LT6105 [Linear]

Precision, Extended Input Range Current Sense Amplifi er; 精密,扩展输入范围电流检测器功率放大器
LT6105
型号: LT6105
厂家: Linear    Linear
描述:

Precision, Extended Input Range Current Sense Amplifi er
精密,扩展输入范围电流检测器功率放大器

放大器 功率放大器
文件: 总20页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6105  
Precision, Extended Input  
Range Current Sense Amplifier  
FEATURES  
DESCRIPTION  
Very Wide,Over-the-Top®, Input Common Mode Range  
The LT®6105 is a micropower, precision current sense  
amplifier with a very wide input common mode range.  
The LT6105 monitors unidirectional current via the volt-  
age across an external sense resistor. The input common  
mode range extends from –0.3V to 44V, with respect to  
n
+
- Extends 44V Above V (Independent of V )  
- Extends –0.3V Below V  
n
n
n
n
n
n
n
n
n
n
Wide Power Supply Range: 2.85V to 36V  
Input Offset Voltage: 300μV Maximum  
Gain Accuracy: 1% Max  
the negative supply voltage (V ). This allows the LT6105  
Gain Configurable with External Resistors  
Operating Current: 150μA  
Slew Rate: 2V/μs  
Sense Input Current When Powered Down: 1nA  
Full-Scale Output Current: 1mA Minimum  
Operating Temperature Range –40°C to 125°C  
Available in 2mm × 3mm DFN and 8-Lead MSOP  
Packages  
to operate as a high side current sense monitor or a low  
side current sense monitor. It also allows the LT6105 to  
monitor current on a negative supply voltage, as well as  
continuouslymonitorabatteryfromfullchargetodepletion.  
The inputs of LT6105 can withstand differential voltages  
up to 44V, which makes it ideal for monitoring a fuse or  
MOSFET switch.  
Gain is configured with external resistors from 1V/V to  
100V/V. The input common mode rejection and power  
supplyrejectionareinexcessof100dBandtheinputoffset  
voltage is less than 300μV. A typical slew rate of 2V/μs  
ensures fast response to unexpected current changes.  
APPLICATIONS  
n
High Side or Low Side Current Sensing  
n
Current Monitoring on Positive or Negative Supply  
The LT6105 can operate from an independent power  
supply of 2.85V to 36V and draws only 150μA. When  
Voltages  
Battery Monitoring  
Fuse/MOSFET Monitoring  
Automotive  
Power Management  
Portable Test/Measurement Systems  
n
+
V is powered down, the sense pins are biased off. This  
n
prevents loading of the monitored circuit, irrespective of  
the sense voltage. The LT6105 is available in a 6-lead DFN  
and 8-lead MSOP package.  
n
n
n
, LT, LTC, LTM and Over-the-Top are registered trademarks of Linear Technology  
Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Gain Error vs Input Voltage  
4
+
V
V
R
A
= 12V  
= 50mV  
= 100Ω  
= 50V  
Gain of 50 Current Sense Amplifier  
SENSE  
3
2
IN  
V
SOURCE  
LT6105  
–0.3V TO 44V  
R
IN2  
T
= 40°C  
A
+
V
1
100Ω  
S
+IN  
–IN  
+
T
= 25°C  
A
V
0
OUT  
R
100Ω  
0.02Ω  
V
= 1V/A  
IN1  
OUT  
–1  
–2  
–3  
–4  
R
OUT  
4.99k  
T
= 125°C  
T = 85°C  
A
A
V
S
+
V
V
TO LOAD  
2.85V TO 36V  
6105 TA01  
ROUT  
RIN  
ROUT  
+
0
5
10 15 20 25 30 35 40 45  
+
VOUT = V VS  
;
AV  
=
; RIN1 = RIN2 = RIN  
(
)
S
RIN  
V
INPUT VOLTAGE (V)  
6105 TA01b  
S
6105fa  
1
LT6105  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Specified Temperature Range (Note 5)  
Differential Input Voltage (+IN – –IN)..................... 44V  
LT6105C................................................... 0°C to 70°C  
LT6105I................................................–40°C to 85°C  
LT6105H ............................................–40°C to 125°C  
Maximum Junction Temperature........................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
Input Voltage V(+IN, –IN) to V ................9.5V to 44V  
+
Total V Supply Voltage from V ...............................36V  
Output Voltage ......................................V to (V + 36V)  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)  
LT6105C...............................................–40°C to 85°C  
LT6105I................................................–40°C to 85°C  
LT6105H ............................................–40°C to 125°C  
MSOP ............................................................... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
6
5
4
+IN  
NC  
V
–IN  
1
2
3
–IN  
V
1
2
3
8 +IN  
7 NC  
6 NC  
5 V  
+
+
7
V
NC  
V
OUT  
V
4
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 250°C/W  
DCB PACKAGE  
6-LEAD (2mm s 3mm) PLASTIC DFN  
T
JMAX  
JA  
T
= 150°C, θ = 64°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 7) CONNECTED TO V (PIN 3)  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LT6105CDCB#TRMPBF  
LT6105IDCB#TRMPBF  
LT6105HDCB#TRMPBF  
LT6105CDCB#TRPBF  
LT6105IDCB#TRPBF  
LT6105HDCB#TRPBF  
LCTF  
LCTF  
LCTF  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
LT6105CMS8#PBF  
LT6105IMS8#PBF  
LT6105HMS8#PBF  
LT6105CMS8#TRPBF  
LT6105IMS8#TRPBF  
LT6105HMS8#TRPBF  
LTCTD  
LTCTD  
LTCTD  
8-Lead Plastic MS8  
8-Lead Plastic MS8  
8-Lead Plastic MS8  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6105fa  
2
LT6105  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
0°C < TA < 70°C (LT6105C), otherwise specifications are at TA = 25°C. V+ = 12V, V= 0V, VS+ = 12V (see Figure 1), RIN1 = RIN2 = 100Ω,  
ROUT = 5k (AV = 50), VSENSE = VS+ – VS , unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V , V  
Input Voltage Range  
Guaranteed by CMRR  
–0.3  
–0.1  
44  
44  
V
V
S
S
l
+
A Error  
Voltage Gain Error (Note 6)  
V
= 25mV to 75mV, V = 12V  
–1  
0.1  
1
%
%
V
SENSE  
S
l
l
–1.3  
1.3  
+
V
V
= 25mV to 75mV, V = 0V  
–2.5  
2.5  
%
SENSE  
S
V
Input Offset Voltage  
MS8 Package  
= 5mV  
–0.3  
–0.6  
–0.1  
–0.1  
–0.3  
0.3  
0.6  
mV  
mV  
OS  
SENSE  
l
l
Input Offset Voltage  
DCB Package  
V
V
= 5mV  
–0.4  
–0.7  
0.4  
0.7  
mV  
mV  
SENSE  
SENSE  
+
Input Offset Voltage  
= 5mV, V = 0V  
–1  
–1.3  
1
1.3  
mV  
mV  
S
l
l
Temperature Coefficient of V  
0.5  
μV/°C  
ΔV /ΔT  
OS  
OS  
+
CMRR  
Input Common Mode  
Rejection Ratio  
V
= 5mV, V = 2.8V to 44V  
100  
95  
120  
dB  
dB  
SENSE  
S
l
+
+
V
V
= 5mV, V = 0.3V to 44V  
94  
90  
dB  
dB  
SENSE  
SENSE  
S
l
l
= 5mV, V = 0.1V to 44V  
S
+
V
Power Supply Voltage Range  
Power Supply Rejection Ratio  
Guaranteed by PSRR  
2.85  
36  
V
+
+
PSRR  
V
= 5mV, V = 12V, V = 2.85V to 36V  
98  
94  
120  
120  
dB  
dB  
SENSE  
S
l
l
+
+
V
SENSE  
= 5mV, V = 0V, V = 2.85V to 36V  
98  
94  
dB  
dB  
S
+
+
l
l
I
I
, I  
Input Current  
V
V
= 0V, V = 3V  
15  
25  
0.5  
1
μA  
μA  
(+IN) (–IN)  
SENSE  
SENSE  
S
= 0V, V = 0V  
–0.05  
S
+
l
l
– I  
Input Offset Current  
Input Current (Power-Down)  
V
V
= 0V, V = 3V  
0.05  
0.005  
μA  
μA  
(+IN)  
(–IN)  
SENSE  
SENSE  
+
S
S
+
= 0V, V = 0V  
+
l
I
I
I
V = 0V, V = 44V, V  
= 0V  
0.03  
μA  
(+IN) + (–IN)  
S
SENSE  
+
+
+
+
l
l
V Supply Current  
V
V
= 0V, V = 3V, V = 2.85V  
200  
240  
300  
350  
μA  
μA  
S
SENSE  
SENSE  
S
+
= 0V, V = 3V, V = 36V  
S
+
+
l
l
l
l
V
V
Minimum Output Voltage  
V
= 0mV, V = 44V, V = 36V  
35  
mV  
V
O(MIN)  
O(MAX)  
OUT  
SENSE  
SENSE  
S
+
Output High (Referred to V )  
V
= 120mV, A = 100, R  
= 10k  
1.25  
1.5  
V
OUT  
I
I
Maximum Output Current  
Short-Circuit Output Current  
–3dB Bandwidth  
Guaranteed by V  
1
mA  
mA  
kHz  
μs  
O(MAX)  
+
V
V
V
V
V
= 44V, V = 0V, R = 0Ω  
OUT  
1.5  
SC  
S
S
BW  
= 50mV, A = 10V/V  
100  
5
SENSE  
SENSE  
SENSE  
SENSE  
V
t
S
t
r
Output Settling to 1% of Final Value  
Input Step Response (Note 7)  
Slew Rate (Note 8)  
= 5mV to 100mV  
= 5mV to 100mV  
3
μs  
SR  
= 5mV to 150mV, A = 50V/V, R = 400Ω  
1.75  
–9.5  
2
V/μs  
V
V
IN  
l
V
Reverse Input Voltage  
I
I = –5mA  
(+IN) + (–IN)  
–12  
REV  
(Referred to V )  
6105fa  
3
LT6105  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–40°C < TA < 85°C (LT6105I), otherwise specifications are at TA = 25°C. V+ = 12V, V= 0V, VS+ = 12V (see Figure 1), RIN1 = RIN2  
=
100Ω, ROUT = 5k (AV = 50), VSENSE = VS+ – VS , unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V , V  
Input Voltage Range  
Guaranteed by CMRR  
–0.3  
–0.3  
44  
44  
V
V
S
S
l
+
A Error  
Voltage Gain Error (Note 6)  
V
= 25mV to 75mV, V = 12V  
–1  
0.1  
1
%
%
V
SENSE  
S
l
l
–1.4  
1.4  
+
V
V
= 25mV to 75mV, V = 0V  
–3  
3
%
SENSE  
S
V
Input Offset Voltage  
MS8 Package  
= 5mV  
–0.3  
–0.65  
–0.1  
–0.1  
–0.3  
0.3  
0.65  
mV  
mV  
OS  
SENSE  
l
l
Input Offset Voltage  
DCB Package  
V
V
= 5mV  
–0.4  
–0.75  
0.4  
0.75  
mV  
mV  
SENSE  
+
Input Offset Voltage  
= 5mV, V = 0V  
–1  
–1.4  
1
1.4  
mV  
mV  
SENSE  
S
l
l
Temperature Coefficient of V  
0.5  
μV/°C  
ΔV /ΔT  
OS  
OS  
+
CMRR  
Input Common Mode  
Rejection Ratio  
V
SENSE  
= 5mV, V = 2.8V to 44V  
100  
95  
120  
dB  
dB  
S
l
+
+
V
V
= 5mV, V = 0.3V to 44V  
94  
90  
dB  
dB  
SENSE  
SENSE  
S
l
l
= 5mV, V = 0.1V to 44V  
S
+
V
Power Supply Voltage Range  
Power Supply Rejection Ratio  
Guaranteed by PSRR  
2.85  
36  
V
+
+
PSRR  
V
= 5mV, V = 12V, V = 2.85V to 36V  
98  
94  
120  
120  
dB  
dB  
SENSE  
S
l
l
+
+
V
= 5mV, V = 0V, V = 2.85V to 36V  
98  
94  
dB  
dB  
SENSE  
S
+
+
l
l
I
I
, I  
Input Current  
V
V
= 0V, V = 3V  
16  
27  
0.6  
1
μA  
μA  
(+IN) (–IN)  
SENSE  
SENSE  
S
= 0V, V = 0V  
–0.05  
S
+
l
l
– I  
Input Offset Current  
Input Current (Power-Down)  
V
SENSE  
V
SENSE  
+
= 0V, V = 3V  
0.08  
0.01  
μA  
μA  
(+IN)  
(–IN)  
S
S
+
= 0V, V = 0V  
+
l
I
I
I
V = 0V, V = 44V, V  
= 0V  
0.035  
μA  
(+IN) + (–IN)  
S
SENSE  
+
+
+
+
l
l
V Supply Current  
V
V
= 0V, V = 3V, V = 2.85V  
200  
250  
325  
375  
μA  
μA  
S
SENSE  
SENSE  
S
+
= 0V, V = 3V, V = 36V  
S
+
+
l
l
l
l
V
V
Minimum Output Voltage  
V
V
= 0mV, V = 44V, V = 36V  
40  
mV  
V
O(MIN)  
O(MAX)  
OUT  
SENSE  
SENSE  
S
+
Output High (Referred to V )  
= 120mV, A = 100, R  
= 10k  
1.27  
1.6  
V
OUT  
I
I
Maximum Output Current  
Short-Circuit Output Current  
–3dB Bandwidth  
Guaranteed by V  
1
mA  
mA  
kHz  
μs  
O(MAX)  
+
V
V
V
V
V
= 44V, V = 0V, R = 0Ω  
OUT  
1.5  
SC  
S
S
BW  
= 50mV, A = 10V/V  
100  
5
SENSE  
SENSE  
SENSE  
SENSE  
V
t
t
Output Settling to 1% of Final Value  
Input Step Response (Note 7)  
Slew Rate (Note 8)  
= 5mV to 100mV  
= 5mV to 100mV  
S
r
3
μs  
SR  
= 5mV to 150mV, A = 50V/V, R = 400Ω  
1.75  
–9.5  
2
V/μs  
V
V
IN  
l
V
Reverse Input Voltage  
I
I = –5mA  
(+IN) + (–IN)  
–12  
REV  
(Referred to V )  
6105fa  
4
LT6105  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–40°C < TA < 125°C (LT6105H), otherwise specifications are at TA = 25°C. V+ = 12V, V= 0V, VS+ = 12V (see Figure 1), RIN1 = RIN2  
=
100Ω, ROUT = 5k (AV = 50), VSENSE = VS+ – VS , unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V , V  
Input Voltage Range  
Guaranteed by CMRR  
–0.3  
–0.1  
44  
44  
V
V
S
S
l
+
A Error  
Voltage Gain Error (Note 6)  
V
= 25mV to 75mV, V = 12V  
–1  
0.1  
1
%
%
V
SENSE  
S
l
l
–1.5  
1.5  
+
V
V
= 25mV to 75mV, V = 0V  
–3.25  
3.25  
%
SENSE  
S
V
Input Offset Voltage  
MS8 Package  
= 5mV  
–0.3  
–0.8  
–0.1  
–0.1  
–0.3  
0.3  
0.8  
mV  
mV  
OS  
SENSE  
l
l
Input Offset Voltage  
DCB Package  
V
V
= 5mV  
–0.4  
–0.9  
0.4  
0.9  
mV  
mV  
SENSE  
+
Input Offset Voltage  
= 5mV, V = 0V  
–1  
–1.6  
1
1.6  
mV  
mV  
SENSE  
S
l
l
Temperature Coefficient of V  
0.5  
μV/°C  
ΔV /ΔT  
OS  
OS  
+
CMRR  
Input Common Mode  
Rejection Ratio  
V
SENSE  
= 5mV, V = 2.8V to 44V  
100  
95  
120  
dB  
dB  
S
l
+
+
V
V
= 5mV, V = 0.3V to 44V  
94  
80  
dB  
dB  
SENSE  
SENSE  
S
l
l
= 5mV, V = 0.1V to 44V  
S
+
V
Power Supply Voltage Range  
Power Supply Rejection Ratio  
Guaranteed by PSRR  
2.85  
36  
V
+
+
PSRR  
V
= 5mV, V = 12V, V = 2.85V to 36V  
98  
94  
120  
120  
dB  
dB  
SENSE  
S
l
l
+
+
V
= 5mV, V = 0V, V = 2.85V to 36V  
98  
94  
dB  
dB  
SENSE  
S
+
+
l
l
I
I
, I  
Input Current  
V
V
= 0V, V = 3V  
18  
30  
0.8  
2.5  
μA  
μA  
(+IN) (–IN)  
SENSE  
SENSE  
S
= 0V, V = 0V  
–0.05  
S
+
l
l
– I  
Input Offset Current  
Input Current (Power-Down)  
V
SENSE  
V
SENSE  
+
= 0V, V = 3V  
0.35  
0.1  
μA  
μA  
(+IN)  
(–IN)  
S
S
+
= 0V, V = 0V  
+
l
I
I
I
V = 0V, V = 44V, V  
= 0V  
0.5  
μA  
(+IN) + (–IN)  
S
SENSE  
+
+
+
+
l
l
V Supply Current  
V
V
= 0V, V = 3V, V = 2.85V  
240  
300  
350  
450  
μA  
μA  
S
SENSE  
SENSE  
S
+
= 0V, V = 3V, V = 36V  
S
+
+
l
l
l
l
V
V
Minimum Output Voltage  
V
V
= 0mV, V = 44V, V = 36V  
45  
mV  
V
O(MIN)  
O(MAX)  
OUT  
SENSE  
SENSE  
S
+
Output High (Referred to V )  
= 120mV, A = 100, R  
= 10k  
1.3  
1.7  
V
OUT  
I
I
Maximum Output Current  
Short-Circuit Output Current  
–3dB Bandwidth  
Guaranteed by V  
1
mA  
mA  
kHz  
μs  
O(MAX)  
+
V
V
V
V
V
= 44V, V = 0V, R = 0Ω  
OUT  
1.5  
SC  
S
S
BW  
= 50mV, A = 10V/V  
100  
5
SENSE  
SENSE  
SENSE  
SENSE  
V
t
t
Output Settling to 1% of Final Value  
Input Step Response (Note 7)  
Slew Rate (Note 8)  
= 5mV to 100mV  
= 5mV to 100mV  
S
r
3
μs  
SR  
= 5mV to 150mV, A = 50V/V, R = 400Ω  
1.75  
–9.5  
2
V/μs  
V
V
IN  
l
V
Reverse Input Voltage  
I
I = –5mA  
(+IN) + (–IN)  
–12  
REV  
(Referred to V )  
6105fa  
5
LT6105  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
guaranteed functional over the operating temperature range of –40°C  
to 125°C.  
Note 5: The LT6105C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6105C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LT6105I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT6105H is guaranteed to  
meet specified performance from –40°C to 125°C.  
Note 2: ESD (Electrostatic Discharge) sensitive devices. Extensive use  
of ESD protection devices are used internal to the LT6105, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 3: A heat sink may be required to keep the junction temperature  
Note 6: 0.01% tolerance external resistors are used.  
below absolute maximum ratings.  
Note 7: t is measured from the input to the 2.5V point on the 5V output.  
r
Note 4: The LT6105C/LT6105I are guaranteed functional over the  
operating temperature range of –40°C to 85°C. The LT6105H is  
Note 8: Slew rate is measured on the output between 1V and 5V.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Offset Voltage  
Input Offset Voltage  
Input Offset Voltage  
vs Input Voltage  
vs Temperature, VS+ = 12V  
vs Temperature, VS+ = 0V  
400  
300  
0.80  
0.60  
1000  
800  
+
+
+
V
V
= 12V  
= 5mV  
V
V
A
= 12V  
= 5mV  
V
V
= 12V  
= 5mV  
SENSE  
SENSE  
V
SENSE  
TYPICAL UNITS  
= 50V/V  
TYPICAL UNITS  
600  
0.40  
200  
T
= 25°C  
A
400  
0.20  
100  
T
T
= 40°C  
= 125°C  
200  
A
A
0
0
0
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
–200  
–400  
–600  
–800  
–1000  
–100  
–200  
–300  
–400  
T
= 85°C  
A
–10  
5
20 35 50  
125  
–40 –25  
65 80 95 110  
10 15 20 25 30  
+
45  
0
5
35 40  
–10  
5
20 35 50  
125  
–40 –25  
65 80 95 110  
TEMPERATURE (°C)  
V
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
S
6105 G01  
6105 G03  
6105 G02  
Input Offset Voltage  
Input Offset Voltage  
Gain Error Distribution,  
vs Supply Voltage, VS+ = 12V  
vs Supply Voltage, VS+ = 0V  
VS+ = 12V  
0.2  
0.0  
40  
35  
30  
25  
20  
15  
10  
5
0.8  
0.6  
+
V
= 5mV  
V
V
= 12V  
= 50mV  
V
= 5mV  
SENSE  
SENSE  
SENSE  
R
= 100Ω  
IN  
A
= 50V/V  
V
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
0.4  
500 SAMPLES  
T
= 25°C  
= 85°C  
A
0.2  
T
= 25°C  
A
T
A
0.0  
T
= –40°C  
A
T
T
= 40°C  
T = 125°C  
A
A
–0.2  
–0.4  
–0.6  
–0.8  
= 85°C  
A
T
= 125°C  
A
0
10 15 20 25 30  
+
0
5
35 40  
–0.30.20.1  
0
0.1  
0.5  
0.2 0.3 0.4  
–0.50.4  
10 15 20 25 30  
+
40  
0
5
35  
V
SUPPLY VOLTAGE (V)  
GAIN ERROR (%)  
V
SUPPLY VOLTAGE (V)  
6105 G04  
6105 G05  
6105 G06  
6105fa  
6
LT6105  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Error Distribution,  
Gain Error vs Temperature,  
VS+ = 0V  
Gain Error vs Input Voltage  
VS+ = 12V  
4
3
45  
40  
35  
30  
25  
20  
15  
10  
5
0.5  
0.4  
+
+
+
V
V
R
A
= 12V  
= 50mV  
V
V
= 12V  
= 50mV  
V
V
= 12V  
= 50mV  
SENSE  
SENSE  
SENSE  
= 100Ω  
IN  
= 50V  
V
R
A
= 100Ω  
R
A
= 100Ω  
IN  
IN  
V
0.3  
= 50V/V  
= 50V/V  
V
2
500 SAMPLES  
0.2  
T
= 40°C  
A
1
0.1  
T
= 25°C  
A
0
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
–4  
T
= 125°C  
T = 85°C  
A
A
0
10 15 20 25 30  
+
45  
0
5
35 40  
–2.1 –2.0 –1.9 –1.8 –1.7  
–1.4  
–1.6 –1.5  
–2.3 –2.2  
–50 –25  
0
25  
50  
75 100 125  
V
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR (%)  
S
6105 G08  
6105 G07  
6105 G09  
Input Referred Voltage Error  
vs VSENSE, VS+ = 12V  
Gain Error vs Temperature,  
VS+ = 0V  
Gain Error vs Output Resistance  
6
5
2
1
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
–3.2  
–3.6  
–4.0  
+
+
V
V
R
A
= 12V  
V
R
A
= 12V  
V
V
= 12V  
= 50mV  
IN  
SENSE  
= 50mV  
= 100Ω  
IN  
V
SENSE  
4
= 100Ω  
IN  
= R /R  
OUT IN  
= 50V/V  
R
A
= 100Ω  
IN  
V
= 50V/V  
V
3
T
= 85°C  
A
2
1
+
+
T
T
= 125°C  
A
V
V
= 12V  
= 0V  
S
S
0
0
–1  
–2  
–3  
–4  
–5  
–6  
= 40°C  
A
T
= 25°C  
A
–1  
–2  
0
2000  
4000  
6000  
8000 10000  
0
20  
40  
V
60  
(mV)  
80  
100  
120  
–50 –25  
0
25  
50  
75 100 125  
R
OUTPUT RESISTANCE (Ω)  
TEMPERATURE (°C)  
OUT  
SENSE  
6105 G11  
6105 G12  
6105 G10  
Input Bias Current  
vs Input Voltage  
Input Current vs Input Voltage,  
VSENSE = 50mV  
Input Referred Voltage Error  
vs VSENSE, VS+ = 0V  
2.0  
1.5  
5.0  
4.0  
100.00  
10.00  
1.00  
+
+
+
V
R
A
= 12V  
V
R
A
= 12V  
V
V
= 3V  
= 100Ω  
= 50V/V  
= 100Ω  
= 0V  
IN  
V
IN  
V
SENSE  
= 50V/V  
R
= 100Ω  
IN  
3.0  
1.0  
2.0  
0.1  
I
(+IN)  
T
= 40°C  
T
= 125°C  
T = 40°C  
A
A
T
A
0.5  
1.0  
0.01  
= 25°C  
A
I
(–IN)  
T
= 85°C  
A
0.0  
0.0  
0
T
= 25°C  
A
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–0.01  
–0.10  
–1.00  
–10.00  
–100.00  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 125°C  
A
T
= 85°C  
A
10 15 20 25 30  
+
45  
0
5
35 40  
0
20  
40  
V
60  
(mV)  
80  
100  
120  
0
0.5  
V
1.5  
2
2.5  
3
1
+
INPUT VOLTAGE (V)  
V
INPUT VOLTAGE (V)  
SENSE  
S
S
6105 G15  
6105 G13  
6105 G14  
6105fa  
7
LT6105  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Current (V+ Powered  
Down) vs Input Voltage  
Output Voltage vs VSENSE Voltage,  
VS+ = 12V  
Output Voltage vs VSENSE Voltage,  
VS+ = 0V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
100  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
+
+
V
R
A
= 3V  
V
R
A
= 3V  
T
= 125°C  
A
= 100Ω  
= 10V/V  
= 100Ω  
= 10V/V  
IN  
V
IN  
V
T
= 85°C  
10  
A
T
A
(40°C, 25°C, 85°C, 125°C)  
1
T
= 40°C  
A
T
(25°C, 85°C, 125°C)  
A
0.1  
T
T
= 25°C  
A
0.01  
0.001  
0.0001  
= –40°C  
A
+
V
V
= 0V  
= 0V  
SENSE  
70  
90 110 130  
70  
90 110 130  
–10 10  
30  
50  
–10 10  
30  
50  
0
5
10 15 20 25 30 35 40 45 50  
+
V
(mV)  
V
(mV)  
V
INPUT VOLTAGE (V)  
SENSE  
SENSE  
S
6105 G18  
6105 G17  
6105 G16  
Output Saturation Voltage  
Output Saturation Voltage  
Output Short-Circuit  
vs Output Current, VS+ = 12V  
vs Output Current, VS+ = 0.5V  
Current vs Temperature  
3.4  
3.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
+
+
+
V
V
V
= 5V  
V
V
R
= 12V  
= 0.5V  
V
V
R
= 12V  
= 0.5V  
+
= 5V  
S
SENSE  
IN  
SENSE  
IN  
= 5V  
= 100Ω  
= 100Ω  
SENSE  
IN  
R
= 100Ω  
3.0  
T
T
= 40°C  
= 25°C  
T
= 85°C  
A
A
T
= 125°C  
= 40°C  
2.8  
2.6  
2.4  
2.2  
A
A
T
= 85°C  
A
T
A
T
= 25°C  
A
T
= 125°C  
A
+
+
OUTPUT SATURATION VOLTAGE = V – V  
OUTPUT SATURATION VOLTAGE = V – V  
OUT  
OUT  
2.0  
–10  
5
20 35 50  
125  
0.001  
0.01  
0.10  
1
10  
–40 –25  
65 80 95 110  
0.001  
0.01  
0.10  
1
10  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
6105 G21  
6105 G19  
6105 G20  
Supply Current vs Supply Voltage,  
VS+ = 12V  
Supply Current vs Supply Voltage,  
VS+ = 0V  
Supply Current vs Input Voltage  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
+
V
R
A
= 0V  
SENSE  
V
V
= 3V  
V
R
A
= 0V  
SENSE  
IN  
V
= 100Ω  
IN  
= 0V  
= 100Ω  
SENSE  
= 50V/V  
V
R
= 100Ω  
= 50V/V  
IN  
T
= 125°C  
= 85°C  
A
T
= 125°C  
= 85°C  
T
= 125°C  
= 85°C  
= 25°C  
A
A
T
A
T
A
T
A
T
T
= 25°C  
A
T
= 25°C  
A
A
T
A
A
= 40°C  
A
T
= 40°C  
T
= 40°C  
0
10 15 20 25 30 35 40  
+
0
5
10 15 20 25 30  
+
35 40  
45  
10 15 20 25 30  
+
0
5
0
5
35 40  
V SUPPLY VOLTAGE (V)  
V
INPUT VOLTAGE (V)  
V
SUPPLY VOLTAGE (V)  
S
6105 G24  
6105 G22  
6105 G23  
6105fa  
8
LT6105  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Rejection  
Ratio vs Frequency  
Power Supply Rejection  
Ratio vs Frequency  
Gain vs Frequency  
140  
120  
100  
80  
160  
140  
120  
100  
80  
40  
30  
+
+
+
+
V
V
= 12V  
= 5mV  
V
V
= 12V  
V
V
= V = 12V  
S
+
= 12V  
= 50mV  
= 100Ω  
= 10V/V  
SENSE  
S
SENSE  
+
R
A
= 100Ω  
R
A
= 100Ω  
= 50V/V  
V
= 12V  
R
A
IN  
V
IN  
V
S
IN  
V
= 10V/V  
20  
10  
+
V
= 0V  
S
0
60  
60  
–10  
–20  
–30  
–40  
40  
40  
20  
20  
0
0.1  
0
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
10 100  
1k  
10k 100k 1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6105 G27  
6105 G26  
6105 G25  
Step Response  
VSENSE = 0V to 100mV, VS+ = 12V  
Step Response  
VSENSE = 0V to 100mV, VS+ = 0V  
Slew Rate vs RIN  
2.5  
2.0  
1.5  
0V  
12V  
V
S
V
S
+SLEW RATE  
100mV/DIV  
100mV/DIV  
–SLEW RATE  
V
V
OUT  
OUT  
1.0  
0.5  
0
500mV/DIV  
500mV/DIV  
0V  
0V  
+
V
V
V
A
= 12V  
+
= 12V  
6105 G30  
S
6105 G29  
50μs/DIV  
= 10k  
50μs/DIV  
= 10k  
= 7.5V  
= 50V/V  
OUT  
V
+
+
V
R
= 12V  
= 1k  
R
A
V
R
= 12V  
= 1k  
R
A
OUT  
OUT  
= 10V/V  
V
= 10V/V  
V
IN  
IN  
0
100 200 300 400 500 600 700 800 9001000  
(Ω)  
R
IN  
6105 G28  
Step Response  
Step Response  
VSENSE = 0V to 100mV, RIN = 100Ω  
Step Response  
VSENSE = 5mV to 100mV  
V
SENSE = 0V to 100mV  
11.995V  
12V  
12V  
V
S
V
S
V
S
100mV/DIV  
100mV/DIV  
100mV/DIV  
5V  
V
5V  
OUT  
V
OUT  
V
2V/DIV  
0V  
OUT  
2V/DIV  
0V  
2V/DIV  
0V  
6105 G33  
6105 G31  
6105 G32  
5μs/DIV  
= 50k  
50μs/DIV  
5μs/DIV  
+
+
+
V
V
= 12V  
= 12V  
= 1k  
R
A
V
V
A
= 12V  
V
V
= 12V  
= 12V  
= 1k  
R
A
= 50k  
OUT  
= 50V/V  
V
OUT  
+
+
+
= 50V/V  
V
= 12V  
S
S
V
S
R
IN  
= 50V/V  
R
IN  
6105fa  
9
LT6105  
TYPICAL PERFORMANCE CHARACTERISTICS  
Step Response  
Step Response  
VSENSE = 100mV to 5mV  
Step Response  
VSENSE = 0V to 10mV, VS+ = 12V  
VSENSE = 0V to 10mV, VS+ = 0V  
11.995V  
12V  
0V  
S
10mV/DIV  
V
S
V
S
V
100mV/DIV  
10mV/DIV  
V
5V  
OUT  
2V/DIV  
V
V
OUT  
OUT  
200mV/DIV  
0V  
200mV/DIV  
0V  
0V  
6105 G35  
6105 G34  
6105 G36  
50μs/DIV  
= 5k  
5μs/DIV  
= 50k  
50μs/DIV  
+
+
+
V
= 12V  
R
A
V
V
= 12V  
= 12V  
= 1k  
R
A
V
R
= 12V  
R
= 5k  
OUT  
OUT  
OUT  
+
R
= 100Ω  
= 50V/V  
V
= 50V/V  
V
= 100Ω  
A
= 50V/V  
V
IN  
S
IN  
R
IN  
Step Response  
Step Response  
Step Response  
VSENSE = 0V to 100mV,  
VSENSE = 0V to 10mV,  
VSENSE = 0V to 100mV,  
CL = 1000pF, VS+ = 12V  
CL = 1000pF, VS+ = 12V  
CL = 1000pF, VS+ = 0V  
12V  
12V  
0V  
V
V
V
S
S
S
100mV/DIV  
10mV/DIV  
100mV/DIV  
V
V
V
OUT  
2V/DIV  
0V  
OUT  
OUT  
2V/DIV  
200mV/DIV  
0V  
0V  
6105 G37  
6105 G38  
6105 G39  
50μs/DIV  
+
50μs/DIV  
+
50μs/DIV  
+
V
R
R
= 12V  
A
V
C
L
= 50V/V  
V
R
R
= 12V  
A
V
C
L
= 50V/V  
V
R
R
= 12V  
A
V
C
L
= 50V/V  
= 100Ω  
= 5k  
= 1000pF  
= 100Ω  
= 5k  
= 1000pF  
= 100Ω  
= 5k  
= 1000pF  
IN  
IN  
IN  
OUT  
OUT  
OUT  
Step Response  
VSENSE = 0V to 10mV,  
CL = 1000pF, VS+ = 0V  
Power Supply Start-Up Response  
5V  
0V  
S
10mV/DIV  
+
V
V
0V  
V
OUT  
1V/DIV  
0V  
V
OUT  
200V/DIV  
0V  
6105 G40  
6105 G41  
50μs/DIV  
+
20μs/DIV  
+
V
R
R
= 12V  
A
V
C
L
= 50V/V  
V
V
= 12V  
R
= 1k  
IN  
S
= 100Ω  
= 5k  
= 1000pF  
= 100mV  
A
= 10V/V  
V
IN  
SENSE  
OUT  
6105fa  
10  
LT6105  
PIN FUNCTIONS (DCB/MS8)  
–IN (Pin 1/Pin 1): Negative Sense Input Terminal.  
V
is the input offset voltage. A is the gain set by exter-  
OS V  
nal R , R , R . A = R /R , for R = R  
Negative sense voltage input will remain functional for  
.
IN1 IN2 OUT  
V
OUT IN1  
IN1  
IN2  
voltages up to 44V, referred to V . Connect –IN to an  
NC (Pin 5/Pins 3, 6, 7): Not Connected Internally.  
+IN (Pin 6/Pin 8): Positive Sense Input Terminal.  
external gain-setting resistor R (R = R ) to set  
IN1  
IN1  
IN2  
the gain.  
+
Connecting a source to V and a load to V will allow the  
S
S
+
V (Pin 2/Pin 2): Power Supply Voltage. This pin supplies  
currenttotheamplifierandcanoperatefrom2.85Vto36V,  
independent of the voltages on the –IN or +IN pins.  
LT6105 to monitor the current through R  
, refer to  
SENSE  
Figure 1. Connect +IN to an external gain-setting resistor  
R
to set the gain. +IN remains functional for voltages  
IN2  
V (Pin3/Pin4):NegativePowerSupplyVoltageorGround  
up to 44V, referred to V .  
for Single Supply Operation.  
Exposed Pad (Pin 7) DFN Only: V . The Exposed Pad is  
V
(Pin 4/Pin 5): Voltage Output:  
connected to the V pin. It should be connected to the  
OUT  
V trace of the PCB, or left floating.  
V
= A • (V  
V )  
OS  
OUT  
V
SENSE  
BLOCK DIAGRAM  
V
SENSE  
R
SENSE  
V –  
S
V +  
S
SOURCE  
0V TO 44V  
TO LOAD  
R
R
IN2  
IN1  
–IN  
+IN  
SET R = R FOR BEST ACCURACY  
IN1  
IN2  
LT6105  
R
R
OUT  
V
V
> 1.6V: V  
< 1.6V: V  
= V  
= V  
(–IN)  
(–IN)  
OUT  
OUT  
SENSE  
SENSE  
+
IN2  
V
IF R ≠ R , THEN  
IN1  
IN2  
+
+
R
OUT  
R
IN1  
A1  
A2  
Q2  
Q3  
R , R , R  
IN1 IN2 OUT  
ARE EXTERNAL RESISTORS  
Q1  
V
OUT  
R
R
OUT  
V
= V  
SENSE  
V
OUT  
IN  
WHERE R = R = R  
IN  
IN1  
IN2  
R
OUT  
R
OUT  
A
=
V
R
IN  
6105 F01  
Figure 1. Simplified Block Diagram  
6105fa  
11  
LT6105  
APPLICATIONS INFORMATION  
The LT6105 extended input range current sense am-  
plifier (see Figure 1) provides accurate unidirectional  
monitoringofcurrentthroughauser-selectedsenseresis-  
tor. The LT6105 is fully specified over a –0.3V to 44V input  
Selection of External Current Sense Resistor  
External R resistor selection is a delicate trade-off  
between power dissipation in the resistor and current  
measurement accuracy. For high current applications, the  
user may want to minimize the sense voltage to minimize  
the power dissipation in the sense resistor.  
SENSE  
+
common mode range. A high PSRR V supply (2.85V to  
36V) powers the current sense amplifier. The input sense  
voltage is level shifted from the sensed power supply to  
thegroundreferenceandamplifiedbyauser-selectedgain  
to the output. The output voltage is directly proportional  
to the current flowing through the sense resistor.  
The system load current will cause both heat and voltage  
loss in R  
. As a result, the sense resistor should be as  
SENSE  
small as possible while still providing the input dynamic  
range required by the measurement. Note that input dy-  
namic range is the difference between the maximum input  
signal and the minimum accurately reproduced signal,  
and is limited primarily by input DC offset voltage of the  
internal amplifier of the LT6105.  
THEORY OF OPERATION  
(Refer to Figure 1)  
Case 1: High Input Voltage (1.6V < V < 44V)  
–IN  
+
The sense resistor value will be set from the minimum  
signalcurrentthatcanbeaccuratelyresolvedbythissense  
amp. As an example, the LT6105 has a typical input offset  
of100μV.Iftheminimumcurrentis20mA,asenseresistor  
Current from the source at V flows through R  
to  
SENSE  
S
the load at V , creating a sense voltage, V  
. Inputs  
S
SENSE  
+
V
and V apply the sense voltage to R . The opposite  
S
S IN2  
ends of resistors R and R are forced to be at equal  
IN1  
IN2  
of 5mΩ will set V  
to 100μV, which is the same value  
SENSE  
potentials by the voltage gain of amplifier A2. Thus, the  
current through R is V /R . The current through  
as the input offset. A larger sense resistor will reduce the  
error due to offset by increasing the sense voltage for  
a given load current, but it will limit the maximum peak  
current for a given application.  
IN2  
SENSE IN2  
R
R
is forced to flow through transistor Q1 and into  
IN2  
OUT  
, creating an output voltage, V . Under this input  
OUT  
operation range, amplifier A1 is kept off. The base current  
of Q1 has been compensated for and will not contribute  
For a peak current of 2A and a maximum V  
SENSE  
of 80mV,  
SENSE  
to output error. The current from R flowing through  
R
should not be more than 40mΩ. The input offset  
IN2  
resistor R  
OUT IN2  
gives an output voltage of V  
/R , producing a gain voltage of A = V /V  
= V  
causes an error equivalent to only 2.5mA of load current.  
Peak dissipation is 160mW. If a 20mΩ sense resistor is  
employed, then the effective current error is 5mA, while  
the peak sense voltage is reduced to 40mV at 2A, dis-  
sipating only 80mW.  
OUT  
OUT  
SENSE  
R
V OUT SENSE  
= R /R  
.
OUT IN2  
Case 2: Low Input Voltage (0V < V < 1.6V)  
–IN  
+
Current from the source at V flows through R  
to  
SENSE  
. Inputs  
S
The LT6105’s low input offset voltage of 100μV allows for  
highresolutionwhilelimitingthemaximumsensevoltages.  
Coupled with full scale sense voltage as large as 1V for  
the load at V , creating a sense voltage, V  
S
SENSE  
+
V
and V apply the sense voltage to R . The opposite  
S
S IN1  
ends of resistors R and R are forced to be at equal  
IN1  
IN2  
R = 1k, it can achieve 80dB of dynamic range.  
IN  
potentials by the voltage gain of amplifier A1. Thus, the  
collector current of Q3 will flow out of the –IN pin through  
Sense Resistor Connection  
R
IN1  
. Q2 mirrors this current V  
/R to R , creat-  
SENSE IN1 OUT  
Kelvin connection of the LT6105’s input resistors to the  
senseresistorshouldbeimplementedtoprovidethehigh-  
est accuracy in high current applications. Solder connec-  
tionsandPCboardinterconnectresistance(approximately  
0.5mΩ per square for 1oz copper) can be a large error  
in high current systems. A 5A application might choose  
6105fa  
ing an output voltage, V . Under this input operation  
OUT  
range, amplifier A2 is kept off. This current V  
/R  
SENSE IN1  
flowing through resistor R  
gives an output voltage of  
OUT  
V
= V  
• R /R , producing a gain voltage of  
OUT  
SENSE OUT IN1  
A = V /V  
= R /R  
.
V
OUT SENSE  
OUT IN1  
12  
LT6105  
APPLICATIONS INFORMATION  
is 1mA. This allows low value output resistors to be used  
which helps preserve signal accuracy when the output pin  
is connected to other systems.  
a 20mΩ sense resistor to give a 100mV full-scale input  
to the LT6105. Input offset voltage will limit resolution to  
5mA. Neglecting contact resistance at solder joints, even  
one square of PC board copper at each resistor end will  
cause an error of 5%. This error will grow proportionately  
higher as monitored current levels rise.  
For zero V  
, the internal circuitry gain will force V  
SENSE  
OUT  
to V  
referred to V . Depending on output currents,  
O(MIN)  
+
V
may swing positive to within V  
referred to V  
OUT  
O(MAX)  
oramaximumof36V, alimitsetbyinternaljunctionbreak-  
down. Within these constraints, an amplified, level shifted  
representationofR  
output is well behaved driving capacitive loads.  
Gain Setting  
The gain is set with three external resistors, R , R  
,
voltageisdevelopedatV .The  
OUT  
IN1 IN2  
SENSE  
R
. The gain, R /R , can be selected from 1V/V to  
OUT  
OUT IN  
100V/V as long as the maximum current does not exceed  
CM Input Signal Range  
1mA. Select Gain = R /R for sense input voltage op-  
OUT IN2  
erationgreaterthan1.6V.Selectgain=R /R forsense  
OUT IN1  
The LT6105 has high CMRR over the full input voltage  
range.Theminimumoperationvoltageofthesenseampli-  
input voltage operation less than 1.6V. The overall system  
error will depend on the resistor tolerance chosen for the  
+
fier inputs is 0V whether V is at 2.7V or 36V. The output  
application. Set R = R  
for best accuracy across the  
IN1  
IN2  
remains accurate even when the sense inputs are driven  
entire input range. The total error will be gain error of the  
to 44V. The graph in Figure 2 shows that V changes very  
OS  
resistors plus the gain error of the LT6105 device.  
slightlyoverawideinputrange. Furthermore, eithersense  
+
inputsV andV cancollapseto0Vwithoutincurringany  
S
S
Output Signal Range  
damage to the device. The LT6105 can handle differential  
+
The LT6105’s output signal is developed by current  
sensevoltagesupto44V.Forexample,V =44VandV =  
S S  
through R (44V > V > 1.6V) or R (0V < V <  
0Vcanbeavalidconditioninacurrentmonitoringapplica-  
IN2  
–IN  
IN1  
–IN  
tion (Figure 3) when an overload protection fuse is blown  
1.6V) conducted to the output resistor, R . This current  
OUT  
andV voltagecollapsestoground. Underthiscondition,  
isV  
/R orV  
/R .Thesenseamplifier’smaxi-  
mum output current before gain error begins to increase  
S
SENSE IN2  
SENSE IN1  
the output of the LT6105 goes to the positive rail, V  
.
O(MAX)  
TO LOAD  
R
FUSE  
0.80  
+
+
SENSE  
V
V
S
S
DC SOURCE  
(≤ 44V)  
V
V
A
= 12V  
= 5mV  
0.60  
0.40  
SENSE  
V
R
R
IN2  
IN1  
C1  
= 50V/V  
0.1MF  
T
= 25°C  
A
–IN  
+
+IN  
0.20  
T
T
= 40°C  
= 125°C  
A
A
V
0
+
C2  
0.1MF  
+
5V  
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
T
= 85°C  
A
V
10 15 20 25 30  
+
45  
0
5
35 40  
OUT  
OUTPUT  
V
INPUT VOLTAGE (V)  
LT6105  
S
6105 F02  
R
OUT  
6105 F03  
Figure 2. Input Offset Voltage vs VS+ Input Voltage  
Figure 3. Current Monitoring of a Fuse Protected Circuit  
6105fa  
13  
LT6105  
APPLICATIONS INFORMATION  
There is no phase inversion. For the opposite case, when  
If the circuit to be driven has high input impedance, then  
almost any useful output impedance will be acceptable.  
However,ifthedrivencircuithasrelativelylowinputimped-  
ance, or draws spikes of current such as an ADC might  
+
V
collapses to ground with V held up at some higher  
S
S
voltage potential, the output will sit at V  
.
O(MIN)  
The Two Input Stages Crossover Region  
do, then a lower R  
value may be required in order to  
OUT  
preserve the accuracy of the output. As an example, if the  
input impedance of the driven circuit is 100 times R  
The wide common mode input range is achieved with two  
input stages. These two input stages consist of a pair of  
matched common base PNP input transistors and a pair  
of common emitter PNP input transistors. As result of  
two input stages, there will be three distinct operating  
regionsaroundthetransitionregionasshowninthe Input  
Bias Current vs Sense Input Voltage curve in the Typical  
Performance Characteristics section.  
,
OUT  
then the accuracy of V  
will be reduced by 1% since:  
OUT  
ROUT RIN(DRIVEN)  
ROUT +RIN(DRIVEN)  
100  
VOUT = IOUT  
= IOUT ROUT  
= 0.99 •IOUT ROUT  
101  
The crossover voltage, the voltage where the g of one  
m
Full-Scale Sense Voltage, Selection of External Input  
inputstageistransferredtotheother,occursat1.6Vabove  
Resistor, R  
V . Near this region, one input stage is shutting off while  
IN  
theotheristurningon.Increasesintemperaturewillcause  
the crossover voltage to decrease. For input operation  
between 1.6V and 44V, the common base PNPs are active  
(Q2, Q3 of Figure 1). The typical current through each  
The external input resistor, R , controls the transconduc-  
IN  
tanceofthecurrentsensecircuit.SinceI  
=V  
/R ,  
OUT  
SENSE IN  
transconductance g = 1/R . For example, if R =100,  
m
IN  
OUT  
IN  
thenI  
IN  
=V  
/100orI  
=1mA forV =100mV.  
OUT  
SENSE  
SENSE  
input at V  
= 0V is 15μA. The input offset voltage is  
SENSE  
R
should be chosen to allow the required resolution  
300μVmaximumatroomtemperature.Forinputoperation  
between 1.6V to 0V, the other PNP is active. The current  
while limiting the output current. The LT6105 can output  
more than 1mA into R without introducing a signifi-  
OUT  
out of the inputs at V  
= 0V is 100nA. The input offset  
SENSE  
cant increase in gain error. By setting R such that the  
IN  
OUT  
voltage is untrimmed and is typically 300μV.  
largest expected sense voltage gives I  
= 1mA, then  
the maximum output dynamic range is available. Output  
dynamic range is limited by both the maximum allowed  
output current and the maximum allowed output voltage,  
as well as the minimum practical output signal. If less  
Selection of External Output Resistor, R  
OUT  
The output resistor, R , determines how the output cur-  
OUT  
rent is converted to voltage. V  
is simply I • R  
.
OUT  
RIN  
OUT  
dynamic range is required, then R can be increased  
IN  
In choosing an output resistor, the maximum output volt-  
age must first be considered. If the following circuit is a  
buffer or ADC with limited input range, then R  
accordingly, reducing the maximum output current and  
powerdissipation.TheLT6105’sperformanceisoptimized  
must be  
OUT  
for values of R = 100Ω to 1k. Values outside this range  
IN  
chosen so that I  
• R  
is less than the allowed  
OUT(MAX)  
OUT  
may result in additional errors. The power dissipation  
maximuminputrangeofthiscircuit.Inaddition,theoutput  
across R and R  
should not exceed the resistors’  
IN  
OUT  
impedance is determined by R  
.
OUT  
recommended ratings.  
6105fa  
14  
LT6105  
APPLICATIONS INFORMATION  
Error Sources  
+
SincethecurrentexitingINiscomingfromV ,thevoltage  
+
is V – V . Taking the worst case V = 0V, the above  
–IN  
–IN  
Thecurrentsensesystemusesanamplifier,currentmirrors  
and external resistors to apply gain and level shifting. The  
output is then dependent on the matching characteristics  
ofthecurrentmirrors, characteristicsoftheamplifiersuch  
as gain and input offset, as well as matching of external  
resistors. Ideally, the circuit output is:  
equation becomes:  
+
P V • I  
, for V < 1.6V.  
–IN  
IN  
RIN1  
The power dissipated due to internal mirrored currents:  
+
P = 2 • I  
• V  
Q
OUT  
R
RIN  
The factor of 2 is the result of internal current shifting and  
1:1 mirroring.  
VOUT = VSENSE  
OUT ;VSENSE = ISENSE RSENSE  
At maximum supply and maximum output current, the  
total power dissipation can exceed 100mW. This will  
cause significant heating of the LT6105 die. In order to  
prevent damage to the LT6105, the maximum expected  
dissipation in each application should be calculated. This  
In this case, the only error is due to resistor mismatch,  
which provides an error in gain only. Mismatch in the  
internal current mirror adds to gain error but is trimmed  
to less than 0.3%. Offset voltage and sense input current  
are the main cause of any additional error.  
number can be multiplied by the θ value listed in the Pin  
JA  
Configuration section to find the maximum expected die  
Error Due to Input Offset Voltage  
temperature. This must not be allowed to exceed 150°C,  
Dynamic range is inversely proportional to the input offset  
voltage.Dynamicrangecanbethoughtofasthemaximum  
or performance may be degraded. As an example, if an  
+
LT6105 in the MSOP package is to be run at V = 44V and  
S
+
V
divided by V . The offset voltage of the LT6105  
V = 36V with 1mA output current at 80°C ambient:  
SENSE  
OS  
is typically only 100μV.  
+
P
P
= 2 • I  
• V = P  
= 72mW  
Q(MAX)  
IN(MAX)  
OUT(MAX)  
Q(MAX)  
Error Due to Sense Input Offset Current  
= I  
• V  
= 44mW  
RIN2(MAX)  
+IN(MAX)  
= θ • P  
JA TOTAL(MAX)  
Inputoffsetcurrentormismatchesininputbiascurrentwill  
introduce an additional input offset voltage term. Typical  
T
T
RISE  
MAX  
= T  
+ T  
RISE  
AMBIENT  
input offset current is 0.05μA. Lower values of R will  
IN  
keep this error to a minimum. For example, if R = 100Ω,  
T
must be < 150°C  
MAX  
IN  
then the additional offset is 5μV.  
P
= 116mW and the maximum die temperature  
TOTAL(MAX)  
will be 109°C. If this same circuit must run at 125°C ambi-  
Output Current Limitations Due to Power Dissipation  
ent, the maximum die temperature will increase to 150°C.  
Note that supply current, and therefore P , is proportional  
The LT6105 can deliver up to 1mA continuous current to  
Q
the output pin. This output current, I , is the mirrored  
to temperature. Refer to the Typical Performance Charac-  
teristics section. In this condition, the maximum output  
current should be reduced to avoid device damage. The  
OUT  
current which flows through R and enters the current  
IN2  
sense amp via the +IN pin for V > 1.6V, and exits out of  
–IN  
–IN through R for V < 1.6V. The total power dissipa-  
DCB package, on the other hand, has a lower θ and  
IN1  
–IN  
JA  
tion due to input currents, P , and the dissipation due to  
subsequently, a lower die temperature increase than the  
MSOP. With the same condition as above, the DCB will  
rise only 7.5°C to 87.5°C and 132.5°C, respectively.  
IN  
internal mirrored currents, P :  
Q
P
TOTAL  
= P + P  
IN Q  
It is important to note that the LT6105 has been designed  
to provide at least 1mA to the output when required, and  
P = (V ) • I  
; V > 1.6V  
IN  
+IN  
RIN2 –IN  
or  
candelivermoreunderlargeV  
conditions.Caremust  
SENSE  
be taken to limit the maximum output current by proper  
+
P = (V – (V )) • I  
; V < 1.6V  
RIN1 –IN  
IN  
–IN  
choice of sense resistor and input resistors.  
6105fa  
15  
LT6105  
APPLICATIONS INFORMATION  
Output Filtering  
Response Time  
The output voltage, V  
is simply I  
• Z . This  
The LT6105 is designed to exhibit fast response to inputs  
forthepurposeofcircuitprotectionorsignaltransmission.  
This response time will be affected by the external circuit  
in two ways—delay and speed. If the output current is  
very low and an input transient occurs, there may be an  
increaseddelaybeforetheoutputvoltagebeginschanging.  
This can be improved by increasing the minimum output  
OUT  
OUT  
OUT  
makes filtering straightforward. Any circuit may be used  
which generates the required Z to get the desired filter  
OUT  
response. For example, a capacitor in parallel with R  
OUT  
will give a low pass response. This will reduce unwanted  
noise from the output, and may also be useful as a charge  
reservoir to keep the output steady while driving a switch-  
ing circuit such as a mux or an ADC. This output capacitor  
in parallel with an output resistor will create a pole in the  
output response at:  
current,eitherbyincreasingR  
ordecreasingR .The  
SENSE  
IN  
effect of increased output current is illustrated in the step  
responsecurvesintheTypicalPerformanceCharacteristics  
section of this data sheet. Note that the curves are labeled  
with respect to the initial output currents. The speed is  
also affected by the external circuit. In this case, if the  
input changes very quickly, the internal amplifier will slew  
the base of the internal output PNP (Figure 1) in order to  
maintain the internal loop. This results in current flowing  
1
f–3db  
=
2 • π ROUT • COUT  
through R and the internal PNP. This current slew rate  
IN  
will be determined by the amplifier and PNP characteris-  
tics as well as the input resistor, R . See the Slew Rate  
IN  
vs R curve in the Typical Performance Characteristics  
IN  
section. Using a smaller R will allow the output current  
IN  
to increase more quickly, decreasing the response time  
at the output. This will also have the effect of increasing  
the maximum output current.  
TYPICAL APPLICATIONS  
Gain of 20 Current Sense Amplifier with Output Filtering  
2.85V TO 36V  
SOURCE  
0V TO 44V  
+
V
LT6105  
249Ω  
+IN  
–IN  
+
V
+
S
V
OUT  
V
= 780mV/A  
0.039Ω  
OUT  
V
S
4.99k  
0.22μF  
249Ω  
V
6105 TA02  
TO LOAD  
6105fa  
16  
LT6105  
TYPICAL APPLICATIONS  
Solenoid Monitor  
mechanical system monitoring without an independent  
sensor or limit switch.  
The large input common mode range of the LT6105  
makes it suitable for monitoring currents in quarter,  
half and full bridge inductive load driving applications.  
Figure 4 shows an example of a quarter bridge. The  
MOSFET pulls down on the bottom of the solenoid to  
increase solenoid current. It lets go to decrease current,  
and the solenoid voltage freewheels around the Schottky  
diode. Current measurement waveforms are shown in  
Figure 5. The small glitches occur due to the action of  
thesolenoidplunger, andthisprovidesanopportunityfor  
Figure 6 shows another solenoid driver circuit, this time  
with one end of the solenoid grounded and a P-channel  
MOSFET pulling up on the other end. In this case, the  
inductor freewheels around ground, imposing a negative  
input common mode voltage of one Schottky diode drop.  
This voltage may exceed the input range of the LT6105.  
Thisdoesnotendangerthedevice,butitseverelydegrades  
its accuracy. In order to avoid violating the input range,  
pull-up resistors may be used as shown.  
24V  
DC  
24V  
DC  
24V/OFF  
24V, 3W  
1Ω  
1%  
19V/ON  
TP0610L  
1N5818  
SOLENOID  
1Ω  
1%  
+
+
200Ω  
1%  
200Ω  
1%  
200Ω  
1%  
200Ω  
1%  
1N914  
24V, 3W  
SOLENOID  
2k  
1%  
2k  
1%  
1N5818  
LT6105  
–IN  
+IN  
5V/ON  
2N7000  
0V/OFF  
LT6105  
–IN  
+IN  
+
V
5V  
DC  
+
V
5V  
DC  
V
V
OUT  
= 25mV/mA  
V
OUT  
V
4.99k  
1%  
6105 F04  
V
= 25mV/mA  
V
OUT  
OUT  
4.99k  
1%  
6105 F06  
Figure 4. Simplest Form of a Solenoid Driver. The LT6105  
Monitors the Current in Both On and Freewheel States. The  
Lowest Common Mode Voltage Is 0V, While the Highest Is  
24V Plus the Forward Voltage of the Schottky Diode  
Figure 6. A Similar Circuit to Figure 4, but with Solenoid  
Grounded, so Freewheeling Forces Inputs Negative.  
Providing Resistive Pull-Ups Keeps Amplifier Inputs From  
Falling Outside of Their Accurate Input Range  
5V/DIV  
10V/DIV  
2V/DIV  
6105 F05  
50ms/DIV  
Figure 5. Current Measurement Waveforms. The Top Trace Is the  
MOSFET Gate with High On. The Middle Trace Is the Bottom of  
the Solenoid/Inductor. The Bottom Trace Is the LT6105 Output,  
Representing Solenoid Current at 80mA/DIV. Glitches Are Useful  
Indicators of Solenoid Plunger Movement  
6105fa  
17  
LT6105  
PACKAGE DESCRIPTION  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715)  
0.70 p 0.05  
1.65 p 0.05  
3.55 p 0.05  
(2 SIDES)  
2.15 p 0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
1.35 p 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 p 0.10  
(2 SIDES)  
0.40 p 0.10  
R = 0.05  
TYP  
4
6
3.00 p 0.10 1.65 p 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
s 45o CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 p 0.05  
0.50 BSC  
0.75 p 0.05  
0.200 REF  
1.35 p 0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6105fa  
18  
LT6105  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
1
2
3
4
0.53 p 0.152  
(.021 p .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 p 0.0508  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6105fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT6105  
TYPICAL APPLICATION  
Supply Monitoring  
V
= 1V/A  
OUT  
V
OUT  
LT6105  
4.99k  
1%  
+
The input common mode range of the LT6105 also makes  
it suitable for monitoring either positive or negative sup-  
plies. Figure 7 shows one LT6105 applied as a simple  
positive supply monitor, and another LT6105 as a simple  
negative supply monitor. Note that the schematics are  
practically identical and both have outputs conveniently  
referred to ground. The only requirement for negative  
supply monitoring, in addition to the usual constraints of  
the absolute maximum ratings, is that the negative supply  
to that LT6105 be at least as negative as the supply it is  
monitoring.  
–15V  
V
V
5V  
DC  
+IN  
–IN  
100Ω  
1%  
100Ω  
1%  
20mΩ  
1%  
+
+15V  
POSITIVE  
SUPPLY  
TO +15V  
LOAD  
CURRENT FLOW  
CURRENT FLOW  
–15V  
NEGATIVE  
SUPPLY  
TO –15V  
LOAD  
20mΩ  
1%  
+
100Ω  
1%  
100Ω  
1%  
LT6105  
–IN  
+IN  
+
V
5V  
DC  
V
–15V  
V
= 1V/A  
OUT  
V
OUT  
4.99k  
1%  
6105 F07  
Figure 7. The LT6105 Can Monitor the Current of Either Positive  
or Negative Supplies, Without a Schematic Change. Just Ensure  
That the Current Flow Is in the Correct Direction  
RELATED PARTS  
PART NUMBER  
LT1787/LT1787HV  
LTC4150  
DESCRIPTION  
COMMENTS  
Precision, Bidirectional, High Side Current Sense Amplifier 2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
Coulomb Counter/Battery Gas Gauge  
Indicates Charge Quantity and Polarity  
LT6100  
Gain-Selectable High Side Current Sense Amplifier  
4.1V to 48V Operation, Pin-Selectable Gain: 10V/V, 12.5V/V, 20V/V,  
25V/V, 40V/V, 50V/V  
LTC6101/  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23  
LTC6101HV  
LTC6102/  
LTC6102HV  
4V to 60V/5V to 100V Operation, 10μV Offset, 1μs Step Response,  
MSOP8 / DFN  
LTC6103  
LTC6104  
LT6106  
Dual High Side Precision Current Sense Amplifier  
Bidirectional High Side Precision Current Sense Amplifier  
Low Cost, High Side Precision Current Sense Amplifier  
4V to 60V, Gain Configurable, 8-Pin MSOP  
4V to 60V, Gain Configurable, 8-Pin MSOP  
2.7V to 36V, Gain Configurable, SOT23  
6105fa  
LT 0408 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6105CDCB#PBF

LT6105 - Precision, Rail-to-Rail Input Current Sense Amplifier; Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
ADI

LT6105CDCB#TRMPBF

Precision, Rail-to-Rail Input Current Sense Amplifier
ADI

LT6105CDCB#TRPBF

暂无描述
Linear

LT6105CDCB-TRMPBF

Precision, Extended Input Range Current Sense Amplifi er
Linear

LT6105CDCB-TRPBF

Precision, Extended Input Range Current Sense Amplifi er
Linear

LT6105CMS8#TRPBF

Precision, Rail-to-Rail Input Current Sense Amplifier
ADI

LT6105CMS8#TRPBF

暂无描述
Linear

LT6105CMS8-PBF

Precision, Extended Input Range Current Sense Amplifi er
Linear

LT6105CMS8-TRPBF

Precision, Extended Input Range Current Sense Amplifi er
Linear

LT6105HDCB#PBF

LT6105 - Precision, Rail-to-Rail Input Current Sense Amplifier; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
ADI

LT6105HDCB#TRMPBF

LT6105 - Precision, Rail-to-Rail Input Current Sense Amplifier; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
ADI

LT6105HDCB#TRPBF

Precision, Rail-to-Rail Input Current Sense Amplifier
ADI