LT8362HMSE#PBF [Linear]

暂无描述;
LT8362HMSE#PBF
型号: LT8362HMSE#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总32页 (文件大小:2349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8362  
Low I Boost/SEPIC/  
Q
Inverting Converter  
with 2A, 60V Switch  
DESCRIPTION  
The LT®8362 is a current mode DC/DC converter with a  
60V, 2A switch operating from a 2.8V to 60V input. With  
a unique single feedback pin architecture it is capable  
of boost, SEPIC or inverting configurations. Burst Mode  
operation consumes as low as 9µA quiescent current to  
maintain high efficiency at very low output currents, while  
keeping typical output ripple below 15mV.  
FEATURES  
n
Wide Input Voltage Range: 2.8V to 60V  
n
Ultralow Quiescent Current and Low Ripple  
Burst Mode® Operation: I = 9µA  
2A, 60V Power Switch  
Q
n
n
Positive or Negative Output Voltage Programming  
with a Single Feedback Pin  
n
Programmable Frequency (300kHz to 2MHz)  
n
Synchronizable to an External Clock  
An external compensation pin allows optimization of loop  
bandwidth over a wide range of input and output volt-  
ages and programmable switching frequencies between  
300kHz and 2MHz. A SYNC/MODE pin allows synchroni-  
zation to an external clock. It can also be used to select  
between burst or pulse-skipping modes of operation with  
or without Spread Spectrum Frequency Modulation for  
low EMI. For increased efficiency, a BIAS pin can accept  
n
Spread Spectrum Frequency Modulation for Low EMI  
n
BIAS Pin for Higher Efficiency  
n
Programmable Undervoltage Lockout (UVLO)  
n
Thermally Enhanced 10-Lead 3mm × 3mm DFN and  
16-Lead MSOP packages  
APPLICATIONS  
a second input to supply the INTV regulator. Additional  
CC  
n
Industrial and Automotive  
features include frequency foldback and programmable  
n
Telecom  
soft-start to control inductor current during start-up.  
n
Medical Diagnostic Equipment  
Portable Electronics  
The LT8362 is available in a thermally enhanced 10-lead  
3mm × 3mm DFN package or a thermally enhanced  
16-lead MSOP package with four pins removed.  
n
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
2MHz, 48V Output Boost Converter  
Efficiency and Power Loss  
ꢀꢁꢁ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
2ꢀꢁ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁ2  
ꢄ8ꢀ  
ꢁꢂꢃ  
6.8μH  
ꢁꢂ  
2ꢅꢅꢆꢇ ꢇꢃ ꢀ ꢊ 8ꢀ  
32ꢅꢆꢇ ꢇꢃ ꢀ ꢊ ꢋ2ꢀ  
ꢈꢉ  
ꢌꢅꢅꢆꢇ ꢇꢃ ꢀ ꢊ 2ꢄꢀ  
8ꢀ ꢃꢄ 38ꢀ  
ꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂꢃꢄ  
ꢈꢉ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
8362  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ ꢀꢀ  
ꢀꢁꢂꢃꢄ ꢅꢁꢆꢆ  
ꢀꢁꢂ ꢀ  
ꢀꢁꢂ  
3ꢀꢁ8ꢂ  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ6ꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ ꢀꢁ2 ꢀꢁ3 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ8  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢃa  
8362 ꢀꢁꢂꢃꢄ  
8362fa  
1
For more information www.linear.com/LT8362  
LT8362  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
SW............................................................................ 60V FBX ........................................................................... 4V  
V , EN/UVLO............................................................ 60V Operating Junction Temperature (Note 3)  
IN  
BIAS.......................................................................... 40V  
EN/UVLO Pin Above V Pin, SYNC............................. 6V  
INTV ...............................................................(Note 2) Storage Temperature Range ...................–65°C to 150°C  
V ............................................................................... 4V  
C
LT8362E, LT8362I...............................–40°C to 125°C  
LT8362H.............................................–40°C to 150°C  
IN  
CC  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢋꢉꢚ ꢇꢊꢃꢓ  
3
ꢃꢄꢅꢆꢇꢈꢉ  
ꢀ6 ꢏꢓꢀ  
ꢀꢐ ꢏꢓ2  
ꢅꢕꢛꢠꢃꢏꢁ  
2
3
ꢌꢍ ꢓꢆ  
ꢊꢄ  
ꢀꢂ  
ꢚꢛꢄꢖꢜ  
ꢛꢄꢖ  
8
6
ꢓꢚꢕꢉꢛꢜꢁꢇꢅ  
ꢄꢕ  
ꢌꢌ  
ꢂꢋꢕꢇꢡ  
ꢋꢕꢇ  
6
8
ꢊꢄꢋꢇ  
ꢀ2 ꢏꢔꢄꢌꢅꢕꢉꢖꢃ  
ꢀꢀ ꢏꢏ  
ꢄꢕꢀꢃ  
ꢓꢓ  
ꢌꢌ  
ꢉꢉ  
ꢄꢌ  
ꢞꢄꢈꢓ  
ꢝꢀ  
ꢍꢊꢎꢏ  
ꢀꢑ ꢗꢋ  
ꢘꢍꢙ  
ꢔꢞꢟ  
ꢕꢏꢃ ꢚꢎꢌꢝꢎꢛꢃ  
ꢇꢎꢗꢊꢎꢋꢊꢉꢄꢞ ꢕꢏꢃꢀ6 ꢟꢀ2ꢠ  
ꢀ6ꢡꢈꢃꢎꢖ ꢚꢈꢎꢏꢋꢊꢌ ꢕꢏꢉꢚ  
ꢇꢇ ꢂꢈꢉꢊꢈꢋꢅ  
ꢌꢍꢎꢏꢅꢈꢇ ꢐ3ꢑꢑ × 3ꢑꢑꢒ ꢂꢏꢈꢓꢀꢄꢉ ꢇꢔꢕ  
θ
= 45°C/W, θ = 10°C/W  
JC  
θ
= 43°C/W  
JA  
JA  
EXPOSED PAD (PIN 17) IS PGND AND GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 11) IS PGND AND GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION http://www.linear.com/product/LT8362#orderinfo  
LEAD FREE FINISH  
LT8362EMSE#PBF  
LT8362IMSE#PBF  
LT8362HMSE#PBF  
LT8362EDD#PBF  
LT8362IDD#PBF  
LT8362HDD#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8362EMSE#TRPBF  
LT8362IMSE#TRPBF  
LT8362HMSE#TRPBF  
LT8362EDD#TRPBF  
LT8362IDD#TRPBF  
LT8362HDD#TRPBF  
8362  
16-Lead Plastic MSOP with 4 Pins Removed –40°C to 125°C  
16-Lead Plastic MSOP with 4 Pins Removed –40°C to 125°C  
16-Lead Plastic MSOP with 4 Pins Removed –40°C to 150°C  
8362  
8362  
LGWZ  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LGWZ  
LGWZ  
Consult LTC® Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
8362fa  
2
For more information www.linear.com/LT8362  
LT8362  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, EN/UVLO = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
Operating Voltage Range  
2.8  
60  
V
IN  
IN  
Quiescent Current at Shutdown  
V
V
= 0.2V  
= 1.5V  
1
1
2
15  
μA  
μA  
EN/UVLO  
EN/UVLO  
2
2
5
25  
μA  
μA  
V
IN  
Quiescent Current  
Sleep Mode (Not Switching)  
SYNC = 0V  
SYNC = 0V or INTV , BIAS = 0V  
9
9
15  
30  
μA  
μA  
l
l
l
Active Mode (Not Switching)  
1200  
1200  
1600  
1850  
µA  
µA  
CC  
SYNC = 0V or INTV , BIAS = 5V  
22  
22  
40  
65  
µA  
µA  
CC  
BIAS Threshold  
Rising, BIAS Can Supply INTV  
4.4  
4
4.65  
4.25  
V
V
CC  
Falling, BIAS Cannot Supply INTV  
CC  
V
Falling Threshold to Supply INTV  
BIAS = 12V  
BIAS – 2V  
V
V
IN  
CC  
BIAS Falling Threshold to Supply INTV  
FBX Regulation  
V
= 12V  
V
IN  
CC  
IN  
l
l
FBX Regulation Voltage  
FBX > 0V  
FBX < 0V  
1.568  
–0.820  
1.6  
–0.80  
1.632  
–0.780  
V
V
FBX Line Regulation  
FBX > 0V, 2.8V < V < 60V  
0.005  
0.005  
0.015  
0.015  
%/V  
%/V  
IN  
FBX < 0V, 2.8V < V < 60V  
IN  
l
FBX Pin Current  
FBX = 1.6V, –0.8V  
–10  
10  
nA  
Oscillator  
l
l
l
Switching Frequency (f  
)
R = 165k  
273  
0.92  
1.85  
300  
1
2
327  
1.08  
2.15  
kHz  
MHz  
MHz  
OSC  
T
R = 45.3k  
T
R = 20k  
T
SSFM Maximum Frequency Deviation  
Minimum On-Time  
(∆f/f ) • 100, R = 20k  
14  
20  
25  
%
OSC  
T
Burst Mode, V = 24V (Note 6)  
70  
60  
90  
85  
ns  
ns  
IN  
Pulse-Skip Mode, V = 24V (Note 6)  
IN  
l
Minimum Off-Time  
50  
75  
ns  
l
l
SYNC/Mode, Mode Thresholds (Note 5)  
High (Rising)  
Low (Falling)  
1.3  
0.2  
1.7  
V
V
0.14  
l
l
SYNC/Mode, Clock Thresholds (Note 5)  
Rising  
Falling  
1.3  
0.8  
1.7  
V
V
0.4  
f
/f  
Allowed Ratio  
R = 20k  
T
0.95  
1
1.25  
kHz/kHz  
SYNC OSC  
SYNC Pin Current  
SYNC = 2V  
SYNC = 0V, Current Out of Pin  
10  
10  
25  
25  
µA  
µA  
Switch  
l
Maximum Switch Current Limit Threshold  
Switch Overcurrent Threshold  
2
2.5  
3.75  
165  
0.1  
3.1  
1
A
A
Discharges SS Pin  
Switch R  
I
= 0.5A  
= 60V  
mΩ  
µA  
DS(ON)  
SW  
Switch Leakage Current  
V
SW  
8362fa  
3
For more information www.linear.com/LT8362  
LT8362  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, EN/UVLO = 12V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EN/UVLO Logic  
l
l
l
EN/UVLO Pin Threshold (Rising)  
EN/UVLO Pin Threshold (Falling)  
EN/UVLO Pin Current  
Soft-Start  
Start Switching  
Stop Switching  
1.576  
1.555  
–50  
1.68  
1.6  
1.90  
1.645  
50  
V
V
V
= 1.6V  
nA  
EN/UVLO  
Soft-Start Charge Current  
Soft-Start Pull-Down Resistance  
Error Amplifier  
SS = 0.5V  
2
µA  
Ω
Fault Condition, SS = 0.1V  
220  
Error Amplifier Transconductance  
FBX = 1.6V  
FBX = –0.8V  
75  
60  
µA/V  
µA/V  
Error Amplifier Voltage Gain  
FBX = 1.6V  
FBX = –0.8V  
185  
145  
V/V  
V/V  
Error Amplifier Max Source Current  
Error Amplifier Max Sink Current  
V = 1.1V, Current Out of Pin  
7
7
µA  
µA  
C
V = 1.1V  
C
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime.  
Note 2: INTV cannot be externally driven. No additional components or  
CC  
loading is allowed on this pin.  
Note 5: For SYNC/MODE inputs required to select modes of operation see  
the Pin Functions and Applications Information sections.  
Note 6: The IC is tested in a Boost converter configuration with the output  
voltage programmed for 24V.  
Note 3: The LT8362E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8362I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT8362H is guaranteed over the full –40°C to  
150°C operating junction temperature range.  
8362fa  
4
For more information www.linear.com/LT8362  
LT8362  
TYPICAL PERFORMANCE CHARACTERISTICS  
FBX Positive Regulation Voltage  
vs Temperature  
FBX Negative Regulation Voltage  
vs Temperature  
EN/UVLO Pin Thresholds  
vs Temperature  
ꢀꢁꢂꢃ8ꢁ  
ꢀꢁꢂꢃ8ꢄ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ8ꢁꢁ  
ꢀꢁꢂ8ꢁꢃ  
ꢀꢁꢂ8ꢃꢁ  
ꢀꢁꢂ8ꢃꢄ  
ꢀꢁꢂ82ꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ2  
ꢀꢁꢂꢃ  
ꢀꢁ68  
ꢀꢁ66  
ꢀꢁ6ꢂ  
ꢀꢁ62  
ꢀꢁ6ꢂ  
ꢀꢁꢂ8  
ꢀꢁꢂ6  
ꢀꢁꢂꢃ  
ꢀꢁ632  
ꢀꢁ62ꢂ  
ꢀꢁ6ꢀ6  
ꢀꢁ6ꢂ8  
ꢀꢁ6ꢂꢂ  
ꢀꢁꢂꢃ2  
ꢀꢁꢂ8ꢃ  
ꢀꢁꢂꢃ6  
ꢀꢁꢂ68  
ꢀ ꢁ2ꢂ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢈꢁꢊ ꢋꢌꢃꢇꢁꢍꢆꢁꢎ  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢅꢅꢉꢁꢊ ꢋꢌꢃꢍꢁꢎꢆꢇꢇꢏ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
8362 ꢀꢁ2  
8362 ꢀꢁ3  
8362 ꢀꢁꢂ  
Switching Frequency  
vs Temperature  
Normalized Switching Frequency  
vs FBX Voltage  
Switching Frequency vs VIN  
2ꢀꢁꢂ  
2ꢀꢁ8  
2ꢀꢁ6  
2ꢀꢁꢂ  
2ꢀꢁ2  
2ꢀꢁꢁ  
ꢀꢁꢂ8  
ꢀꢁꢂ6  
ꢀꢁꢂꢃ  
ꢀꢁꢂ2  
ꢀꢁꢂꢃ  
ꢀ2ꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
2ꢀ  
2ꢀꢁꢂ  
2ꢀꢁ8  
2ꢀꢁ6  
2ꢀꢁꢂ  
2ꢀꢁ2  
2ꢀꢁꢁ  
ꢀꢁꢂ8  
ꢀꢁꢂ6  
ꢀꢁꢂꢃ  
ꢀꢁꢂ2  
ꢀꢁꢂꢃ  
ꢀ ꢁ2ꢂ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ8 ꢀꢁꢂꢃ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢀꢁ8  
ꢀꢁ2  
ꢀꢁ6  
ꢀꢁ ꢀꢁ 2ꢀ 2ꢀ 3ꢀ 3ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ 6ꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢅꢆ ꢇꢀꢈ  
ꢀꢁꢂ  
ꢀꢁ  
8362 ꢀꢁꢂ  
8362 ꢀꢁ6  
8362 ꢀꢁꢂ  
Switch Current Limit  
vs Duty Cycle  
Switch Minimum On-Time  
vs Temperature  
Switch Minimum Off-Time  
vs Temperature  
3ꢀꢁ  
2ꢀꢁ  
2ꢀ8  
2ꢀꢁ  
2ꢀ6  
2ꢀꢁ  
2ꢀꢁ  
2ꢀ3  
2ꢀ2  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀ ꢁ2ꢂ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ 2ꢀ 3ꢀ ꢀꢁ ꢀꢁ 6ꢀ ꢀꢁ 8ꢀ ꢀꢁ ꢀꢁꢁ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
8362 ꢀꢁꢂ  
8362 ꢀꢁ8  
8362 ꢀꢁꢂ  
8362fa  
5
For more information www.linear.com/LT8362  
LT8362  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN Pin Current (Active Mode,  
VIN Pin Current (Active Mode, Not  
Switching, Bias = 5V)  
vs Temperature  
VIN Pin Current (Sleep Mode, Not  
Switching) vs Temperature  
Not Switching, Bias = 0V)  
vs Temperature  
3ꢀ  
2ꢀ  
2ꢀ  
2ꢀ  
ꢀ8  
ꢀꢁ  
ꢀ2  
2ꢀꢁ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁ  
ꢀ6  
ꢀ2  
38  
3ꢀ  
3ꢀ  
26  
22  
ꢀ8  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ2ꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀ ꢁ2ꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄꢅ  
6
3
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀ2ꢁ  
2ꢀ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀ2ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢄꢇꢈꢉꢇꢊꢋꢄꢁꢊꢇ ꢌꢍꢃꢎ  
8362 ꢀꢁꢂ  
8362 ꢀꢁꢁ  
8362 ꢀꢁ2  
Switching Waveforms  
(in CCM)  
Switching Waveforms  
(in DCM/Light Burst Mode)  
Switching Waveforms  
(in Deep Burst Mode)  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
2ꢀꢁꢂꢃꢄꢁ  
2ꢀꢁꢂꢃꢄꢁ  
2ꢀꢁꢂꢃꢄꢁ  
8362 ꢀꢁ3  
8362 ꢀꢁꢂ  
8362 ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
V
OUT Transient Response: Load  
VOUT Transient Response: Load  
Current Transients from 160mA to  
320mA to 160mA  
Current Transients from 80mA to  
320mA to 80mA  
Burst Frequency vs Load Current  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢆꢅꢅꢉꢊꢋꢆꢄꢊꢂꢃ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢆꢅꢅꢉꢊꢋꢆꢄꢊꢂꢃ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢆꢅꢅꢉꢊꢋꢆꢄꢊꢂꢃ  
ꢀ ꢁ2ꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ8ꢂ  
2ꢀꢀꢁꢂꢃꢄꢅꢆ  
2ꢀꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ2ꢂ  
ꢀꢁꢂ  
ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀ ꢁ8ꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ8ꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
8362 ꢀꢁꢂ  
8362 ꢀꢁ6  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
2ꢀ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8362 ꢀꢁ8  
8362fa  
6
For more information www.linear.com/LT8362  
LT8362  
PIN FUNCTIONS  
EN/UVLO: Shutdown and Undervoltage Detect Pin. The  
LT8362 is shut down when this pin is low and active  
when this pin is high. Below an accurate 1.6V threshold,  
the part enters undervoltage lockout and stops switching.  
This allows an undervoltage lockout (UVLO) threshold to  
be programmed for system input voltage by resistively  
dividing down system input voltage to the EN/UVLO pin.  
An 80mV pin hysteresis ensures part switching resumes  
when the pin exceeds 1.68V. EN/UVLO pin voltage below  
0.2V reduces VIN current below 1µA. If shutdown and  
UVLO features are not required, the pin can be tied directly  
to system input.  
RT: A resistor from this pin to the exposed pad GND cop-  
per (near FBX) programs switching frequency.  
SS: Soft-Start Pin. Connect a capacitor from this pin to  
GND copper (near FBX) to control the ramp rate of induc-  
tor current during converter start-up. SS pin charging  
current is 2μA. An internal 220Ω MOSFET discharges this  
pin during shutdown or fault conditions.  
SYNC/MODE: This pin allows five selectable modes for  
optimization of performance.  
SYNC/MODE Pin Input  
(1) GND or <0.14V  
Capable Mode(s) of Operation  
Burst  
(2) External Clock  
Pulse-skip/Sync  
Burst/SSFM  
V : Input Supply. This pin must be locally bypassed. Be  
IN  
sure to place the positive terminal of the input capacitor as  
close as possible to the VIN pin, and the negative terminal  
as close as possible to the exposed pad PGND copper  
(near EN/UVLO).  
(3) 100k Resistor to GND  
(4) Float (pin open)  
Pulse-skip  
(5) INTV or >1.7V  
Pulse-skip/SSFM  
CC  
where the selectable modes of operation are,  
INTVCC: Regulated 3.2V Supply for Internal Loads. The  
Burst = low I , low output ripple operation at light loads  
Q
INTV pin must be bypassed with a 1µF low ESR ceramic  
CC  
Pulse-skip = skipped pulse(s) at light load (aligned to clock)  
Sync = switching frequency synchronized to external clock  
SSFM = Spread Spectrum Frequency Modulation for low  
EMI  
capacitor to GND. No additional components or loading is  
allowed on this pin. INTV draws power from the BIAS  
CC  
pin if 4.4V ≤ BIAS ≤ V , otherwise INTV is powered by  
IN  
CC  
the V pin.  
IN  
SW1, SW2 (SW): Output of the Internal Power Switch.  
Minimize the metal trace area connected to these pins to  
reduce EMI.  
NC: No Internal Connection. Leave this pin open.  
BIAS: Second Input Supply for Powering INTVCC.  
Removes the majority of INTV current from the V pin  
CC  
IN  
PGND,GND: Power Ground and Signal Ground for the  
IC. The package has an exposed pad underneath the IC  
which is the best path for heat out of the package. The  
pin should be soldered to a continuous copper ground  
plane under the device to reduce die temperature and  
increase the power capability of the LT8362. Connect  
power ground components to the exposed pad copper  
exiting near the EN/UVLO and SW pins. Connect signal  
ground components to the exposed pad copper exiting  
to improve efficiency when 4.4V ≤ BIAS ≤ V . If unused,  
IN  
tie the pin to GND.  
VC: Error Amplifier Output Pin. Tie external compensation  
network to this pin.  
FBX: Voltage Regulation Feedback Pin for Positive or  
Negative Outputs. Connect this pin to a resistor divider  
between the output and the exposed pad GND copper  
(near FBX). FBX reduces the switching frequency during  
start-up and fault conditions when FBX is close to 0V.  
near the V and FBX pins.  
C
8362fa  
7
For more information www.linear.com/LT8362  
LT8362  
BLOCK DIAGRAM  
L
D
V
IN  
V
OUT  
R4  
OPT  
R3  
OPT  
C
C
IN  
OUT  
EN/UVLO  
V
IN  
SW  
SW  
BIAS  
+
+
V
(+)  
– 2V(–)  
4.4V(+)  
4.0V(–)  
BIAS  
BIAS  
INTERNAL  
REFERENCE  
UVLO  
V
+
1.68V(+)  
1.6V(–)  
UVLO  
A6  
T > 170°C  
J
3.2V REGULATOR  
INTV  
CC  
INTV  
CC  
UVLO  
SYNC/MODE  
RT  
C
VCC  
OSCILLATOR  
FREQUENCY  
FOLDBACK  
R5  
SWITCH  
LOGIC  
ERROR AMP  
SELECT  
M1  
SLOPE  
DRIVER  
BURST  
DETECT  
ERROR  
AMP  
+
1.5×  
1.6V  
+
+
FBX  
A1  
R1  
MAX  
I
V
OUT  
LIMIT  
A7  
A5  
R2  
PWM  
OVER-  
ERROR  
AMP  
COMPARATOR  
CURRENT  
+
+
MAX  
LIMIT  
A2  
I
A3  
–0.8V  
I
SS  
2μA  
UVLO  
OVERCURRENT  
+
M2  
Q1  
A4  
R
SENSE  
SLOPE  
PGND/GND  
SS  
V
C
8362 BD  
R
C
C
SS  
C
C
8362fa  
8
For more information www.linear.com/LT8362  
LT8362  
OPERATION  
The LT8362 uses a fixed frequency, current mode con-  
trol scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring  
to the Block Diagram. An oscillator (with frequency  
programmed by a resistor at the RT pin) turns on the  
internal power switch at the beginning of each clock  
cycle. Current in the inductor then increases until the  
current comparator trips and turns off the power switch.  
The peak inductor current at which the switch turns off  
is controlled by the voltage on the VC pin. The error  
If the EN/UVLO pin voltage is below 1.6V, the LT8362  
enters undervoltage lockout (UVLO), and stops switching.  
When the EN/UVLO pin voltage is above 1.68V (typical),  
the LT8362 resumes switching. If the EN/UVLO pin volt-  
age is below 0.2V, the LT8362 draws less than 1µA from  
V .  
IN  
For the SYNC/MODE pin tied to ground or <0.14V, the  
LT8362 will enter low output ripple Burst Mode opera-  
tion for ultra low quiescent current during light loads to  
maintain high efficiency. For a 100k resistor from SYNC/  
MODE pin to GND, the LT8362 uses Burst Mode opera-  
tion for improved efficiency at light loads but seamlessly  
transitions to Spread-Spectrum Modulation of switch-  
ing frequency for low EMI at heavy loads. For the SYNC/  
MODE pin floating (left open), the LT8362 uses pulse-  
skipping mode, at the expense of hundreds of microamps,  
to maintain output voltage regulation at light loads by  
skipping switch pulses. For the SYNC/MODE pin tied to  
amplifier servos the V pin by comparing the voltage on  
C
the FBX pin with an internal reference voltage (1.60V or  
–0.80V, depending on the chosen topology). When the  
load current increases it causes a reduction in the FBX  
pin voltage relative to the internal reference. This causes  
the error amplifier to increase the V pin voltage until the  
C
new load current is satisfied. In this manner, the error  
amplifier sets the correct peak switch current level to  
keep the output in regulation.  
INTV or >1.7V, the LT8362 uses pulse-skipping mode  
CC  
The LT8362 is capable of generating either a positive or  
negative output voltage with a single FBX pin. It can be  
configured as a boost or SEPIC converter to generate a  
positive output voltage, or as an inverting converter to  
generate a negative output voltage. When configured as  
a Boost converter, as shown in the Block Diagram, the  
FBX pin is pulled up to the internal bias voltage of 1.60V  
by a voltage divider (R1 and R2) connected from VOUT  
to GND. Amplifier A2 becomes inactive and amplifier A1  
and performs Spread-Spectrum Modulation of switching  
frequency. For the SYNC/MODE pin driven by an external  
clock, the converter switching frequency is synchronized  
to that clock and pulse-skipping mode is also enabled. See  
the Pin Functions section for SYNC/MODE pin.  
The LT8362 includes a BIAS pin to improve efficiency  
across all loads. The LT8362 intelligently chooses  
between the V and BIAS pins to supply the INTV for  
IN  
CC  
best efficiency. The INTV supply current can be drawn  
CC  
performs (inverting) amplification from FBX to V . When  
C
from the BIAS pin instead of the V pin for 4.4V ≤ BIAS  
IN  
the LT8362 is in an inverting configuration, the FBX pin  
≤ V .  
IN  
is pulled down to –0.80V by a voltage divider from V  
OUT  
Protection features ensure the immediate disable of  
switching and reset of the SS pin for any of the following  
faults: internal reference UVLO, INTVCC UVLO, switch cur-  
rent > 1.5× maximum limit, EN/UVLO < 1.6V or junction  
temperature > 170°C.  
to GND. Amplifier A1 becomes inactive and amplifier A2  
performs (non-inverting) amplification from FBX to V .  
C
8362fa  
9
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
ACHIEVING ULTRALOW QUIESCENT CURRENT  
To enhance efficiency at light loads the LT8362 uses a  
low ripple Burst Mode architecture. This keeps the out-  
put capacitor charged to the desired output voltage while  
minimizing the input quiescent current and output ripple.  
In Burst Mode operation, the LT8362 delivers single small  
pulses of current to the output capacitor followed by sleep  
periods where the output power is supplied by the output  
capacitor. While in sleep mode, the LT8362 consumes  
only 9µA.  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
8362 ꢀꢁ2  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
Figure 2. Burst Mode Operation  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1) and the percentage of  
time the LT8362 is in sleep mode increases, resulting in  
much higher light load efficiency than for typical convert-  
ers. To optimize the quiescent current performance at light  
loads, the current in the feedback resistor divider must  
be minimized as it appears to the output as load current.  
In addition, all possible leakage currents from the output  
defined by the resistor at the RT pin as shown in Figure 1.  
The output load at which the LT8362 reaches the fixed  
frequency varies based on input voltage, output voltage,  
and inductor choice.  
PROGRAMMING INPUT TURN-ON AND TURN-OFF  
THRESHOLDS WITH EN/UVLO PIN  
should also be minimized as they all add to the equiva  
-
The EN/UVLO pin voltage controls whether the LT8362 is  
enabled or is in a shutdown state. A 1.6V reference and  
a comparator A6 with built-in hysteresis (typical 80mV)  
allow the user to accurately program the system input  
voltage at which the IC turns on and off (see the Block  
Diagram). The typical input falling and rising threshold  
voltages can be calculated by the following equations:  
lent output load. The largest contributor to leakage current  
can be due to the reverse biased leakage of the Schottky  
diode (see Diode Selection in the Applications Information  
section).  
While in Burst Mode operation, the current limit of the  
switch is approximately 500mA resulting in the output  
voltage ripple shown in Figure 2. Increasing the output  
capacitance will decrease the output ripple proportionally.  
As the output load ramps upward from zero the switching  
frequency will increase but only up to the fixed frequency  
R3 + R4  
V
= 1.60 •  
IN(FALLING,UVLO(–))  
R4  
R3 + R4  
R4  
V
= 1.68 •  
IN(RISING, UVLO(+))  
2ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢆꢅꢅꢉꢊꢋꢆꢄꢊꢂꢃ  
V current is reduced below 1µA when the EN/UVLO pin  
IN  
ꢀ ꢁ2ꢂ  
ꢀꢁꢂ  
ꢀꢁ  
voltage is less than 0.2V. The EN/UVLO pin can be con-  
nected directly to the input supply VIN for always-enabled  
operation. A logic input can also control the EN/UVLO pin.  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ8ꢂ  
When operating in Burst Mode operation for light load  
currents, the current through the R3 and R4 network can  
easily be greater than the supply current consumed by the  
LT8362. Therefore, R3 and R4 should be large enough to  
minimize their effect on efficiency at light loads.  
ꢀꢁ  
2ꢀ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8362 ꢀꢁꢂ  
Figure 1. Burst Frequency vs Load Current  
8362fa  
10  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
INTV REGULATOR  
Synchronization and Mode Selection  
CC  
A low dropout (LDO) linear regulator, supplied from V ,  
To select low ripple Burst Mode operation, for high effi-  
ciency at light loads, tie the SYNC/MODE pin below 0.14V  
(this can be ground or a logic low output).  
IN  
produces a 3.2V supply at the INTV pin. A minimum  
CC  
1µF low ESR ceramic capacitor must be used to bypass  
the INTV pin to ground to supply the high transient cur-  
CC  
To synchronize the LT8362 oscillator to an external fre-  
quency connect a square wave (with 20% to 80% duty  
cycle) to the SYNC pin. The square wave amplitude should  
have valleys that are below 0.4V and peaks above 1.7V  
(up to 6V). The LT8362 will not enter Burst Mode opera-  
tion at low output loads while synchronized to an external  
clock, but instead will pulse skip to maintain regulation.  
The LT8362 may be synchronized over a 300kHz to 2MHz  
range. The RT resistor should be chosen to set the LT8362  
switching frequency equal to or below the lowest synchro-  
nization input. For example, if the synchronization signal  
rents required by the internal power MOSFET gate driver.  
No additional components or loading is allowed on this  
pin. The INTV rising threshold (to allow soft-start and  
CC  
switching) is typically 2.65V. The INTVCC falling threshold  
(to stop switching and reset soft-start) is typically 2.5V.  
To improve efficiency across all loads, the majority of  
INTV current can be drawn from the BIAS pin (4.4V ≤  
CC  
BIAS ≤ V ) instead of the V pin. For SEPIC applications  
IN  
IN  
with VIN often greater than VOUT, the BIAS pin can be  
directly connected to V . If the BIAS pin is connected  
OUT  
will be 500kHz and higher, the R should be selected for  
T
to a supply other than V , be sure to bypass the pin  
OUT  
500kHz.  
with a local ceramic capacitor.  
For some applications it is desirable for the LT8362 to  
operate in pulse-skipping mode, offering two major differ-  
ences from Burst Mode operation. Firstly, the clock stays  
awake at all times and all switching cycles are aligned to  
the clock. Secondly, the full switching frequency is main-  
tained at lower output load than in Burst Mode operation.  
These two differences come at the expense of increased  
quiescent current. To enable pulse-skipping mode, float  
the SYNC pin.  
Programming Switching Frequency  
The LT8362 uses a constant frequency PWM architecture  
that can be programmed to switch from 300kHz to 2MHz  
by using a resistor tied from the RT pin to ground. A table  
showing the necessary R value for a desired switching  
T
frequency is in Table 1.  
The R resistor required for a desired switching frequency  
T
can be calculated using:  
To improve EMI/EMC, the LT8362 can provide spread  
spectrum frequency modulation (SSFM). This feature var-  
ies the clock with a triangle frequency modulation of 20%.  
For example, if the LT8362's frequency was programmed  
to switch at 2MHz, spread spectrum mode will modulate  
the oscillator between 2MHz and 2.4MHz. The 20% modu-  
51.2  
fOSC  
RT =  
5.6  
where R is in kΩ and f  
is the desired switching fre-  
T
OSC  
quency in MHz.  
Table 1. SW Frequency vs R Value  
lation will occur at a frequency: f /256 where f  
is  
T
OSC  
OSC  
the switching frequency programmed using the RT pin.  
f
(MHz)  
R (kΩ)  
T
OSC  
0.3  
165  
107  
63.4  
45.3  
28.7  
20  
The LT8362 can also be configured to operate in pulse-  
skipping/SSFM mode by tying the SYNC/MODE pin above  
1.7V. The LT8362 can also be configured for Burst Mode  
operation at light loads (for improved efficiency) and  
SSFM at heavy loads (for low EMI) by tying a 100k from  
the SYNC/MODE pin to GND.  
0.45  
0.75  
1
1.5  
2
8362fa  
11  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
DUTY CYCLE CONSIDERATION  
Choose the resistor values for a negative output voltage  
according to:  
The LT8362 minimum on-time, minimum off-time and  
switching frequency (fOSC) define the allowable minimum  
and maximum duty cycles of the converter (see Minimum  
On-Time, Minimum Off-Time, and Switching Frequency  
in the Electrical Characteristics table).  
|VOUT  
|
R1 = R2 •  
–1  
0.80V  
The locations of R1 and R2 are shown in the Block  
Diagram. 1% resistors are recommended to maintain  
output voltage accuracy.  
Minimum Allowable Duty Cycle =  
Minimum On-Time(MAX) fOSC(MAX)  
Higher-value FBX divider resistors result in the lowest  
input quiescent current and highest light-load efficiency.  
FBX divider resistors R1 and R2 are usually in the range  
from 25k to 1M.  
Maximum Allowable Duty Cycle =  
1 – Minimum Off-Time(MAX) fOSC(MAX)  
The required switch duty cycle range for a Boost converter  
operating in continuous conduction mode (CCM) can be  
calculated as:  
SOFT-START  
The LT8362 contains several features to limit peak switch  
currents and output voltage (VOUT) overshoot during  
start-up or recovery from a fault condition. The primary  
purpose of these features is to prevent damage to external  
components or the load.  
V
IN(MAX)  
DMIN = 1 –  
DMAX = 1 –  
VOUT + VD  
V
IN(MIN)  
VOUT + VD  
High peak switch currents during start-up may occur  
where V is the diode forward voltage drop. If the above  
D
in switching regulators. Since V  
is far from its final  
value, the feedback loop is satuOraUtTed and the regulator  
tries to charge the output capacitor as quickly as possible,  
resulting in large peak currents. A large surge current may  
cause inductor saturation or power switch failure.  
duty cycle calculations for a given application violate  
the minimum and/or maximum allowed duty cycles  
for the LT8362, operation in discontinuous conduction  
mode (DCM) might provide a solution. For the same V  
IN  
and V  
levels, operation in DCM does not demand as  
OUT  
The LT8362 addresses this mechanism with a programma-  
ble soft-start function. As shown in the Block Diagram, the  
soft-start function controls the ramp of the power switch  
low a duty cycle as in CCM. DCM also allows higher duty  
cycle operation than CCM. The additional advantage of  
DCM is the removal of the limitations to inductor value  
and duty cycle required to avoid sub-harmonic oscilla-  
tions and the right half plane zero (RHPZ). While DCM  
provides these benefits, the trade-off is higher inductor  
peak current, lower available output power and reduced  
efficiency.  
current by controlling the ramp of V through Q1. This  
C
allows the output capacitor to be charged gradually toward  
its final value while limiting the start-up peak currents.  
Figure 3 shows the output voltage and supply current for  
the first page Typical Application. It can be seen that both  
the output voltage and supply current come up gradually.  
SETTING THE OUTPUT VOLTAGE  
The output voltage is programmed with a resistor divider  
from the output to the FBX pin. Choose the resistor values  
for a positive output voltage according to:  
VOUT  
R1 = R2 •  
–1  
1.60V  
8362fa  
12  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
COMPENSATION  
Loop compensation determines the stability and transient  
performance. The LT8362 uses current mode control to  
regulate the output which simplifies loop compensation.  
The optimum values depend on the converter topology, the  
component values and the operating conditions (including  
the input voltage, load current, etc.). To compensate the  
feedback loop of the LT8362, a series resistor-capacitor  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
2ꢀꢁꢂꢃꢄꢁ  
8362 ꢀꢁ3  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
network is usually connected from the V pin to GND.  
C
The Block Diagram shows the typical V compensation  
C
Figure 3. Soft-Start Waveforms  
network. For most applications, the capacitor should be  
in the range of 100pF to 10nF, and the resistor should  
be in the range of 5k to 100k. A small capacitor is often  
connected in parallel with the RC compensation network  
FAULT PROTECTION  
An inductor overcurrent fault (> 3.75A) and/or INTV  
undervoltage (INTVCC < 2.5V) and/or thermal lockoCuCt  
(TJ > 170°C) will immediately prevent switching, will  
reset the SS pin and will pull down V . Once all faults are  
removed, the LT8362 will soft-start VC and hence inductor  
peak current.  
to attenuate the V voltage ripple induced from the out-  
C
put voltage ripple through the internal error amplifier. The  
parallel capacitor usually ranges in value from 2.2pF to  
22pF. A practical approach to designing the compensa-  
tion network is to start with one of the circuits in this data  
sheet that is similar to your application, and tune the com-  
pensation network to optimize the performance. Stability  
should then be checked across all operating conditions,  
including load current, input voltage and temperature.  
Application Note 76 is a good reference.  
C
FREQUENCY FOLDBACK  
During start-up or fault conditions in which V  
is very  
OUT  
low, extremely small duty cycles may be required to main-  
tain control of inductor peak current. The minimum on-  
time limitation of the power switch might prevent these  
low duty cycles from being achievable. In this scenario  
inductor current rise will exceed inductor current fall  
during each cycle, causing inductor current to “walk up”  
beyond the switch current limit. The LT8362 provides  
protection from this by folding back switching frequency  
whenever FBX or SS pins are close to GND (low V  
levels or start-up). This frequency foldback provideOsUaT  
larger switch-off time, allowing inductor current to fall  
enough each cycle (see Normalized Switching Frequency  
vs FBX Voltage in the Typical Performance Characteristics  
section).  
THERMAL CONSIDERATIONS  
Care should be taken in the layout of the PCB to ensure  
good heat sinking of the LT8362. Both packages have an  
exposed pad underneath the IC which is the best path  
for heat out of the package. The exposed pad should be  
soldered to a continuous copper ground plane under the  
device to reduce die temperature and increase the power  
capability of the LT8362. The ground plane should be  
connected to large copper layers to spread heat dissi-  
pated by the LT8362. Power dissipation within the LT8362  
(P ) can be estimated by subtracting the induc-  
DISS_LT8362  
tor and Schottky diode power losses from the total power  
losses calculated in an efficiency measurement. The junc-  
tion temperature of LT8362 can then be estimated by:  
THERMAL LOCKOUT  
If the LT8362 die temperature reaches 170°C (typical),  
the part will stop switching and go into thermal lockout.  
When the die temperature has dropped by 5°C (nominal),  
the part will resume switching with a soft-started inductor  
peak current.  
TJ(LT8362) = TA + θJA PDISS_LT8362  
8362fa  
13  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
APPLICATION CIRCUITS  
Due to the current limit of its internal power switch, the  
LT8362 should be used in a boost converter whose maxi-  
The LT8362 can be configured for different topologies.  
The first topology to be analyzed will be the boost con-  
verter, followed by the SEPIC and inverting converters.  
mum output current (I  
) is:  
O(MAX)  
V
IN(MIN)  
IO(MAX)  
• 2A 0.5 • ΔI  
(
η  
)
SW  
VOUT  
Boost Converter: Switch Duty Cycle  
Minimum possible inductor value and switching frequency  
should also be considered since they will increase inductor  
The LT8362 can be configured as a boost converter for  
the applications where the converter output voltage is  
higher than the input voltage. Remember that boost con-  
verters are not short-circuit protected. Under a shorted  
output condition, the inductor current is limited only by the  
input supply capability. For applications requiring a step-  
up converter that is short-circuit protected, please refer  
to the Applications Information section covering SEPIC  
converters.  
ripple current ∆I  
.
SW  
The inductor ripple current ∆I has a direct effect on the  
SW  
choice of the inductor value and the converter’s maximum  
output current capability. Choosing smaller values of  
∆ISW increases output current capability, but requires  
large inductances and reduces the current loop gain  
(the converter will approach voltage mode). Accepting  
larger values of ∆I provides fast transient response and  
allows the use ofSloWw inductances, but results in higher  
input current ripple and greater core losses, and reduces  
output current capability. It is recommended to choose a  
The conversion ratio as a function of duty cycle is:  
VOUT  
VIN  
1
=
1 D  
∆I of approximately 0.75A.  
SW  
in continuous conduction mode (CCM).  
Given an operating input voltage range, and having cho-  
sen the operating frequency and ripple current in the  
inductor, the inductor value of the boost converter can  
be determined using the following equation:  
For a boost converter operating in CCM, the duty cycle  
of the main switch can be calculated based on the output  
voltage (V ) and the input voltage (V ). The maximum  
OUT  
IN  
duty cycle (DMAX) occurs when the converter has the  
VIN(MIN)  
minimum input voltage:  
L =  
• DMAX  
ΔISW fOSC  
VOUT VIN(MIN)  
DMAX  
=
The peak inductor current is the switch current limit (max-  
imum 3.1A), and the RMS inductor current is approxi-  
VOUT  
mately equal to I  
.
Discontinuous conduction mode (DCM) provides higher  
conversion ratios at a given frequency at the cost of  
reduced efficiencies, higher switching currents, and lower  
available output power.  
L(MAX)(AVE)  
Choose an inductor that can handle at least 3.1A without sat-  
urating, and ensure that the inductor has a low DCR (copper-  
2
wire resistance) to minimize I R power losses. Note that in  
some applications, the current handling requirements of the  
inductor can be lower, such as in the SEPIC topology where  
each inductor only carries one-half of the total switch cur-  
rent. For better efficiency, use similar valued inductors with a  
larger volume. Many different sizes and shapes are available  
from various manufacturers (see Table 2). Choose a core  
material that has low losses at the programmed switching  
Boost Converter: Maximum Output Current Capability  
and Inductor Selection  
For the boost topology, the maximum average inductor  
current is:  
1
1
η
IL(MAX)(AVE)= IO(MAX)  
1 DMAX  
where η (< 1.0) is the converter efficiency.  
8362fa  
14  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
inductance forms a high quality (under damped) tank cir-  
cuit. If the LT8362 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possibly  
exceeding the LT8362’s voltage rating. This situation is  
easily avoided (see Application Note 88).  
frequency, such as a ferrite core. The final value chosen  
for the inductor should not allow peak inductor currents to  
exceed 2A in steady state at maximum load. Due to toler-  
ances, be sure to account for minimum possible inductance  
value, switching frequency and converter efficiency.  
For inductor current operation in CCM and duty cycles  
above 50%, the LT8362's internal slope compensa-  
tion prevents sub-harmonic oscillations provided the  
inductor value exceeds a minimum value given by:  
BOOST CONVERTER: OUTPUT CAPACITOR SELECTION  
Low ESR (equivalent series resistance) capacitors should  
be used at the output to minimize the output ripple volt-  
age. Multilayer ceramic capacitors are an excellent choice,  
as they are small and have extremely low ESR. Use X5R or  
X7R types. This choice will provide low output ripple and  
good transient response. A 4.7µF to 47µF output capacitor  
is sufficient for most applications, but systems with very  
low output currents may need only a 1µF or 2.2µF out-  
put capacitor. Solid tantalum or OS-CON capacitor can be  
used, but they will occupy more board area than a ceramic  
and will have a higher ESR. Always use a capacitor with a  
sufficient voltage rating.  
2•D–1  
V
(
)
IN  
L>  
–14•D2 +21•D5 • f  
1D  
(
)
(
)
(
)
OSC  
Lower L values are allowed if the inductor current oper-  
ates in DCM or duty cycle operation is below 50%.  
Table 2. Inductor Manufacturers  
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
(847) 639-6400  
(605) 886-4385  
www.sumida.com  
www.tdk.com  
Contributions of ESR (equivalent series resistance), ESL  
(equivalent series inductance) and the bulk capacitance  
must be considered when choosing the correct output  
capacitors for a given output ripple voltage. The effect of  
these three parameters (ESR, ESL and bulk C) on the out-  
put voltage ripple waveform for a typical boost converter  
is illustrated in Figure 4.  
Murata  
Coilcraft  
Wurth  
www.murata.com  
www.coilcraft.com  
www.we-online.com  
BOOST CONVERTER: INPUT CAPACITOR SELECTION  
Bypass the input of the LT8362 circuit with a ceramic  
capacitor of X7R or X5R type placed as close as pos-  
sible to the VIN and GND pins. Y5V types have poor  
performance over temperature and applied voltage, and  
should not be used. A 4.7µF to 10µF ceramic capacitor is  
adequate to bypass the LT8362 and will easily handle the  
ripple current. If the input power source has high imped-  
ance, or there is significant inductance due to long wires  
or cables, additional bulk capacitance may be necessary.  
This can be provided with a low performance electrolytic  
capacitor.  
ꢁꢔꢔ  
ꢁꢉ  
Δꢀ  
ꢆꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢅꢆꢇ  
ꢌꢍꢉꢎꢍꢉꢎ ꢏꢂꢊ ꢃꢁ  
ꢃꢁꢃꢅꢐ ꢍꢉꢏꢂꢆꢃꢅꢉꢆꢊ  
ꢄꢑꢁꢅꢌꢏ ꢒ ꢆꢅꢓꢇ  
Δꢀ  
ꢊꢋꢌ  
8362 ꢔꢕꢖ  
Figure 4. The Output Ripple Waveform of a Boost Converter  
A precaution regarding the ceramic input capacitor con-  
cerns the maximum input voltage rating of the LT8362.  
A ceramic input capacitor combined with trace or cable  
8362fa  
15  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
The choice of component(s) begins with the maximum  
acceptable ripple voltage (expressed as a percentage of  
the output voltage), and how this ripple should be divided  
nature. When in Burst Mode operation, the LT8362’s  
switching frequency depends on the load current, and  
at very light loads the LT8362 can excite the ceramic  
capacitor at audio frequencies, generating audible noise.  
Since the LT8362 operates at a lower current limit during  
Burst Mode operation, the noise is typically very quiet to a  
casual ear. If this is unacceptable, use a high performance  
tantalum or electrolytic capacitor at the output. Low noise  
ceramic capacitors are also available.  
between the ESR step ∆V  
and the charging/discharg-  
ESR  
ing ∆V  
. For the purpose of simplicity, we will choose  
COUT  
2% for the maximum output ripple, to be divided equally  
between ∆V and ∆V . This percentage ripple will  
ESR  
COUT  
change, depending on the requirements of the application,  
and the following equations can easily be modified. For a  
1% contribution to the total ripple voltage, the ESR of the  
output capacitor can be determined using the following  
equation:  
Table 3. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
0.01 • VOUT  
ID(PEAK)  
Murata  
ESRCOUT  
BOOST CONVERTER: DIODE SELECTION  
For the bulk C component, which also contributes 1% to  
the total ripple:  
A Schottky diode is recommended for use with the LT8362.  
Low leakage Schottky diodes are necessary when low  
quiescent current is desired at low loads. The diode leak-  
age appears as an equivalent load at the output and should  
be minimized. Choose Schottky diodes with sufficient  
reverse voltage ratings for the target applications.  
IO(MAX)  
COUT  
0.01 • VOUT fOSC  
The output capacitor in a boost regulator experiences  
high RMS ripple currents, as shown in Figure 4. The RMS  
ripple current rating of the output capacitor can be deter-  
mined using the following equation:  
Table 4. Recommended Schottky Diodes  
AVERAGE  
FORWARD REVERSE REVERSE  
CURRENT VOLTAGE CURRENT  
DMAX  
1 DMAX  
IRMS(COUT) IO(MAX)  
PART NUMBER  
DFLS260  
(A)  
(V)  
60  
20  
30  
(µA)  
MANUFACTURER  
Diodes, Inc.  
NXP  
2
20  
PMEG2020EJ  
PMEG3020EPA  
2
100  
80  
Multiple capacitors are often paralleled to meet ESR  
requirements. Typically, once the ESR requirement is sat-  
isfied, the capacitance is adequate for filtering and has the  
required RMS current rating. Additional ceramic capaci-  
tors in parallel are commonly used to reduce the effect of  
parasitic inductance in the output capacitor, which reduces  
high frequency switching noise on the converter output.  
2
NXP  
BOOST CONVERTER: LAYOUT HINTS  
The high speed operation of the LT8362 demands careful  
attention to board layout. Careless layout will result in per-  
formance degradation. Figure 5 shows the recommended  
component placement for a boost converter. Note the vias  
under the exposed pad. These should connect to a local  
ground plane for better thermal performance.  
CERAMIC CAPACITORS  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
when used with the LT8362 due to their piezoelectric  
8362fa  
16  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
ꢗꢘꢇ  
ꢆꢄ  
ꢔꢕꢄꢖ  
ꢋꢏ  
ꢗꢘꢇ  
ꢀꢍ  
ꢆꢄ  
3
ꢃꢄ  
ꢋꢏꢀ ꢀ6  
ꢋꢏ2 ꢀꢌ  
ꢔꢕꢄꢖ  
ꢋꢏ  
°
ꢔꢕꢄꢖ  
ꢋꢏ  
ꢆꢄ  
°
ꢃꢄ  
ꢋꢏ  
2
3
8
6
ꢋꢐꢄꢈ  
ꢋꢋ  
ꢆꢄ  
6
8
ꢆꢄꢇꢅ  
ꢈꢈ  
ꢋꢐꢄꢈ ꢀ2  
ꢋꢋ ꢀꢀ  
ꢆꢄꢇꢅ  
ꢉꢆꢊꢋ  
ꢈꢈ  
ꢄꢈ  
ꢑꢇ  
ꢕꢄꢖ  
ꢉꢆꢊꢋ  
ꢑꢇ ꢀꢍ  
ꢕꢄꢖ  
ꢒꢉꢓ  
ꢒꢉꢓ ꢎ  
ꢗꢘꢇ  
ꢗꢘꢇ  
°
°
8362 ꢒꢍꢁ  
(a) MSOP  
(b) DFN  
Figure 5. Suggested Boost Converter Layout  
ꢀꢁ  
ꢀꢁ  
SEPIC CONVERTER APPLICATIONS  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
The LT8362 can be configured as a SEPIC (single-ended  
primary inductance converter), as shown in Figure 6. This  
topology allows for the input to be higher, equal, or lower  
than the desired output voltage. The conversion ratio as  
a function of duty cycle is:  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ2  
ꢀꢁ  
ꢀꢁ  
8362  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂ  
VOUT + VD  
D
1 D  
ꢀꢁꢂꢀ  
=
ꢀꢀ  
V
IN  
in continuous conduction mode (CCM).  
8362 ꢀꢁ6  
In a SEPIC converter, no DC path exists between the input  
and output. This is an advantage over the boost converter  
for applications requiring the output to be disconnected  
from the input source when the circuit is in shutdown.  
Figure 6. LT8362 Configured in a SEPIC Topology  
8362fa  
17  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
SEPIC Converter: Switch Duty Cycle and Frequency  
In a SEPIC converter, the switch current is equal to I  
L2  
average switch current is defined as:  
+
L1  
I
when the power switch is on, therefore, the maximum  
For a SEPIC converter operating in CCM, the duty cycle  
of the main switch can be calculated based on the output  
voltage (V ), the input voltage (V ) and the diode for-  
ISW(MAX)(AVG) = IL1(MAX)(AVG) + IL2(MAX)(AVG)  
OUT  
IN  
ward voltage (V ).  
D
1
= IO(MAX)  
The maximum duty cycle (D  
) occurs when the con-  
MAX  
1 DMAX  
verter operates at the minimum input voltage:  
and the peak switch current is:  
VOUT + VD  
DMAX  
=
χ
1
V
+ VOUT + VD  
IN(MIN)  
ISW(PEAK) = 1 +  
• IO(MAX) •  
2
1 DMAX  
Conversely, the minimum duty cycle (D ) occurs when  
the converter operates at the maximum input voltage:  
MIN  
c
The constant  
in the preceding equations represents  
the percentage peak-to-peak ripple current in the switch,  
SW(MAX)(AVG)  
switch ripple current ∆I can be calculated by:  
VOUT + VD  
relative to I  
, as shown in Figure 7. Then, the  
SW  
DMIN  
=
V
+ VOUT + VD  
IN(MAX)  
ISW = χ • ISW(MAX)(AVG)  
Be sure to check that D  
and D  
obey:  
MAX  
MIN  
DMAX < 1 – Minimum Off-Time(MAX) fOSC(MAX)  
and  
The inductor ripple currents ∆I and ∆I are identical:  
L1  
L2  
IL1 = IL2 = 0.5 ISW  
DMIN > Minimum On-Time(MAX) fOSC(MAX)  
where Minimum Off-Time, Minimum On-Time and f  
are specified in the Electrical Characteristics table.  
OSC  
ꢄꢅ  
ꢃ  
ꢃ  
ꢄꢅꢇꢈꢉꢊꢋꢇꢉꢌꢍꢋ  
ꢄꢅ ꢆ  
ꢄꢅꢇꢈꢉꢊꢋꢇꢉꢌꢍꢋ  
SEPIC Converter: The Maximum Output Current  
Capability and Inductor Selection  
ꢏꢐ  
As shown in Figure 6, the SEPIC converter contains two  
inductors: L1 and L2. L1 and L2 can be independent, but  
can also be wound on the same core, since identical volt-  
ages are applied to L1 and L2 throughout the switching  
cycle.  
8362 ꢀꢁꢂ  
Figure 7. The Switch Current Waveform of the SEPIC Converter  
The inductor ripple current has a direct effect on the  
choice of the inductor value. Choosing smaller values of  
∆IL requires large inductances and reduces the current  
loop gain (the converter will approach voltage mode).  
Accepting larger values of ∆IL allows the use of low  
inductances, but results in higher input current ripple and  
For the SEPIC topology, the current through L1 is the  
converter input current. Based on the fact that, ideally, the  
output power is equal to the input power, the maximum  
average inductor currents of L1 and L2 are:  
DMAX  
IL1(MAX)(AVG) = IIN(MAX)(AVG) = IO(MAX)  
1 DMAX  
c
greater core losses. It is recommended that falls in the  
range of 0.5 to 0.8.  
IL2(MAX)(AVG) = IO(MAX)  
8362fa  
18  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
Due to the current limit of its internal power switch, the  
LT8362 should be used in a SEPIC converter whose maxi-  
Similar to Boost converters, the SEPIC converter also needs  
slope compensation to prevent subharmonic oscillations  
while operating in CCM. The equation presented in the  
Boost converter section defines the minimum inductance  
value to avoid sub-harmonic oscillations when coupled  
inductors are used. For uncoupled inductors, the minimum  
inductance requirement is doubled.  
mum output current (I ) is:  
O(MAX)  
IO(MAX) < (1 – DMAX) • (2A – 0.5 • ISW) • η  
where η (< 1.0) is the converter efficiency. Minimum  
possible inductor value and switching frequency should  
also be considered since they will increase inductor ripple  
SEPIC Converter: Output Diode Selection  
current ∆I  
.
SW  
To maximize efficiency, a fast switching diode with a low  
forward drop and low reverse leakage is desirable. The  
average forward current in normal operation is equal to  
the output current.  
Given an operating input voltage range, and having cho-  
sen ripple current in the inductor, the inductor value (L1  
and L2 are independent) of the SEPIC converter can be  
determined using the following equation:  
It is recommended that the peak repetitive reverse voltage  
V
IN(MIN)  
rating V  
is higher than V  
+ V  
by a safety  
RRM  
OUT  
IN(MAX)  
L1 = L2 =  
• DMAX  
0.5 • ΔISW • fOSC  
margin (a 10V safety margin is usually sufficient).  
The power dissipated by the diode is:  
PD = IO(MAX) VD  
For most SEPIC applications, the equal inductor values  
will fall in the range of 2.2µH to 100µH.  
By making L1 = L2, and winding them on the same core,  
the value of inductance in the preceding equation is  
replaced by 2L, due to mutual inductance:  
where V is diode’s forward voltage drop, and the diode  
D
junction temperature is:  
TJ = TA + PD • RθJA  
V
IN(MIN)  
The RθJA used in this equation normally includes the RθJC  
for the device, plus the thermal resistance from the board,  
L =  
• DMAX  
ΔISW • fOSC  
to the ambient temperature in the enclosure. T must not  
J
This maintains the same ripple current and energy storage  
in the inductors. The peak inductor currents are:  
exceed the diode maximum junction temperature rating.  
SEPIC Converter: Output and Input Capacitor Selection  
IL1(PEAK) = IL1(MAX) + 0.5 IL1  
IL2(PEAK) = IL2(MAX) + 0.5 IL2  
The selections of the output and input capacitors of the  
SEPIC converter are similar to those of the boost converter.  
The maximum RMS inductor currents are approximately  
equal to the maximum average inductor currents.  
Based on the preceding equations, the user should choose  
the inductors having sufficient saturation and RMS cur-  
rent ratings.  
8362fa  
19  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
SEPIC Converter: Selecting the DC Coupling Capacitor  
Inverting Converter: Switch Duty Cycle and Frequency  
The DC voltage rating of the DC coupling capacitor (C ,  
as shown in Figure 6) should be larger than the maximum  
input voltage:  
For an inverting converter operating in CCM, the duty  
cycle of the main switch can be calculated based on the  
negative output voltage (VOUT) and the input voltage (VIN).  
DC  
VCDC > V  
The maximum duty cycle (D  
) occurs when the con-  
IN(MAX)  
MAX  
verter has the minimum input voltage:  
C
has nearly a rectangular current waveform. During the  
DC  
VOUT VD  
VOUT VD V  
switch off-time, the current through C is I , while approx-  
DMAX  
=
imately –I flows during the on-time.DTChe RMS rating of the  
IN  
IN(MIN)  
O
coupling capacitor is determined by the following equation:  
Conversely, the minimum duty cycle (D ) occurs when  
the converter operates at the maximum input voltage :  
MIN  
VOUT + VD  
IRMS(CDC) > IO(MAX) •  
V
IN(MIN)  
VOUT VD  
VOUT VD V  
DMIN  
=
IN(MAX)  
A low ESR and ESL, X5R or X7R ceramic capacitor works  
well for C .  
DC  
Be sure to check that D  
and D  
obey :  
MAX  
MIN  
DMAX < 1 – Minimum Off-Time(MAX) fOSC(MAX)  
and  
INVERTING CONVERTER APPLICATIONS  
The LT8362 can be configured as a dual-inductor invert-  
ing topology, as shown in Figure 8. The V  
is:  
DMIN > Minimum On-Time(MAX) fOSC(MAX)  
to V ratio  
OUT  
IN  
where Minimum Off-Time, Minimum On-Time and f  
are specified in the Electrical Characteristics table.  
OSC  
VOUT VD  
D
1 D  
= −  
V
IN  
Inverting Converter: Inductor, Output Diode and Input  
Capacitor Selections  
in continuous conduction mode (CCM).  
The selections of the inductor, output diode and input  
capacitor of an inverting converter are similar to those  
of the SEPIC converter. Please refer to the corresponding  
SEPIC converter sections.  
ꢐ  
ꢅꢆ  
ꢅ2  
ꢃꢄ  
ꢃꢄ  
ꢇꢈꢉ ꢌ  
ꢇꢈꢉ  
ꢎꢏ  
ꢅꢉ8362  
ꢁꢆ  
8362 ꢊꢆꢋ  
ꢍꢄꢁ  
Figure 8. A Simplified Inverting Converter  
8362fa  
20  
For more information www.linear.com/LT8362  
LT8362  
APPLICATIONS INFORMATION  
Inverting Converter: Output Capacitor Selection  
The RMS ripple current rating of the output capacitor  
needs to be greater than:  
The inverting converter requires much smaller output  
capacitors than those of the boost, flyback and SEPIC  
converters for similar output ripples. This is due to the  
fact that, in the inverting converter, the inductor L2 is  
in series with the output, and the ripple current flowing  
through the output capacitors are continuous. The output  
ripple voltage is produced by the ripple current of L2 flow-  
ing through the ESR and bulk capacitance of the output  
capacitor:  
IRMS(COUT) > 0.3 IL2  
Inverting Converter: Selecting the DC Coupling  
Capacitor  
The DC voltage rating of the DC coupling capacitor (C ,  
DC  
as shown in Figure 8) should be larger than the maximum  
input voltage minus the output voltage (negative voltage):  
VCDC > V  
+| VOUT|  
IN(MAX)  
1
ΔVOUT(P–P) = ΔIL2 • ESR  
+
C
has nearly a rectangular current waveform. During  
COUT  
DC  
8 • fOSC • COUT  
the switch off-time, the current through C is I , while  
approximately –I flows during the on-tiDmCe. TIhNe RMS  
O
After specifying the maximum output ripple, the user can  
select the output capacitors according to the preceding  
equation.  
rating of the coupling capacitor is determined by the fol-  
lowing equation:  
DMAX  
1 DMAX  
The ESR can be minimized by using high quality X5R or  
X7R dielectric ceramic capacitors. In many applications,  
ceramic capacitors are sufficient to limit the output volt-  
age ripple.  
I
RMS(CDC) >IO(MAX) •  
A low ESR and ESL, X5R or X7R ceramic capacitor works  
well for C .  
DC  
8362fa  
21  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
2MHz, 8V to 38V Input, 48V Boost Converter  
ꢀꢁ  
6ꢀ8ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ8ꢁ  
2ꢀꢀꢁꢂ ꢂꢃ ꢄ ꢇ 8ꢄ  
ꢀꢁ  
8ꢀ ꢁꢂ 38ꢀ  
ꢅꢆ  
ꢀ3  
32ꢀꢁꢂ ꢂꢃ ꢄ ꢇ ꢈ2ꢄ  
ꢅꢆ  
ꢀ6  
ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢅꢆꢇ  
ꢈ2ꢈꢆ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢁꢂ  
ꢉꢀꢀꢁꢂ ꢂꢃ ꢄ ꢇ 2ꢊꢄ  
ꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
Efficiency  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
3ꢀꢁ8ꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀ3  
2ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ6ꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
8362 ꢀꢁꢂ2  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢐꢏ ꢎꢑꢑ3ꢎ3ꢑꢒꢏ68  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ32ꢈꢄꢉꢊꢋꢌꢉꢍꢎ  
ꢀꢁ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂ2a  
2MHz, 2.8V to 9V Input, 12V Boost Converter  
ꢀꢁ  
2ꢀ2ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ2ꢁ  
3ꢀꢀꢁꢂ ꢂꢃ ꢄ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
2ꢀ8ꢁ ꢂꢃ ꢄꢁ  
6ꢀꢀꢁꢂ ꢂꢃ ꢄ ꢀ ꢁꢂ  
ꢀꢁꢀꢂ ꢂꢃ ꢄ ꢇ ꢈꢄ  
ꢅꢆ  
ꢀ6  
ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ3  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
Efficiency  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂꢃ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀꢁꢂ  
ꢀꢁ  
ꢀ3  
2ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂ3  
ꢀꢁꢂ ꢃꢄꢅ ꢅꢆꢇꢈ2ꢉ2ꢉꢇꢊ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢐꢏ ꢎꢑꢑ3ꢎ3ꢑꢒꢏ22  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉꢈꢊꢈꢋ6ꢌꢅꢈ2ꢍ  
ꢀ 2ꢁ8ꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂ3a  
8362fa  
22  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
2MHz, 4V to 19V Input, 24V Boost Converter  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
2ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 8ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁ2ꢂ  
ꢀꢁ ꢂꢃ ꢄꢅꢁ  
ꢀꢁ2ꢂꢃ ꢃꢄ ꢅ ꢈ ꢀꢉꢅ  
ꢆꢇ  
ꢀ3  
ꢀꢁꢂꢃꢄ  
ꢅ2ꢅꢆ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ6  
ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
Efficiency  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ3  
2ꢀꢁ  
ꢀꢁ  
33ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄꢅ ꢅꢆꢇꢈ3ꢉ2ꢉꢇꢅꢊ  
ꢀ 8ꢁ  
ꢀ ꢁ2ꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢐꢏ ꢎꢑꢑ3ꢎ3ꢑꢒꢏꢑꢎ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ32ꢈꢄꢉꢊꢋꢌꢉꢍꢎ  
ꢀꢁ2 ꢀꢁꢂ ꢀꢁ6 ꢀꢁ8 ꢀꢁꢂ ꢀꢁ2 ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢃa  
2MHz, 2.8V to 6V Input, 48V Boost Converter in DCM  
ꢀꢁ  
ꢀꢁ33ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ8ꢁ  
2ꢀꢁꢂ ꢂꢃ ꢄ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
2ꢀ8ꢁ ꢂꢃ 6ꢁ  
22ꢀꢁ ꢁꢂ ꢃ ꢀ ꢁꢂ  
2ꢀꢁꢂ ꢂꢃ ꢄ ꢀ 6ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ  
ꢁꢂ  
ꢀ6  
ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢃꢃꢄ  
ꢀ2ꢀꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
Efficiency  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢁ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
3ꢀꢁ8ꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀꢁꢂ  
ꢀꢁ  
ꢀ3  
2ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢐꢏ ꢎꢑꢑ3ꢎ3ꢑꢒꢏꢏ33  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ32ꢀꢄꢈ2ꢅꢉꢊꢋꢌꢅ3ꢋꢍ  
ꢀ 2ꢁ8ꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ 6ꢁ  
ꢀꢁ  
ꢀꢁ  
2ꢀ  
2ꢀ  
3ꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8362 ꢀꢁꢂꢃa  
8362fa  
23  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
2MHz, 2.8V to 28V Input, 5V SEPIC Converter  
ꢀꢁ  
2ꢀ2ꢁꢂ  
ꢀ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢄꢅ ꢆ ꢀ ꢁꢂ  
ꢀꢁ  
2ꢀ8ꢁ ꢂꢃ 28ꢁ  
ꢀꢁ ꢁꢂ ꢃ ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ2ꢂ ꢂꢃ ꢄ ꢀ 28ꢁ  
ꢀ2  
2ꢀ2ꢁꢂ  
ꢀ3  
22ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
Efficiency  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
8362  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀ6ꢀꢁ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ3  
2ꢀꢁ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂ6  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ 2ꢁ8ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ2ꢂ  
ꢀ 28ꢁ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢁ26ꢒ ꢓꢔꢔ8ꢓꢁ22ꢒ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆ ꢅꢇꢈꢉꢊ ꢂꢋꢌ32ꢍꢎꢏ226ꢋꢋꢐꢑ  
ꢀ6ꢁ ꢋꢇꢒꢃꢂꢃ ꢓꢒꢋ3ꢔꢀꢒꢏ2ꢃꢔꢕꢍꢌ  
ꢀꢁ2 ꢀꢁꢂ ꢀꢁ6 ꢀꢁ8 ꢀꢁꢂ ꢀꢁ2 ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂ6a  
2MHz, 2.8V to 42V Input, 12V SEPIC Converter  
ꢀ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ2ꢁ  
ꢀꢁ  
ꢀ2ꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ6ꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁꢂ  
2ꢀ8ꢁ ꢂꢃ ꢄ2ꢁ  
ꢀ6ꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁ2ꢂ  
ꢀꢁ ꢁꢂ ꢃ ꢀ 2ꢁꢂ  
ꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀ3  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁ ꢁꢂ ꢃ ꢀ ꢁ2ꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
Efficiency  
8362  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀ2  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
36ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢁ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢁ26ꢒ ꢓꢔꢔ8ꢓꢁꢔꢓꢒ  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀ ꢁ2ꢂ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉꢈꢊꢈꢋ6ꢌꢅꢈ2ꢍ  
ꢀ6ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉ2ꢅꢈꢋꢎꢌ  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢃa  
8362fa  
24  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
2MHz, 4.5V to 30V Input, 24V SEPIC Converter  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ6  
2ꢀꢁ  
26ꢀꢁꢂ ꢂꢃ ꢄ ꢇ ꢈꢄ  
6ꢀ8ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢅꢆ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅ 3ꢆꢃ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢈ 2ꢉꢅ  
ꢆꢇ  
ꢀ2  
6ꢀ8ꢁꢂ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢈ 3ꢁꢅ  
ꢆꢇ  
ꢀ3  
ꢁꢂꢃꢄ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
8362  
Efficiency  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
36ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢁ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂ8  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢒꢓꢓ8ꢒꢔꢔꢔ6  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉꢈꢊꢈꢋ6ꢌꢅꢈ2ꢍ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ6ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉ2ꢅꢈꢋꢎꢌ  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀ 3ꢁꢂ  
ꢀꢁꢂ ꢀꢁ2 ꢀꢁ3 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ8  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂ8a  
2MHz, 2.8V to 28V Input, –5V Inverting Converter  
ꢀꢁ  
2ꢀ2ꢁꢂ  
ꢀ2  
2ꢀ2ꢁꢂ  
ꢀ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢄꢅ ꢆ ꢀ ꢁꢂ  
2ꢀ8ꢁ ꢂꢃ 28ꢁ  
ꢀꢁ ꢁꢂ ꢃ ꢆ ꢀ2ꢃ  
ꢄꢅ  
ꢅꢆ  
ꢀꢁ2ꢂ ꢂꢃ ꢄ ꢇ 28ꢄ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀꢁ  
ꢀ3  
22ꢀꢁ  
ꢀꢁ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
8362  
Efficiency  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢀꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
36ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢁ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢁ26ꢒ ꢓꢔꢔ8ꢓꢁ22ꢒ  
ꢀ 2ꢁ8ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ2ꢂ  
ꢀ 28ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆ ꢅꢇꢈꢉꢊ ꢂꢋꢌ32ꢍꢎꢏ226ꢋꢋꢐꢑ  
ꢀ6ꢁ ꢋꢇꢒꢃꢂꢃ ꢓꢒꢋ3ꢔꢀꢒꢏ2ꢃꢔꢕꢍꢌ  
ꢀꢁ2 ꢀꢁꢂ ꢀꢁ6 ꢀꢁ8 ꢀꢁꢂ ꢀꢁ2 ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢃa  
8362fa  
25  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
2MHz, 2.8V to 42V Input, –12V Inverting Converter  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀ6  
ꢀꢁꢂ  
ꢀꢁ2ꢂ  
ꢀ2ꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ6ꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
2ꢀ8ꢁ ꢂꢃ ꢄ2ꢁ  
ꢀ6ꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁ2ꢂ  
ꢀꢁ ꢁꢂ ꢃ ꢆ 2ꢇꢃ  
ꢄꢅ  
ꢄꢅ  
ꢀ3  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢁꢂ ꢃ ꢆ ꢇ2ꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
8362  
ꢀꢁꢂ  
Efficiency  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
36ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢁ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢁ26ꢒ ꢓꢔꢔ8ꢓꢁꢔꢓꢒ  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀ ꢁ2ꢂ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉꢈꢊꢈꢋ6ꢌꢅꢈ2ꢍ  
ꢀ6ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉ2ꢅꢈꢋꢎꢌ  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢃa  
2MHz, 4.5V to 30V Input, –24V Inverting Converter  
ꢀꢁꢂ  
ꢀꢁ  
6ꢀ8ꢁꢂ  
ꢀ2  
6ꢀ8ꢁꢂ  
ꢀ6  
ꢀꢁꢂ  
ꢀ2ꢁꢂ  
26ꢀꢁꢂ ꢂꢃ ꢄ ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ ꢁ2ꢂ  
ꢀꢁꢂꢃ ꢄꢅ 3ꢆꢃ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁꢂ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 3ꢁꢂ  
ꢀ3  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢂꢃꢁꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
8362  
ꢀꢁꢂ  
Efficiency  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
3ꢀꢁ8ꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
36ꢀꢁꢂ  
ꢀꢁ  
ꢀ3  
2ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
68ꢀꢁꢂ  
8362 ꢀꢁꢂꢂ  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ2ꢃ ꢄꢅꢆꢇꢈ ꢉꢀꢉꢊꢇꢆꢋꢌꢍꢊ ꢄꢉꢎꢏꢏ ꢐꢑꢏ ꢁ28ꢒ ꢓꢔꢔ8ꢓꢒꢒꢒ6  
ꢀ3ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉꢈꢊꢈꢋ6ꢌꢅꢈ2ꢍ  
ꢀ ꢁ2ꢂ  
ꢀ 2ꢁꢂ  
ꢀ 3ꢁꢂ  
ꢀ6ꢁ ꢂꢃꢄꢅꢆꢅ ꢇꢄꢂ3ꢈꢀꢄꢉ2ꢅꢈꢋꢎꢌ  
ꢀꢁꢂ ꢀꢁ2 ꢀꢁ3 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ8  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8362 ꢀꢁꢂꢂa  
8362fa  
26  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
Low IQ, Low EMI, 2MHz, 48V Output Boost Converter with SSFM  
ꢀꢁꢂꢃꢄ ꢅꢆꢀ ꢇꢀꢅꢉ  
ꢈ2  
ꢊꢋꢌꢍꢎꢏ  
ꢀꢁ  
6ꢀ8ꢁꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢅꢆ ꢇꢆꢄꢉ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ2  
ꢀ8ꢁ  
ꢀꢁ  
8ꢀ ꢁꢂ 38ꢀ  
3ꢀꢀꢁꢂ ꢂꢃ ꢄ ꢀ ꢁ2ꢂ  
ꢀꢁ  
ꢀ3  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢁꢄꢅ  
ꢆ2  
ꢁꢂꢂꢇ  
ꢂꢈꢂ2  
ꢀꢁ  
ꢀ8  
ꢀ6  
33ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂ  
ꢀꢁꢀ2  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂ  
ꢀꢁꢀ2  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ2ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁ  
ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ2ꢁ6  
ꢀ2ꢁ6  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
3ꢀꢁ8ꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀ3  
2ꢀꢁ  
22ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
8362 ꢀꢁꢂ2  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢏ3ꢎ32ꢏꢐ68  
ꢀ2ꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢎꢏꢏꢎꢑ8ꢎ6ꢁꢏꢎ  
ꢒꢓꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢎꢏ2ꢎꢑ2ꢐꢏꢐ  
ꢔ6ꢂ ꢕꢐꢔꢈ33ꢖꢔꢗ  
Conducted EMI Performance  
(CISPR25 Class 5 Peak)  
Conducted EMI Performance  
(CISPR25 Class 5 Average)  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
8ꢀ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆꢇꢂꢈꢆ ꢁꢉꢊꢉꢋ  
ꢀꢁ  
6ꢀ  
8362 2ꢂꢃꢄ f ꢀꢁꢂꢃ ꢁꢄꢅ  
8362 2ꢂꢃꢄ f ꢀꢁꢂꢃꢀꢄꢂ ꢂꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ2ꢁ  
ꢀꢁꢂ  
ꢀ2ꢁ  
3
6
ꢀ2  
ꢀꢁ  
ꢀ8  
2ꢀ  
2ꢀ  
2ꢀ  
3ꢀ  
3
6
ꢀ2  
ꢀꢁ  
ꢀ8  
2ꢀ  
2ꢀ  
2ꢀ  
3ꢀ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
8362 ꢀꢁꢂ2a  
8362 ꢀꢁꢂ2ꢃ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ 2ꢁꢂꢃ  
ꢀꢁ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ 2ꢁꢂꢃ  
ꢀꢁ  
Radiated EMI Performance  
(CISPR25 Class 5 Peak)  
Radiated EMI Performance  
(CISPR25 Class 5 Average)  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆꢇꢂꢈꢆ ꢁꢉꢊꢉꢋ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ2ꢁ  
8362 2ꢂꢃꢄ f ꢀꢁꢂꢃ ꢁꢄꢅ  
8362 2ꢂꢃꢄ f ꢀꢁꢂꢃꢀꢄꢂ ꢂꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀ2ꢁ  
ꢀꢁꢁ  
2ꢀꢀ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
8ꢀꢀ  
ꢀꢁꢁ ꢀꢁꢁꢁ  
ꢀꢁꢁ  
2ꢀꢀ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
8ꢀꢀ  
ꢀꢁꢁ ꢀꢁꢁꢁ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
8362 ꢀꢁꢂ2ꢃ  
8362 ꢀꢁꢂ2ꢃ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ 2ꢁꢂꢃ  
ꢀꢁ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ 2ꢁꢂꢃ  
ꢀꢁ  
8362fa  
27  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATIONS  
Low IQ, Low EMI, 400kHz, 48V Boost Converter with SSFM  
ꢀꢁꢂꢃꢄ ꢅꢆꢀ ꢇꢀꢅꢉ  
ꢀꢁ  
22ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢅꢆ ꢇꢆꢄꢉ  
ꢈ2  
2ꢊ2ꢋꢌ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ8ꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃ 3ꢄꢁ  
ꢀ8  
3ꢀꢀꢁꢂ ꢂꢃ ꢄ ꢀ ꢁ2ꢂ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
ꢀꢁ  
ꢀꢁꢂ  
ꢂꢃꢁꢄꢅ  
ꢆ2  
ꢁꢂꢂꢇ  
ꢂꢈꢂ2  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ6  
82ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂ  
ꢀꢁꢀ2  
ꢁꢂꢃꢄꢅ  
ꢆꢁ  
ꢇꢈꢉ  
ꢊ2ꢈ6  
ꢀꢁꢁꢂ  
ꢀꢁꢀ2  
ꢀꢁ  
ꢀꢁꢁ  
ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ2ꢁ6  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀ2  
3ꢀꢁ8ꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ3  
ꢀ2ꢀꢁ  
22ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
8362 ꢀꢁꢂ3  
ꢀꢁꢂ ꢀꢃꢄꢀꢅꢆ ꢃꢇꢈꢉ ꢀꢊꢋꢆ26ꢌ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢏ3ꢎ3ꢏ622ꢐ  
ꢀ2ꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢎꢏꢏ3ꢎ32ꢏꢐ22  
ꢑꢒꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢎꢏ2ꢎꢓ2ꢐꢏꢐ  
ꢔ6ꢂ ꢕꢖꢋꢖꢗꢊꢋꢌꢔ 3ꢘꢗꢙꢕꢑ82ꢍ  
Conducted EMI Performance  
(CISPR25 Class 5 Peak)  
Conducted EMI Performance  
(CISPR25 Class 5 Average)  
8ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆꢇꢂꢈꢆ ꢁꢉꢊꢉꢋ  
8362 ꢂꢃꢃꢄꢅꢆ f ꢀꢁꢂꢃꢀꢄꢂ ꢂꢅꢆ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
8362 ꢂꢃꢃꢄꢅꢆ f ꢀꢁꢂꢃ ꢁꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ2ꢁ  
ꢀꢁꢂ  
ꢀ2ꢁ  
3
6
ꢀ2  
ꢀꢁ  
ꢀ8  
2ꢀ  
2ꢀ  
2ꢀ  
3ꢀ  
3
6
ꢀ2  
ꢀꢁ  
ꢀ8  
2ꢀ  
2ꢀ  
2ꢀ  
3ꢀ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
8362 ꢀꢁꢂ3a  
8362 ꢀꢁꢂ3ꢃ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
Radiated EMI Performance  
(CISPR25 Class 5 Peak)  
Radiated EMI Performance  
(CISPR25 Class 5 Average)  
6ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
2ꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂꢃꢃ ꢄ ꢂꢅꢆꢇꢂꢈꢆ ꢁꢉꢊꢉꢋ  
ꢀꢁꢂ  
ꢀ2ꢁ  
ꢀꢁꢂ  
8362 ꢂꢃꢃꢄꢅꢆ f ꢀꢁꢂꢃ ꢁꢄꢅ  
8362 ꢂꢃꢃꢄꢅꢆ f ꢀꢁꢂꢃꢀꢄꢂ ꢂꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀ2ꢁ  
ꢀꢁꢁ  
2ꢀꢀ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
8ꢀꢀ  
ꢀꢁꢁ ꢀꢁꢁꢁ  
ꢀꢁꢁ  
2ꢀꢀ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
8ꢀꢀ  
ꢀꢁꢁ ꢀꢁꢁꢁ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
8362 ꢀꢁꢂ3ꢃ  
8362 ꢀꢁꢂ3ꢃ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀ2ꢁ ꢂꢃꢄꢅꢆ ꢆꢇ ꢈ8ꢁ ꢇꢅꢆꢄꢅꢆ ꢉꢆ 3ꢊꢊꢋꢉꢌ f ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
8362fa  
28  
For more information www.linear.com/LT8362  
LT8362  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT8362#packaging for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
ꢃꢎꢨfꢨꢩꢨꢪꢫꢨ ꢙꢌꢕ ꢇꢐꢑ ꢬ ꢁꢡꢚꢁ8ꢚꢂ6ꢛꢛ ꢎꢨꢭ ꢕꢉ  
ꢁꢀꢥꢁ ±ꢁꢀꢁꢡ  
3ꢀꢡꢡ ±ꢁꢀꢁꢡ  
2ꢀꢂꢡ ±ꢁꢀꢁꢡ ꢃ2 ꢅꢆꢇꢈꢅꢉ  
ꢂꢀ6ꢡ ±ꢁꢀꢁꢡ  
ꢖꢏꢕꢗꢏꢑꢈ  
ꢋꢘꢌꢙꢆꢊꢈ  
ꢁꢀ2ꢡ ±ꢁꢀꢁꢡ  
ꢁꢀꢡꢁ  
ꢒꢅꢕ  
2ꢀ38 ±ꢁꢀꢁꢡ  
ꢃ2 ꢅꢆꢇꢈꢅꢉ  
RECOMMENDED ꢅꢋꢙꢇꢈꢎ ꢖꢏꢇ ꢖꢆꢌꢕꢞ ꢏꢊꢇ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ  
ꢎ ꢦ ꢁꢀꢂ2ꢡ  
ꢁꢀꢄꢁ ±ꢁꢀꢂꢁ  
ꢌꢣꢖ  
6
ꢂꢁ  
3ꢀꢁꢁ ±ꢁꢀꢂꢁ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢂꢀ6ꢡ ±ꢁꢀꢂꢁ  
ꢃ2 ꢅꢆꢇꢈꢅꢉ  
ꢖꢆꢊ ꢂ ꢊꢋꢌꢕꢞ  
ꢎ ꢦ ꢁꢀ2ꢁ ꢋꢎ  
ꢖꢆꢊ ꢂ  
ꢌꢋꢖ ꢓꢏꢎꢗ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ 6ꢉ  
ꢁꢀ3ꢡ × ꢄꢡ°  
ꢕꢞꢏꢓꢝꢈꢎ  
ꢃꢇꢇꢉ ꢇꢝꢊ ꢎꢈꢜ ꢕ ꢁ3ꢂꢁ  
ꢁꢀ2ꢡ ±ꢁꢀꢁꢡ  
ꢁꢀꢡꢁ ꢒꢅꢕ  
ꢁꢀꢥꢡ ±ꢁꢀꢁꢡ  
ꢁꢀ2ꢁꢁ ꢎꢈꢝ  
2ꢀ38 ±ꢁꢀꢂꢁ  
ꢃ2 ꢅꢆꢇꢈꢅꢉ  
ꢁꢀꢁꢁ ꢧ ꢁꢀꢁꢡ  
ꢒꢋꢌꢌꢋꢓ ꢜꢆꢈꢐꢤꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ  
ꢊꢋꢌꢈꢍ  
ꢂꢀ ꢇꢎꢏꢐꢆꢊꢑ ꢌꢋ ꢒꢈ ꢓꢏꢇꢈ ꢏ ꢔꢈꢇꢈꢕ ꢖꢏꢕꢗꢏꢑꢈ ꢋꢘꢌꢙꢆꢊꢈ ꢓꢁꢚ22ꢛ ꢜꢏꢎꢆꢏꢌꢆꢋꢊ ꢋꢝ ꢃꢐꢈꢈꢇꢚ2ꢉꢀ  
ꢕꢞꢈꢕꢗ ꢌꢞꢈ ꢙꢌꢕ ꢐꢈꢒꢅꢆꢌꢈ ꢇꢏꢌꢏ ꢅꢞꢈꢈꢌ ꢝꢋꢎ ꢕꢘꢎꢎꢈꢊꢌ ꢅꢌꢏꢌꢘꢅ ꢋꢝ ꢜꢏꢎꢆꢏꢌꢆꢋꢊ ꢏꢅꢅꢆꢑꢊꢓꢈꢊꢌ  
2ꢀ ꢇꢎꢏꢐꢆꢊꢑ ꢊꢋꢌ ꢌꢋ ꢅꢕꢏꢙꢈ  
3ꢀ ꢏꢙꢙ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢏꢎꢈ ꢆꢊ ꢓꢆꢙꢙꢆꢓꢈꢌꢈꢎꢅ  
ꢄꢀ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢋꢝ ꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢋꢊ ꢒꢋꢌꢌꢋꢓ ꢋꢝ ꢖꢏꢕꢗꢏꢑꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢕꢙꢘꢇꢈ  
ꢓꢋꢙꢇ ꢝꢙꢏꢅꢞꢀ ꢓꢋꢙꢇ ꢝꢙꢏꢅꢞꢠ ꢆꢝ ꢖꢎꢈꢅꢈꢊꢌꢠ ꢅꢞꢏꢙꢙ ꢊꢋꢌ ꢈꢟꢕꢈꢈꢇ ꢁꢀꢂꢡꢢꢢ ꢋꢊ ꢏꢊꢣ ꢅꢆꢇꢈ  
ꢡꢀ ꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢅꢞꢏꢙꢙ ꢒꢈ ꢅꢋꢙꢇꢈꢎ ꢖꢙꢏꢌꢈꢇ  
6ꢀ ꢅꢞꢏꢇꢈꢇ ꢏꢎꢈꢏ ꢆꢅ ꢋꢊꢙꢣ ꢏ ꢎꢈꢝꢈꢎꢈꢊꢕꢈ ꢝꢋꢎ ꢖꢆꢊ ꢂ ꢙꢋꢕꢏꢌꢆꢋꢊ ꢋꢊ ꢌꢞꢈ  
ꢌꢋꢖ ꢏꢊꢇ ꢒꢋꢌꢌꢋꢓ ꢋꢝ ꢖꢏꢕꢗꢏꢑꢈ  
8362fa  
29  
For more information www.linear.com/LT8362  
LT8362  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT8362#packaging for the most recent package drawings.  
MSE Package  
Variation: MSE16 (12)  
16-Lead Plastic MSOP with 4 Pins Removed  
Exposed Die Pad  
(Reference LTC DWG # 05-08-1871 Rev D)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
8
0.35  
REF  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 ±0.038  
0.50  
NO MEASUREMENT PURPOSE  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0120 ±.0015)  
(.0197)  
1.0  
(.039)  
BSC  
TYP  
BSC  
0.280 ±0.076  
(.011 ±.003)  
16 14 121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
3 5 6 7 8  
1.0  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
(.039)  
BSC  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE16(12)) 0213 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
8362fa  
30  
For more information www.linear.com/LT8362  
LT8362  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/17 Removed Lead Temperature line from Absolute Maximum Ratings  
2
Corrected Electrical Characteristics table SSFM Maximum Frequency Deviation Condition  
3
Corrected f  
/f  
units  
3
SYNC OSC  
Corrected Soft-Start Charge Current Condition to 0.5V  
4
Inverting Converter Section: Added, + |V | to equation  
21  
22  
27  
27  
28  
28  
28  
OUT  
Added efficiency graph to 48V Boost Converter circuit  
Removed 200mA output current line from schematic  
Corrected Conducted EMI Y axis units on both plots  
Removed 100mA and 200mA output current lines from schematic  
Edited circuit: Added lower FB resistor, shorted BIAS pin to GND  
Corrected Conducted EMI Y axis units on both plots  
8362fa  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
31  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.linear.com/LT8362  
LT8362  
TYPICAL APPLICATION  
2MHz, Low-IQ Automotive Pre-Boost Application  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
2ꢀ8ꢁ ꢂꢃ 2ꢄꢁ  
8ꢀ ꢁꢂꢃꢄꢅꢆ ꢇꢈꢈꢉꢊꢄꢋꢌꢍ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ ꢃꢄ ꢅ ꢀ 2ꢁ8ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ6  
ꢀꢁꢂꢃꢄ  
ꢀ3  
22ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
8362  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢀ  
Line Transient Response  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ2  
2ꢀꢁꢂ  
(Pass-Through to Boosting)  
ꢀ2  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ3  
2ꢀꢁ  
ꢀꢁꢂ6ꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ 8 ꢂ ꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
8362 ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄꢅ ꢅꢆꢇꢈ2ꢉ2ꢉꢇꢊ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ ꢈꢀꢈꢉꢆꢅꢊꢋꢌꢉ ꢀꢇꢍꢌ ꢎꢏꢐꢏ ꢎꢑꢑ3ꢎ3ꢑꢒꢏꢁꢐ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ3ꢁ ꢂꢃꢄꢅꢆ ꢅꢇꢈꢉꢊ ꢂꢋꢌ32ꢍꢎꢏ226ꢋꢋꢐꢑ  
ꢀ ꢁꢂꢃ ꢄꢅ 3ꢃ ꢆ2ꢇꢃꢈꢉꢊꢋ  
ꢀꢁ  
8362 ꢀꢁꢂꢃa  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V = 6V to 100V, Low I Monolithic No-Opto Flyback, 5-Lead  
IN  
LT8300  
100V Micropower Isolated Flyback Converter with  
IN  
Q
150V/260mA Switch  
TSOT-23  
LT8330  
60V, 1A, Low I Boost/SEPIC/Inverting 2MHz Converter  
V
IN  
= 3V to 40V, V  
= 60V, I = 6µA (Burst Mode Operation),  
OUT(MAX) Q  
Q
6-Lead TSOT-23, 3mm × 2mm DFN packages  
V = 4.5V to 100V, V =140V, I = 6µA (Burst Mode  
IN  
LT8331  
Low I Boost/SEPIC/Flyback/Inverting Converter with  
Q
OUT(MAX)  
Q
140V/0.5A Switch  
Operation), MSOP-16(12)E  
= 3V to 25V, V = 25V, I = 6µA (Burst Mode Operation),  
OUT(MAX) Q  
LT8335  
28V, 2A, Low IQ Boost/SEPIC/Inverting 2MHz Converter  
V
IN  
3mm × 2mm DFN package  
LT8494  
70V, 2A Boost/SEPIC 1.5MHz High Efficiency Step-Up  
DC/DC Converter  
V
= 1V to 60V (2.5V to 32V Start-Up), V  
= 70V, I = 3µA  
OUT(MAX) Q  
IN  
(Burst Mode Operation), I = <1µA, 20-Lead TSSOP  
SD  
LT8570/LT8570-1  
LT8580  
65V, 500mA/250mA Boost/Inverting DC/DC Converter  
V
SD  
= 2.55V, V  
= 40V, V  
= 60V, I = 1.2mA,  
IN(MIN)  
IN(MAX)  
OUT(MAX) Q  
I
= <1mA, 3mm × 3mm DFN-8, MSOP-8E  
1A (I ), 65V, 1.5MHz, High Efficiency Step-Up DC/DC  
V : 2.55V to 40V, V  
= 65V, I = 1.2mA, I = <1µA,  
OUT(MAX) Q SD  
SW  
IN  
Converter  
3mm × 3mm DFN-8, MSOP-8E  
8362fa  
LT 1217 REV A • PRINTED IN USA  
www.linear.com/LT8362  
32  
ANALOG DEVICES, INC. 2017  

相关型号:

LT8362IDD#PBF

LT8362 - Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8362IMSE#PBF

LT8362 - Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8364HMSE#PBF

LT8364 - Low IQ Boost/SEPIC/ Inverting Converter with 4A, 60V Switch; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8390

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390

60VIN, 100VOUT Synchronous 4-Switch Buck-Boost LED Driver Controller with Low EMI
ADI

LT8390A

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390A

60VIN, 100VOUT Synchronous 4-Switch Buck-Boost LED Driver Controller with Low EMI
ADI

LT8390E

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390H

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8390I

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8391

60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum
Linear

LT8391

60VIN, 100VOUT Synchronous 4-Switch Buck-Boost LED Driver Controller with Low EMI
ADI