LTC1530CS8-2.8 [Linear]

High Power Synchronous Switching Regulator Controller; 高功率同步开关稳压控制器
LTC1530CS8-2.8
型号: LTC1530CS8-2.8
厂家: Linear    Linear
描述:

High Power Synchronous Switching Regulator Controller
高功率同步开关稳压控制器

开关 光电二极管 控制器
文件: 总24页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1530  
High Power Synchronous  
Switching Regulator Controller  
U
FEATURES  
DESCRIPTIO  
The LTC®1530 is a high power synchronous switching  
regulator controller optimized for 5V to 1.3V-3.5V output  
applications.Itssynchronousswitchingarchitecturedrives  
two external N-channel MOSFET devices to provide high  
efficiency. The LTC1530 contains a precision trimmed  
reference and feedback system that provides worst-case  
output voltage regulation of ±2% over temperature, load  
current and line voltage shifts. Current limit circuitry  
senses the output current through the on-resistance of  
the topside N-channel MOSFET, providing an adjustable  
current limit without requiring an external low value sense  
resistor.  
High Power Buck Converter from 5V or 3.3V  
Main Power  
Adjustable Current Limit in S0-8 with  
Topside FET RDS(ON) Sensing  
No External Sense Resistor Required  
Hiccup Mode Current Limit Protection  
Adjustable, Fixed 1.9V, 2.5V, 2.8V and 3.3V Output  
All N-Channel MOSFET Synchronous Driver  
Excellent Output Regulation: ±2% over Line, Load  
and Temperature Variations  
High Efficiency: Over 95% Possible  
Fast Transient Response  
Fixed 300kHz Frequency Operation  
The LTC1530 includes a fixed frequency PWM oscillator  
that free runs at 300kHz, providing greater than 90%  
efficiency in converter designs from 1A to 20A of output  
current. Shutdown mode drops the LTC1530 supply cur-  
rent to 45µA.  
Internal Soft-Start Circuit  
Quiescent Current: 1mA, 45µA in Shutdown  
U
APPLICATIO S  
Power Supply for Pentium® II, AMD-K6®-2, SPARC,  
The LTC1530 is specified for commercial and industrial  
temperature ranges and is available in the S0-8 package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Pentium is a registered trademark of Intel Corp.  
AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.  
ALPHA and PA-RISC Microprocessors  
High Power 5V to 1.3V-3.5V Regulators  
U
TYPICAL APPLICATIO  
V
IN  
Efficiency vs Load Current  
5V  
100  
MBR0530T1 MBR0530T1  
90  
+
C
**  
IN  
0.1µF  
+
80  
70  
60  
50  
40  
30  
20  
10  
0
2.7k  
1200µF  
× 4  
10µF  
20Ω  
0.22µF  
L
O
PV  
I
Q1*  
Q2*  
G1  
CC  
MAX  
2µH  
V
3.3V  
14A  
OUT  
I
FB  
COMP  
††  
+
C
O
330µF  
× 7  
C1  
150pF  
R
C
10k  
LTC1530-3.3  
G2  
1530 F01a  
C
C
0.022µF  
V
OUT  
GND  
T
= 25°C  
A
COILTRONICS CTX02-13198  
OR PANASONIC ETQP6F2R5HA  
AVX TPSE337M006R0100  
* SILICONIX SUD50N03-10  
** SANYO 10MV1200GX  
COILTRONICS (561) 241-7876  
0
0.3  
2
4
6
8
10  
12  
14  
††  
LOAD CURRENT (A)  
1530 F01b  
Figure 1. Single 5V to 3.3V Supply  
1
LTC1530  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
Supply Voltage  
PVCC ........................................................................ 14V  
Input Voltage  
TOP VIEW  
LTC1530CS8  
PV  
1
2
3
4
8
7
6
5
G1  
G2  
CC  
I
FB (Note 2) ............................................... PVCC + 0.3V  
LTC1530CS8-1.9  
LTC1530CS8-2.5  
LTC1530CS8-2.8  
LTC1530CS8-3.3  
LTC1530IS8  
GND  
IMAX ........................................................ 0.3V to 14V  
IFB Input Current (Notes 2,3) ............................ 100mA  
Operating Ambient Temperature Range  
*V  
/
SENSE  
I
FB  
V
OUT  
I
COMP  
MAX  
S8 PACKAGE  
8-LEAD PLASTIC SO  
LTC1530C ............................................... 0°C to 70°C  
LTC1530I............................................ 40°C to 85°C  
Maximum Junction Temperature  
LTC1530C, LTC1530I ...................................... 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LTC1530IS8-1.9  
LTC1530IS8-2.5  
LTC1530IS8-2.8  
LTC1530IS8-3.3  
TJMAX = 125°C, θJA = 130°C/ W  
*VOUT FOR FIXED VOLTAGE VERSIONS  
S8 PART MARKING  
530I28  
530I33  
153028  
153033  
1530I  
530I19  
530I25  
1530  
153019  
153025  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at 0°C TA 70°C. PVCC = 12V unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Internal Feedback Voltage  
LTC1530CS8 (Note 4)  
1.223  
1.216  
1.235  
1.235  
1.247  
1.254  
V
V
SENSE  
OUT  
V
Output Voltage  
LTC1530CS8-1.9 (Note 4)  
LTC1530CS8-2.5 (Note 4)  
LTC1530CS8-2.8 (Note 4)  
LTC1530CS8-3.3 (Note 4)  
(Note 5)  
1.881  
1.871  
1.9  
1.9  
1.919  
1.929  
V
V
2.475  
2.462  
2.5  
2.5  
2.525  
2.538  
V
V
2.772  
2.758  
2.8  
2.8  
2.828  
2.842  
V
V
3.267  
3.250  
3.3  
3.3  
3.333  
3.350  
V
V
g
Error Amplifier Transconductance  
1.6  
2
2.6  
millimho  
mERR  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are at –40°C TA 85°C.  
PVCC = 12V unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
TYP  
MAX  
13.2  
3.75  
UNITS  
PV  
CC  
Supply Voltage  
V
V
V
V
Undervoltage Lockout Voltage  
Internal Feedback Voltage  
(Note 7)  
3.5  
UVLO  
SENSE  
LTC1530IS8 (Note 4)  
1.223  
1.210  
1.235  
1.235  
1.247  
1.260  
V
V
2
LTC1530  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at –40°C TA 85°C. PVCC = 12V unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage  
LTC1530IS8-1.9 (Note 4)  
1.881  
1.862  
1.9  
1.9  
1.919  
1.938  
V
V
OUT  
LTC1530IS8-2.5 (Note 4)  
LTC1530IS8-2.8 (Note 4)  
LTC1530IS8-3.3 (Note 4)  
2.475  
2.450  
2.5  
2.5  
2.525  
2.550  
V
V
2.772  
2.744  
2.8  
2.8  
2.828  
2.856  
V
V
3.267  
3.234  
3.3  
3.3  
3.333  
3.366  
V
V
V  
Output Load Regulation  
Output Line Regulation  
I
= 0 to 14A  
OUT  
–5  
±1  
15  
mV  
mV  
OUT  
V
= 4.75V to 5.25V, I  
= 0  
OUT  
IN  
I
f
Operating Supply Current  
Quiescent Current  
Figure 3, V = 0V (Note 8)  
mA  
PVCC  
FB  
Figure 3, COMP = 0.5V, V = 5V  
1.0  
45  
1.4  
80  
mA  
FB  
Shutdown Supply Current  
Internal Oscillator Frequency  
Oscillator Valley Voltage  
Oscillator Peak Voltage  
Figure 3, COMP = 0 (Note 9)  
Figure 4  
µA  
250  
300  
2.5  
3.5  
54  
350  
kHz  
V
OSC  
V
V
at 0% Duty Cycle  
at Max Duty Cycle  
COMP  
COMP  
V
G
Error Amplifier Open-Loop DC Gain  
Error Amplifier Transconductance  
(Note 5)  
(Note 5)  
40  
dB  
ERR  
mERR  
MAX  
g
1.6  
2
2.8  
millimho  
I
I
Sink Current  
V
V
= 5V  
= 5V  
170  
120  
200  
200  
230  
300  
µA  
µA  
MAX  
IMAX  
IMAX  
I
Sink Current Tempco  
V
= 5V  
3300  
180  
0.4  
ppm/°C  
mV  
MAX  
IMAX  
V
Shutdown Threshold Voltage  
Internal Soft-Start Slew Rate  
Figure 4, Measured at COMP Pin (Note 9)  
100  
SHDN  
SR  
SS  
Figure 4, COMP Pulls High, V = 0V  
V/ms  
FB  
(Notes 9, 10)  
t
Internal Soft-Start Wake-Up Time  
Driver Rise and Fall Time  
Driver Nonoverlap Time  
Figure 4, COMP Pulls High to G1(Note 10)  
3.5  
90  
ms  
ns  
ns  
%
SS  
t , t  
Figure 4  
Figure 4  
Figure 4  
140  
r
f
t
30  
81  
100  
86  
NOL  
DC  
Maximum G1 Duty Cycle  
MAX  
Note 6: The total voltage from the PV pin to the GND pin must be 8V  
for the current limit protection circuit to be active.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
CC  
Note 7: G1 and G2 begin to switch once PV is the undervoltage  
lockout threshold voltage.  
Note 2: If I is taken below GND, it is clamped by an internal diode. This  
pin handles input currents 100mA below GND without latch-up. In the  
CC  
FB  
positive direction, it is not clamped to PV  
.
Note 8: Supply current in normal operation is dominated by the current  
needed to charge and discharge the external FET gates. This current varies  
with the LTC1530 operating frequency, supply voltage and the external  
FETs used.  
CC  
Note 3: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
Note 9: The LTC1530 enters shutdown if COMP is pulled low.  
Note 4: The LTC1530 is tested in an op amp feedback loop which  
regulates V  
or V  
based on V  
= 2V for the error amplifier.  
Note 10: Slew rate is measured at the COMP pin on the transition from  
SENSE  
OUT  
COMP  
shutdown to active mode.  
Note 5: The Open-loop DC gain and transconductance from the V pin to  
FB  
the COMP pin are G  
and g  
respectively. For fixed output voltage  
ERR  
mERR  
versions, the actual open-loop DC gain and transconductance are G  
ERR  
and g  
multiplied by the ratio 1.235/V  
.
mERR  
OUT  
3
LTC1530  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Efficiency vs Load Current  
Load Regulation  
LTC1530 VSENSE vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
T
= 25°C  
A
REFER TO FIGURE 2  
T
= 25°C  
A
REFER TO FIGURE 10  
0
1
2
3
4
5
6
0
0.3  
2
4
6
8
10  
12  
14  
–55 –35 –15  
5
25 45 65 85 105 125  
LOAD CURRENT (A)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
1530 G02  
1530 G01  
1530 G03  
LTC1530-2.5 VOUT vs Temperature  
LTC1530-2.8 VOUT vs Temperature  
LTC1530-1.9 VOUT vs Temperature  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
1.930  
1.925  
1.920  
1.915  
1.910  
1.905  
1.900  
1.895  
1.890  
1.885  
1.880  
1.875  
1.870  
2.85  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
2.74  
–55 –35 –15  
5
25 45 65 85 105 125  
85  
105 125  
–55 –35 –15  
5
25 45 65  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1530 G04  
1530 G05  
1530 G06  
Undervoltage Lockout Threshold  
Voltage vs Temperature  
Error Amplifier Transconductance  
vs Temperature  
LTC1530-3.3 VOUT vs Temperature  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
–55 –35 –15  
5
25 45 65 85 105 125  
85 105  
125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
–55 –35 –15  
5
25 45 65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1530 G09  
1530 G06  
1530 G08  
4
LTC1530  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Amplifier Open-Loop Gain  
vs Temperature  
Oscillator Frequency  
vs Temperature  
Maximum G1 Duty Cycle  
vs Ambient Temperature  
60  
55  
50  
45  
40  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
92  
90  
88  
86  
84  
82  
80  
78  
PV = 12V  
CC  
OSC  
f
= 300kHz  
G1, G2  
CAPACITANCE  
= 1000pF  
2200pF  
3300pF  
5500pF  
7700pF  
THERMAL SHUTDOWN OCCURS  
BEYOND THESE POINTS  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1530 G10  
1530 G11  
1530 G12  
PVCC Supply Current  
vs Gate Capacitance  
PVCC Shutdown Supply Current  
vs Temperature  
IMAX Sink Current vs Temperature  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
70  
60  
50  
40  
30  
20  
10  
0
PV = 12V  
A
GATE CAPACITANCE = C = C  
CC  
= 25°C  
PV = 12V  
CC  
PV = 12V  
CC  
T
G1, G2 ARE NOT SWITCHING  
G1  
G2  
1
2
3
4
5
7
8
85  
105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
0
6
–55 –35 –15  
5
25 45 65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GATE CAPACITANCE (nF)  
1530 G13  
1530 G14  
1530 G15  
Shutdown Threshold Voltage  
vs Temperature  
Output Overcurrent Protection  
Transient Response  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PV = 12V  
CC  
MEASURED AT  
COMP PIN  
50mV/DIV  
2A/DIV  
PV = 12V  
CC  
T
= 25°C  
A
REFER TO  
FIGURE 2  
SHORT-CIRCUIT  
CURRENT  
50µs/DIV  
1530 G18  
0
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
1530 G16  
1530 G17  
5
LTC1530  
U
U
U
PI FU CTIO S  
COMP to compensate the feedback loop for optimum  
transient response. To shut down the LTC1530, pull this  
pin below 0.1V with an open-collector or open-drain  
transistor. Supply current is typically reduced to 45µA in  
shutdown. An internal 4µA pullup ensures start-up.  
PVCC (Pin 1): Power Supply for G1, G2 and Logic. PVCC  
must connect to a potential of at least VIN + VGS(ON)Q1. If  
VIN = 5V, generate PVCC using a simple charge pump  
connected to the switching node between Q1 and Q2 (see  
Figure 1) or connect PVCC to a 12V supply. Bypass PVCC  
properly or erratic operation will result. A low ESR 10µF  
capacitor or larger bypass capacitor along with a 0.1µF  
surface mount ceramic capacitor in parallel is recom-  
mended from PVCC directly to GND to minimize switching  
ripple. Switching ripple should be 100mV at the PVCC  
pin.  
IMAX (Pin 5): Current Limit Threshold. Current limit is set  
by the voltage drop across an external resistor connected  
between the drain of Q1 and IMAX. This voltage is com-  
pared with the voltage across the RDS(ON) of the high side  
MOSFET. The LTC1530 contains a 200µA internal pull-  
down at IMAX to set current limit. This 200µA current  
source has a positive temperature coefficient to provide  
first order correction for the temperature coefficient of the  
GND (Pin 2): Power and Logic Ground. GND is connected  
to the internal gate drive circuitry and the feedback cir-  
cuitry. To obtain good output voltage regulation, use  
proper ground techniques between the LTC1530 GND and  
bottom-side FET source and the negative terminal of the  
outputcapacitor.SeetheApplicationsInformationsection  
for more details on PCB layout techniques.  
external N-channel MOSFET’s RDS(ON)  
.
IFB (Pin 6): Current Limit Sense Pin. Connect IFB to the  
switching node between Q1’s source and Q2’s drain. If IFB  
drops below IMAX with G1 on, the LTC1530 enters current  
limit. Underthiscondition, theinternalsoft-startcapacitor  
is discharged and COMP is pulled low slowly. Duty cycle  
is reduced and output power is limited. The current limit  
circuitry is only activated if PVCC 8V. This action eases  
start-up considerations as PVCC is ramping up because  
the MOSFET’s RDS(ON) can be significantly higher than  
what is measured under normal operating conditions. The  
current limit circuit is disabled by floating IMAX and short-  
ing IFB to PVCC.  
VSENSE/VOUT (Pin3):FeedbackVoltagePin.Fortheadjust-  
able LTC1530, use an external resistor divider to set the  
required output voltage. Connect the tap point of the  
resistor divider network to VSENSE and the top of the  
divider network to the output voltage. For fixed output  
voltage versions of the LTC1530, the resistor divider is  
internal and the top of the resistor divider network is  
brought out to VOUT. In general, the resistor divider  
network for each fixed output voltage version sinks ap-  
proximately 30µA. Connect VOUT to the output voltage  
eitherattheoutputcapacitorsorattheactualpointofload.  
VSENSE/VOUT is sensitive to switching noise injected into  
the pin. Isolate high current switching traces from this pin  
and its PCB trace.  
G2(Pin7):GateDrivefortheLowSideN-ChannelMOSFET,  
Q2. This output swings from PVCC to GND. It is always low  
if G1 is high or if the output is disabled. To prevent  
undershoot during a soft-start cycle, G2 is held low until  
G1 first transitions high.  
G1(Pin8):GateDrivefortheTopsideN-ChannelMOSFET,  
Q1. This output swings from PVCC to GND. It is always low  
if G2 is high or if the output is disabled.  
COMP (Pin 4): External Compensation. The COMP pin is  
connectedtotheerroramplifieroutputandtheinputofthe  
PWM comparator. An RC + C network is typically used at  
6
LTC1530  
W
BLOCK DIAGRA  
DISDR  
LOGIC AND  
THERMAL SHUTDOWN  
1
PV  
CC  
INTERNAL  
OSCILLATOR  
POWER DOWN  
G1  
G2  
8
7
I
COMP  
+
PWM  
4
COMP  
I
SS  
M
SS  
FIXED V  
R1  
R2  
OUT  
C
SS  
1.9V  
2.5V  
2.8V  
3.3V  
23.4k  
44.4k  
54.9k  
68.4k  
43.2k  
43.2k  
43.2k  
40.8k  
g
m
= 2millimho  
ERR  
MIN  
MAX  
+
+
+
FB  
3
V
SENSE  
V
V
– 3%  
V + 3%  
REF  
REF  
REF  
R1  
FB  
3
V
OUT  
I
I
6
R2  
FB  
FOR FIXED  
VOLTAGE  
VERSIONS  
CC  
+
5
MAX  
I
MAX  
V
REF  
– 3%  
+ 3%  
V
REF  
/2  
+
HCL  
MONO  
MHCL  
V
V
REF  
V
LVC  
REF  
REF  
V
/2  
REF  
1530 BD  
TEST CIRCUITS  
V
IN  
PV  
CC  
5V  
12V  
+
+
C
***  
IN  
PV  
12V  
10µF  
CC  
1200µF  
× 2  
+
+
750Ω  
0.1µF  
10µF  
0.1µF  
PV  
I
CC  
FB  
NC  
NC  
NC  
V
PV  
G1  
CC  
Q1  
L *  
O
I
G1  
MAX  
Si4410DY  
2.4µH  
COMP  
COMP  
V
2.5V  
6A  
I
100Ω  
OUT  
MAX  
G2  
I
COMP  
LTC1530-2.5  
LTC1530  
FB  
C1  
100pF  
C **  
O
330µF  
× 8  
Q2  
Si4410DY  
R
C
G2  
8.2k  
V
/V  
FB  
SENSE OUT  
1530 F02  
V
OUT  
C
C
0.01µF  
GND  
GND  
*SUMIDA CDRH127-2R4  
**AVX TPSE337M006R0100  
***SANYO 10MV1200GX  
1530 F03  
Figure 3  
Figure 2  
7
LTC1530  
TEST CIRCUITS  
PV  
CC  
12V  
t
r
t
f
+
90%  
50%  
10%  
90%  
50%  
10%  
0.1µF  
10µF  
PV  
CC  
G1  
G2  
I
G1 RISE/FALL  
FB  
COMP  
G1  
3300pF  
3300pF  
t
SS  
t
t
NOL  
NOL  
LTC1530  
50%  
50%  
COMP  
COMP  
G2 RISE/FALL  
V
GND  
OUT  
1530 F04b  
1530 F04a  
Figure 4  
W U U  
U
APPLICATIO S I FOR ATIO  
sawtooth waveform to generate the PWM signal. The  
PWMsignaldrivestheexternalMOSFETsattheG1andG2  
pins. TheresultingchoppedwaveformisfilteredbyLO and  
COUT which closes the loop. Loop frequency compensa-  
tion is typically accomplished with an external RC + C  
network at the COMP pin, which is the output node of the  
transconductance error amplifier.  
OVERVIEW  
The LTC1530 is a voltage feedback, synchronous switch-  
ing regulator controller (see Block Diagram) designed for  
use in high power, low voltage step-down (buck) convert-  
ers. It includes an on-chip soft-start capacitor, a PWM  
generator,aprecisionreferencetrimmedto±1%,twohigh  
power MOSFET gate drivers and all the necessary feed-  
back and control circuitry to form a complete switching  
regulator circuit running at 300kHz.  
MIN, MAX Feedback Loops  
Two additional comparators in the feedback loop provide  
high speed fault correction in situations where the error  
amplifier cannot respond quickly enough. MIN compares  
the feedback signal to a voltage 3% below the internal  
reference. If the signal is below the comparator threshold,  
the MIN comparator overrides the error amplifier and  
forces the loop to maximum duty cycle, typically 86%.  
Similarly, the MAX comparator forces the output to 0%  
duty cycle if the feedback signal is greater than 3% above  
the internal reference. To prevent these two comparators  
from triggering due to noise, the MIN and MAX compara-  
tors’ response times are deliberately delayed by two to  
three microseconds. These comparators help prevent  
extremeoutputperturbationswithfastoutputloadcurrent  
transients, while allowing the main feedback loop to be  
optimally compensated for stability.  
The LTC1530 includes a current limit sensing circuit that  
uses the topside external N-channel power MOSFET as a  
current sensing element, eliminating the need for an  
external sense resistor. If the current comparator, CC,  
detectsanovercurrentcondition,thedutycycleisreduced  
by discharging the internal soft-start capacitor through a  
voltage-controlled current source. Under severe over-  
loads or output short-circuit conditions, the soft-start  
capacitor is pulled to ground and a start-up cycle is  
initiated. If the short circuit or overload persists, the chip  
repeats soft-start cycles and prevents damage to external  
components.  
THEORY OF OPERATION  
Primary Feedback Loop  
Thermal Shutdown  
The LTC1530 compares the output voltage with the inter-  
nal reference at the error amplifier inputs. The error  
amplifier outputs an error signal to the PWM comparator.  
This signal is compared to the fixed frequency oscillator  
TheLTC1530hasathermalprotectioncircuitthatdisables  
both internal gate drivers if activated. G1 and G2 are held  
low and the LTC1530 supply current drops to about 1mA.  
8
LTC1530  
W U U  
APPLICATIO S I FOR ATIO  
U
Typically, thermal shutdown is activated if the LTC1530’s  
junction temperature exceeds 150°C. G1 and G2 resume  
switching when the junction temperature drops below  
100°C.  
By using the RDS(ON) of Q1 to measure output current, the  
current limit circuit eliminates the sense resistor that  
would otherwise be required. This minimizes the number  
ofcomponentsinthehighcurrentpowerpath. Thecurrent  
limit circuitry is not designed to be highly accurate. It is  
primarily meant to prevent damage to the power supply  
circuitry during fault conditions. The exact current level  
where current limiting takes effect will vary from unit to  
unit as the RDS(ON) of Q1 varies.  
Soft-Start and Current Limit  
UnlikeotherPWMparts, theLTC1530includesanon-chip  
soft-start capacitor that is used during start-up and cur-  
rent limit operation. On power-up, an internal 4µA pull-up  
at COMP brings the LTC1530 out of shutdown mode. An  
internal current source then charges the internal CSS  
capacitor. The COMP pin is clamped to one VGS above the  
voltage on CSS during start-up. This prevents the error  
amplifier from forcing the loop to maximum duty cycle.  
The LTC1530 operates at low duty cycle as the COMP pin  
voltage increases above about 2.4V. The slew rate of the  
soft-start capacitor is typically 0.4V/ms. As the voltage on  
CSS continuestoincrease,MSS eventuallyturnsoffandthe  
error amplifier regulates the output. The MIN comparator  
is disabled if soft-start is active to prevent an override of  
the soft-start function.  
Figure 5a illustrates the basic connections for the current  
limit circuitry. For a given current limit level, the external  
resistor from IMAX to VIN is determined by:  
I
(
R
)
LMAX DS(ON)Q1  
R
=
IMAX  
I
IMAX  
where,  
=I  
I
RIPPLE  
I
+
LMAX LOAD  
2
I
= Maximum load current  
LOAD  
I
= Inductor ripple current  
RIPPLE  
The LTC1530 includes another feedback loop to control  
operation in current limit. Before each falling edge of G1,  
the current comparator, CC, samples and holds the volt-  
age drop across external MOSFET Q1 with the LTC1530’s  
IFB pin. CC compares the voltage at IFB to the voltage at the  
IMAX pin. As peak current rises, the voltage across the  
RDS(ON) of Q1 increases. If the voltage at IFB drops below  
IMAX, indicating that Q1’s drain current has exceeded the  
maximum desired level, CC pulls current out of CSS. Duty  
cycle decreases and the output current is controlled. The  
CCcomparatorpullscurrentoutofCSS inproportiontothe  
voltage difference between IFB and IMAX. Under minor  
overload conditions, the voltage at CSS falls gradually,  
creating a time delay before current limit activates. Very  
short, mild overloads may not affect the output voltage at  
all. Significant overload conditions allow the voltage on  
CSS to reach a steady state and the output remains at a  
reduced voltage until the overload is removed. Serious  
overloads generate a large overdrive and allow CC to pull  
the CSS voltage down quickly, thus preventing damage to  
the external components.  
V V  
V
(
)(  
)
IN  
OUT OUT  
=
f
L
V
IN  
(
)( )(  
OSC  
)
O
f
= LTC1530 oscillator frequency = 300kHz  
OSC  
L = Inductor value  
O
R
= On-resistance of Q1 at I  
= 200µA sink current  
DS(ON)Q1  
LMAX  
I
IMAX  
V
IN  
+
LTC1530  
C
C
IN  
R
IMAX  
I
MAX  
+
Q1  
Q2  
G1  
20Ω  
200µA  
CC  
I
FB  
L
O
V
OUT  
+
OUT  
G2  
1530 F05  
Figure 5a. Current Limit Setting (Use Kelvin-Sense  
Connections Directly at the Drain and Source of Q1)  
9
LTC1530  
W U U  
U
APPLICATIO S I FOR ATIO  
Figure 5b is derived based on the condition that  
5500  
R
500Ω  
IMAX  
I
= I  
+ I  
/2  
= 0.05Ω  
LMAX LOAD RIPPLE  
I
LMAX = ILOAD + IRIPPLE/2. Therefore, it only provides the  
4500  
3500  
2500  
1500  
500  
minimum RIMAX value. It must be understood that during  
the initial power-up phase (VOUT = 0V), the initial start-up  
0.04Ω  
0.03Ω  
Q1 R  
DS(ON)  
ILMAX can be much higher than the steady state condition  
ILMAX. Therefore, RIMAX mustbeselectedwiththestart-up  
ILMAX in mind. In general, high output capacitance com-  
bined with a low value inductor increases the start-up  
0.02Ω  
0.01Ω  
ILMAX. Figures 6a and 6b plot the start-up ILMAX vs output  
capacitance and inductance for unloaded and loaded con-  
ditions with the current limit circuit disabled. Figures 6a  
and 6b are provided as examples. Actual ILMAX under  
start-up conditions must be measured for any application  
circuit so that RIMAX can be properly chosen.  
0
2
4
6
8
I
10 12 14 16 18 20  
(A)  
LMAX  
1530 F05b  
Figure 5b. Minimum Required RIMAX vs ILMAX  
Inorderforthecurrentlimitcircuittooperateproperlyand  
toobtainareasonablyaccuratecurrentlimitthreshold,the  
IMAX and IFB pins must be Kelvin sensed at Q1’s drain and  
source pins. A 0.1µF decoupling capacitor can also be  
connected across RIMAX to filter switching noise. In addi-  
tion, LTC recommends that the voltage drop across the  
RIMAX resistor be set to 100mV. Otherwise, noise spikes  
or ringing at Q1’s source can cause the actual current limit  
to be greater than the desired current limit set point.  
25  
T
= 25°C  
A
V
I
= 5V  
IN  
= 0A  
20  
15  
10  
5
LOAD  
L = 1.2µH  
L = 4.7µH  
L = 2.4µH  
0
MOSFET Gate Drive  
0
4
6
8
10  
12  
2
OUTPUT CAPACITANCE (mF)  
The PVCC supply must be greater than the input supply  
voltage, VIN, by at least one power MOSFET VGS(ON) for  
efficient operation. This higher voltage can be supplied  
with a separate supply, or it can be generated using a  
simple charge pump as shown in Figure 7. The 86%  
maximum duty cycle ensures sufficient off-time to refresh  
the charge pump during each cycle.  
1530 F06a  
Figure 6a. Start-Up ILMAX vs Output Capacitance  
30  
T
= 25°C  
A
V
= 5V  
IN  
25  
20  
15  
10  
5
I
= 10A  
LOAD  
L = 2.4µH  
AsPVCC ispoweredupfrom0V,theLTC1530undervoltage  
lockout circuit prevents G1 and G2 from pulling high until  
PVCC reaches about 3.5V. To prevent Q1’s high RDS(ON)  
from triggering the current limit comparator while PVCC is  
slewing, the current limit circuit is disabled until PVCC is  
8V. In addition, on start-up or recovery from thermal  
shutdown, the driver logic is designed to hold G2 low until  
G1 first goes high.  
L = 1.2µH  
L = 4.7µH  
0
0
4
6
8
10  
12  
2
OUTPUT CAPACITANCE (mF)  
1530 F06b  
Figure 6b. Start-Up ILMAX vs Output Capacitance  
10  
LTC1530  
W U U  
APPLICATIO S I FOR ATIO  
U
OPTIONAL FOR  
> 6.5V  
V
IN  
MBR0530T1 MBR0530T1  
MOSFET whose RDS(ON) is rated at VGS = 4.5V does not  
necessarily have a logic level MOSFET GATE threshold  
voltage. LogiclevelFETsaretherecommendedchoicefor  
5V-only systems. Logic level FETs can be fully enhanced  
with a doubler charge pump and will operate at maximum  
efficiency. Note that doubler charge pump designs run-  
ning from supplies higher than 6.5V should include a  
Zener diode clamp at PVCC to prevent transients from  
exceeding the absolute maximum rating of the pin.  
V
IN  
+
+
13V  
1N5243B  
C
10µF  
IN  
PV  
0.22µF  
CC  
G1  
G2  
Q1  
L
O
V
OUT  
+
C
O
Q2  
LTC1530  
After the MOSFET threshold voltage is selected, choose  
theRDS(ON) basedontheinputvoltage, theoutputvoltage,  
allowable power dissipation and maximum output cur-  
rent. In a typical LTC1530 buck converter circuit, operat-  
ing in continuous mode, the average inductor current is  
equaltotheoutputloadcurrent.Thiscurrentflowsthrough  
either Q1 or Q2 with the power dissipation split up accord-  
ing to the duty cycle:  
1530 F07  
Figure 7. Doubling Charge Pump  
Power MOSFETs  
Two N-channel power MOSFETs are required for synchro-  
nous LTC1530 circuits. They should be selected based  
primarily on threshold voltage and on-resistance consid-  
erations. Thermal dissipation is often a secondary con-  
cern in high efficiency designs. The required MOSFET  
threshold should be determined based on the available  
power supply voltages and/or the complexity of the gate  
drive charge pump scheme. In 5V input designs where a  
12V supply is used to power PVCC, standard MOSFETs  
with RDS(ON) specified at VGS = 5V or 6V can be used with  
good results. The current drawn from the 12V supply  
varies with the MOSFETs used and the LTC1530’s operat-  
ing frequency, but is generally less than 50mA.  
V
V
OUT  
DC(Q1) =  
IN  
V V  
(
)
IN  
OUT  
V
V
OUT  
DC(Q2) = 1−  
=
V
IN  
IN  
The RDS(ON) required for a given conduction loss can now  
be calculated by rearranging the relation P = I2R.  
PMAX(Q1)  
RDS(ON)Q1  
=
2
DC(Q ) I  
1
LTC1530 applications that use a 5V VIN voltage and a  
doubling charge pump to generate PVCC do not provide  
enough gate drive voltage to fully enhance standard  
power MOSFETs. Under this condition, the effective  
MOSFET RDS(ON) may be quite high, raising the dissipa-  
tion in the FETs and reducing efficiency. In addition,  
power supply start-up problems can occur with standard  
power MOSFETs. These start-up problems can occur for  
two reasons. First, if the MOSFET is not fully enhanced,  
the higher effective RDS(ON) causes the LTC1530 to acti-  
vate current limit at a much lower level than the desired  
trip point. Second, standard MOSFETs have higher GATE  
threshold voltages than logic level MOSFETs, thereby  
increasing the PVCC voltage required to turn them on. A  
MAX  
[
]
V
PMAX(Q1)  
(
IN  
)
[
]
=
=
2
IMAX  
VOUT  
(
)
PMAX(Q2)  
RDS(ON)Q2  
2
DC(Q ) I  
2
MAX  
[
]
V
PMAX(Q2)  
)
[
(
IN  
]
=
2
IMAX  
V VOUT  
(
IN  
)
11  
LTC1530  
W U U  
U
APPLICATIO S I FOR ATIO  
IRF7413(bothinSO-8)orSiliconixSUD50N03orMotorola  
MTD20N03HDL (both in DPAK) are small footprint sur-  
facemountdeviceswithRDS(ON) valuesbelow0.03at5V  
of VGS that work well in LTC1530 circuits. With higher  
output voltages, the RDS(ON) of Q1 may need to be signifi-  
cantly lower than that for Q2. These conditions can often  
be met by paralleling two MOSFETs for Q1 and using a  
single device for Q2. Using a higher PMAX value in the  
RDS(ON) calculations generally decreases the MOSFET  
cost and the circuit efficiency and increases the MOSFET  
heat sink requirements.  
PMAX should be calculated based primarily on required  
efficiency or allowable thermal dissipation. A high effi-  
ciency buck converter designed for the PentiumII with 5V  
input and a 2.8V, 11.2A output might allow no more than  
4%efficiencylossatfullloadforeachMOSFET. Assuming  
roughly 90% efficiency at this current level, this gives a  
P
MAX value of:  
(2.8)(11.2A/0.9)(0.04) = 1.39W per FET  
and a required RDS(ON) of:  
5V 1.39W  
(
)
In most LTC1530 applications, RDS(ON) is used as the  
current sensing element. MOSFET RDS(ON) has a positive  
temperaturecoefficient. Therefore, theLTC1530IMAX sink  
current is designed with a positive 3300ppm/°C tempera-  
ture coefficient. The positive tempco of IMAX provides first  
order correction for current limit vs temperature. There-  
fore, current limit does not have to be set to an increased  
level at room temperature to guarantee a desired output  
current at elevated temperatures.  
R
=
=
= 0.020Ω  
DS(ON)Q1  
2
2.8V 11.2A  
5V 1.39W  
(
)
R
= 0.025Ω  
DS(ON)Q2  
2
5V 2.8V 11.2A  
(
)
Note that while the required RDS(ON) values suggest large  
MOSFETs, the power dissipation numbers are only 1.39W  
per device or lesslarge TO-220 packages and heat  
sinks are not necessarily required in high efficiency appli-  
cations. Siliconix Si4410DY or International Rectifier  
Table 1 highlights a variety of power MOSFETs that are  
suitable for use in LTC1530 applications.  
Table 1. Recommended MOSFETs for LTC1530 Applications  
RDS(ON)  
TYPICAL INPUT  
CAPACITANCE  
Ciss (pF)  
AT 25  
°C  
RATED CURRENT  
(A)  
θ
T
JMAX  
(°C)  
JC  
MANUFACTURER  
PART NO.  
PACKAGE  
(
)  
(
°C/W)  
Siliconix  
SUD50N03-10  
TO-252  
0.019  
0.020  
0.035  
15A at 25°C  
10A at 100°C  
3200  
2700  
880  
1.8  
175  
150  
150  
Siliconix  
Si4410DY  
SO-8  
DPAK  
SO-8  
10A at 25°C  
8A at 75°C  
ON Semiconductor  
MTD20N03HDL  
20A at 25°C  
16A at 100°C  
1.67  
Fairchild  
FDS6680  
0.01  
11.5A at 25°C  
2070  
4025  
25  
150  
150  
2
ON Semiconductor  
MTB75N03HDL*  
D PAK  
0.0075  
75A at 25°C  
1.0  
59A at 100°C  
2
IR  
IRL3103S  
IRLZ44  
D PAK  
0.014  
0.028  
0.037  
56A at 25°C  
40A at 100°C  
1600  
3300  
1750  
1.8  
1.0  
175  
175  
150  
IR  
TO-220  
50A at 25°C  
36A at 100°C  
Fuji  
2SK1388  
TO-220  
35A at 25°C  
2.08  
Note: Please refer to the manufacturer’s data sheet for testing conditions and detailed information.  
*Users must consider the power dissipation and thermal effects in the LTC1530 if driving external MOSFETs with high values of input capacitance.  
Refer to the PV Supply Current vs GATE Capacitance in the Typical Performance Characteristics section.  
CC  
12  
LTC1530  
W U U  
APPLICATIO S I FOR ATIO  
U
Inductor Selection  
Solving this equation for a typical 5V to 2.8V application  
with a 2µH inductor, ripple current is:  
TheinductorisoftenthelargestcomponentinanLTC1530  
designandmustbechosencarefully. Choosetheinductor  
value and type based on output slew rate requirements  
and expected peak current. The required output slew rate  
primarily controls the inductor value. The maximum rate  
ofriseofinductorcurrentissetbytheinductor’svalue, the  
input-to-output voltage differential and the LTC1530’s  
maximum duty cycle. In a typical 5V input, 2.8V output  
application, the maximum rise time will be:  
2.2V 0.56  
(
)(  
)
= 2A  
P-P  
300kHz 2µH  
(
)(  
)
Peak inductor current at 11.2A load:  
2A  
2
11.2A +  
= 12.2A  
The ripple current should generally fall between 10% and  
40% of the output current. The inductor must be able to  
withstand this peak current without saturating, and the  
copper resistance in the winding should be kept as low as  
possible to minimize resistive power loss. Note that in  
circuits not employing the current limit function, the  
current in the inductor may rise above this maximum  
under short circuit or fault conditions; the inductor should  
be sized accordingly to withstand this additional current.  
Inductorswithgradualsaturationcharacteristics(example:  
powdered iron) are often the best choice.  
V V  
1.85  
L
A
µs  
IN  
OUT  
DC  
=
MAX  
L
where L is the inductor value in µH. With proper frequency  
compensation,thecombinationoftheinductorandoutput  
capacitor values determine the transient recovery time. In  
general, a smaller value inductor improves transient  
response at the expense of ripple and inductor core  
saturation rating. A 2µH inductor has a 0.9A/µs rise time  
in this application, resulting in a 5.5µs delay in responding  
to a 5A load current step. During this 5.5µs, the difference  
between the inductor current and the output current is  
made up by the output capacitor. This action causes a  
temporary voltage droop at the output. To minimize this  
effect, the inductor value should usually be in the 1µH to  
5µH range for most 5V input LTC1530 circuits. Different  
combinations of input and output voltages and expected  
loads may require different values.  
Input and Output Capacitors  
A typical LTC1530 design places significant demands on  
both the input and the output capacitors. During normal  
steady load operation, a buck converter like the LTC1530  
drawssquarewavesofcurrentfromtheinputsupplyatthe  
switchingfrequency. Thepeakcurrentvalueisequaltothe  
output load current plus 1/2 the peak-to-peak ripple cur-  
rent. Most of this current is supplied by the input bypass  
capacitor. The resulting RMS current flow in the input  
capacitor heats it and causes premature capacitor failure  
in extreme cases. Maximum RMS current occurs with  
50% PWM duty cycle, giving an RMS current value equal  
to IOUT/2. A low ESR input capacitor with an adequate  
ripple current rating must be used to ensure reliable  
operation. Note that capacitor manufacturers’ ripple cur-  
rentratingsareoftenbasedononly2000hours(3months)  
lifetime at rated temperature. Further derating of the input  
capacitor ripple current beyond the manufacturer’s speci-  
fication is recommended to extend the useful life of the  
circuit. Loweroperatingtemperaturehasthelargesteffect  
on capacitor longevity.  
Once the required inductor value is selected, choose the  
inductor core type based on peak current and efficiency  
requirements. Peak current in the inductor is equal to the  
maximum output load current plus half of the peak-to-  
peak inductor ripple current. Inductor ripple current is set  
by the inductor’s value, the input voltage, the output  
voltage and the operating frequency. If the efficiency is  
high, ripple current is approximately equal to:  
V V  
V
(
)(  
)
IN  
OUT OUT  
I
=
RIPPLE  
f
(
L
V
IN  
)( )(  
)
OSC  
O
where  
fOSC = LTC1530 oscillator frequency  
LO = Inductor value  
13  
LTC1530  
W U U  
U
APPLICATIO S I FOR ATIO  
The output capacitor in a buck converter under steady  
state conditions sees much less ripple current than the  
input capacitor. Peak-to-peak current is equal to inductor  
ripple current, usually 10% to 40% of the total load  
current. Output capacitor duty places a premium not on  
power dissipation but on ESR. During an output load  
transient, the output capacitor must supply all of the  
additional load current demanded by the load until the  
LTC1530 adjusts the inductor current to the new value.  
ESR in the output capacitor results in a step in the output  
voltage equal to the ESR value multiplied by the change in  
load current. An 11A load step with a 0.05ESR output  
capacitor results in a 550mV output voltage shift; this is  
19.6% of the output voltage for a 2.8V supply! Because of  
the strong relationship between output capacitor ESR and  
output load transient response, choose the output capaci-  
tor for ESR, not for capacitance value. A capacitor with  
suitable ESR will usually have a larger capacitance value  
than is needed to control steady-state output ripple.  
output capacitor ESR to 0.014. For low cost applica-  
tions, the Sanyo MV-GX capacitor series can be used with  
acceptable performance.  
Feedback Loop Compensation  
TheLTC1530voltagefeedbackloopiscompensatedatthe  
COMP pin, which is the output node of the gm error  
amplifier. The feedback loop is generally compensated  
with an RC + C network from COMP to GND as shown in  
Figure 8a.  
Loop stability is affected by the values of the inductor, the  
output capacitor, the output capacitor ESR, the error  
amplifier transconductance and the error amplifier com-  
pensation network. The inductor and the output capacitor  
create a double pole at the frequency:  
1
f =  
LC  
C
2π L  
(
)
OUT  
O
Electrolytic capacitors rated for use in switching power  
supplies with specified ripple current ratings and ESR can  
be used effectively in LTC1530 applications. OS-CON  
electrolytic capacitors from Sanyo and other manufactur-  
ers give excellent performance and have a very high  
performance/size ratio for electrolytic capacitors. Surface  
mount applications can use either electrolytic or dry  
tantalum capacitors. Tantalum capacitors must be surge  
tested and specified for use in switching power supplies.  
Low cost, generic tantalums are known to have very short  
lives followed by explosive deaths in switching power  
supply applications. AVX TPS series surface mount  
devices are popular surge tested tantalum capacitors that  
work well in LTC1530 applications.  
The ESR of the output capacitor and the output capacitor  
value form a zero at the frequency:  
1
f
=
ESR  
2π ESR C  
( )(  
)(  
)
OUT  
The compensation network used with the error amplifier  
must provide enough phase margin at the 0dB crossover  
frequency for the overall open-loop transfer function. The  
zero and pole from the compensation network are:  
1
1
f =  
and f =  
P
Z
2π R C  
2π R C1  
( )( )( )  
( )( )( )  
C
C
C
A common way to lower ESR and raise ripple current  
capabilityistoparallelseveralcapacitors.AtypicalLTC1530  
application might exhibit 5A input ripple current. Sanyo  
OS-CON capacitors, part number 10SA220M (220µF/  
10V), feature 2.3A allowable ripple current at 85°C; three  
in parallel at the input (to withstand the input ripple  
current) meet the above requirements. Similarly, AVX  
TPSE337M006R0100 (330µF/6V) capacitors have a rated  
maximum ESR of 0.1; seven in parallel lower the net  
respectively. Figure 8b shows the Bode plot of the overall  
transfer function.  
The compensation values used in this design are based on  
the following criteria, fSW = 12fCO, fZ = fLC, fP = 5fCO. At the  
closed-loop frequency fCO, the attenuation due to the LC  
filter and the input resistor divider is compensated by the  
gain of the PWM modulator and the gain of the error  
amplifier (gmERR)(RC).  
14  
LTC1530  
W U U  
APPLICATIO S I FOR ATIO  
U
Although a mathematical approach to frequency compen-  
sation can be used, the added complication of input and/  
or output filters, unknown capacitor ESR, and gross  
operating point changes with input voltage, load current  
variations and frequency of operation all suggest a more  
practical empirical method. This can be done by injecting  
atransientcurrentattheloadandusinganRCnetworkbox  
to iterate toward the final compensation values or by  
obtaining the optimum loop response using a network  
analyzer to find the actual loop poles and zeros.  
tantalum capacitors for the output capacitor. The opti-  
mumcomponentvaluesmightdeviatefromthesuggested  
values slightly because of board layout and operating  
condition differences.  
Table 2. Suggested Compensation Network for a 5V Input  
Application Using Multiple Paralleled 330µF AVX TPS Output  
Capacitors for 2.5V Output  
L (µH)  
C
(µF)  
R (k)  
C (µF)  
C1 (pF)  
1000  
470  
220  
330  
220  
68  
O
O
C
C
1
990  
1.3  
2.7  
6.8  
3.6  
7.5  
18  
0.022  
0.022  
0.01  
1
1980  
4950  
990  
Table 2 shows the suggested compensation components  
for 5V input applications based on the inductor and output  
capacitor values. The values were calculated using mul-  
tiple paralleled 330µF AVX TPS series surface mount  
1
2.7  
2.7  
2.7  
5.6  
5.6  
5.6  
0.022  
0.01  
1980  
4950  
990  
0.01  
7.5  
15  
0.01  
220  
100  
47  
V
OUT  
1980  
4950  
0.01  
3
36  
0.0047  
LTC1530  
An alternate output capacitor is the Sanyo MV-GX series.  
Using multiple paralleled 1500µF Sanyo MV-GX capaci-  
tors for the output capacitor, Table 3 shows the suggested  
compensationcomponentsfor5Vinputapplicationsbased  
on the inductor and output capacitor values.  
COMP  
4
ERR  
+
R
C
C1  
BG  
C
C
1530 F08a  
Table 3. Suggested Compensation Network for a 5V Input  
Application Using Multiple Paralleled 1500µF SANYO MV-GX  
Output Capacitors for 2.5V Output  
Figure 8a. Compensation Pin Hook-Up  
L (µH)  
C
(µF)  
R (k)  
C (µF)  
C1 (pF)  
470  
330  
220  
150  
100  
100  
100  
68  
O
O
C
C
1
4500  
6000  
9000  
4500  
6000  
9000  
4500  
6000  
9000  
3
4
0.022  
0.022  
0.022  
0.022  
0.01  
f
f
= LTC1530 SWITCHING FREQUENCY  
= CLOSED-LOOP CROSSOVER FREQUENCY  
SW  
CO  
1
1
6
f
Z
2.7  
2.7  
2.7  
5.6  
5.6  
5.6  
8.2  
11  
16  
16  
22  
33  
–20dB/DECADE  
0.01  
0.01  
f
P
0.01  
FREQUENCY  
f
LC  
f
ESR  
0.01  
47  
f
CO  
Note: For different values of V , multiply the R value by V /2.5 and  
OUT  
C
OUT  
1530 F08b  
multiply the C and C1 values by 2.5/V . This maintains the same  
C
OUT  
crossover frequency for the closed-loop transfer function.  
Figure 8b. Bode Plot of the LTC1530 Overall  
Transfer Function  
15  
LTC1530  
W U U  
U
APPLICATIO S I FOR ATIO  
Thermal Considerations  
always practical due to physical constraints. Connect  
the low side source to the input capacitor ground.  
Connect the input and output capacitor to the ground  
plane. Run a separate trace for the low side FET source  
to the input capacitors. Do not tie this single point  
groundinthetracerunbetweenthelowsideFETsource  
and the input capacitor ground. This area of the ground  
plane is very noisy.  
Limit the LTC1530’s junction temperature to less than  
125°C. The LTC1530’s SO-8 package is rated at 130°C/W  
andcaremustbetakentoensurethattheworst-caseinput  
voltage and gate drive load current requirements do not  
cause excessive die temperatures. Short-circuit or fault  
conditions may activate the internal thermal shutdown  
circuit.  
3. Locate the small signal resistor and capacitors used for  
frequency compensation close to the COMP pin. Use a  
separate ground trace for these components that ties  
directly to the GND pin of the LTC1530. Do not connect  
these components to the ground plane!  
LAYOUT CONSIDERATIONS  
When laying out the printed circuit board (PCB), the  
following checklist should be used to ensure proper  
operation of the LTC1530. These items are illustrated  
graphically in the layout diagram of Figure 9. The thicker  
lines show the high current power paths. Note that at 10A  
current levels or above, current density in the PCB itself is  
a serious concern. Traces carrying high current should be  
as wide as possible. For example, a PCB fabricated with  
2oz copper requires a minimum trace width of 0.15" to  
carry 10A, and only if trace length is kept short.  
4. Place the PVCC decoupling capacitor as close to the  
LTC1530aspossible.The10µFbypasscapacitorshown  
atPVCC helpsprovideoptimumregulationperformance  
by minimizing ripple at the PVCC pin.  
5. Connect the (+) plate of CIN as close as possible to the  
drain of the upper MOSFET. LTC recommends an  
additional 1µF low ESR ceramic capacitor between VIN  
and power ground.  
1. In general, begin the layout with the location of the  
powerdevices.Orientthepowercircuitrysothataclean  
powerflowpathisachieved.Maximizeconductorwidths  
but minimize conductor lengths. Keep high current  
connections on one side of the PCB if possible. If not,  
minimize the use of vias and keep the current density in  
the vias to <1A/via, preferably <0.5A/via. After achiev-  
ing a satisfactory power path layout, proceed with the  
control circuitry layout. It is much easier to find routes  
for the relatively small traces in the control circuits than  
it is to find circuitous routes for high current paths.  
6. TheVSENSE/VOUT pinisverysensitivetopickupfromthe  
switching node. Care must be taken to isolate this pin  
from capacitive coupling to the high current inductor  
switching signals. A 0.1µF is recommended between  
theVOUT pinandtheGNDpindirectlyattheLTC1530for  
fixed voltage versions. For the adjustable voltage ver-  
sion, keep the resistor divider close to the LTC1530.  
The bottom resistor’s ground connection should tie  
directly to the LTC1530’s GND pin.  
7. Kelvin sense IMAX and IFB at the drain and source pins  
of Q1.  
2. Tie the GND pin to the ground plane at a single point,  
preferablyatafairlyquietpointinthecircuit,suchasthe  
bottom of the output capacitors. However, this is not  
8. Minimize the length of the gate lead connections.  
16  
LTC1530  
W U U  
APPLICATIO S I FOR ATIO  
U
V
IN  
BOLD LINES INDICATE  
HIGH CURRENT PATHS  
PV  
CC  
+
1
2
8
Q1  
PV  
C
G1  
CC  
IN  
+
LTC1530  
0.1µF  
7
6
5
10µF  
GND  
G2  
L
R
O
IFB  
3
4
I
FB  
V
OUT  
V
OUT  
R
IMAX  
+
I
Q2  
COMP  
MAX  
C
OUT  
R
C
C1  
0.1µF  
C
C
1530 F09  
Figure 9. LTC1530 Layout Diagram  
V
IN  
5V  
2.7k  
PV  
12V  
10µF  
CC  
+
+
+
0.1µF  
1
5
C
**  
IN  
8
I
PV  
MAX  
Q1*  
CC  
G1  
L
V
O
20Ω  
OUT  
6
7
3
4
1.9V TO 3.3V  
14A  
COMP  
LTC1530  
(SEE TABLE) G2  
I
FB  
C
O
C1  
R
(SEE  
TABLE)  
C
Q2*  
1530 F10  
C
C
V
OUT  
GND  
2
(SEE TABLE)  
* SILICONIX SUD50N03-10  
** 3× SANYO 10MV1200GX OR  
3× SANYO OS-CON 6SH330K  
COILTRONICS CTX02-13198 (2µH) OR  
PANASONIC ETQP6F2R5HA PCC-N6 (2.5µH)  
DEVICE  
OUTPUT CAPACITOR (C )  
O
R
C
C
C1  
C
LTC1530-3.3  
7 X330µF  
10k  
15k  
8.6k  
13k  
7.5k  
11k  
5.6k  
8.2k  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.033µF  
0.022µF  
150pF  
AVX TPSE337M006R0100  
LTC1530-3.3  
LTC1530-2.8  
LTC1530-2.8  
LTC1530-2.5  
LTC1530-2.5  
LTC1530-1.9  
LTC1530-1.9  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
100pF  
150pF  
100pF  
220pF  
120pF  
220pF  
220pF  
1530 TA TBL  
Figure 10. 5V to 1.9V-3.3V Synchronous Buck Converter  
PVCC Is Powered from 12V Supply  
17  
LTC1530  
TYPICAL APPLICATIO S  
U
5V to 1.9V-3.3V Synchronous Buck Converter  
PVCC Is Generated from Charge Pump  
V
IN  
5V  
MBR0530T1 MBR0530T1  
+
+
+
2.7k  
C
**  
0.1µF  
10µF  
IN  
0.22µF  
1
8
5
4
PV  
CC  
Q1*  
Q2*  
I
G1  
MAX  
L
O
V
20Ω  
OUT  
6
7
3
1.9V TO 3.3V  
14A  
COMP  
LTC1530  
(SEE TABLE) G2  
I
FB  
C
O
C1  
(SEE  
R
C
TABLE)  
C
C
V
OUT  
GND  
2
(SEE TABLE)  
* SILICONIX SUD50N03-10  
** 3× SANYO 10MV1200GX OR  
3× SANYO OS-CON 6SH330K  
COILTRONICS CTX02-13198 (2µH) OR  
PANASONIC ETQP6F2R5HA PCC-N6 (2.5µH)  
1530 TA02  
DEVICE  
OUTPUT CAPACITOR (C )  
O
R
C
C1  
C
C
LTC1530-3.3  
7 X330µF  
10k  
15k  
8.6k  
13k  
7.5k  
11k  
5.6k  
8.2k  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.022µF  
0.033µF  
0.022µF  
150pF  
100pF  
150pF  
100pF  
220pF  
120pF  
220pF  
220pF  
AVX TPSE337M006R0100  
LTC1530-3.3  
LTC1530-2.8  
LTC1530-2.8  
LTC1530-2.5  
LTC1530-2.5  
LTC1530-1.9  
LTC1530-1.9  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
7 X330µF  
AVX TPSE337M006R0100  
4 X1500µF  
SANYO 6MV1500GX  
1530 TA TBL  
5V to Dual Output (3.3V and 12V) Synchronous Buck Converter  
V
IN  
5V  
LT1129CS8  
OUT  
V
OUT2  
12V  
IN  
C4  
22µF  
35V  
C4  
33µF  
20V  
+
+
R3  
8.25k  
1%  
0.4A  
ADJ  
D2  
D1  
MBR0530T1 MBR0530T1  
R4  
3.74k  
1%  
C
C
= 3× SANYO 10MV1200GX  
IN  
+
= 4× SANYO 6MV1500GX  
OUT  
+
C2  
C
IN  
R1  
L1 = SUMIDA 6383-T018  
C3  
C5  
0.22µF  
0.1µF  
2.7k  
(PRI = 1µH, SEC = 26µH)  
Q1, Q2 = SILICONIX SUD50N03-10  
Q3 = SILICONIX Si4450DY  
10µF  
1
8
L1  
5
I
4
PV  
Q1  
CC  
G1  
MAX  
R2, 20Ω  
6
7
3
Q3  
COMP  
I
FB  
C1  
220pF  
V
3.3V  
14A  
OUT1  
R
LTC1530-3.3  
C
Q2  
G2  
4.7k  
+
C
OUT  
C
C
V
OUT  
GND  
0.022µF  
1530 TA09  
2
18  
LTC1530  
U
TYPICAL APPLICATIO S  
LTC1530 3.3V to 1.8V, 14A Application  
V
IN  
3.3V  
1
2
V
IN  
+
+
5
4
+
3.3µF  
10µF  
C1  
LTC1517-5  
GND  
0.22µF  
C1  
3
V
OUT  
D2  
MBRS120  
D1  
MBRS120  
PV  
CC  
+
+
C
IN  
1500µF  
× 3  
+
0.1µF  
10µF  
2.4k  
Q1  
SUD50N03  
0.22µF  
1
8
6
5
4
L1  
2.5µH  
PV  
CC  
I
G1  
MAX  
V
1.8V  
14A  
20Ω  
OUT  
COMP  
LTC1530-ADJ  
I
FB  
C
C1  
100pF  
OUT  
R
C
7
3
Q2  
SUD50N03  
1500µF  
× 4  
G2  
13k  
C
C
V
SENSE  
GND  
2
0.022µF  
R2  
1.24k  
1%  
R1  
576Ω  
1% L1 = PANASONIC ETQP6F2R5HA PCC-N6  
C
C
= 3× SANYO 6MV1500GX  
IN  
OUT  
1530 TA03  
= 4× SANYO 6MV1500GX  
Other Methods to Generate PVCC Supply from 3.3V Input  
D1  
L1*  
33µH  
MBRS120T3  
V
PV  
IN  
CC  
3.3V  
12V  
+
+
68µF  
20V  
1µF  
47µF  
30Ω  
2
1
I
V
LIM  
IN  
3
8
SW1  
LT1107-12  
SENSE  
GND  
5
SW2  
4
D1  
MBR0520  
L1**  
10µH  
V
PV  
IN  
CC  
3.3V  
10V  
+
+
10µF  
20V  
1µF  
3.3µF  
3
6
V
SHDN  
IN  
5
2
SW  
FB  
1
* SUMIDA CD54-330K OR  
COILCRAFT DT3316-473  
** SUMIDA CD43-100  
LT1317  
V
C
2.2M  
300k  
3000pF  
33k  
100pF  
GND  
4
1530 TA04  
19  
LTC1530  
TYPICAL APPLICATIO S  
U
LTC1530 High Efficiency Boost Converter  
R5  
L2  
2.1µH  
0.005Ω  
5%  
L1  
V
IN  
3.3V  
1µH  
V
5V  
6A  
OUT  
C3  
1µF  
16V  
R2  
47k  
C10  
1µF  
16V  
+
C12  
470µF  
6V  
C9  
R4  
360Ω  
0.22µF  
+
C18  
330µF  
10V  
D3  
+
+
C14  
C16  
330µF  
10V  
C13  
1µF  
16V  
MBRS140T3  
330µF  
+
C11  
470µF  
6V  
10V  
16V  
C15  
330µF  
10V  
+
+
C17  
Q2  
D2  
330µF  
IRF7811  
MBR0530T1  
10V  
D1  
FMMD914  
Q3  
IRF7811  
Q4  
IRF7811  
1
5
6
+
C2  
1µF  
16V  
C1  
10µF  
16V  
PV  
I
I
CC MAX  
FB  
C8  
4
7
COMP  
G2  
1µF  
C4  
100pF  
Q1  
FMMT3904  
C5  
0.022µF  
R1  
10k  
16V  
LTC1530  
R7  
8
3
1
5
G1  
71.5k  
1%  
V
C1  
IN  
C7  
0.22µF  
16V  
LTC1517-5  
GND  
1530 TA05a  
V
2
3
4
+
SENSE  
C1  
R6  
GND  
R3  
47k  
23.2k  
2
1%  
V
OUT  
C6  
1µF  
16V  
L1 = COILCRAFT DO3316P-102  
L2 = SUMIDA CEE125C-2R1  
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
T
V
V
= 25°C  
A
= 3.3V  
IN  
OUT  
10  
0
= 5V  
0
1
3
4
5
6
2
LOAD CURRENT (A)  
1530 TA05b  
20  
LTC1530  
U
TYPICAL APPLICATIO S  
LTC1530 5V to 5V Synchronous Inverter  
V
IN  
5V  
+
C
IN  
OPTIONAL  
D1  
MBR0530T1  
R8  
560  
1/2W  
Z1  
12V  
+
R1  
2.4k  
C6  
2.2µF  
ZENER  
1/2W  
R9  
680Ω  
6
5
3
Q1  
1/2  
LTC1693-2  
D2  
MBR0530T1  
4
Q3  
2N7000  
1
5
8
R10  
R2  
100Ω  
+
PV  
I
G1  
C3  
C4  
CC MAX  
V
–5V  
5A  
330Ω  
OUT  
Q2  
6
10µF 0.1µF  
I
FB  
LTC1530-ADJ  
D4  
1N4148  
7
3
R6  
G2  
L1  
2.5µH  
R7  
4.7Ω  
C
OUT  
220Ω  
+
+
4
D5  
MBR0530T1  
C5  
1/6W  
R11  
1k  
V
COMP  
SENSE  
2.2µF  
GND  
2
R
C
8
1
7
C1  
1000pF  
4.7k  
1/2  
C
C7  
1000pF  
C
2
LTC1693-2  
0.22µF  
1530 TA07a  
R5  
10k  
R3  
1k  
D3  
1N4148  
C
, C  
= 3× SANYO 10MV1200GX  
IN OUT  
L1 = PANASONIC ETQP6F2R5HA (PCC-N6)  
Q1,Q2 = SILICONIX SUD50N03-10  
C2  
10µF  
R4  
3.09k  
+
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
0
1
3
4
5
2
LOAD CURRENT (A)  
0.1  
1530 TA07b  
21  
LTC1530  
U
TYPICAL APPLICATIO S  
LTC1530 Synchronous SEPIC Converter  
R
Q2  
SENSE  
C
FLY  
L1A  
0.02  
V
V
5V  
4A  
P-MOSFET  
OUT  
OUT  
V
IN  
4V TO 8V  
1,2,3  
7,8,9  
4,5,6  
+
R3  
3.09k  
C2  
D2  
1N4148  
L1B  
10µF  
+
+
C
10,11,12  
IN  
C
OUT  
Q1  
N-MOSFET  
R4  
1k  
R2  
10k  
R5  
20Ω  
R1  
2.2k  
D1  
MBR0520  
L2  
10µH  
R9  
5.6Ω  
+
+
+
C4  
0.1µF  
C8  
4.7µF  
C3  
10µF  
C9  
4.7µF  
6
1
5
+
6
C5  
PV  
I
I
V
CC MAX FB  
IN  
4.7µF  
3
1
5
2
8
SW  
FB  
SHDN  
G1  
G2  
LTC1693-3  
7
8
C1  
1000pF  
LTC1530-ADJ  
7
3
1
LT1317  
3
R6  
4
COMP  
V
4
2.2M  
SENSE  
R
C
V
C
4.7k  
GND  
4
GND  
2
C7  
R7  
300k  
3000pF  
C
C
0.22µF  
C6  
100pF  
R8  
33k  
1530 TA08a  
C
FLY  
, C  
= 3× SANYO 10MV1200GX  
= 2× SANYO 16SA150MK  
L2 = SUMIDA CD43-100  
IN OUT  
C
Q1 = SILICONIX N-MOSFET SI4420DY  
Q2 = SILICONIX P-MOSFET SI4425DY  
L1 = COILTRONIX CTX02-13198-1  
(L1A = 1,2,3 7,8,9; L1B = 10,11,12 4,5,6)  
R
= DALE LVR-3 3W  
SENSE  
Efficiency vs Load Current  
100  
T
= 25°C  
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 4V  
V
= 8V  
IN  
0
0.5 1.0  
2.5 3.0 3.5 4.0  
1.5 2.0  
LOAD CURRENT (A)  
0.1  
1530 TA08b  
22  
LTC1530  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1530  
TYPICAL APPLICATION  
U
LTC1530 5V to 2.5V, 5A Inverting Polarity Converter  
(OPTIONAL)  
GND  
MBRS130  
R8  
4.7  
Z1  
1N4742A  
MBRS130  
+
C5  
0.1µF  
C4  
10µF  
R
SENSE  
0.02Ω  
C8  
0.22µF  
V
2.5V  
5A  
*
OUT  
L1  
2.5µH  
C
OUT  
+
1500µF  
6.3V  
R6  
2k  
R7  
22Ω  
C
IN  
+
× 3  
1500µF  
6.3V  
Q2  
1
CC  
5
6
I
FB  
× 3  
I
PV  
MAX  
C9  
1µF  
R1  
1.5K  
8
4
Z2  
Q1  
G1  
COMP  
Q3  
R11  
10k  
BZX55C6V2  
1/2W, 6.2V  
R13  
1k  
2N3906  
LTC1530-ADJ  
7
R
Q5  
2N3904  
C
R10  
1k  
G2  
5.6k  
C1  
1000pF  
V
GND  
Q4  
2N3904  
GND  
2
SENSE  
3
C
C
R2  
1k  
R9  
10k  
R12  
40k  
C10  
1µF  
0.1µF  
HARD CURRENT LIMIT CIRCUIT  
(OPTIONAL)  
V
= –5V  
IN  
C
, C = 3× SANYO 6MV1500GX  
L1 = PANASONIC ETQP6F2R5HA PCC-N6  
Q1,Q2 = SILICONIX SUD50N03-10  
IN OUT  
1530 TA06  
*FOR HIGHER OUTPUT VOLTAGE (EX 3.3V),  
INCREASE R8 TO 20AND INSTALL Z1  
R
= DALE LVR-1, 1W  
SENSE  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1266  
Current Mode Step-Up/Down Switching Regulator Controller  
Synchronous N- or P-Channel FETs,  
Comparator/Low-Battery Detector  
LTC1430A  
LTC1553  
High Power Step-Down Switching Regulator Controller  
Synchronous N-Channel FETs, 3.3V to 2.5V Conversion  
5-Bit Programmable Synchronous Switching Regulator  
Controller for Pentium II Processor  
Synchronous N-Channel FETs, Voltage Mode PV 20V,  
CC  
1.8V to 3.5V Output  
LTC1628  
LTC1629  
Dual High Efficiency Low Noise Synchronous Step-Down  
Switching Regulator  
20A to 200A PolyPhaseTM Synchronous Controller  
Constant Frequency, Standby 5V and 3.3V LDOs,  
3.5V V 36V  
IN  
Expandable from 2-Phase to 12-Phase, Uses All  
Surface Mount Components, No Heat Sink  
LTC1702  
LTC1709  
No R  
2-Phase Dual Synchronous Step-Down Controller  
550kHz, No Sense Resistor  
SENSE  
2-Phase Synchronous Controller with 5-Bit VID  
Current Mode, V to 36V, I  
Up to 42A,  
OUT  
IN  
V
from 1.3V to 3.5V  
OUT  
LTC1735  
LTC1753  
High Efficiency Synchronous Step-Down Switching Regulator  
Drives Synchronous N-Channel FETs, V 36V  
IN  
5-Bit Programmable Synchronous Switching Regulator  
Controller for Pentium II and Pentium III Processors  
Synchronous N-Channel FETs, Voltage Mode PV 14V,  
1.3V to 3.5V Output, VRM8.2 to VRM8.4  
CC  
LTC1772  
LTC1873  
SOT-23 Step-Down Controller  
100% Duty Cycle, Up to 4A, 2.2V to 9.8V V  
IN  
Dual 550kHz 2-Phase Synchronous Controller with 5-Bit VID  
Desktop VID Codes, I Up to 25A On Each Channel,  
OUT  
28-Lead SSOP  
LTC1929  
2-Phase Synchronous Controller  
Up to 42A, Uses All Surface Mount Components,  
No Heat Sink, 3.5V V 36V  
IN  
PolyPhase is a trademark of Linear Technology Corporation.  
1530f LT/TP 0200 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY