LTC1324CS [Linear]

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver;
LTC1324CS
型号: LTC1324CS
厂家: Linear    Linear
描述:

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver

驱动 光电二极管 接口集成电路 驱动器
文件: 总8页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1324  
Single Supply LocalTalk®  
Transceiver  
U
FEATURES  
DESCRIPTION  
The LTC®1324 is a single 5V line transceiver designed to  
operate on Apple®LocalTalk networks. The driver features  
a digitally selectable low slew rate mode for reduced EMI  
emissions. The chip draws only 1mA quiescent current  
when active and 1µA in shutdown. The differential driver  
outputs three-state when disabled, during shutdown or  
when the power is off. The driver outputs will maintain  
high impedance even with output common mode voltages  
beyondthepowersupplyrails. Boththedriveroutputsand  
receiver inputs are protected against ESD damage to  
±10kV.  
Single Chip 5V LocalTalk Port  
Low Power: ICC = 1mA Typ  
Shutdown Pin Reduces ICC to 1µA Typ  
Digitally Selectable Low Slew Rate Mode for  
Reduced EMI Emmisions  
Drivers Maintain High Impedance in Three-State or  
with Power Off  
Thermal Shutdown Protection  
Drivers Are Short-Circuit Protected  
U
APPLICATIONS  
LocalTalk Peripherals  
Notebook and Palmtop Computers  
Battery-Powered Systems  
The LTC1324 is available in a 16-pin SO Wide package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Apple and LocalTalk are registered trademarks of Apple Computer, Inc.  
U
TYPICAL APPLICATION  
Waveform of Driver  
Typical LocalTalk Connection for Low EMI  
5V  
16  
LocalTalk  
TRANSFORMER  
DIN  
5V/DIV  
12  
11  
2
3
4
5
6
7
8
SLEW RATE CONTROL  
DATA IN  
120Ω  
TX ENABLE  
DOUT  
1V/DIV  
LTC1324  
SHUTDOWN  
RX ENABLE  
10  
9
DATA OUT  
1324 TA01  
TIME (0.5µs/DIV)  
1324 TA02  
1
LTC1324  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage (VCC) ................................................ 7V  
Input Voltage (Logic Inputs) ........ 0.3V to (VCC +0.3V)  
Input Voltage (Receiver Inputs) ............................ ±15V  
Driver Output Voltage (Forced) ............................. ±15V  
Driver Short-Circuit Duration .......................... Indefinite  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
16  
V
CC  
NC  
SR  
1
2
3
4
5
6
7
8
15 TXDEN  
14 RXEN  
13 NC  
TXD  
LTC1324CN  
LTC1324CSW  
DX  
TXDEN  
SHDN  
RXEN  
RXO  
12 TXD  
+
11 TXD  
10 RXD  
RX  
+
9
RXD  
GND  
N PACKAGE  
16-LEAD PDIP  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
TJMAX = 150°C, θJA = 110°C/ W (N)  
JMAX = 150°C, θJA = 150°C/ W (SW)  
T
Consult factory for Industrial and Military grade parts.  
VCC = 5V, TA = 0°C to 70°C (Notes 2, 3), unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supplies  
I
Normal Operation Supply Current  
Shutdown Supply Current  
No Load, SHDN = 0V, TXDEN = 0V, RXEN = 0V  
1
1
2
10  
mA  
µA  
CC  
No Load, SHDN = V  
CC  
Differential Driver  
V
OD  
Differential Output Voltage  
No Load  
R = 50(Figure 1)  
L
±4.0  
±2.0  
V
V
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Differential Common Mode Output Voltage  
Short-Circuit Current  
R = 50(Figure 1)  
3.0  
120  
±2  
V
mA  
µA  
OC  
L
I
I
0V V 5V  
35  
250  
SS  
OZ  
O
Three-State Output Current  
(TXDEN = V and TXDEN = GND) or  
±200  
CC  
SHDN = V or Power Off, 10V V 10V  
CC  
O
Logic Inputs  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
All Logic Input Pins  
2.4  
V
V
IH  
IL  
All Logic Input Pins  
0.8  
±20  
60  
I
I
SHDN, TXDEN, RXDEN, V = 0V to V  
±1  
µA  
µA  
IN  
DN  
CC  
Pull-Down Current  
RXDEN, TXDEN, SR, V = 0V to V  
15  
CC  
Receiver  
R
Input Resistance  
7V V 7V  
12  
kΩ  
mV  
mV  
V
IN  
IN  
Receiver Threshold Voltage  
Receiver Input Hysteresis  
Output High Voltage  
7V V 7V  
200  
200  
CM  
7V V 7V  
70  
CM  
V
V
I = 4mA  
O
3.5  
7
OH  
Output Low Voltage  
I = 4mA  
O
0.4  
85  
V
OL  
I
I
Output Short-Circuit Current  
Output Three-State Current  
0V V 5V  
mA  
µA  
SS  
OZ  
O
0V V 5V, RXEN = V , RXEN = GND  
±2  
±100  
O
CC  
2
LTC1324  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, TA = 0°C to 70°C (Notes 2, 3), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Characteristics  
t
, t  
Driver Propagation Delay  
Without Slew Rate Control  
R = 100, C = 100pF (Figures 2, 4)  
40  
120  
1.2  
ns  
PLH PHL  
L
L
SR = GND  
Driver Propagation Delay  
with Slew Rate Control  
R = 100, C = 100pF (Figures 2, 4)  
0.4  
µs  
L
L
SR = V  
CC  
Receiver Propagation Delay  
C = 15pF (Figures 2, 6)  
40  
10  
120  
35  
ns  
ns  
L
t
Driver Output to Output  
Without Slew Rate Control  
R = 100, C = 100pF (Figures 2, 4)  
SKEW  
L
L
SR = GND  
Driver Output to Output  
with Slew Rate Control  
R = 100, C = 100pF (Figures 2, 4)  
25  
20  
100  
50  
ns  
ns  
µs  
ns  
µs  
L
L
SR = V  
CC  
t , t  
r
Driver Rise/Fall Time  
Without Slew Rate Control  
R = 100, C = 100pF (Figures 2,4)  
f
L
L
SR = GND  
Driver Rise/Fall Time  
with Slew Rate Control  
R = 100, C = 100pF (Figures 2, 4)  
0.4  
50  
1.2  
150  
2
L
L
SR = V  
CC  
t
t
, t  
Driver Output Active to Disable  
Without Slew Rate Control  
C = 15pF (Figures 3, 5)  
Hdis Ldis  
L
SR = GND  
Driver Output Active to Disable  
with Slew Rate Control  
C = 15pF (Figures 3, 5)  
0.7  
L
SR = V  
CC  
Receiver Output Active to Disable  
C = 15pF (Figures 3, 7)  
30  
50  
100  
150  
ns  
ns  
L
, t  
Driver Enable to Output Active  
Without Slew Rate Control  
C = 15pF (Figures 3, 5)  
ENH ENL  
L
SR = GND  
Driver Enable to Output Active  
with Slew Rate Control  
C = 15pF (Figures 3, 5)  
250  
30  
750  
100  
ns  
ns  
L
SR = V  
CC  
Receiver Enable to Output Active  
C = 15pF (Figures 3, 7)  
L
The  
denotes specifications which apply over the full operating  
Note 2: All currents into device pins are positive and all currents out of  
device pins are negative. All voltages are reference to ground unless  
otherwise specified.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: All typicals are given at V = 5V, T = 25°C.  
CC A  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Driver Differential Output Voltage  
vs Output Current  
Driver Output Low Voltage  
vs Output Current  
Driver Output High Voltage  
vs Output Current  
120  
100  
80  
60  
40  
20  
0
–105  
–90  
–75  
–60  
–45  
–30  
–15  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
T
= 25°C  
A
T
A
= 25°C  
A
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5  
2.5 3.0 3.5 4.0  
1.5 2.0 2.5 3.0 3.5  
4.5 5.0  
1.0  
4.0  
OUTPUT VOLTAGE (V)  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V)  
DRIVER OUTPUT HIGH VOLTAGE (V)  
1324 G02  
1324 G01  
1324 G03  
3
LTC1324  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Receiver Output High Voltage  
vs Output Current  
Receiver Output Low Voltage  
vs Output Current  
Driver Short-Circuit Current  
vs Temperature  
30  
25  
20  
15  
10  
5
–16  
–14  
–12  
–10  
–8  
110  
100  
90  
T
A
= 25°C  
T
= 25°C  
A
80  
70  
–6  
60  
–4  
50  
–2  
0
0
40  
–55 –35  
0
0.4  
0.8  
1.2  
1.6  
2.0  
4.5  
2.0  
2.5  
3.0  
3.5  
4.0  
5.0  
105  
125  
5
25 45  
85  
–15  
65  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1324 G04  
1324 G05  
1324 G06  
Receiver Short-Circuit Current  
vs Temperature  
Supply Current (Driver and  
Receiver Enabled) vs Temperature  
Driver Skew vs Temperature  
900  
875  
850  
825  
800  
775  
750  
725  
700  
19  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105  
125  
–55 –35  
5
25 45  
85  
105  
–15  
65  
105  
85 125  
–55 –35  
5
25 45  
85  
125  
–55 –35  
5
25 45  
–15  
65  
–15  
65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1324 G08  
1324 G07  
1324 G09  
Receiver Output Low Voltage  
vs Temperature  
Receiver Output High Voltage  
vs Temperature  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
I = 8mA  
I = 8mA  
105  
105  
125  
–55 –35  
5
25 45  
85  
125  
–55 –35  
5
25 45  
85  
–15  
65  
–15  
65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1324 G10  
1324 G11  
4
LTC1324  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver tPLH tPHL  
vs Temperature  
Driver Differential Output Voltage  
vs Temperature  
3.1  
8
7
6
5
4
3
2
1
0
R
= 100Ω  
L
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
105  
125  
–55 –35  
5
25 45  
85  
–15  
65  
105  
125  
–55 –35  
5
25 45  
85  
–15  
65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1324 G12  
1324 G13  
U
U
U
PIN FUNCTIONS  
GND (Pin 8): Ground.  
NC (Pins 1, 13): No Internal Connection.  
RXD+ (Pin 9): RS485 Receiver Noninverting Input. When  
thispinis 200mVaboveRXD, RXDOwillbehigh. When  
this pin is 200mV below RXD, RXDO will be low.  
RXD(Pin 10): RS485 Receiver Inverting Input.  
TXD+ (Pin 11): RS485 Driver Noninverting Output.  
TXD(Pin 12): RS485 Driver Inverting Output.  
SR (Pin 2): Slew Rate Control (TTL Compatible). A high  
level on this pin forces the RS485 driver into the low slew  
rate mode. A low level forces the driver into the high slew  
rate or normal mode. Connected to an internal pull-down.  
TXD (Pin 3): RS485 Driver Input (TTL Compatible).  
TXDEN (Pin 4): Driver Output Enable (TTL Compatible). A  
high level on this pin and a low level on TXDEN (Pin 15)  
forces the RS485 driver into three-state. A low level  
enables the driver.  
RXEN (Pin 14): Receiver Enable (TTL Compatible). A low  
level on this pin and a high level on RXEN (Pin 6) disables  
thereceiverandthree-statesthelogicoutputs. Ahighlevel  
allows normal operation. Connected to an internal pull-  
down.  
SHDN (Pin 5): Shutdown Input (TTL Compatible). When  
this pin is high, the chip is shut down; the driver and  
receiver outputs three-state; and the supply current drops  
to 1µA. A low level on this pin allows normal operation.  
TXDEN (Pin 15): Driver Output Enable (TTL Compatible).  
A low level on this pin and a high level on TXDEN (Pin 4)  
forces the RS485 driver into three-state. A high level  
enables the driver. Connected to an internal pull-down.  
RXEN (Pin 6): Receiver Enable (TTL Compatible). A high  
level on this pin and a low level on RXEN (Pin 14) disables  
the receiver and three-states the logic outputs. A low level  
allows normal operation.  
VCC (Pin 16): The Positive Supply Input. 4.75V VCC  
5.25V. Requires a 1µF bypass capacitor to ground.  
RXDO (Pin 7): RS485 Receiver Output.  
5
LTC1324  
TEST CIRCUITS  
V
CC  
+
TXD  
+
+
C
C
L
R
L
RXD  
TXD  
S1  
RXDO  
TXI  
R
L
500Ω  
V
OD  
OUTPUT  
RXD  
TXD  
L
15pF  
V
OC  
C
L
S2  
R
L
1324 F02  
TXD  
1324 F01  
1324 F03  
Figure 1  
Figure 2  
Figure 3  
U
W
SWITCHING WAVEFORMS  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
TXD  
1.5V  
0V  
t
t
PHL  
PLH  
V
–V  
O
O
+
90%  
90%  
V
DIFF  
= V(TXD ) – V(TXD )  
50%  
10%  
50%  
10%  
1/2 V  
O
t
t
f
r
TXD  
TXD  
V
O
+
t
t
SKEW  
1324 F04  
SKEW  
Figure 4. Differential Driver  
3V  
1.5V  
1.5V  
TXDEN  
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
5V  
t
t
LZ  
ZL  
+
TXD , TXD  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
t
t
ZH  
HZ  
V
+
2.3V  
TXD , TXD  
1324 F05  
Figure 5. Differential Driver Enable and Disable  
V
OD2  
f = 1MHz: t 10ns: t 10ns  
r
f
+
0V  
t
(RXD) – (RXD )  
0V  
–V  
OD2  
t
PLH  
PHL  
V
OH  
RXDO  
1.5V  
1.5V  
V
OL  
1324 F06  
Figure 6. Differential Receiver  
6
LTC1324  
U
W
SWITCHING WAVEFORMS  
3V  
1.5V  
1.5V  
RXEN  
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
t
t
LZ  
ZL  
5V  
RXO, RXO, RXDO  
2.3V  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
t
t
ZH  
HZ  
V
RXO, RXO, RXDO  
1324 F07  
Figure 7. Receiver Enable and Disable  
U
W U U  
APPLICATIONS INFORMATION  
Thermal Shutdown Protection  
capacitor T network between each driver, receiver and the  
connector. Unfortunately, the resistors will attenuate the  
driver’s output signal applied to the cable. Because the  
LTC1324 uses a single 5V supply, the resistors’ values  
should be reduced to 5.1to ensure enough voltage  
swing on the cable (Figure 8). Another way to get maxi-  
mum swing and EMI immunity is to use a ferrite bead and  
capacitor as the T network (Figure 9). For data rates below  
250kbps, the LTC1324 features a low EMI mode which  
limits the rise time of the drivers to 400ns. With a lower  
rise time, the EMI network can be eliminated, allowing  
more signal voltage to reach the cable. Figures 10 and 11  
show the output signals of the driver with different slew  
rates.  
The LTC1324 includes a thermal shutdown circuit which  
protects against prolonged shorts at the driver outputs. If  
a driver output is shorted to another output, ground or to  
the power supply, the current will be initially limited to a  
maximum of 250mA. When the die temperature rises  
above 150°C, the thermal shutdown circuit turns off the  
driver outputs. When the die cools to about 130°C, the  
outputs turn on. If the short still exists, the part will heat  
again and the cycle will repeat. This oscillation occurs at  
about 10Hz and prevents the part from being damaged by  
excessive power dissipation. When the short is removed,  
the part will return to normal operation.  
Power Shutdown  
5.1Ω  
100pF  
5.1Ω  
100pF  
5.1Ω  
+
TXD  
The power shutdown feature of the LTC1324 is designed  
for battery-powered systems. When SHDN is forced high,  
the part enters shutdown mode. In shutdown, the supply  
currenttypicallydropsfrom1mAto1µAandthedriverand  
receiver outputs are three-stated.  
TXD  
120Ω  
5.1Ω  
TXD  
1324 F08  
Figure 8  
Supply Bypassing  
The LTC1324 requires VCC be bypassed to prevent data  
errors. A 1µF capacitor from VCC to ground is adequate.  
FERRITE BEAD  
FERRITE BEAD  
100pF  
EMI Filters and Slew Rate Control  
1324 F09  
Most LocalTalk applications need to use an electromag-  
netic interference (EMI) filter consisting of a resistor-  
Figure 9  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1324  
U
W U U  
APPLICATIONS INFORMATION  
1324 F10  
1324 F11  
Figure 10. High Slew Rate Mode  
Figure 11. Low Slew Rate Mode  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
15  
13  
11  
16  
0.015  
0.255 ± 0.015*  
(6.477 ± 0.381)  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
2
1
3
4
6
8
5
7
0.325  
–0.015  
0.125  
(3.175)  
MIN  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N16 0694  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTURSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
SW Package  
0.398 – 0.413  
(10.109 – 10.490)  
(NOTE 2)  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
15 14  
12  
10  
9
16  
13  
11  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
0.037 – 0.045  
0.093 – 0.104  
0.005  
(0.127)  
RAD MIN  
0.010 – 0.029  
(0.940 – 1.143)  
(2.362 – 2.642)  
× 45°  
(0.254 – 0.737)  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
2
3
5
7
8
1
4
6
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
SOL16 0392  
2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1318  
Single 5V Powered RS232/RS422 Transceiver  
RS422/RS562 Transceiver  
Pin Selectable RS232/RS422 Receiver. Available in 24-Pin SO Wide Package  
Available in 18-Pin SO Wide Package  
LTC1320  
LTC1323  
Single 5V Powered RS422/RS562 Transceiver  
Available in 16-Pin and 24-Pin SO Wide Packages  
LT/GP 0596 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

LTC1324CS#PBF

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CS#TR

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CS#TRPBF

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CSW

Single Supply LocalTalk Transceiver
Linear

LTC1325

Microprocessor-Controlled Battery Management System
Linear

LTC1325CN

Microprocessor-Controlled Battery Management System
Linear

LTC1325CN#PBF

LTC1325 - Microprocessor-Controlled Battery Management System; Package: PDIP; Pins: 18; Temperature Range: 0°C to 70°C
Linear

LTC1325CS

Peripheral IC
ETC

LTC1325CSW

Microprocessor-Controlled Battery Management System
Linear

LTC1325CSW#PBF

LTC1325 - Microprocessor-Controlled Battery Management System; Package: SO; Pins: 18; Temperature Range: 0°C to 70°C
Linear

LTC1325CSW#TRPBF

LTC1325 - Microprocessor-Controlled Battery Management System; Package: SO; Pins: 18; Temperature Range: 0°C to 70°C
Linear

LTC1325CSW18

BATTERY CHARGE CONTROLLER, PDSO18
Linear