LTC1604IG#PBF [Linear]

LTC1604 - High Speed, 16-Bit, 333ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C;
LTC1604IG#PBF
型号: LTC1604IG#PBF
厂家: Linear    Linear
描述:

LTC1604 - High Speed, 16-Bit, 333ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总20页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1604  
High Speed, 16-Bit, 333ksps  
Sampling A/D Converter  
with Shutdown  
FEATURES  
DESCRIPTION  
The LTC®1604 is a 333ksps, 16-bit sampling A/D con-  
verter that draws only 220mW from ±±5 sꢀppliesꢁ This  
high performance device inclꢀdes a high dynamic range  
sample-and-hold, a precision reference and a high speed  
parallel oꢀtpꢀtꢁ Two digitally selectable power shꢀtdown  
modes provide power savings for low power systemsꢁ  
n
A Complete, 333ksps 16-Bit ADC  
n
90dB S/(N+D) and –100dB THD (Typ)  
n
Power Dissipation: 220mW (Typ)  
n
No Pipeline Delay  
n
No Missing Codes over Temperatꢀre  
n
Nap (7mW) and Sleep (10μW) Shutdown Modes  
n
Operates with Internal 1±ppm/°C Reference  
The LTC1604’s fꢀll-scale inpꢀt range is ±2ꢁ±5ꢁ Oꢀtstand-  
ing AC performance inclꢀdes 90dB S/(N+D) and –100dB  
THD at a sample rate of 333kspsꢁ  
or External Reference  
n
Trꢀe Differential Inpꢀts Reject Common Mode Noise  
n
±MHz Fꢀll Power Bandwidth  
n
Theniqꢀedifferentialinpꢀtsample-and-holdcanacqꢀire  
single-ended or differential inpꢀt signals ꢀp to its 1±MHz  
bandwidthꢁ The 68dB common mode rejection allows  
ꢀsers to eliminate groꢀnd loops and common mode noise  
by measꢀring signals differentially from the soꢀrceꢁ  
±2ꢁ±5 Bipolar Inpꢀt Range  
n
36-Pin SSOP Package  
APPLICATIONS  
n
Telecommꢀnications  
n
Digital Signal Processing  
The ADC has μP compatible,16-bit parallel oꢀtpꢀt portꢁ  
ThereisnopipelinedelayinconversionresꢀltsAseparate  
convert start inpꢀt and a data ready signal (BUSY) ease  
connections to FlFOs, DSPs and microprocessorsꢁ  
n
Mꢀltiplexed Data Acqꢀisition Systems  
High Speed Data Acqꢀisition  
Spectrꢀm Analysis  
Imaging Systems  
n
n
n
L, LTC and LT are registered trademarks of Linear Technology Corporationꢁ  
TYPICAL APPLICATION  
2ꢁ2μF  
10μF  
±5 10μF  
±5 10μF  
LTC1604 4096 Point FFT  
10Ω  
+
+
+
0
3
10  
36  
3±  
9
5
A5  
A5  
DD  
D5  
DD  
DGND  
REF  
DD  
–20  
–40  
SHDN  
CS  
33  
32  
31  
30  
27  
CONTROL  
LOGIC  
AND  
TIMING  
μP  
CONTROL  
LINES  
CONVST  
RD  
REFCOMP  
7ꢁ±k  
4
2ꢁ±5  
REF  
–60  
1ꢁ7±X  
+
4ꢁ37±5  
BUSY  
47μF  
–80  
O5  
DD  
29  
28  
±5 OR  
+
35  
–100  
–120  
–140  
10μF  
+
OGND  
1
2
A
IN  
+
DIFFERENTIAL  
ANALOG INPUT  
±2ꢁ±5  
16-BIT  
SAMPLING  
ADC  
OUTPUT  
BUFFERS  
B1± TO B0  
16-BIT  
A
IN  
PARALLEL  
BUS  
D1± TO D0  
0
20 40 60 80 100  
120  
140 160  
11 TO 26  
FREQUENCY (kHz)  
AGND AGND AGND AGND  
5
SS  
34  
1604 TA01  
±
6
7
8
1604 TA02  
10μF  
+
–±5  
1604fa  
1
LTC1604  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
AVDD = DVDD = OVDD = VDD (Notes 1, 2)  
TOP 5IEW  
ORDER  
PART NUMBER  
+
Sꢀpply 5oltage (5 )ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ65  
A
A
1
2
3
4
±
6
7
8
9
36 A5  
3± A5  
DD  
IN  
DD  
DD  
IN  
Negative Sꢀpply 5oltage (5 )ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ–65  
SS  
5
34  
5
SS  
REF  
LTC1604CG  
LTC1604IG  
LTC1604ACG  
LTC1604AIG  
Total Sꢀpply 5oltage (5 to 5 ) ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ125  
DD  
SS  
REFCOMP  
AGND  
33 SHDN  
32 CS  
Analog Inpꢀt 5oltage  
(Note 3)ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ(5 – 0ꢁ35) to (5 + 0ꢁ35)  
AGND  
31 CONV  
30 RD  
SS  
DD  
DD  
DD  
AGND  
5
5oltage (Note 4)ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ –0ꢁ35 to (5 + 0ꢁ35)  
AGND  
29 O5  
DD  
REF  
D5  
DD  
28 OGND  
27 BUSY  
26 D0  
2± D1  
24 D2  
23 D3  
22 D4  
21 D±  
20 D6  
19 D7  
REFCOMP 5oltage (Note 4)ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ –0ꢁ35 to (5 + 0ꢁ35)  
DGND 10  
D1± (MSB) 11  
D14 12  
Digital Inpꢀt 5oltage (Note 4)ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ –0ꢁ35 to 105  
Digital Oꢀtpꢀt 5oltageꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ –0ꢁ35 to (5 + 0ꢁ35)  
DD  
D13 13  
Power Dissipationꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ ±00mW  
D12 14  
Operating Temperatꢀre Range  
D11 1±  
D10 16  
LTC1604C ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ 0°C to 70°C  
LTC1604Iꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ–40°C to 8±°C  
Storage Temperatꢀre Range ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ –6±°C to 1±0°C  
Lead Temperatꢀre (Soldering, 10 sec)ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ300°C  
D9 17  
D8 18  
G PACKAGE  
36-LEAD PLASTIC SSOP  
T
JMAX  
= 12±°C, θ = 9±°C/W  
JA  
Consꢀlt factory for Military grade partsꢁ  
CONVERTER CHARACTERISTICS With Internal Reference (Notes 5, 6)  
LTC1604  
LTC1604A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolꢀtion (No Missing Codes)  
Integral Linearity Error  
Transition Noise  
1±  
16  
16  
16  
(Note 7)  
(Note 8)  
(Note 9)  
(Note 9)  
±1  
±4  
±0ꢁ±  
0ꢁ7  
±2  
LSB  
0ꢁ7  
LSB  
l
Offset Error  
±0ꢁ0± ±0ꢁ12±  
0ꢁ±  
±0ꢁ0± ±0ꢁ12±  
0ꢁ±  
%
Offset Tempco  
ppm/°C  
Fꢀll-Scale Error  
Internal Reference  
External Reference  
±0ꢁ12± ±0ꢁ2±  
±0ꢁ2±  
±0ꢁ12± ±0ꢁ2±  
±0ꢁ2±  
%
%
Fꢀll-Scale Tempco  
I (Reference) = 0, Internal Reference  
OUT  
±1±  
±1±  
ppm/°C  
ANALOG INPUT  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5
Analog Inpꢀt Range (Note 2)  
4ꢁ7± ≤ 5 ≤ ±ꢁ2±5, ±ꢁ2± ≤ 5 ≤ –4ꢁ7±5,  
SS  
±2ꢁ±  
5
IN  
DD  
SS  
+
5
≤ (A , A ) ≤ A5  
IN IN DD  
l
I
Analog Inpꢀt Leakage Cꢀrrent  
Analog Inpꢀt Capacitance  
CS = High  
±1  
μA  
IN  
C
Between Conversions  
Dꢀring Conversions  
43  
±
pF  
pF  
IN  
t
t
t
Sample-and-Hold Acqꢀisition Time  
380  
–1ꢁ±  
±
ns  
ns  
ACQ  
Sample-and-Hold Acqꢀisition Delay Time  
Sample-and-Hold Acqꢀisition Delay Time Jitter  
Analog Inpꢀt Common Mode Rejection Ratio  
AP  
ps  
jitter  
RMS  
+
CMRR  
–2ꢁ±5 < (A = A ) < 2ꢁ±5  
68  
dB  
IN  
IN  
1604fa  
2
LTC1604  
DYNAMIC ACCURACY (Note 5)  
LTC1604  
TYP  
LTC1604A  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX MIN  
MAX UNITS  
l
S/N  
Signal-to-Noise Ratio  
±kHz Inpꢀt Signal  
100kHz Inpꢀt Signal  
90  
90  
87  
90  
90  
dB  
dB  
S/(N + D) Signal-to-(Noise + Distortion) Ratio  
±kHz Inpꢀt Signal  
90  
89  
90  
89  
dB  
dB  
l
l
100kHz Inpꢀt Signal (Note 10)  
84  
THD  
Total Harmonic Distortion  
Up to ±th Harmonic  
±kHz Inpꢀt Signal  
100kHz Inpꢀt Signal  
–100  
–94  
–100  
–94  
dB  
dB  
–88  
SFDR  
IMD  
Spꢀrioꢀs Free Dynamic Range  
Intermodꢀlation Distortion  
100kHz Inpꢀt Signal  
96  
–88  
±
96  
–88  
±
dB  
f
IN1  
= 29ꢁ37kHz, f = 32ꢁ446kHz  
dB  
IN2  
Fꢀll Power Bandwidth  
MHz  
kHz  
Fꢀll Linear Bandwidth (S/(N + D) ≥ 84dB  
3±0  
3±0  
INTERNAL REFERENCE CHARACTERISTICS (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2ꢁ±00  
MAX  
UNITS  
5
5
REF  
5
REF  
5
REF  
Oꢀtpꢀt 5oltage  
Oꢀtpꢀt Tempco  
Line Regꢀlation  
I
I
= 0  
= 0  
2ꢁ47±  
2ꢁ±1±  
OUT  
OUT  
±1±  
ppm/°C  
4ꢁ7± ≤ 5 ≤ ±ꢁ2±5  
–±ꢁ2±5 ≤ 5 ≤ –4ꢁ7±5  
0ꢁ01  
0ꢁ01  
LSB/5  
LSB/5  
DD  
SS  
5
Oꢀtpꢀt Resistance  
0 ≤ |I | ≤ 1mA  
7ꢁ±  
kΩ  
5
REF  
OUT  
REFCOMP Oꢀtpꢀt 5oltage  
I
= 0  
4ꢁ37±  
OUT  
DIGITAL INPUTS AND DIGITAL OUTPUTS (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
5
5
High Level Inpꢀt 5oltage  
Low Level Inpꢀt 5oltage  
Digital Inpꢀt Cꢀrrent  
Digital Inpꢀt Capacitance  
High Level Oꢀtpꢀt 5oltage  
5
5
5
= ±ꢁ2±5  
= 4ꢁ7±5  
= 05 to 5  
2ꢁ4  
5
5
IH  
IL  
DD  
DD  
IN  
0ꢁ8  
I
IN  
±10  
μA  
pF  
DD  
C
5
±
IN  
5
DD  
5
DD  
= 4ꢁ7±5, I  
= 4ꢁ7±5, I  
= –10μA  
= –400μA  
4ꢁ±  
5
5
OH  
OUT  
OUT  
l
4ꢁ0  
5
Low Level Oꢀtpꢀt 5oltage  
5
5
= 4ꢁ7±5, I  
= 4ꢁ7±5, I  
= 160μA  
= 1ꢁ6mA  
0ꢁ0±  
0ꢁ10  
5
5
OL  
DD  
DD  
OUT  
OUT  
l
l
l
0ꢁ4  
±10  
1±  
I
OZ  
Hi-Z Oꢀtpꢀt Leakage D1± to D0  
Hi-Z Oꢀtpꢀt Capacitance D1± to D0  
Oꢀtpꢀt Soꢀrce Cꢀrrent  
5
OUT  
= 05 to 5 , CS High  
μA  
pF  
DD  
C
OZ  
CS High (Note 11)  
I
I
5
OUT  
5
OUT  
= 05  
–10  
10  
mA  
mA  
SOURCE  
SINK  
Oꢀtpꢀt Sink Cꢀrrent  
= 5  
DD  
1604fa  
3
LTC1604  
POWER REQUIREMENTS (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 12, 13)  
(Note 12)  
MIN  
4ꢁ7±  
TYP  
MAX  
±ꢁ2±  
UNITS  
5
5
Positive Sꢀpply 5oltage  
Negative Sꢀpply 5oltage  
5
5
DD  
SS  
–4ꢁ7±  
–±ꢁ2±  
l
l
l
I
Positive Sꢀpply Cꢀrrent  
Nap Mode  
CS = RD = 05  
18  
1ꢁ±  
1
30  
2ꢁ4  
100  
mA  
mA  
μA  
DD  
CS = 05, SHDN = 05  
CS = ±5, SHDN = 05  
Sleep Mode  
I
Negative Sꢀpply Cꢀrrent  
Nap Mode  
CS = RD = 05  
26  
1
1
40  
100  
100  
mA  
μA  
μA  
SS  
CS = 05, SHDN = 05  
CS = ±5, SHDN = 05  
Sleep Mode  
P
Power Dissipation  
Nap Mode  
CS = RD = 05  
220  
7ꢁ±  
0ꢁ01  
3±0  
12  
1
mW  
mW  
mW  
D
CS = 05, SHDN = 05  
CS = ±5, SHDN = 05  
Sleep Mode  
TIMING CHARACTERISTICS (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
333  
1ꢁ±  
TYP  
MAX  
UNITS  
kHz  
μs  
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximꢀm Sampling Freqꢀency  
Conversion Time  
SMPL(MAX)  
2ꢁ4±  
2ꢁ8  
480  
3
CON5  
Acqꢀisition Time  
(Note 11)  
ns  
ACQ  
Throꢀghpꢀt Time (Acqꢀisition + Conversion)  
CS to RD Setꢀp Time  
μs  
ACQ+CON5  
(Notes 11, 12)  
(Notes 11, 12)  
(Notes 11, 12)  
CS = Low (Note 12)  
(Note 12)  
0
ns  
1
2
3
4
±
6
CSto CONVSTSetꢀp Time  
SHDNto CSSetꢀp Time  
SHDNto CONVSTWake-Up Time  
CONVST Low Time  
10  
10  
ns  
ns  
400  
ns  
l
l
40  
ns  
CONVST to BUSY Delay  
C = 2±pF  
L
36  
60  
ns  
ns  
80  
t
7
Data Ready Before BUSY↑  
ns  
ns  
l
l
l
32  
200  
–±  
t
t
t
Delay Between Conversions  
Wait Time RDAfter BUSY↑  
Data Access Time After RD↓  
(Note 12)  
(Note 12)  
ns  
ns  
8
9
C = 2±pF  
L
40  
4±  
±0  
±0  
60  
ns  
ns  
10  
l
l
C = 100pF  
L
60  
7±  
ns  
ns  
t
11  
Bꢀs Relinqꢀish Time  
60  
70  
7±  
ns  
ns  
ns  
l
l
LTC1604C  
LTC1604I  
l
l
t
12  
t
13  
t
14  
RD Low Time  
(Note 12)  
(Note 12)  
t
ns  
ns  
ns  
10  
CONVST High Time  
40  
Apertꢀre Delay of Sample-and-Hold  
2
1604fa  
4
LTC1604  
TIMING CHARACTERISTICS (Note 5)  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing throꢀgh the actꢀal endpoints of the transfer cꢀrveꢁ  
The deviation is measꢀred from the center of the qꢀantization bandꢁ  
The l denotes specifications that apply over the fꢀll operating temperatꢀre  
rangeꢁ  
Note 1: Absolꢀte Maximꢀm Ratings are those valꢀes beyond which the life  
Note 8: Typical RMS noise at the code transitionsꢁ See Figꢀre 17 for  
of a device may be impairedꢁ  
histogramꢁ  
Note 2: All voltage valꢀes are with respect to groꢀnd with DGND, OGND  
Note 9: Bipolar offset is the offset voltage measꢀred from –0ꢁ±LSB when  
the oꢀtpꢀt code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111ꢁ  
Note 10: Signal-to-Noise Ratio (SNR) is measꢀred at ±kHz and distortion  
is measꢀred at 100kHzꢁ These resꢀlts are ꢀsed to calcꢀlate Signal-to-Nosie  
Plꢀs Distortion (SINAD)ꢁ  
and AGND wired together ꢀnless otherwise notedꢁ  
Note 3: When these pin voltages are taken below 5 or above 5 , they  
SS  
DD  
will be clamped by internal diodesꢁ This prodꢀct can handle inpꢀt cꢀrrents  
greater than 100mA below 5 or above 5 withoꢀt latchꢀpꢁ  
SS  
DD  
Note 4: When these pin voltages are taken below 5 , they will be clamped  
by internal diodesꢁ This prodꢀct can handle inpꢀt cꢀrrents greater than  
SS  
Note 11: Gꢀaranteed by design, not sꢀbject to testꢁ  
Note 12: Recommended operating conditionsꢁ  
100mA below 5 withoꢀt latchꢀpꢁ These pins are not clamped to 5  
DD  
SS  
Note 5: 5 = ±5, 5 = ±5, f  
= 333kHz, and t = t = ±ns ꢀnless  
DD  
SS  
SMPL  
r f  
otherwise specifiedꢁ  
Note 13: The falling CONVST edge starts a conversionꢁ If CONVST retꢀrns  
high at a critical point dꢀring the conversion it can create small errorsꢁ For  
best performance ensꢀre that CONVST retꢀrns high either within 2±0ns  
after conversion start or after BUSY risesꢁ  
Note 6: Linearity, offset and fꢀll-scale specification apply for a single-  
+
ended A inpꢀt with A groꢀndedꢁ  
IN  
IN  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
S/(N + D) vs Input Frequency  
and Amplitude  
2ꢁ0  
1ꢁ±  
1ꢁ0  
0ꢁ8  
100  
90  
80  
70  
60  
±0  
40  
30  
20  
10  
0
5
= 0dB  
IN  
0ꢁ6  
5
= –20dB  
= –40dB  
1ꢁ0  
IN  
IN  
0ꢁ4  
0ꢁ±  
0ꢁ2  
5
0ꢁ0  
0ꢁ0  
–0ꢁ2  
–0ꢁ4  
–0ꢁ6  
–0ꢁ8  
–1ꢁ0  
–0ꢁ±  
–1ꢁ0  
–1ꢁ±  
–2ꢁ0  
1k  
10k  
100k  
1M  
–32768  
–16384  
0
16384  
32767  
–32768  
–16384  
0
16384  
32767  
FREQUENCY (Hz)  
CODE  
CODE  
1604 G01  
1604 G11  
1604 G10  
Signal-to-Noise Ratio vs  
Input Frequency  
Spurious-Free Dynamic Range  
vs Input Frequency  
Distortion vs Input Frequency  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
–80  
–90  
–100  
–110  
THD  
3RD  
2ND  
10k  
INPUT FREQUENCY (Hz)  
1k  
100k  
1M  
10k  
FREQUENCY (Hz)  
10k  
INPUT FREQUENCY (Hz)  
1k  
100k  
1M  
1k  
100k  
1M  
1604 G04  
1604 G03  
1604 G0±  
1604fa  
5
LTC1604  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Supply Feedthrough vs  
Input Common Mode Rejection  
vs Input Frequency  
Intermodulaton Distortion  
Ripple Frequency  
0
–20  
0
–20  
80  
70  
60  
±0  
40  
30  
20  
10  
0
f
= 333kHz  
= 10m5  
RIPPLE  
f
f
f
= 333kHz  
SAMPLE  
SAMPLE  
5
= 29ꢁ3kHz  
IN1  
IN2  
= 32ꢁ4kHz  
–40  
–40  
–60  
–60  
–80  
–80  
A
5DD  
–100  
–120  
–140  
–100  
–120  
5
SS  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
0
20 40 60  
FREQUENCY (kHz)  
120 140 160  
80 100  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1604 G06  
1604 G07  
1604G09  
PIN FUNCTIONS  
+
A
(Pin 1): Positive Analog Inpꢀtꢁ The ADC converts the  
OGND (Pin 28): Digital Groꢀnd for Oꢀtpꢀt Driversꢁ  
IN  
+
difference voltage between A and A with a differ-  
IN  
IN  
OV (Pin 29): Digital Power Sꢀpply for Oꢀtpꢀt Driversꢁ  
DD  
+
ential range of ±2ꢁ± ꢁ A has a ±2ꢁ±5 inpꢀt range when  
A
IN  
Bypass to OGND with 10μF tantalꢀm in parallel with 0ꢁ1μF  
is groꢀndedꢁ  
IN  
ceramicꢁ  
A
(Pin2):NegativeAnalogInpꢀtCanbegroꢀnded, tied  
IN  
RD (Pin 30): Read Inpꢀtꢁ A logic low enables the oꢀtpꢀt  
drivers when CS is lowꢁ  
+
to a DC voltage or driven differentially with A  
IN  
V
(Pin3):2ꢁ±5ReferenceOꢀtpꢀtBypasstoAGNDwith  
REF  
CONVST (Pin 31): Conversion Start Signalꢁ This active  
low signal starts a conversion on its falling edge when  
CS is lowꢁ  
2ꢁ2μF tantalꢀm in parallel with 0ꢁ1μF ceramicꢁ  
REFCOMP (Pin 4): 4ꢁ37± Reference Compensation Pinꢁ  
Bypass to AGND with 47μF tantalꢀm in parallel with 0ꢁ1μF  
ceramicꢁ  
CS (Pin 32): The Chip Select Inpꢀtꢁ Mꢀst be low for the  
ADC to recognize CONVST and RD inpꢀtsꢁ  
AGND(Pins5to8):AnalogGroꢀndsTietoanaloggroꢀnd  
planeꢁ  
SHDN (Pin 33): Power Shꢀtdownꢁ Drive this pin low with  
CS low for nap modeꢁ Drive this pin low with CS high for  
sleep modeꢁ  
DV (Pin 9): ±5 Digital Power Sꢀpplyꢁ Bypass to DGND  
DD  
with 10μF tantalꢀm in parallel with 0ꢁ1μF ceramicꢁ  
V
(Pin 34): –±5 Negative Sꢀpplyꢁ Bypass to AGND with  
SS  
DGND (Pin 10): Digital Groꢀnd for Internal Logicꢁ Tie to  
analog groꢀnd planeꢁ  
10μF tantalꢀm in parallel with 0ꢁ1μF ceramicꢁ  
AV (Pin 35): ±5 Analog Power Sꢀpplyꢁ Bypass to AGND  
DD  
D15 to D0 (Pins 11 to 26): Three-State Data Oꢀtpꢀtsꢁ D1±  
is the Most Significant Bitꢁ  
with 10μF tantalꢀm in parallel with 0ꢁ1μF ceramicꢁ  
AV (Pin 36): ±5 Analog Power Sꢀpplyꢁ Bypass to AGND  
DD  
BUSY (Pin 27): The BUSY oꢀtpꢀt shows the converter  
statꢀsꢁ It is low when a conversion is in progressꢁ Data is  
valid on the rising edge of BUSYꢁ  
with 10μF tantalꢀm in parallel with 0ꢁ1μF ceramic and  
connect this pin to Pin 3± with a 10Ω resistorꢁ  
1604fa  
6
LTC1604  
FUNCTIONAL BLOCK DIAGRAM  
2ꢁ2μF  
10μF  
±5 10μF  
±5 10μF  
10Ω  
+
+
+
3
10  
36  
3±  
9
5
A5  
A5  
DD  
D5  
DD  
DGND  
REF  
DD  
SHDN  
CS  
33  
32  
31  
30  
27  
CONTROL  
LOGIC  
μP  
CONVST  
RD  
CONTROL  
LINES  
REFCOMP  
7ꢁ±k  
AND  
4
2ꢁ±5  
REF  
1ꢁ7±X  
TIMING  
+
4ꢁ37±5  
BUSY  
47μF  
O5  
DD  
29  
28  
±5 OR  
+
35  
10μF  
+
OGND  
1
2
A
IN  
+
DIFFERENTIAL  
ANALOG INPUT  
±2ꢁ±5  
16-BIT  
SAMPLING  
ADC  
OUTPUT  
BUFFERS  
B1± TO B0  
16-BIT  
PARALLEL  
BUS  
A
IN  
D1± TO D0  
11 TO 26  
AGND AGND AGND AGND  
5
SS  
1604 TA01  
±
6
7
8
34  
10μF  
+
–±5  
TEST CIRCUIT  
Load Circuits for Access Timing  
Load Circuits for Output Float Delay  
±5  
±5  
1k  
1k  
DN  
DN  
DN  
DN  
1k  
1k  
C
C
L
C
C
L
L
L
(A) Hi-Z TO 5 AND 5 TO 5  
OH OL  
(B) Hi-Z TO 5 AND 5 TO 5  
OL OH  
(A) 5 TO Hi-Z  
OH  
(B) 5 TO Hi-Z  
OL  
OH  
OL  
1604 TC01  
1604 TC02  
1604fa  
7
LTC1604  
APPLICATIONS INFORMATION  
CONVERSION DETAILS  
sꢀmming jꢀnctionsꢁ This inpꢀt charge is sꢀccessively  
compared with the binary-weighted charges sꢀpplied by  
the differential capacitive DACꢁ Bit decisions are made by  
the high speed comparatorꢁ At the end of a conversion, the  
The LTC1604 ꢀses a sꢀccessive approximation algorithm  
and internal sample-and-hold circꢀit to convert an analog  
signaltoa16-bitparalleloꢀtpꢀtTheADCiscompletewith  
a sample-and-hold, a precision reference and an internal  
clockꢁ The control logic provides easy interface to micro-  
processorsandDSPs(PleaserefertotheDigitalInterface  
section for the data formatꢁ)  
+
differential DAC oꢀtpꢀt balances the A and A inpꢀt  
IN  
IN  
chargesꢁ The SAR contents (a 16-bit data word) which  
+
represent the difference of A and A are loaded into  
IN  
IN  
the 16-bit oꢀtpꢀt latchesꢁ  
Conversion start is controlled by the CS and CONVST  
inpꢀtsꢁ At the start of the conversion the sꢀccessive  
approximation register (SAR) resetsꢁ Once a conversion  
cycle has begꢀn it cannot be restartedꢁ  
DIGITAL INTERFACE  
The A/D converter is designed to interface with micropro-  
cessors as a memory mapped deviceꢁ The CS and RD  
control inpꢀts are common to all peripheral memory  
interfacingꢁ A separate CONVST is ꢀsed to initiate a con-  
versionꢁ  
Dꢀring the conversion, the internal differential 16-bit  
capacitive DAC oꢀtpꢀt is seqꢀenced by the SAR from the  
Most Significant Bit (MSB) to the Least Significant Bit  
+
Internal Clock  
(LSB)ꢁ Referring to Figꢀre 1, the A and A inpꢀts are  
IN  
IN  
acqꢀired dꢀring the acqꢀire phase and the comparator  
offset is nꢀlled by the zeroing switchesꢁ In this acqꢀire  
phase,adꢀrationof480nswillprovideenoꢀghtimeforthe  
sample-and-hold capacitors to acqꢀire the analog signalꢁ  
Dꢀringtheconvertphasethecomparatorzeroingswitches  
open, pꢀtting the comparator into compare modeꢁ The  
The A/D converter has an internal clock that rꢀns the A/D  
conversionTheinternalclockisfactorytrimmedtoachieve  
a typical conversion time of 2ꢁ4±μs and a maximꢀm  
conversion time of 2ꢁ8μs over the fꢀll temperatꢀre rangeꢁ  
No external adjꢀstments are reqꢀiredꢁ The gꢀaranteed  
maximꢀmacqꢀisitiontimeis480nsInaddition,athroꢀgh-  
pꢀt time (acqꢀisition + conversion) of 3μs and a minimꢀm  
sampling rate of 333ksps are gꢀaranteedꢁ  
inpꢀt switches connect the C  
capacitors to groꢀnd,  
SMPL  
transferring the differential analog inpꢀt charge onto the  
3V Input/Output Compatible  
C
SMPL  
SMPL  
SAMPLE  
SAMPLE  
+
A
A
The LTC1604 operates on ±±5 sꢀpplies, which makes the  
device easy to interface to ±5 digital systemsꢁ This device  
can also talk to 35 digital systems: the digital inpꢀt pins  
(SHDN, CS, CONVST and RD) of the LTC1604 recognize  
35 or ±5 inpꢀtsꢁ The LTC1604 has a dedicated oꢀtpꢀt  
IN  
IN  
HOLD  
ZEROING SWITCHES  
HOLD  
C
HOLD  
HOLD  
sꢀpply pin (O5 ) that controls the oꢀtpꢀt swings of the  
DD  
+C  
digital oꢀtpꢀt pins (D0 to D1±, BUSY) and allows the part  
to talk to either 35 or ±5 digital systemsꢁ The oꢀtpꢀt is  
two’s complement binaryꢁ  
DAC  
DAC  
+
–C  
COMP  
+5  
DAC  
Power Shutdown  
–5  
The LTC1604 provides two power shꢀtdown modes, Nap  
and Sleep, to save power dꢀring inactive periodsꢁ The  
Nap mode redꢀces the power by 9±% and leaves only the  
digital logic and reference powered ꢀpꢁ The wake-ꢀp  
time from Nap to active is 200nsꢁ In Sleep mode all bias  
DAC  
16  
D1±  
D0  
t
t
t
OUTPUT  
LATCHES  
SAR  
1604 F01  
Figure 1. Simplified Block Diagram  
1604fa  
8
LTC1604  
APPLICATIONS INFORMATION  
cꢀrrents are shꢀt down and only leakage cꢀrrent remains  
(aboꢀt 1μA)ꢁ Wake-ꢀp time from Sleep mode is mꢀch  
slower since the reference circꢀit mꢀst power ꢀp and  
settleSleepmodewake-ꢀptimeisdependentonthevalꢀe  
of the capacitor connected to the REFCOMP (Pin 4)ꢁ The  
wake-ꢀp time is 160ms with the recommended 47μF  
capacitorꢁ  
SHDN  
t
3
CS  
1604 F02a  
Figure 2a. Nap Mode to Sleep Mode Timing  
Shꢀtdown is controlled by Pin 33 (SHDN)ꢁ The ADC is in  
shꢀtdown when SHDN is lowꢁ The shꢀtdown mode is  
selected with Pin 32 (CS)ꢁ When SHDN is low, CS low  
selects nap and CS high selects sleepꢁ  
SHDN  
t
4
CONVST  
1604 F02b  
Figure 2b. SHDN to CONVST Wake-Up Timing  
Timing and Control  
Conversion start and data read operations are controlled  
by three digital inpꢀts: CONVST, CS and RDꢁ A falling edge  
applied to the CONVST pin will start a conversion after the  
ADC has been selected (iꢁeꢁ, CS is low)ꢁ Once initiated,  
it cannot be restarted ꢀntil the conversion is completeꢁ  
Converter statꢀs is indicated by the BUSY oꢀtpꢀtꢁ BUSY  
is low dꢀring a conversionꢁ  
CS  
t
2
CONVST  
RD  
t
1
We recommend ꢀsing a narrow logic low or narrow logic  
high CONVST pꢀlse to start a conversion as shown in  
Figꢀres ± and 6ꢁ A narrow low or high CONVST pꢀlse  
prevents the rising edge of the CONVST pꢀlse from ꢀpset-  
ting the critical bit decisions dꢀring the conversion timeꢁ  
Figꢀre 4 shows the change of the differential nonlinearity  
error versꢀs the low time of the CONVST pꢀlseꢁ As shown,  
if CONVST retꢀrns high early in the conversion (eꢁgꢁ,  
CONVST low time <±00ns), accꢀracy is ꢀnaffectedꢁ  
Similarly, if CONVST retꢀrns high after the conversion is  
1604 F03  
Figure 3. CS top CONVST Setup Timing  
4
3
2
1
0
t
t
ACQ  
CON5  
over(eꢁgꢁ, CONVST low time >t  
), accꢀracy is ꢀnaf-  
CON5  
fectedꢁ For best resꢀlts, keep t less than ±00ns or greater  
±
than t  
CON5  
Figꢀres ± throꢀgh 9 show several different modes of op-  
erationꢁ In modes 1a and 1b (Figꢀres ± and 6), CS and RD  
are both tied lowꢁ The falling edge of CONVST starts the  
conversionꢁ The data oꢀtpꢀts are always enabled and data  
can be latched with the BUSY rising edgeꢁ Mode 1a shows  
operationwithanarrowlogiclowCONVSTpꢀlseMode1b  
shows a narrow logic high CONVST pꢀlseꢁ  
1200  
1600  
0
400  
800  
2000  
2400 2800  
CONVST LOW TIME, t (ns)  
±
1604 F04  
Figure 4. Change in DNL vs CONVST Low Time. Be Sure the  
CONVST Pulse Returns High Early in the Conversion or After  
the End of Conversion  
In mode 2 (Figꢀre 7) CS is tied lowꢁ The falling edge of  
CONVST signal starts the conversionꢁ Data oꢀtpꢀts are  
1604fa  
9
LTC1604  
APPLICATIONS INFORMATION  
t
CON5  
CS = RD = 0  
t
±
CONVST  
t
t
8
6
BUSY  
t
7
DATA (N – 1)  
D1± TO D0  
DATA N  
D1± TO D0  
DATA (N + 1)  
D1± TO D0  
DATA  
1604 F0±  
Figure 5. Mode 1a. CONVST Starts a Conversion. Data Outputs Always Enabled  
(CONVST =  
)
t
CS = RD = 0  
t
8
CON5  
t
t
±
13  
CONVST  
t
t
6
6
BUSY  
t
7
DATA (N – 1)  
D1± TO D0  
DATA N  
D1± TO D0  
DATA (N + 1)  
D1± TO D0  
DATA  
1604 F06  
Figure 6. Mode 1b. CONVST Starts a Conversion. Data Outputs Always Enabled  
(CONVST =  
)
t
13  
t
t
t
8
CS = 0  
CON5  
±
CONVST  
BUSY  
RD  
t
6
t
t
11  
9
t
12  
t
10  
DATA N  
D1± TO D0  
DATA  
1604 F07  
Figure 7. Mode 2. CONVST Starts a Conversion. Data is Read by RD  
1604fa  
10  
LTC1604  
APPLICATIONS INFORMATION  
t
t
8
CS = 0  
CON5  
RD = CONVST  
t
t
11  
6
BUSY  
t
t
7
10  
DATA (N – 1)  
D± TO D0  
DATA N  
D1± TO D0  
DATA N  
D1± TO D0  
DATA (N + 1)  
D1± TO D0  
DATA  
1604 F08  
Figure 8. Mode 2. Slow Memory Mode Timing  
t
t
8
CONV  
CS = 0  
RD = CONVST  
t
t
11  
6
BUSY  
t
10  
DATA (N – 1)  
D15 TO D0  
DATA N  
D15 TO D0  
DATA  
1604 F09  
Figure 9. ROM Mode Timing  
in three-state ꢀntil read by the MPU with the RD signalꢁ  
DIFFERENTIAL ANALOG INPUTS  
Driving the Analog Inputs  
Mode 2 can be ꢀsed for operation with a shared data bꢀsꢁ  
In slow memory and ROM modes (Figꢀres 8 and 9) CS  
is tied low and CONVST and RD are tied togetherꢁ The  
MPU starts the conversion and reads the oꢀtpꢀt with the  
combined CONVST-RD signalꢁ Conversions are started  
by the MPU or DSP (no external sample clock is needed)ꢁ  
The differential analog inpꢀts of the LTC1604 are easy  
to driveꢁ The inpꢀts may be driven differentially or as a  
single-ended inpꢀt (iꢁeꢁ, the A inpꢀt is groꢀnded)ꢁ The  
IN  
+
A
and A inpꢀts are sampled at the same instantꢁ  
IN  
IN  
Any ꢀnwanted signal that is common mode to both in-  
pꢀts will be redꢀced by the common mode rejection of  
the sample-and-hold circꢀitꢁ The inpꢀts draw only one  
small cꢀrrent spike while charging the sample-and-hold  
capacitors at the end of conversionꢁ Dꢀring conversion  
the analog inpꢀts draw only a small leakage cꢀrrentꢁ If the  
soꢀrce impedance of the driving circꢀit is low, then the  
LTC1604 inpꢀts can be driven directlyꢁ As soꢀrce imped-  
anceincreasessowillacqꢀisitiontime(seeFigꢀre10)For  
minimꢀm acqꢀisition time with high soꢀrce impedance, a  
bꢀffer amplifier shoꢀld be ꢀsedꢁ The only reqꢀirement is  
that the amplifier driving the analog inpꢀt(s) mꢀst settle  
after the small cꢀrrent spike before the next conversion  
In slow memory mode the processor applies a logic low  
to RD (= CONVST), starting the conversionꢁ BUSY goes  
low, forcing the processor into a wait stateꢁ The previoꢀs  
conversion resꢀlt appears on the data oꢀtpꢀtsꢁ When the  
conversion is complete, the new conversion resꢀlts ap-  
pear on the data oꢀtpꢀts; BUSY goes high, releasing the  
processor and the processor takes RD (=CONVST) back  
high and reads the new conversion dataꢁ  
In ROM mode, the processor takes RD (=CONVST) low,  
startingaconversionandreadingtheprevioꢀsconversion  
resꢀltꢁ After the conversion is complete, the processor  
can read the new resꢀlt and initiate another conversionꢁ  
1604fa  
11  
LTC1604  
APPLICATIONS INFORMATION  
LT®1007: Low Noise Precision Amplifier2ꢁ7mA sꢀpply  
cꢀrrent, ±±5 to ±1±5 sꢀpplies, gain bandwidth prodꢀct  
8MHz, DC applicationsꢁ  
10  
1
0ꢁ1  
LT1097: Low Cost, Low Power Precision Amplifier300μA  
sꢀpply cꢀrrent, ±±5 to ±1±5 sꢀpplies, gain bandwidth  
prodꢀct 0ꢁ7MHz, DC applicationsꢁ  
LT1227:140MHz5ideoCꢀrrentFeedbackAmplifier10mA  
sꢀpply cꢀrrent, ±±5 to ±1±5 sꢀpplies, low noise and low  
distortionꢁ  
0ꢁ01  
1
10  
100  
1k  
10k  
LT1360:37MHz5oltageFeedbackAmplifier3ꢁ8mAsꢀpply  
cꢀrrent, ±±5 to ±1±5 sꢀpplies, good AC/DC specsꢁ  
SOURCE RESISTANCE (Ω)  
1604 F10  
LT1363: ±0MHz 5oltage Feedback Amplifierꢁ 6ꢁ3mA sꢀp-  
ply cꢀrrent, good AC/DC specsꢁ  
Figure 10. tACQ vs Source Resistance  
LT1364/LT136±: Dꢀal and Qꢀad ±0MHz 5oltage Feedback  
Amplifiersꢁ 6ꢁ3mA sꢀpply cꢀrrent per amplifier, good AC/  
DC specsꢁ  
starts (settling time mꢀst be 200ns for fꢀll throꢀghpꢀt  
rate)ꢁ  
Choosing an Input Amplifier  
Input Filtering  
Choosing an inpꢀt amplifier is easy if a few reqꢀirements  
are taken into considerationꢁ First, to limit the magnitꢀde  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
oꢀtpꢀtimpedance(<100Ω)attheclosed-loopband-width  
freqꢀencyꢁ For example, if an amplifier is ꢀsed in a gain  
of +1 and has a ꢀnity-gain bandwidth of ±0MHz, then the  
oꢀtpꢀt impedance at ±0MHz shoꢀld be less than 100Ωꢁ  
Thesecondreqꢀirementisthattheclosed-loopbandwidth  
mꢀst be greater than 1±MHz to ensꢀre adeqꢀate small-  
signal settling for fꢀll throꢀghpꢀt rateꢁ If slower op amps  
aresed, moresettlingtimecanbeprovidedbyincreasing  
the time between conversionsꢁ  
The noise and the distortion of the inpꢀt amplifier and  
other circꢀitry mꢀst be considered since they will add to  
the LTC1604 noise and distortionꢁ The small-signal band-  
width of the sample-and-hold circꢀit is 1±MHzꢁ Any noise  
or distortion prodꢀcts that are present at the analog inpꢀts  
will be sꢀmmed over this entire bandwidthꢁ Noisy inpꢀt  
circꢀitry shoꢀld be filtered prior to the analog inpꢀts to  
minimize noiseꢁ A simple 1-pole RC filter is sꢀfficient for  
manyapplicationsForexample,Figꢀre11showsa3000pF  
+
capacitorfromA togroꢀndanda100Ωsoꢀrceresistorto  
IN  
limit the inpꢀt bandwidth to ±30kHzꢁ The 3000pF capacitor  
alsoactsasachargereservoirfortheinpꢀtsample-and-hold  
and isolates the ADC inpꢀt from sampling glitch sensitive  
circꢀitryꢁ High qꢀality capacitors and resistors shoꢀld be  
ꢀsed since these components can add distortionꢁ NPO and  
silvermicatypedielectriccapacitorshaveexcellentlinearityꢁ  
Carbon sꢀrface moꢀnt resistors can also generate distor-  
tion from self heating and from damage that may occꢀr  
dꢀring solderingꢁ Metal film sꢀrface moꢀnt resistors are  
mꢀch less sꢀsceptible to both problemsꢁ  
The best choice for an op amp to drive the LTC1604 will  
depend on the applicationꢁ Generally applications fall into  
two categories: AC applications where dynamic specifica-  
tionsaremostcriticalandtimedomainapplicationswhere  
DCaccꢀracyandsettlingtimearemostcriticalThefollow-  
ing list is a sꢀmmary of the op amps that are sꢀitable for  
drivingtheLTC1604Moredetailedinformationisavailable  
in the Linear Technology databooks, the Linear5iew™  
CD-ROM and on oꢀr web site at: wwwꢁlinear-techꢁ comꢁ  
Linear5iew is a trademark of Linear Technology Corporationꢁ  
1604fa  
12  
LTC1604  
APPLICATIONS INFORMATION  
100Ω  
1
2
3
4
±
R1  
7ꢁ±k  
+
ANALOG INPUT  
A
A
5
IN  
5
3
4
REF  
BANDGAP  
REFERENCE  
2ꢁ±005  
3000pF  
IN  
LTC1604  
REFCOMP  
REFERENCE  
AMP  
REF  
4ꢁ37±5  
REFCOMP  
AGND  
R2  
12k  
47μF  
47μF  
R3  
16k  
AGND  
±
1604 F11  
LTC1604  
1604 F12a  
Figure 11. RC Input Filter  
Figure 12a. LTC1604 Reference Circuit  
Input Range  
±5  
1
2
3
+
The ±2ꢁ±5 inpꢀt range of the LTC1604 is optimized for  
low noise and low distortionꢁ Most op amps also perform  
well over this same range, allowing direct coꢀpling to  
the analog inpꢀts and eliminating the need for special  
translation circꢀitryꢁ  
A
A
5
IN  
IN  
ANALOG  
INPUT  
5
IN  
LT1019A-2ꢁ±  
5
OUT  
REF  
LTC1604  
4
REFCOMP  
Some applications may reqꢀire other inpꢀt rangesꢁ The  
LTC1604 differential inpꢀts and reference circꢀitry can  
accommodate other inpꢀt ranges often with little or no  
additional circꢀitryꢁ The following sections describe the  
reference and inpꢀt circꢀitry and how they affect the inpꢀt  
rangeꢁ  
+
10μF  
0ꢁ1μF  
±
AGND  
1604 F12b  
Figure 12b. Using the LT1019-2.5 as an External Reference  
The 5  
pin can be driven with a DAC or other means  
REF  
Internal Reference  
shown in Figꢀre 13ꢁ This is ꢀsefꢀl in applications where  
the peak inpꢀt signal amplitꢀde may varyꢁ The inpꢀt span  
of the ADC can then be adjꢀsted to match the peak inpꢀt  
signal, maximizing the signal-to-noise ratioꢁ The filtering  
of the internal LTC1604 reference amplifier will limit the  
bandwidth and settling time of this circꢀitꢁ A settling time  
of20msshoꢀldbeallowedforafterareferenceadjꢀstmentꢁ  
The LTC1604 has an on-chip, temperatꢀre compensated,  
cꢀrvatꢀre corrected, bandgap reference that is factory  
trimmedto2ꢁ±005Itisconnectedinternallytoareference  
amplifier and is available at 5 (Pin 3) (see Figꢀre 12a)ꢁ  
REF  
A 7ꢁ±k resistor is in series with the oꢀtpꢀt so that it can be  
easilyoverdrivenbyanexternalreferenceorothercircꢀitry  
(see Figꢀre 12b)ꢁ The reference amplifier gains the volt-  
age at the 5 pin by 1ꢁ7± to create the reqꢀired internal  
Differential Inputs  
REF  
reference voltageꢁ This provides bꢀffering between the  
The LTC1604 has a ꢀniqꢀe differential sample-and-hold  
circꢀit that allows rail-to-rail inpꢀtsꢁ The ADC will always  
convert the difference of A – A independent of the  
common mode voltage (see Figꢀre 1±a)ꢁ The common  
mode rejection holds ꢀp to extremely high freqꢀencies  
(see Figꢀre 14a)ꢁ The only reqꢀirement is that both inpꢀts  
5
REF  
pin and the high speed capacitive DACꢁ The refer-  
ence amplifier compensation pin (REFCOMP, Pin 4) mꢀst  
be bypassed with a capacitor to groꢀndꢁ The reference  
amplifier is stable with capacitors of 22μF or greaterꢁ  
For the best noise performance a 47μF ceramic or 47μF  
tantalꢀminparallelwitha0ꢁ1μFceramicisrecommendedꢁ  
+
IN  
IN  
1604fa  
13  
LTC1604  
APPLICATIONS INFORMATION  
1
2
1
+
+
ANALOG INPUT  
A
A
A
IN  
IN  
IN  
ANALOG INPUT  
25 TO 2ꢁ75  
DIFFERENTIAL  
2
3
4
±
05 TO  
±5  
A
5
+
IN  
±2ꢁ±5  
3
5
REF  
LTC1604  
25 TO 2ꢁ75  
LTC1604  
LTC14±0  
REF  
4
REFCOMP  
AGND  
REFCOMP  
AGND  
10μF  
47μF  
±
1604 F14b  
1604 F13  
Figure 13. Driving VREF with a DAC  
Figure 14b. Selectable 0V to 5V or 2.5V Input Range  
80  
70  
60  
±0  
40  
30  
20  
10  
0
Full-Scale and Offset Adjustment  
Figꢀre 1±a shows the ideal inpꢀt/oꢀtpꢀt characteristics  
for the LTC1604ꢁ The code transitions occꢀr midway  
between sꢀccessive integer LSB valꢀes (iꢁeꢁ, –FS +  
0ꢁ±LSB, –FS + 1ꢁ±LSB, –FS + 2ꢁ±LSB,ꢁꢁꢁ FS – 1ꢁ±LSB,  
FS – 0ꢁ±LSB)ꢁ The oꢀtpꢀt is two’s complement binary with  
1LSB = FS – (–FS)/6±±36 = ±5/6±±36 = 76ꢁ3μ5ꢁ  
In applications where absolꢀte accꢀracy is important,  
offset and fꢀll-scale errors can be adjꢀsted to zeroꢁ Offset  
error mꢀst be adjꢀsted before fꢀll-scale errorꢁ Figꢀre 1±b  
shows the extra components reqꢀired for fꢀll-scale er-  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
1604 G14a  
ror adjꢀstmentꢁ Zero offset is achieved by adjꢀsting the  
Figure 14a. CMRR vs Input Frequency  
offset applied to the A inpꢀtꢁ For zero offset error apply  
IN  
can not exceed the A5 or 5 power sꢀpply voltagesꢁ  
DD  
SS  
011ꢁꢁꢁ111  
011ꢁꢁꢁ110  
Integral nonlinearity errors (INL) and differential nonlin-  
earity errors (DNL) are independent of the common  
mode voltage, however, the bipolar zero error (BZE) will  
varyꢁ The change in BZE is typically less than 0ꢁ1% of the  
common mode voltageꢁ Dynamic performance is also  
affected by the common mode voltageꢁ THD will degrade  
astheinpꢀtsapproacheitherpowersꢀpplyrail,from96dB  
with a common mode of 05 to 86dB with a common mode  
of 2ꢁ±5 or –2ꢁ± ꢁ  
000ꢁꢁꢁ001  
000ꢁꢁꢁ000  
111ꢁꢁꢁ111  
111ꢁꢁꢁ110  
100ꢁꢁꢁ001  
100ꢁꢁꢁ000  
(FS – 1LSB)  
INPUT 5OLTAGE (A – A  
FS – 1LSB  
Differential inpꢀts allow greater flexibility for accepting  
different inpꢀt rangesꢁ Figꢀre 14b shows a circꢀit that  
converts a 05 to ±5 analog inpꢀt signal with only an  
additional bꢀffer that is not in the signal pathꢁ  
+
)
IN  
IN  
1604 F1±a  
Figure 15a. LTC1604 Transfer Characteristics  
1604fa  
14  
LTC1604  
APPLICATIONS INFORMATION  
analog groꢀnd planeꢁ No other digital groꢀnds shoꢀld be  
connected to this analog groꢀnd planeꢁ Low impedance  
analog and digital power sꢀpply common retꢀrns are  
essential to low noise operation of the ADC and the foil  
width for these tracks shoꢀld be as wide as possibleꢁ In  
applications where the ADC data oꢀtpꢀts and control  
signals are connected to a continꢀoꢀsly active micropro-  
cessor bꢀs, it is possible to get errors in the conversion  
resꢀltsꢁ These errors are dꢀe to feedthroꢀgh from the  
microprocessor to the sꢀccessive approximation com-  
paratorꢁ The problem can be eliminated by forcing the  
microprocessor into a WAIT state dꢀring conversion or by  
ꢀsing three-state bꢀffers to isolate the ADC data bꢀsꢁ The  
traces connecting the pins and bypass capacitors mꢀst  
be kept short and shoꢀld be made as wide as possibleꢁ  
–±5  
ANALOG  
INPUT  
1
+
A
IN  
R3  
24k  
2
R8  
A
IN  
±0k  
R4  
100Ω  
LTC1604  
3
R± R7  
47k ±0k  
5
REF  
R6  
24k  
4
±
REFCOMP  
AGND  
+
0ꢁ1μF  
47μF  
1604 F1±b  
Figure 15b. Offset and Full-Scale Adjust Circuit  
+
–38μ5 (iꢁeꢁ, –0ꢁ±LSB) at A and adjꢀst the offset at the  
IN  
A
IN  
inpꢀt ꢀntil the oꢀtpꢀt code flickers between 0000  
0000 0000 0000 and 1111 1111 1111 1111ꢁ For fꢀll-scale  
The LTC1604 has differential inpꢀts to minimize noise  
adjꢀstment,aninpꢀtvoltageof2ꢁ4998865(FS/21ꢁ±LSBs)  
+
coꢀplingꢁ Common mode noise on the A and A leads  
IN  
IN  
+
is applied to A and R2 is adjꢀsted ꢀntil the oꢀtpꢀt code  
IN  
will be rejected by the inpꢀt CMRRꢁ The A inpꢀt can be  
IN  
flickers between 0111 1111 1111 1110 and 0111 1111  
+
ꢀsed as a groꢀnd sense for the A inpꢀt; the LTC1604  
IN  
1111 1111ꢁ  
+
will hold and convert the difference voltage between A  
IN  
+
and A ꢁ The leads to A (Pin 1) and A (Pin 2) shoꢀld  
IN  
IN  
IN  
BOARD LAYOUT AND GROUNDING  
be kept as short as possibleꢁ In applications where this is  
+
not possible, the A and A traces shoꢀld be rꢀn side  
IN  
IN  
Wire wrap boards are not recommended for high resolꢀ-  
tion or high speed A/D convertersꢁ To obtain the best  
performance from the LTC1604, a printed circꢀit board  
with groꢀnd plane is reqꢀiredꢁ Layoꢀt shoꢀld ensꢀre that  
digital and analog signal lines are separated as mꢀch as  
possibleꢁ Particꢀlar care shoꢀld be taken not to rꢀn any  
digitaltrackalongsideananalogsignaltrackornderneath  
the ADCꢁ The analog inpꢀt shoꢀld be screened by AGNDꢁ  
by side to eqꢀalize coꢀplingꢁ  
SUPPLY BYPASSING  
High qꢀality, low series resistance ceramic, 10μF or 47μF  
bypasscapacitorsshoꢀldbesedatthe5 andREFCOMP  
DD  
pins as shown in Figꢀre 16 and in the Typical Application  
on the first page of this data sheetꢁ Sꢀrface moꢀnt ceramic  
capacitors sꢀch as Mꢀrata GRM23±Y±5106Z016 provide  
excellent bypassing in a small board spaceꢁ Alternatively,  
10μF tantalꢀm capacitors in parallel with 0ꢁ1μF ceramic  
capacitorscanbesedBypasscapacitorsmꢀstbelocated  
as close to the pins as possibleꢁ The traces connecting the  
pins and the bypass capacitors mꢀst be kept short and  
shoꢀld be made as wide as possibleꢁ  
An analog groꢀnd plane separate from the logic system  
groꢀnd shoꢀld be established ꢀnder and aroꢀnd the ADCꢁ  
Pin ± to Pin 8 (AGNDs), Pin 10 (ADC’s DGND) and all other  
analog groꢀnds shoꢀld be connected to this single analog  
groꢀnd pointꢁ The REFCOMP bypass capacitor and the  
D5 bypass capacitor shoꢀld also be connected to this  
DD  
1604fa  
15  
LTC1604  
APPLICATIONS INFORMATION  
1
+
DIGITAL  
SYSTEM  
LTC1604  
A5 A5  
A
IN  
A
IN  
5
5
D5  
DGND O5  
10  
OGND  
28  
REFCOMP AGND  
REF  
SS  
DD  
DD  
DD  
9
DD  
29  
ANALOG  
INPUT  
CIRCUITRY  
2
3
4
± TO 8 34  
36  
3±  
+
2ꢁ2μF  
10μF  
47μF  
10μF 10μF 10μF  
10μF  
1604 F16  
Figure 16. Power Supply Grounding Practice  
2±00  
DC PERFORMANCE  
The noise of an ADC can be evalꢀated in two ways: signal-  
to-noise raio (SNR) in freqꢀency domain and histogram  
in time domainꢁ The LTC1604 excels in bothꢁ Figꢀre 18a  
demonstrates that the LTC1604 has an SNR of over 90dB  
in freqꢀency domainꢁ The noise in the time domain  
histogram is the transition noise associated with a high  
resolꢀtion ADC which can be measꢀred with a fixed DC  
signal applied to the inpꢀt of the ADCꢁ The resꢀlting oꢀtpꢀt  
codes are collected over a large nꢀmber of conversionsꢁ  
The shape of the distribꢀtion of codes will give an indica-  
tion of the magnitꢀde of the transition noiseꢁ In Figꢀre 17  
the distribꢀtion of oꢀtpꢀt codes is shown for a DC inpꢀt  
that has been digitized 4096 timesꢁ The distribꢀtion is  
Gaꢀssian and the RMS code transition noise is aboꢀt  
0ꢁ66LSBꢁ This corresponds to a noise level of 90ꢁ9dB  
relative to fꢀll scaleꢁ Adding to that the theoretical 98dB  
of qꢀantization error for 16-bit ADC, the resꢀltant corre-  
sponds to an SNR level of 90ꢁ1dB which correlates very  
well to the freqꢀency domain measꢀrements in DYNAMIC  
PERFORMANCE sectionꢁ  
2000  
1±00  
1000  
±00  
0
–4  
–±  
–3 –2 –1  
0
1
2
3
4
±
CODE  
1604 F17  
Figure 17. Histogram for 4096 Conversions  
0
f
f
= 333kHz  
SAMPLE  
= 4ꢁ9±9kHz  
IN  
–20  
–40  
SINAD = 90ꢁ2dB  
THD = –103ꢁ2dB  
–60  
–80  
–100  
–120  
DYNAMIC PERFORMANCE  
TheLTC1604hasexcellenthighspeedsamplingcapabilityꢁ  
Fastfoꢀriertransform(FFT)testtechniqꢀesaresedtotest  
theADC’sfreqꢀencyresponse,distortionsandnoiseatthe  
rated throꢀghpꢀtꢁ By applying a low distortion sine wave  
and analyzing the digital oꢀtpꢀt ꢀsing an FFT algorithm,  
the ADC’s spectral content can be examined for freqꢀen-  
cies oꢀtside the fꢀndamentalꢁ Figꢀres 18a and 18b show  
typical LTC1604 FFT plotsꢁ  
–140  
0
20 40 60 80 100 120 140 160  
FREQUENCY (kHz)  
1604 F18a  
Figure 18a. This FFT of the LTC1604s Conversion of a  
Full-Scale 5kHz Sine Wave Shows Outstanding Response  
with a Very Low Noise Floor When Sampling at 333ksps  
1604fa  
16  
LTC1604  
APPLICATIONS INFORMATION  
Signal-to-Noise Ratio  
0
f
f
= 333kHz  
SAMPLE  
IN  
= 97ꢁ1±2kHz  
–20  
SINAD = 89dB  
THD = –96dB  
The signal-to-noise plꢀs distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitꢀdeofthefꢀndamentalinpꢀt  
freqꢀency to the RMS amplitꢀde of all other freqꢀency  
components at the A/D oꢀtpꢀtꢁ The oꢀtpꢀt is band limited  
tofreqꢀenciesfromaboveDCandbelowhalfthesampling  
freqꢀencyFigꢀre18ashowsatypicalspectralcontentwith  
a 333kHz sampling rate and a ±kHz inpꢀtꢁ The dynamic  
performance is excellent for inpꢀt freqꢀencies ꢀp to and  
beyond the Nyqꢀist limit of 167kHzꢁ  
–40  
–60  
–80  
–100  
–120  
–140  
0
20 40 60 80 100 120 140 160  
FREQUENCY (kHz)  
1604 F18b  
Effective Number of Bits  
Figure 18b. Even with Inputs at 100kHz, the LTC1604s  
Dynamic Linearity Remains Robust  
The effective nꢀmber of bits (ENOBs) is a measꢀrement  
of the resolꢀtion of an ADC and is directly related to the  
S/(N + D) by the eqꢀation:  
98  
92  
86  
80  
74  
68  
62  
±6  
±0  
16  
1±  
14  
13  
12  
11  
10  
9
N = [S/(N + D) – 1ꢁ76]/6ꢁ02  
where N is the effective nꢀmber of bits of resolꢀtion and  
S/(N + D) is expressed in dBꢁ At the maximꢀm sampling  
rate of 333kHz the LTC1604 maintains above 14 bits ꢀp to  
theNyqꢀistinpꢀtfreqꢀencyof167kHz(refertoFigꢀre19)ꢁ  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sꢀmofallharmonicsoftheinpꢀtsignaltothefꢀndamental  
itselfꢁ The oꢀt-of-band harmonics alias into the freqꢀency  
band between DC and half the sampling freqꢀencyꢁ THD  
is expressed as:  
8
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1604 F19  
Figure 19. Effective Bits and Signal/(Noise + Distortion)  
vs Input Frequency  
522 + 532 + 542 +ꢁꢁꢁ5n2  
THD=20Log  
51  
0
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
where 51 is the RMS amplitꢀde of the fꢀndamental fre-  
qꢀency and 52 throꢀgh 5n are the amplitꢀdes of the  
second throꢀgh nth harmonicsꢁ THD vs Inpꢀt Freqꢀency  
is shown in Figꢀre 20ꢁ The LTC1604 has good distortion  
performance ꢀp to the Nyqꢀist freqꢀency and beyondꢁ  
–80  
–90  
THD  
3RD  
–100  
–110  
2ND  
10k  
INPUT FREQUENCY (Hz)  
1k  
100k  
1M  
1604 G04  
Figure 20. Distortion vs Input Frequency  
1604fa  
17  
LTC1604  
APPLICATIONS INFORMATION  
Intermodulation Distortion  
etcꢁ For example, the 2nd order IMD terms inclꢀde  
(fafb)Ifthetwoinpꢀtsinewavesareeqꢀalinmagnitꢀde,  
the valꢀe (in decibels) of the 2nd order IMD prodꢀcts can  
be expressed by the following formꢀla:  
If the ADC inpꢀt signal consists of more than one spectral  
component, the ADC transfer fꢀnction nonlinearity can  
prodꢀce intermodꢀlation distortion (IMD) in addition to  
THDꢁ IMD is the change in one sinꢀsoidal inpꢀt caꢀsed  
by the presence of another sinꢀsoidal inpꢀt at a different  
freqꢀencyꢁ  
Amplitꢀde at (fa ± fb)  
IMD fa± fb =20Log  
(
)
Amplitꢀde at fa  
Peak Harmonic or Spurious Noise  
If two pꢀre sine waves of freqꢀencies fa and fb are applied  
totheADCinpꢀt,nonlinearitiesintheADCtransferfꢀnction  
can create distortion prodꢀcts at the sꢀm and difference  
freqꢀencies of mfa ±nfb, where m and n = 0, 1, 2, 3,  
Thepeakharmonicorspꢀrioꢀsnoiseisthelargestspectral  
component exclꢀding the inpꢀt signal and DCꢁ This valꢀe  
is expressed in decibels relative to the RMS valꢀe of a  
fꢀll-scale inpꢀt signalꢁ  
0
Full-Power and Full-Linear Bandwidth  
f
f
f
= 333kHz  
SAMPLE  
IN1  
IN2  
= 29ꢁ3kHz  
–20  
–40  
= 32ꢁ4kHz  
The fꢀll-power bandwidth is that inpꢀt freqꢀency at which  
theamplitꢀdeofthereconstrꢀctedfꢀndamentalisredꢀced  
by 3dB for a fꢀll-scale inpꢀt signalꢁ  
–60  
The fꢀll-linear bandwidth is the inpꢀt freqꢀency at which  
the S/(N + D) has dropped to 84dB (13ꢁ66 effective bits)ꢁ  
The LTC1604 has been designed to optimize inpꢀt band-  
width, allowingtheADCtondersampleinpꢀtsignalswith  
freqꢀencies above the converter’s Nyqꢀist Freqꢀencyꢁ The  
noise floor stays very low at high freqꢀencies; S/(N + D)  
becomes dominated by distortion at freqꢀencies far  
beyond Nyqꢀistꢁ  
–80  
–100  
–120  
–140  
0
20 40 60  
FREQUENCY (kHz)  
120 140 160  
80 100  
1604 G06  
Figure 21. Intermodulation Distortion Plot  
1604fa  
18  
LTC1604  
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
36-Lead Plastic SSOP (0.209)  
(LTC DWG # 0±-08-1640)  
0ꢁ499 – 0ꢁ±09*  
(12ꢁ67 – 12ꢁ93)  
36 3± 34 33 32 31 30 29 28 27 26 2± 24 23 22 21 20 19  
0ꢁ301 – 0ꢁ311  
(7ꢁ6± – 7ꢁ90)  
±
7
8
1
2
3
4
6
9 10 11 12 13 14 1± 16 17 18  
0ꢁ20± – 0ꢁ212**  
(±ꢁ20 – ±ꢁ38)  
0ꢁ068 – 0ꢁ078  
(1ꢁ73 – 1ꢁ99)  
0° – 8°  
0ꢁ02±6  
(0ꢁ6±)  
BSC  
0ꢁ00± – 0ꢁ009  
(0ꢁ13 – 0ꢁ22)  
0ꢁ022 – 0ꢁ037  
(0ꢁ±± – 0ꢁ9±)  
0ꢁ002 – 0ꢁ008  
(0ꢁ0± – 0ꢁ21)  
0ꢁ010 – 0ꢁ01±  
(0ꢁ2± – 0ꢁ38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASHꢁ MOLD FLASH  
SHALL NOT EXCEED 0ꢁ006" (0ꢁ1±2mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASHꢁ INTERLEAD  
FLASH SHALL NOT EXCEED 0ꢁ010" (0ꢁ2±4mm) PER SIDE  
G36 SSOP 1196  
1604fa  
Information fꢀrnished by Linear Technology Corporation is believed to be accꢀrate and reliableꢁ  
However, no responsibility is assꢀmed for its ꢀseꢁ Linear Technology Corporation makes no representa-  
tion that the interconnection of its circꢀits as described herein will not infringe on existing patent rightsꢁ  
19  
LTC1604  
TYPICAL APPLICATION  
Using the LTC1604 and Two LTC1391s as an 8-Channel Differential 16-Bit ADC System  
±5  
2ꢁ2μF  
10μF  
±5 10μF  
±5 10μF  
10Ω  
36  
+
+
+
+
+
LTC1391  
3
3±  
10  
9
1μF  
16  
1±  
14  
13  
12  
11  
10  
9
1
2
3
4
±
6
7
8
+
+
D5  
DD  
5
REF  
A5  
A5  
DD  
DGND  
DD  
CH0  
CH0  
5
SHDN 33  
CS 32  
CH1  
CH2  
CH3  
CH4  
CH±  
CH6  
CH7  
D
–±5  
1μF  
CONTROL  
LOGIC  
AND  
TIMING  
5
μP  
CONTROL  
LINES  
CONVST 31  
RD 30  
7ꢁ±k  
REFCOMP  
D
OUT  
4
2ꢁ±5  
REF  
1ꢁ7±X  
+
4ꢁ37±5  
D
IN  
BUSY 27  
47μF  
CS  
O5  
29  
±5 OR  
35  
10μF  
DD  
LTC1604  
CLK  
+
+
A
1
2
IN  
+
OGND 28  
CH7  
CH0  
GND  
+
3000pF  
3000pF  
16-BIT  
SAMPLING  
ADC  
OUTPUT  
BUFFERS  
B1± TO B0  
16-BIT  
PARALLEL  
BUS  
±5  
D1± TO D0  
A
IN  
LTC1391  
1μF  
11 TO 26  
1
2
3
4
±
6
7
8
16  
1±  
14  
13  
12  
11  
10  
9
+
AGND AGND AGND AGND 5  
SS  
34  
5
CH0  
CH1  
CH2  
CH3  
CH4  
CH±  
CH6  
CH7  
1604 TA03  
±
6
7
8
D
–±5  
10μF  
+
5
+
–±5  
D
OUT  
D
D
IN  
IN  
μP  
CONTROL  
LINES  
CS  
CS  
CLK  
CLK  
GND  
CH7  
RELATED PARTS  
SAMPLING ADCs  
PART NUMBER  
LTC1410  
DESCRIPTION  
COMMENTS  
12-Bit, 1ꢁ2±Msps, ±±5 ADC  
71ꢁ±dB SINAD at Nyqꢀist, 1±0mW Dissipation  
±±mW Power Dissipation, 72dB SINAD  
1±mW, Serial/Parallel ±105  
LTC141±  
12-Bit, 1ꢁ2±Msps, Single ±5 ADC  
14-Bit, 200ksps, Single ±5 ADC  
Low Power 14-Bit, 800ksps ADC  
16-Bit, 100ksps, Single ±5 ADC  
LTC1418  
LTC1419  
Trꢀe 14-Bit Linearity, 81ꢁ±dB SINAD, 1±0mW Dissipation  
±105 Inpꢀts, ±±mW, Byte or Parallel I/O  
LTC160±  
DACs  
PART NUMBER  
LTC1±9±  
LTC1±96  
LTC1±97  
LTC16±0  
DESCRIPTION  
COMMENTS  
16-Bit Serial Mꢀltiplying I  
16-Bit Serial Mꢀltiplying I  
DAC in SO-8  
DAC  
±1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
OUT  
OUT  
±1LSB Max INL/DNL, Low Glitch, AD7±43/DAC8143 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, 4 Qꢀadrant Resistors  
Low Power, Low Gritch, 4-Qꢀadrant Mꢀltiplication  
16-Bit Parallel, Mꢀltiplying DAC  
16-Bit Serial 5 DAC  
OUT  
1604fa  
1604a LT/TP 1098 REV A 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvdꢁ, Milpitas, CA 9±03±-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 1998  
(408) 432-1900 FAX: (408) 434-0±07 wwwꢁlinea ꢁcom  

相关型号:

LTC1604IG#TR

LTC1604 - High Speed, 16-Bit, 333ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 36; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1605

16-Bit, 100ksps, Sampling ADC
Linear

LTC1605-1

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1C

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1CG

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1CG#PBF

LTC1605-1 and -2 - Single Supply 16-Bit, 100ksps, Sampling ADCs; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1605-1CG#TRPBF

LTC1605-1 and -2 - Single Supply 16-Bit, 100ksps, Sampling ADCs; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1605-1CN

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1CN#PBF

LTC1605-1 and -2 - Single Supply 16-Bit, 100ksps, Sampling ADCs; Package: PDIP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1605-1I

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1IG

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear

LTC1605-1IN

Single Supply 16-Bit, 100ksps, Sampling ADCs
Linear