LT4320-1_15 [Linear]

Ideal Diode Bridge Controller;
LT4320-1_15
型号: LT4320-1_15
厂家: Linear    Linear
描述:

Ideal Diode Bridge Controller

文件: 总14页 (文件大小:960K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT4320/LT4320-1  
Ideal Diode Bridge  
Controller  
Features  
Description  
The LT®4320/LT4320-1 are ideal diode bridge controllers  
that drive four N-channel MOSFETs, supporting voltage  
rectification from DC to 600Hz typical. By maximizing  
available voltage and reducing power dissipation (see  
thermograph comparison below), the ideal diode bridge  
simplifies power supply design and reduces power supply  
cost, especially in low voltage applications.  
n
Maximizes Power Efficiency  
n
Eliminates Thermal Design Problems  
n
DC to 600Hz  
n
9V to 72V Operating Voltage Range  
n
I = 1.5mA (Typical)  
Q
n
n
Maximizes Available Voltage  
Available in 8-Lead (3mm × 3mm) DFN, 12-Lead  
MSOP and 8-Lead PDIP Packages  
An ideal diode bridge also eliminates thermal design  
problems, costly heat sinks, and greatly reduces PC board  
area. The LT4320’s internal charge pump supports an all-  
NMOS design, which eliminates larger and more costly  
PMOS switches. If the power source fails or is shorted, a  
fast turn-off minimizes reverse current transients.  
applications  
n
Security Cameras  
n
Terrestrial or Airborne Power Distribution Systems  
n
Power-over-Ethernet Powered Device with a  
Secondary Input  
The LT4320 is designed for DC to 60Hz typical voltage  
rectification, while the LT4320-1 is designed for DC to  
600Hz typical voltage rectification. Higher frequencies of  
operation are possible depending on MOSFET size and  
operating load current.  
n
Polarity-Agnostic Power Input  
n
Diode Bridge Replacement  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Patent pending.  
typical application  
Thermograph of Passive Diode Bridge  
+
Temperature Rise  
DIODE  
OUTP  
TG1  
IN1  
TG2  
IN2  
MOSFET SBM  
CURRENT 2.5mΩ  
1040  
15°C  
32°C  
49°C  
66°C  
84°C  
LT4320  
4320 TA01b  
SBM1040 (×4)  
OUTPUT  
9V TO 72V  
2A  
4A  
0.6°C  
3.5°C  
6.7°C  
11°C  
16°C  
~
Thermograph of LT4320  
Driving Four MOSFETs  
BG2  
BG1  
6A  
OUTN  
8A  
INPUT  
DC TO 600Hz (TYP)  
10A  
DC Input, On Same PCB  
~
4320 TA01a  
4320 TA01c  
LT4320+2.5mΩ FET (×4)  
CONDITIONS: 24V AC , 9.75A DC LOAD ON SAME PCB  
IN  
4320fb  
1
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
absolute MaxiMuM ratings (Notes 1, 2)  
Supply Voltages  
Operating Junction Temperature Range  
IN1, IN2.................................................... –3V to 80V  
OUTP ..................................................... –0.3V to 80V  
Output Voltages (Note 3)  
LT4320I................................................–40°C to 85°C  
LT4320H ............................................ –40°C to 125°C  
LT4320MP ......................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
BG1, BG2, TG1, TG2............................... –0.3V to 80V  
TG1-IN1, TG2-IN2....................................–0.3V to 12V  
MSE, PDIP Packages ........................................300°C  
pin conFiguration  
TOP VIEW  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
IN2  
TG2  
NC  
NC  
BG2  
BG1  
12 IN1  
11 TG1  
10 NC  
IN2  
TG2  
BG2  
BG1  
1
2
3
4
8
7
6
5
IN1  
IN2  
TG2  
BG2  
BG1  
1
2
3
4
IN1  
8
7
6
5
TG1  
9
13  
TG1  
9
8
7
OUTP  
NC  
OUTN  
OUTP  
OUTN  
OUTP  
OUTN  
MSE PACKAGE  
DD PACKAGE  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
12-LEAD PLASTIC MSOP  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 10°C/W  
JC  
JMAX  
T
= 150°C, θ = 5.5°C/W  
JC  
EXPOSED PAD (PIN 9) MUST BE  
CONNECTED TO OUTN (PIN 5)  
JMAX  
T
= 150°C, θ = 45°C/W  
JC  
EXPOSED PAD (PIN 13) MUST BE  
CONNECTED TO OUTN (PIN 7)  
JMAX  
orDer inForMation  
OPERATING JUNCTION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
LT4320IDD#PBF  
LT4320IDD#TRPBF  
LT4320HDD#TRPBF  
LT4320IDD-1#TRPBF  
LT4320HDD-1#TRPBF  
LT4320IMSE#TRPBF  
LT4320HMSE#TRPBF  
LT4320MPMSE#TRPBF  
LT4320IMSE-1#TRPBF  
LT4320HMSE-1#TRPBF  
LT4320MPMSE-1#TRPBF  
NA  
LGCV  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
8-Lead PDIP  
LT4320HDD#PBF  
LT4320IDD-1#PBF  
LT4320HDD-1#PBF  
LT4320IMSE#PBF  
LT4320HMSE#PBF  
LT4320MPMSE#PBF  
LT4320IMSE-1#PBF  
LT4320HMSE-1#PBF  
LT4320MPMSE-1#PBF  
LT4320IN8#PBF  
LGCV  
LGCW  
LGCW  
4320  
4320  
4320  
43201  
43201  
43201  
LT4320N8  
LT4320N8  
LT4320N8-1  
LT4320N8-1  
LT4320HN8#PBF  
NA  
8-Lead PDIP  
LT4320IN8-1#PBF  
LT4320HN8-1#PBF  
NA  
8-Lead PDIP  
NA  
8-Lead PDIP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
4320fb  
2
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
SYMBOL PARAMETER  
OUTP Voltage Range  
CONDITIONS  
MIN  
9
TYP  
6.6  
1.0  
MAX  
72  
UNITS  
l
l
l
l
V
V
OUTP Undervoltage Lockout (UVLO) Threshold  
INn Turn-On/Off Threshold  
INn = OUTP, Other IN = 0V  
OUTP = 9V, Other IN = 0V  
6.2  
1.3  
7.0  
3.7  
1.5  
V
I
V
INT  
OUTP Pin Current  
mA  
INn = OUTP+ V  
INn = OUTP+ V  
+ 5mV, Other IN = 0V  
OUTP  
INn  
SD(MAX)  
SD(MAX)  
I
INn Pin Current  
at 9V  
+ 5mV, Other IN = 0V  
l
l
44  
0.3  
63  
0.4  
µA  
mA  
at 72V  
Topside Source-Drain Regulation Voltage (INn – OUTP)  
V  
V  
SD  
l
l
LT4320  
8
20  
40  
35  
55  
mV  
mV  
LT4320-1  
26  
l
Top Gate Drive (TGn – INn)  
6.6  
10.8  
V
INn = OUTP+ V  
+ 5mV, 10μA Out of  
TGATE  
SD(MAX)  
TGn, Other IN = 0V  
l
V
Bottom Gate Drive (BGn)  
Top Gate Pull-Up Current  
INn = OUTP, 10μA Out of BGn, Other IN = 0V  
7.0  
12  
V
BGATE  
l
l
I
TGn – INn = 0V, INn = OUTP + 0.1V  
TGn – INn = 5V, INn = OUTP + 0.1V  
Current Flows Out of TGn, Other IN = 0V  
425  
120  
µA  
µA  
TGUn  
l
l
l
l
I
I
I
I
Top Gate Pull-Down Current to INn  
Top Gate Pull-Down Current to OUTN  
Bottom Gate Pull-Up Current  
TGn – INn = 5V, INn = OUTP – 0.25V  
Current Flows Into TGn, Other IN = 0V  
1.25  
6.0  
mA  
mA  
mA  
mA  
TGSn  
TGGn  
BGUn  
BGDn  
INn = 0V, Other IN = OUTP = 9.0V, TGn = 5V  
Current Flows Into TGn  
BGn = 5V; INn = OUTP = 9.0V, Other IN = 0V  
Current Flows Out of BGn  
1.9  
Bottom Gate Pull-Down Current  
BGn = 5V; INn = 0V, Other IN = OUTP = 9.0V  
Current Flows Into BGn  
12.5  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Unless otherwise specified,  
exposure to any Absolute Maximum Rating condition for extended periods  
may affect device reliability and lifetime.  
Note 2: All voltages are referenced to OUTN = 0V unless otherwise specified.  
Note 3: Externally forced voltage absolute maximums. The LT4320 may  
exceed these limits during normal operation.  
4320fb  
3
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
typical perForMance characteristics  
IINn and IOUTP vs OUTP  
IOUTP vs OUTP  
VTGATE vs OUTP  
1200  
1000  
1200  
1000  
11  
10  
9
OTHER IN = 0V  
OUTP  
IN1 AND IN2 FLOATING  
OTHER IN = 0V  
800  
600  
800  
600  
8
400  
200  
0
400  
200  
0
INn  
7
V = 100mV  
SD  
SD  
V = 40mV  
6
0
20  
40  
60  
80  
0
20  
40  
OUTP (V)  
60  
80  
9
13  
17  
OUTP (V)  
21  
25  
INn = OUTP (V)  
4320 G01  
4320 G02  
4320 G03  
VBGATE vs OUTP  
TGn Pull-Up Strength  
TGn Pull-Down Strength to INn  
12  
11  
5
4
3
2
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
INn = OUTP + 100mV  
OTHER IN = 0V  
INn = OUTP – 250mV  
OTHER IN = 0V  
10  
9
8
7
6
1
0
OUTP = 9V  
OUTP = 12V  
OUTP = 72V  
OUTP = 9V  
OUTP = 72V  
OTHER IN = 0V  
21 25  
9
13  
17  
0
4
6
8
10  
12  
0
2
6
8
10  
12  
2
4
∆V  
TGATE  
(V)  
OUTP (V)  
∆V  
TGATE  
(V)  
4320 G04  
4320 G06  
4320 G05  
TGn Pull-Down Strength to OUTN  
BGn Pull-Up Strength  
BGn Pull-Down Strength  
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
OTHER IN = 0V  
INn = 0V  
OTHER IN = OUTP  
V
V
V
= 9V  
= 12V  
= 72V  
OUTP = 9V  
OUTP = 12V  
OUTP = 72V  
INn  
INn  
INn  
0
0
4
6
8
10  
12  
0
4
6
8
10  
12  
8
12  
2
2
14  
0
2
4
6
10  
TGn (V)  
V
(V)  
V
(V)  
BGATE  
BGATE  
4320 G07  
4320 G08  
4320 G09  
4320fb  
4
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
pin Functions (DFN, PDIP/MSOP)  
IN2 (Pin 1/Pin 1): Bridge Rectifier Input. IN2 connects to  
the external NMOS transistors MTG2 source, MBG1 drain  
and the power input.  
OUTP (Pin 6/Pin 9): OUTP is the rectified positive output  
voltagethatpowerstheLT4320andconnectstothedrains  
of MTG1 and MTG2.  
TG2 (Pin 2/Pin 2): Topside Gate Driver Output. TG2 pin  
drives MTG2 gate.  
TG1 (Pin 7/Pin 11): Topside Gate Driver Output. TG1 pin  
drives MTG1 gate.  
BG2 (Pin 3/Pin 5): Bottom-Side Gate Driver Output. BG2  
IN1 (Pin 8/Pin 12): Bridge Rectifier Input. IN1 connects  
to the external NMOS transistors MTG1 source, MBG2  
drain, and the power input.  
pin drives MBG2 gate.  
BG1 (Pin 4/Pin 6): Bottom-Side Gate Driver Output. BG1  
pin drives MBG1 gate.  
NC (Pins 3, 4, 8, 10, MSOP Only): No Connections. Not  
internally connected.  
OUTN (Pin 5/Pin 7): OUTN is the rectified negative output  
voltage, and connects to the sources of MBG1 and MBG2.  
ExposedPad(Pin9/Pin13):ExposedPad,DFNandMSOP.  
Must be connected to OUTN.  
block DiagraM  
MTG1  
~
+
MTG2  
LT4320  
TG1  
TG2  
OUTP  
IN1  
IN2  
CONTROL  
OUTN  
BG2  
BG1  
MBG2  
~
LT4320 BD  
MBG1  
4320fb  
5
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
operation  
Electronic systems that receive power from an AC power  
source or a DC polarity-agnostic power source often em-  
ploya4-dioderectifier.Thetraditionaldiodebridgecomes  
with an efficiency loss due to the voltage drop generated  
across two conducting diodes. The voltage drop reduces  
the available supply voltage and dissipates significant  
power especially in low voltage applications.  
bridge also eliminates thermal design problems, costly  
heat sinks, and greatly reduces PC board area.  
The LT4320 is designed for DC to 60Hz typical voltage  
rectification, while the LT4320-1 is designed for DC to  
600Hz typical voltage rectification. Higher frequencies of  
operation are possible depending on MOSFET size and  
operating load current.  
By maximizing available voltage and reducing power dis-  
sipation, the ideal diode bridge simplifies power supply  
design and reduces power supply cost. An ideal diode  
Figure 2 presents sample waveforms illustrating the gate  
pins in an AC voltage rectification design.  
MTG1  
+
~
MTG2  
INPUT  
TO LOAD  
TG2  
TG1  
OUTP  
IN1  
IN2  
C
LT4320  
LOAD  
OUTN  
BG1  
BG2  
MBG2  
~
4320 F01  
MBG1  
Figure 1. LT4320 with Four N-Channel MOSFETS, Illustrating Current  
Flow When IN1 Is Positive  
40V  
30V  
20V  
10V  
0V  
V
V
V
V
V
V
V
TG1  
TG2  
BG1  
BG2  
IN1  
OUTP  
IN2  
4320 F02  
Figure 2. 24V AC Sample Waveform  
4320fb  
6
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
applications inForMation  
MOSFET Selection  
the maximum operating frequency, creates unintended  
efficiency losses, adversely increases turn-on/turn-off  
times, and increases the total solution cost. The LT4320  
gate pull-up/pull-down current strengths specified in the  
Electrical Characteristics section, and the MOSFET total  
A good starting point is to reduce the voltage drop of the  
ideal bridge to 30mV per MOSFET with the LT4320 (50mV  
perMOSFETwiththeLT4320-1).Giventheaverageoutput  
load current, I , select R  
to be:  
AVG  
DS(ON)  
gatecharge(Q ),determinetheMOSFETturn-on/offtimes  
g
30mV  
IAVG  
and the maximum operating frequency in an AC applica-  
tion. Choosing the lowest gate capacitance while meeting  
RDS(ON)  
=
=
for a DC power input  
R
speedsuptheresponsetimeforfullenhancement,  
DS(ON)  
or  
regulation, turn-off and input shorting events.  
30mV  
3 IAVG  
RDS(ON)  
for an AC power input  
V
must be a minimum of 2V or higher. A gate thresh-  
GS(th)  
old voltage lower than 2V is not recommended since too  
much time is needed to discharge the gate below the  
threshold and halt current conduction during a hot plug  
or input short event.  
In the AC power input calculation, 3 • I  
assumes the  
AVG  
duration of current conduction occupies 1/3 of the AC  
period.  
Selectthemaximumallowabledrain-sourcevoltage,V  
to be higher than the maximum input voltage.  
,
DSS  
C
Selection  
LOAD  
A 1μF ceramic and a 10μF minimum electrolytic capacitor  
must be placed across the OUTP and OUTN pins with the  
1µF ceramic placed as close to the LT4320 as possible.  
Downstream power needs and voltage ripple tolerance  
determine how much additional capacitance between  
OUTP and OUTN is required. C  
thousands of microfarads is common.  
Design Example  
For a 24W, 12V DC/24V AC application, I  
DC. To cover the 12V DC case:  
= 2A for 12V  
AVG  
30mV  
2A  
in the hundreds to  
LOAD  
RDS(ON)  
=
= 15mΩ  
A good starting point is selecting C  
such that:  
LOAD  
For the 24V AC operation, I  
AC case:  
= 1A. To cover the 24V  
AVG  
C
LOAD  
≥ I /(V  
• 2 • Freq)  
AVG RIPPLE  
30mV  
3 1A  
where I  
is the average output load current, V  
is  
AVG  
RIPPLE  
RDS(ON)  
=
= 10mΩ  
the maximum tolerable output ripple voltage, and Freq  
is the frequency of the input AC source. For example, in  
a 60Hz, 24VAC application where the load current is 1A  
This provides a starting range of R  
from.  
values to choose  
DS(ON)  
and the tolerable ripple is 15V, choose C  
• 2 • 60Hz) = 556µF.  
≥ 1A/(15V  
LOAD  
Ensure the MOSFET can handle a continuous current of  
3 I to cover theexpected peak currents during AC rec-  
AVG  
C
LOAD  
must also be selected so that the rectified output  
tification. That is, select I ≥ 3A. Since a 24V AC waveform  
D
voltage,OUTP-OUTN,mustbewithintheLT4320/LT4320-1  
specified OUTP voltage range.  
can reach 34V peak, select a MOSFET with V  
>>34V.  
DSS  
A good choice of V  
is 60V in a 24V AC application.  
DSS  
Transient Voltage Suppressor  
Other Considerations in MOSFET Selection  
For applications that may encounter brief overvoltage  
events higher than the LT4320 absolute maximum rating,  
install a unidirectional transient voltage suppressor (TVS)  
between the OUTP and OUTN pins as close as possible  
Practical MOSFET considerations for the LT4320-based  
ideal bridge application include selecting the lowest avail-  
able total gate charge (Q ) for the desired R  
. Avoid  
g
DS(ON)  
oversizingtheMOSFET, sinceanoversizedMOSFETlimits  
to the LT4320.  
4320fb  
7
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
typical applications  
B360B  
4 COMPACT FETs*  
CONDITION: 13VDC , 3A LOAD ON SAME PCB  
IN  
*19mΩ, 60V EACH FET  
Figure 3. Thermograph: B360B vs LT4320 +4 Compact FETs  
4320fb  
8
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
typical applications  
Figure 4. Demonstration Circuit 1902A Used in Figure 3 Thermograph  
4320fb  
9
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
4320fb  
10  
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
12-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev G)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
(.112 ±.004)  
1
6
0.35  
REF  
1.651 ±0.102  
(.065 ±.004)  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
12  
7
0.65  
(.0256)  
BSC  
0.42 ±0.038  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0165 ±.0015)  
TYP  
0.406 ±0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 ±.003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE12) 0213 REV G  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
4320fb  
11  
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ±.015*  
(6.477 ±0.381)  
1
2
3
.130 ±.005  
.300 – .325  
.045 – .065  
(3.302 ±0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
4320fb  
12  
For more information www.linear.com/LT4320  
LT4320/LT4320-1  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
1, 6  
A
11/13 Clarified that input frequency ranges use typical numbers (60Hz, 600Hz)  
Added PDIP package  
2, 12  
Reduced MOSFET drop to 30mV from 70mV in “MOSFET Selection” and “Design Example” sections  
Provided additional guidance in “Other Considerations in MOSFET Selection” section  
Updated MSE package drawing  
7
7
10  
2
B
2/14  
Added H- and MP-grade information  
4320fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
13  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT4320/LT4320-1  
typical application  
MTG1  
+
~
MTG2  
DIODE  
BRIDGE  
LT4320 IDEAL BRIDGE  
MTG1,MTG2  
MBG1, MBG2  
OPERATING  
VOLTAGE  
LOAD  
C1  
POWER POWER  
TG2  
TG1  
OUTP  
CURRENT  
(MIN)  
LOSS  
0.22W  
0.13W  
4.5W  
LOSS  
4.2W  
1.9W  
36W  
IN1  
IN2  
+
55V DC  
24V AC  
55V DC  
24V AC  
72V DC  
3.5A  
1.5A  
30A  
10A  
2A  
10µF  
560µF  
10µF  
1µF  
C1  
INPUT  
LT4320  
TO LOAD  
BSZ110N06NS3  
OUTN  
BG1  
BG2  
BSC031N06NS3  
3.3mF  
10µF  
1.6W  
12W  
PSMN040-100MSE  
0.24W  
2.4W  
MBG2  
~
4320 TA02  
MBG1  
relateD parts  
PART NUMBER DESCRIPTION  
COMMENTS  
LT4321  
PoE Ideal Diode Bridge Controller  
Replaces 8 Diodes with 8 N-Channel MOSFETs, Reduces Heat,  
Maximizes Efficiency  
LTC4352  
LTC4353  
LTC4354  
LTC4355  
LTC4357  
LTC4358  
LTC4359  
LTC4370  
LTC4415  
Low Voltage Ideal Diode Controller with Monitoring  
Dual Low Voltage Ideal Diode Controller  
N-Channel, 0V to 18V, UV, OV, MSOP-12 and DFN-12 Packages  
Dual N-Channel, 0V to 18V, MSOP-16 and DFN-16 Packages  
Controls Two N-Channel MOSFETs, 1μs Turn-Off, –80V Operation  
Controls Two N-Channel MOSFETs, 0.5μs Turn-Off, 9V to 80V Operation  
Negative Voltage Diode-OR Controller and Monitor  
Positive Voltage Diode-OR Controller and Monitor  
Positive High Voltage Ideal Diode Controller  
5A Ideal Diode  
Controls Single N-Channel MOSFETs, 0.5μs Turn-Off, 9V to 80V Operation  
Positive Voltage Ideal Diode with Integrated MOSFET, 9V to 26.5V Operation  
N-Channel, 4V to 80V, MSOP-8 and DFN-6 Packages  
Ideal Diode Controller with Reverse Input Protection  
2-Supply Diode-OR Current Balancing Controller  
Dual 4A ideal Diodes with Adjustable Current Limit  
Dual N-Channel, 0V to 18V, MSOP-16 and DFN-16 Packages  
1.7V to 5.5V Operating Range  
4320fb  
LT 0214 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT4320  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY