
R6  
33k  
NC  
LTC1609  
6
E17  
R6  
CAP  
REF  
NC  
NC  
7
8
E4  
RC  
NC  
R/C  
NC  
E11  
TAG  
9
AGND2  
NC  
R3 10k  
10  
11  
12  
13  
14  
TAG  
NC  
5V  
NC  
E5  
DATA  
JP1  
SB/BTC  
DATA  
E6  
DATACLK  
EXT/INT DATACLK  
DGND  
SYNC  
E7  
JP2  
SYNC  
E10  
GND  
1609 F15a  
E2  
GND  
Figure 15a. LTC1609 “Postage Stamp” Evaluation Circuit Schematic  
1609fa  
20  
LTC1609  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 15b. LTC1609 “Postage Stamp” Evaluation Board  
Silkscreen (2× Actual Size)  
Figure 15c. LTC1609 “Postage Stamp” Evaluation Board  
Top Metal Layer (2× Actual Size)  
Figure 15d. LTC1609 “Postage Stamp” Evaluation Board  
Bottom Metal Layer (2× Actual Size)  
1609fa  
21  
LTC1609  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1609  
LTC1609  
200Ω  
R1  
IN  
R1  
V
IN  
IN  
200Ω  
AGND1  
AGND1  
33.2k  
0V TO 10V  
±10V  
100Ω  
V
R2  
IN  
R2  
IN  
IN  
100Ω  
33.2k  
OFFSET  
R3  
IN  
R3  
IN  
LTC1662  
OFFSET  
TRIM  
LTC1662  
+
TRIM  
2.2µF  
CS/LD  
SCK  
SDI  
CS/LD  
SCK  
SDI  
V
CS/LD  
SCK  
SDI  
CS/LD  
SCK  
SDI  
V
OUTA  
GND  
V
OUTA  
GND  
V
CAP  
CAP  
GAIN  
TRIM  
GAIN  
TRIM  
CC  
787k  
CC  
787k  
5V  
REF  
V
REF  
5V  
REF  
REF  
V
OUTB  
OUTB  
+
+
+
+
+
2.2µF  
2.2µF  
2.2µF  
AGND2  
AGND2  
0.1µF  
0.1µF  
LTC1609  
R1  
LTC1609  
R1  
IN  
IN  
200Ω  
200Ω  
AGND1  
AGND1  
33.2k  
0V TO 5V  
±5V  
100Ω  
100Ω  
33.2k  
V
R2  
IN  
R2  
IN  
IN  
OFFSET  
TRIM  
V
R3  
IN  
OFFSET  
TRIM  
R3  
IN  
LTC1662  
LTC1662  
IN  
+
2.2µF  
CS/LD  
SCK  
SDI  
CS/LD  
V
CS/LD  
SCK  
SDI  
CS/LD  
SCK  
SDI  
V
OUTA  
GND  
V
OUTA  
GND  
V
CAP  
CAP  
SCK  
SDI  
REF  
GAIN  
TRIM  
GAIN  
TRIM  
CC  
787k  
CC  
787k  
5V  
V
REF  
5V  
REF  
V
REF  
OUTB  
OUTB  
+
+
2.2µF  
2.2µF  
2.2µF  
AGND2  
AGND2  
0.1µF  
0.1µF  
LTC1609  
R1  
LTC1609  
R1  
200Ω  
200Ω  
V
IN  
V
IN  
IN  
IN  
AGND1  
AGND1  
100Ω  
0V TO 4V  
±3.3V  
100Ω  
R2  
IN  
R2  
IN  
33.2k  
33.2k  
787k  
OFFSET  
TRIM  
R3  
IN  
LTC1662  
OFFSET  
TRIM  
R3  
IN  
+
LTC1662  
2.2µF  
CS/LD  
SCK  
SDI  
CS/LD  
V
CS/LD  
SCK  
SDI  
CS/LD  
SCK  
SDI  
V
OUTA  
GND  
OUTA  
GND  
V
+
+
CAP  
CAP  
SCK  
SDI  
REF  
2.2µF  
2.2µF  
GAIN  
TRIM  
GAIN  
TRIM  
V
CC  
CC  
787k  
2.2µF  
5V  
V
REF  
5V  
REF  
V
REF  
OUTB  
OUTB  
AGND2  
AGND2  
0.1µF  
0.1µF  
1609 F16  
OFFSET/GAIN CIRCUITS FOR UNIPOLAR INPUT RANGES  
OFFSET/GAIN CIRCUITS FOR BIPOLAR INPUT RANGES  
Figure 16. Digitally-Controlled Offset and Full-Scale Adjust Circuits Using  
the LTC1662 Dual 10-Bit VOUT DAC (Adjust Offset First at 0V, Then Adjust Gain)  
1609fa  
22  
LTC1609  
U
PACKAGE DESCRIPTIO  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
10.07 – 10.33*  
(.397 – .407)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.65 – 7.90  
(.301 – .311)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
5.20 – 5.38**  
(.205 – .212)  
1.73 – 1.99  
(.068 – .078)  
0° – 8°  
.65  
(.0256)  
BSC  
.13 – .22  
.55 – .95  
(.005 – .009)  
(.022 – .037)  
.05 – .21  
.25 – .38  
(.010 – .015)  
(.002 – .008)  
NOTE:  
G28 SSOP 0501  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1609fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
23  
LTC1609  
U
PACKAGE DESCRIPTIO  
SW Package  
20-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
0.496 – 0.512*  
(12.598 – 13.005)  
19 18  
16 14 13 12 11  
20  
17  
15  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.291 – 0.299**  
(7.391 – 7.595)  
2
3
5
7
8
9
10  
1
4
6
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
BSC  
0.004 – 0.012  
0.009 – 0.013  
(0.102 – 0.305)  
NOTE 1  
0.016 – 0.050  
(0.406 – 1.270)  
(0.229 – 0.330)  
0.014 – 0.019  
S20 (WIDE) 1098  
(0.356 – 0.482)  
TYP  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1417  
Low Power 400ksps 14-Bit ADC  
Low Power 200ksps 14-Bit ADC  
16-Bit Mulitplying DACs  
20mW, Single 5V or ±5V, Serial I/O  
LTC1418  
15mW, Single 5V or ±5V, Serial/Parallel I/O  
Low Glitch, Serial I/O, SO-8/S16 Packages  
4-Quadrant Resistors On-Chip, Low Glitch, Parallel I/O  
±2.5V Input, 90dB SINAD, 100dB THD, Parallel I/O  
Single 5V, ±10V Input  
LTC1595/LTC1596  
LTC1597  
16-Bit Mulitplying DAC  
LTC1604  
16-Bit 333ksps Sampling ADC  
Low Power 100ksps 16-Bit ADC  
Low Power 100ksps 16-Bit ADC  
Low Power 100ksps 16-Bit ADC  
Low Power 250ksps 16-Bit ADC  
16-Bit 500ksps Sampling ADC  
16-Bit ±5V Voltage Output DAC  
16-Bit Single 5V/3V Voltage Output DACs  
LTC1605  
LTC1605-1  
LTC1605-2  
LTC1606  
Single 5V, 0V to 4V Input  
Single 5V, ±4V Input  
Single 5V, ±10V Input, Parallel I/O  
LTC1608  
±2.5V Input, Pin Compatible with LTC1604  
Low Glitch, 4µs Settling Time, Serial I/O  
SO-8 Package, Micropower, Serial I/O  
LTC1650  
LTC1655/LTC1655L  
1609fa  
LT/TP 0302 1.5K REV A • PRINTED IN THE USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LTC1609ISW#PBF

LTC1609 - 16-Bit, 200ksps, Serial Sampling ADC; Package: SO; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LTC1609ISW#TR

LTC1609 - 16-Bit, 200ksps, Serial Sampling ADC; Package: SO; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LTC1609ISW#TRPBF

LTC1609 - 16-Bit, 200ksps, Serial Sampling ADC; Package: SO; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LTC1612

Synchronous, Step-Down 800kHz PWM DC/DC Converter
Linear

LTC1612EMS8

Analog IC
ETC

LTC1612ES8

Analog IC
ETC

LTC1622

Low Input Voltage Current Mode Step-Down DC/DC Controller
Linear

LTC1622CMS8

Low Input Voltage Current Mode Step-Down DC/DC Controller
Linear

LTC1622CMS8#PBF

暂无描述
Linear

LTC1622CMS8#TR

LTC1622 - Low Input Voltage Current Mode Step-Down DC/DC Controller; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1622CMS8#TRPBF

LTC1622 - Low Input Voltage Current Mode Step-Down DC/DC Controller; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1622CS8

Low Input Voltage Current Mode Step-Down DC/DC Controller
Linear