LT3743EFETRPBF [Linear]

High Current Synchronous Step-Down LED Driver with Three-State Control; 高电流同步降压型LED驱动器,三态控制
LT3743EFETRPBF
型号: LT3743EFETRPBF
厂家: Linear    Linear
描述:

High Current Synchronous Step-Down LED Driver with Three-State Control
高电流同步降压型LED驱动器,三态控制

驱动器
文件: 总28页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3743  
High Current Synchronous  
Step-Down LED Driver with  
Three-State Control  
FEATURES  
DESCRIPTION  
The LT®3743 is a fixed frequency synchronous step-down  
DC/DCcontrollerdesignedtodrivehighcurrentLEDs. The  
average current mode controller will maintain inductor  
current regulation over a wide output voltage range of 0V  
n
PWM Dimming Provides Up to 3000:1 Dimming Ratio  
n
CTRL_SEL Dimming Provides Up to 3000:1 Dimming  
Ratio Between Any Current  
n
Three-State Current Control for Color Mixing  
n
6% Current Regulation Accuracy  
to (V – 2V). LED dimming is achieved through analog  
IN  
n
6V to 36V Input Voltage Range  
dimming on the CTRL_L, CTRL_H and CTRL_T pins and  
with PWM dimming on the PWM and CTRL_SEL pins.  
Through the use of externally switched load capacitors,  
the LT3743 is capable of changing regulated LED current  
levels within several μs, providing accurate, high speed  
PWM dimming between two current levels. The switching  
frequencyisprogrammablefrom200kHzto1MHzthrough  
an external resistor on the RT pin.  
n
Average Current Mode Control  
n
2μs Maximum Recovery Time Between Any Current  
Regulation State  
<1μA Shutdown Current  
n
n
Output Voltage Regulation and Open-LED Protection  
Thermally Enhanced 4mm × 5mm QFN and  
n
28-Pin FE Package  
Additional features include voltage regulation and  
overvoltage protection set with a voltage divider from the  
output to the FB pin. Overcurrent protection is provided  
and set by the CTRL_H pin.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7199560, 7321203 and others pending.  
APPLICATIONS  
n
DLP Projectors  
High Power Architectural Lighting  
n
n
Laser Diodes  
TYPICAL APPLICATION  
92% Efficient 20A LED Driver  
V
IN  
10V TO 36V  
V
IN  
EN/UVLO  
PWM  
CTRL_SEL  
EN/UVLO  
PWM  
CTRL_SEL  
4.7μF  
s4  
1μF  
RT  
SYNC  
HG  
CTRL_SEL  
220nF  
82.5k  
40k  
5V/DIV  
V
OUT  
20A MAXIMUM  
CBOOT  
1.1μH  
2.5mΩ  
PWM  
5V/DIV  
V
REF  
SW  
LT3743  
2nF  
HOT  
20μF  
CTRL_L  
V
CC_INT  
SW  
20V/DIV  
1mF  
20μF  
R
LG  
CTRL_H  
CTRL_T  
40k  
1mF  
45.3k  
GND  
+
SENSE  
SENSE  
I
LED  
10A/DIV  
R
NTC  
680k  
PWMGH  
SS  
PWMGL  
10nF  
3743 TA01b  
V
= 24V  
20μs/DIV  
51k  
IN  
0A TO 2A TO 20A LED CURRENT STEP  
FB  
VCL  
VCH  
1mF  
10.0k  
3743 TA01a  
34k  
9nF  
34k  
9nF  
3743f  
1
LT3743  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V Voltage................................................................40V  
CBOOT ......................................................................46V  
RT Voltage...................................................................3V  
FB Voltage...................................................................3V  
SS Voltage ..................................................................6V  
SYNC Voltage..............................................................6V  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
IN  
EN/UVLO Voltage ........................................................6V  
V
Voltage................................................................3V  
REF  
CTRL_L, CTRL_H, CTRL_T Voltage ............................3V  
PWM, CTRL_SEL Voltage ...........................................6V  
+
SENSE Voltage ........................................................40V  
SENSE Voltage ........................................................40V  
VCH, VCL Voltage .......................................................3V  
SW Voltage ...............................................................40V  
TSSOP .............................................................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
LG  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC_INT  
GND  
GND  
3
CBOOT  
SW  
V
IN  
28 27 26 25 24 23  
4
EN/UVLO  
GND  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
PWMGL  
GND  
5
HG  
V
REF  
EN/UVLO  
6
PWMGL  
GND  
CTRL_T  
GND  
V
GND  
REF  
7
CTRL_T  
GND  
PWMGH  
PWM  
29  
GND  
29  
GND  
8
PWMGH  
PWM  
CTRL_SEL  
SYNC  
RT  
CTRL_H  
CTRL_L  
SS  
CTRL_H  
CTRL_L  
SS  
CTRL_SEL  
SYNC  
9
10  
11  
12  
13  
14  
RT  
GND  
9
10 11 12 13 14  
UFD PACKAGE  
FB  
+
VCH  
SENSE  
VCL  
SENSE  
28-LEAD (4mm s 5mm) PLASTIC QFN  
FE PACKAGE  
28-LEAD PLASTIC TSSOP  
T
= 125°C, θ = 37°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 30°C/W  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3743EUFD#PBF  
LT3743IUFD#PBF  
LT3743EFE#PBF  
LT3743IFE#PBF  
TAPE AND REEL  
PART MARKING*  
3743  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3743EUFD#TRPBF  
LT3743IUFD#TRPBF  
LT3743EFE#TRPBF  
LT3743IFE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead Plastic TSSOP  
3743  
LT3743FE  
LT3743FE  
28-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3743f  
2
LT3743  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VEN/UVLO = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
(Note 2)  
6
36  
V
V
Pin Quiescent Current (Note 3)  
IN  
Non-Switching Operation  
Shutdown Mode  
V
V
= V  
EN/UVLO  
= 0V, Not Switching  
CTRL_SEL  
= 0V  
1.8  
0.1  
2.5  
1
mA  
μA  
PWM  
l
EN/UVLO Pin Falling Threshold  
EN/UVLO Hysteresis  
1.49  
1.55  
130  
5.5  
1.0  
1.0  
1.0  
1.61  
V
mV  
μA  
V
EN/UVLO Pin Current  
V
IN  
= 6V, EN/UVLO = 1.45V  
PWM Pin Threshold  
CTRL_SEL Threshold  
V
SYNC Pin Threshold  
V
CTRL_H and CTRL_L Pin Control Range  
CTRL_H and CTRL_L Pin Current  
Reference  
0
1.5  
V
100  
2
nA  
l
l
Reference Voltage (V Pin)  
With a 67kΩ Resistor from V to GND  
1.96  
48  
2.04  
54  
V
REF  
REF  
Inductor Current Sensing  
+
Full Range SENSE to SENSE  
V
or V  
= 1.5V  
CTRL_L  
51  
50  
10  
mV  
nA  
μA  
CTRL_H  
+
SENSE Pin Current  
SENSE Pin Current  
With V  
~ 4V  
OUT  
Internal V Regulator (V  
Pin)  
CC  
CC_INT  
l
Regulation Voltage  
4.7  
5
5.2  
V
NMOS FET Driver (Note 2)  
Non-Overlap time HG to LG  
Non-Overlap time LG to HG  
Minimum On-Time LG  
100  
60  
ns  
ns  
ns  
ns  
ns  
(Note 4)  
(Note 4)  
(Note 4)  
50  
Minimum On-Time HG  
200  
60  
Minimum Off-Time LG  
High Side Driver Switch On-Resistance  
Gate Pull Up  
Gate Pull Down  
V
– V = 5V  
CBOOT  
SW  
2.3  
1.3  
Ω
Ω
Low Side Driver Switch On-Resistance  
Gate Pull Up  
Gate Pull Down  
V
= 5V  
CC_INT  
2.5  
1.3  
Ω
Ω
Switching Frequency  
l
f
R = 40kΩ  
T
930  
200  
1000  
218  
1070  
233  
kHz  
kHz  
SW  
T
R = 200kΩ  
Soft-Start  
Charging Current  
Voltage Regulation Amplifier  
Input Bias Current  
5.5  
μA  
1
nA  
μA/V  
V
g
200  
0.99  
m
l
Feedback Regulation Voltage  
0.945  
1.025  
3743f  
3
LT3743  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VEN/UVLO = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PWMG Control Signals  
CTRL_SEL High to PWMGL Low Delay  
CTRL_SEL High to PWMGH High Delay  
CTRL_SEL Low to PWMGH Low Delay  
CTRL_SEL Low to PWMGL High Delay  
PWMGH and PWMGL Pull-up Impedance  
PWMGH and PWMGL Pull-Down Impedance  
10  
150  
30  
40  
200  
60  
ns  
ns  
ns  
ns  
Ω
170  
3.2  
220  
1.75  
Ω
Current Control Loop g Amp  
m
l
Offset Voltage  
–2.75  
375  
0
2.75  
mV  
Input Common Mode Range  
V
V
0
2
V
V
CM(LOW)  
CM(HIGH)  
V
Measured from V to V  
IN CM  
CM(HIGH)  
Output Impedance  
3.5  
475  
1.7  
MΩ  
μA/V  
mV/V  
g
m
625  
Differential Gain  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LT3743E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3743I is guaranteed to meet performance specifications over the –40°C  
to 125°C operating junction temperature range.  
Note 2: The LT3743 will function with a supply voltage as low as 4.5V, but  
to keep the gate drive voltages above 4V, the V  
pin must be tied to  
CC_INT  
V
IN  
for operation below 6.0V  
Note 4: The minimum on and off times are guaranteed by design and are  
not tested.  
3743f  
4
LT3743  
TYPICAL PERFORMANCE CHARACTERISTICS  
EN/UVLO Threshold (Falling)  
EN/UVLO Pin Current  
IQ in Shutdown  
1.70  
1.64  
1.58  
1.52  
1.46  
1.40  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
6
–50°C  
130°C  
130°C  
25°C  
4
2
25°C  
130°C  
–50°C  
0
6
12  
18  
24  
(V)  
30  
36  
6
12  
24  
(V)  
30  
90  
90  
36  
18  
0
8
16  
24  
(V)  
32  
30  
90  
40  
V
V
IN  
V
IN  
IN  
3743 G01  
3743 G02  
3743 G03  
Quiescent Current (Non-Switching)  
VREF Pin Voltage  
VREF Current Limit  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.6  
1.4  
1.2  
1.0  
0.8  
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
= 25°C  
A
V
= 36V  
= 6V  
IN  
T
= 130°C  
A
V
IN  
T
= –50°C  
A
T
T
T
= 25°C  
= 130°C  
= –50°C  
A
A
A
–50  
–15  
20  
55  
125  
6
12  
18  
24  
36  
6
12  
18  
24  
(V)  
30  
36  
TEMPERATURE (°C)  
V
(V)  
V
IN  
IN  
3743 G05  
3743 G06  
3743 G04  
Oscillator Frequency  
RT Pin Current Limit  
Soft-Start Pin Current  
7
6
5
4
3
1.5  
1.2  
0.9  
0.6  
0.3  
0
90  
80  
70  
60  
50  
40  
1.2MHz  
900kHz  
V
= 36V  
= 6V  
IN  
V
IN  
220kHz  
–50  
–15  
20  
55  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3743 G09  
3743 G07  
3743 G08  
3743f  
5
LT3743  
TYPICAL PERFORMANCE CHARACTERISTICS  
Internal UVLO  
CBOOT-SW UVLO Voltage  
V
CC_INT UVLO  
5.0  
4.5  
4.0  
3.5  
3.0  
3.00  
2.75  
4.00  
3.75  
2.50  
2.25  
3.50  
3.25  
2.00  
1.75  
1.50  
3.00  
2.75  
2.50  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
90  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3743 G10  
3743 G11  
3743 G12  
VCC_INT Load Reg at 12V  
Regulated Current vs VFB  
Open-LED Threshold  
120  
100  
6.0  
5.6  
5.2  
4.8  
4.4  
4.0  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
80  
60  
–50°C  
125°C  
40  
20  
0
800  
850  
900  
V
950  
(mV)  
1000  
1050  
0
10  
20  
30  
(mA)  
40  
50  
60  
–50  
–15  
20  
55  
125  
I
TEMPERATURE (°C)  
FB  
LOAD  
3743 G14  
3743 G13  
3743 G15  
Open-LED Timeout  
Regulated Sense Voltage  
Common Mode Lockout  
60  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
19  
17  
15  
13  
11  
9
MEASURED V – V  
IN  
OUT  
V
= 6V  
IN  
40  
30  
V
= 36V  
IN  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
–50  
–15  
20  
55  
125  
–50  
–15  
20  
55  
90  
125  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CTRL  
3743 G17  
3743 G18  
3743 G16  
3743f  
6
LT3743  
TYPICAL PERFORMANCE CHARACTERISTICS  
PWM Driver RDS(0N)  
HG Driver RDS(ON)  
LG Driver RDS(ON)  
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
PMOS  
NMOS  
PMOS  
PMOS  
NMOS  
NMOS  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3743 G19  
3743 G20  
3743 G21  
Non-Overlap PWM Signal Delay  
Non-Overlap Time  
Minimum On-Time  
150  
120  
90  
60  
30  
0
150  
140  
130  
120  
110  
100  
150  
120  
90  
60  
30  
0
HG TO LG  
PWMGL TO PWMGH  
PWMGH TO PWMGL  
HG  
LG  
LG TO HG  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3743 G23  
3743 G22  
3743 G24  
Regulation Accuracy  
CTRL_H = 1.5V, VIN = 12V  
Regulation Accuracy  
CTRL_H = 0.75V, VIN = 12V  
Minimum Off-Time  
300  
240  
180  
120  
60  
6
4
3
2
HG  
2
0
1
0
–2  
–4  
–6  
–1  
–2  
–3  
LG  
0
–50  
–15  
20  
55  
90  
125  
0
2.5  
5.0  
7.5  
10  
0
2.5  
5.0  
7.5  
10  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3743 G25  
3743 G27  
3743 G26  
3743f  
7
LT3743  
TYPICAL PERFORMANCE CHARACTERISTICS  
LED Current Waveforms  
(90% PWM) 0.5A to 5A  
LED Current Waveforms  
(2000:1) 3A to 10A  
Overcurrent Threshold  
120  
100  
CTRL_SEL  
5V/DIV  
CTRL_SEL  
5V/DIV  
SW  
20V/DIV  
I
LED  
80  
60  
5A/DIV  
I
LED  
5A/DIV  
I
L
40  
20  
0
I
L
10A/DIV  
10A/DIV  
3743 G29  
3743 G30  
40μs/DIV  
5μs/DIV  
0
0.75  
1.5  
2.25  
3.0  
CTRL_H (V)  
3743 G28  
LED Current Waveforms (3000:1)  
Analog Dimming on CTRL_L  
COUT(LOW) = 20μF, COUT(HIGH) = 1mF  
LED Current Waveforms  
(3000:1) 2A to 20A  
LED Current Waveforms  
(3000:1) 0A to 2A to 20A  
PWM  
CTRL_SEL  
5V/DIV  
CTRL_SEL  
5V/DIV  
5V/DIV  
CTRL_L  
0.2V/DIV  
PWM  
5V/DIV  
SW  
10V/DIV  
SW  
10V/DIV  
CTRL_SEL  
5V/DIV  
I
I
I
LED  
LED  
LED  
11.1A/DIV  
10A/DIV  
8A/DIV  
3743 G31  
3743 G32  
3743 G33  
20μs/DIV  
10μs/DIV  
40μs/DIV  
Voltage Regulation with 10A  
Regulated Inductor Current  
Overvoltage Lockout Operation  
With Open-Load Condition  
Common Mode Lockout (VIN = 7V)  
I
L
200mA/DIV  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
V
OUT  
I
2V/DIV  
I
L
L
200mA/DIV  
5A/DIV  
3743 G34  
3743 G36  
3743 G35  
100μs/DIV  
40ms/DIV  
1ms/DIV  
3743f  
8
LT3743  
PIN FUNCTIONS (QFN/TSSOP)  
GND (Pins 1, 5, 9, 20, 21, Exposed Pad Pin 29/Pins 2, 7,  
11, 22, 27, Exposed Pad Pin 29): Ground. The exposed  
pad must be soldered to the PCB.  
SENSE (Pin12/Pin14):SENSE isthenoninvertinginput  
oftheaveragecurrentmodelooperroramplifier. Therefer-  
encecurrent,basedonCTRL_LorCTRL_Howsoutofthe  
pin to the output (LED) side of the sense resistor, R .  
S
EN/UVLO (Pin 2/Pin 4): Enable Pin. The EN/UVLO pin  
acts as an enable pin and turns on the internal current  
bias core and subregulators at 1.55V. The pin does  
not have any pull-up or pull-down, requiring a voltage  
bias for normal part operation. Full shutdown occurs at  
approximately 0.5V.  
VCL(Pin13/Pin15):VCLprovidesthenecessarycompen-  
sationfortheaveragecurrentloopstabilityduringlowlevel  
currentregulation.Typicalcompensationvaluesare15kto  
80k for the resistor and 2nF to 10nF for the capacitor.  
VCH (Pin 14/Pin 16): VCH provides the necessary com-  
pensation for the average current loop stability during  
highlevelcurrentregulation.Typicalcompensationvalues  
are 15k to 80k for the resistor and 2nF to 10nF for the  
capacitor.  
V
(Pin 3/Pin 5): Buffered 2V Reference Capable of  
REF  
0.5mA Drive.  
CTRL_T (Pin 4/Pin 6): The thermal control input to reduce  
theregulatedcurrentlevelforbothcurrentlevels(CTRL_L  
and CTRL_H).  
RT(Pin15/Pin17):Aresistortogroundsetstheswitching  
frequency between 200kHz and 1MHz. When using the  
SYNC function, set the frequency to be 20% lower than  
the SYNC pulse frequency. This pin is current limited to  
60μA. Do not leave this pin open.  
CTRL_H (Pin 6/Pin 8): The CTRL_H pin sets the high level  
regulated output current and overcurrent. The maximum  
inputvoltageisinternallyclampedto1.5V.Theovercurrent  
set point is equal to the high level regulated current level  
set by the CTRL_H pin with an additional 23mV offset  
SYNC (Pin 16/Pin 18): Frequency Synchronization Pin.  
+
between the SENSE and SENSE pins.  
Thispinallowstheswitchingfrequencytobesynchronized  
to an external clock. The R resistor should be chosen to  
T
CTRL_L (Pin 7/Pin 9): The CTRL_L pin sets the low level  
regulatedoutputcurrent.Maximuminputvoltageinternally  
clamped to 1.5V.  
operate the internal clock at 20% slower than the SYNC  
pulse frequency. This pin should be grounded when not  
in use.  
SS(Pin8/Pin10):Soft-StartPin. Placeanexternalcapaci-  
tor to ground to limit the regulated current during start-up  
conditions. The SS pin has a 5.5μA charging current. This  
pin controls both of the regulated inputs determined by  
CTRL_L and CTRL_H.  
CTRL_SEL (Pin 17/Pin 19): The CTRL_SEL pin selects  
between the high current control, CTRL_H and the low  
current control, CTRL_L. When high, the VCH pin is  
connected to the error amp output and the PWMGH gate  
signal is high. When low, the VCL pin is connected to the  
error amp output and the PWMGL gate signal is high. This  
pin is used for current level dimming of the LED. This pin  
should be grounded when not in use.  
FB (Pin 10/Pin 12): Feedback Pin for Overvoltage Protec-  
tion. The feedback voltage is 1V. Overvoltage/Open LED  
is sensed through the FB pin. When the feedback voltage  
exceeds 1.3V, the overvoltage lockout prevents switching  
and connects both output capacitors to discharge the  
inductor current.  
PWM (Pin 18/Pin 20): The input pin for PWM dimming  
of the LED. When low, all switching is terminated and the  
output caps are disconnected. This pin should be pulled  
+
+
SENSE (Pin 11/Pin 13): SENSE is the inverting input of  
to V  
when not in use.  
CC_INT  
the average current mode loop error amplifier. This pin is  
connected to the external current sense resistor, R . The  
voltage drop between SENSE and SENSE referenced to  
the voltage drop across an internal resistor produces the  
input voltages to the current regulation loop.  
PWMGH (Pin 19/Pin 21): The PWMGH output pin drives  
the gate of an external FET to connect one of the switch-  
ing regulator output capacitors to the load. The output  
impedance is approximately 2.5Ω.  
S
+
3743f  
9
LT3743  
PIN FUNCTIONS (QFN/TSSOP)  
PWMGL (Pin 22/Pin 23): The PWMGL output pin drives  
the gate of an external FET to connect one of the switch-  
ing regulator output capacitors to the load. The output  
impedance is approximately 2.5Ω.  
LG (Pin 26/Pin 28): LG is the bottom FET gate drive signal  
that controls the state of the low side external power FET.  
The driver impedance is 2.5Ω.  
V
(Pin 27/Pin 1): A regulated 5V output for charging  
CC_INT  
the C  
HG (Pin 23/Pin 24): HG is the top FET gate drive signal  
that controls the state of the high side external power FET.  
The driver impedance is 2.5Ω.  
capacitor. V  
also provides the power for  
BOOT  
CC_INT  
the digital and switching subcircuits. Below 6V V , tie  
IN  
this pin to the rail. V  
is current limited to ≈50mA.  
CC_INT  
Shutdown operation disables the output voltage drive.  
SW (Pin 24/Pin 25): The SW pin is used internally as the  
lower rail for the floating high side driver. Externally, this  
node connects the two power FETs and the inductor.  
V
(Pin 28/Pin 3): Input Supply Pin. Must be locally  
IN  
bypassed with a 1μF low ESR capacitor to ground.  
CBOOT (Pin 25/Pin 26): The CBOOT pin provides a float-  
ing 5V regulated supply for the high side FET driver. An  
external Schottky diode is required from the V  
pin  
CC_INT  
capacitor when the  
to the CBOOT pin to charge the C  
switch pin is near ground.  
BOOT  
3743f  
10  
LT3743  
BLOCK DIAGRAM (QFN Package)  
V
IN  
V
IN  
28  
27  
V
IN  
402k  
133k  
40μF  
EN/UVLO  
2
3
INTERNAL  
REGUALTOR  
AND  
V
CC_INT  
10μF  
V
REF  
UVLO  
2V REFERENCE  
OSCILLATOR  
2nF  
HIGH SIDE  
DRIVER  
CBOOT  
HG  
25  
23  
24  
SYNC  
RT  
SYNC  
82.5k  
16  
15  
+
0.1μF  
2.2μH  
SW  
SYNCRONOUS  
CONTROLLER  
R
Q
S
LG  
26  
PWM  
COMPARATOR  
LOW SIDE  
DRIVER  
+
+
SENSE  
11  
12  
R
S
5mΩ  
10A LED  
1.5V  
3k  
SENSE  
g
AMP  
= 450μA/V  
= 4M  
V
OUT  
m
m
O
CURRENT  
MIRROR  
g
1mF  
1mF  
+
+
R
I
5.5μA  
CTRL_H  
CTRL_L  
= 40μA  
OUT  
6
7
+
40.2k  
+
FB  
10  
CTRL BUFFER  
10k  
SS  
8
4
90k  
1V  
CTRL_T  
VCL  
100nF  
VOLTAGE  
REGULATOR  
AMP  
13  
34k  
9nF  
+
VCH  
14  
34k  
9nF  
1.3V  
OPEN-LED  
COMPARATOR  
CTRL_SEL  
PWM  
2.5Ω  
2.5Ω  
17  
18  
PWMGL  
PWMGH  
22  
19  
3743 F01  
Figure 1. Block Diagram  
3743f  
11  
LT3743  
OPERATION  
The LT3743 utilizes fixed frequency, average current  
mode control to accurately regulate the inductor current,  
independently from the output voltage. This is an ideal  
solution for applications requiring a regulated current  
source including driving high current LEDs where the  
forward junction voltage can range from 2V to 6V with a  
dynamic resistance of 20mΩ to 40mΩ. The control loop  
will regulate the current in the inductor at an accuracy  
of 6%. For additional operation information, refer to the  
Block Diagram in Figure 1.  
voltage drop when the control loop regulates the low cur-  
rent level. When the CTRL_SEL pin changes to the high  
state, a 150ns delay ensures that the output capacitors  
are not connected at the same time. After this delay, the  
output capacitor for the CTRL_H level is switched in when  
PWMGHgoeshighandimmediatelydeliverscurrenttothe  
LED. The CTRL_H output capacitor has the voltage drop  
of the LED with the regulated current determined by the  
analog voltage at the CTRL_H pin. To achieve minimum  
transition delay, the inductor is precharged to 70% of the  
regulation current level just after the PWMGH pin goes  
high. Conversely, when the PWM pin goes low, the induc-  
tor is discharged to 70% of the low current level before  
normal switching at the low current level commences.  
The error amplifier for the average current mode control  
loop also has a common mode lockout that regulates the  
inductor current so that the error amplifier is never oper-  
ated out of the common mode range. The common mode  
range is with an output voltage from 0V to 2V below the  
The control loop has two independent reference inputs,  
determined by the analog control pins, CTRL_H and  
CTRL_L. When the CTRL_SEL pin is low, the control loop  
uses the reference determined by the CTRL_L pin and  
when high, the loop uses the reference determined by  
the CTRL_H pin. The analog voltage at the CTRL_L and  
CTRL_H pins is buffered and produces a reference volt-  
age across an internal resistor. The internal buffers have  
a 1.5V clamp on the output, limiting the analog control  
range of the CTRL_L and CTRL_H pins from 0V to 1.5V.  
The average current mode control loop uses the internal  
reference voltage to regulate the inductor current, as a  
V supply rail.  
IN  
Theovercurrentsetpointisequaltothehighlevelregulated  
current level set by the CTRL_H pin with an additional  
+
voltage drop across the external sense resistor, R .  
23mV offset between the SENSE and SENSE pins. The  
overcurrent is limited on a cycle-by-cycle basis; shutting  
switching down once the overcurrent level is reached.  
Overcurrent is not soft started.  
S
In many applications, a rapid transition between the two  
regulatedcurrentstatesisdesirabletoprovidebackground  
LED color mixing for pure colors in an RGB projector or  
display.Forthispurpose,pulsewidthmodulationdimming  
can be achieved with both the PWM and CTRL_SEL pins.  
When the PWM pin is low, the regulated current in the  
inductor is zero and both output capacitors are discon-  
nected. When the PWM pin is high, and the CTRL_SEL pin  
is low, the regulated current in the inductor is determined  
by the analog voltage at the CTRL_L pin. When the PWM  
and CTRL_SEL pins are both high, the regulated current  
in the inductor is determined by the analog voltage at the  
CTRL_H pin.  
The output voltage may be limited with a resistor divider  
from the output back to the FB pin. The reference at the  
FB pin is 1.0V. If the output voltage level is high enough  
to engage the voltage loop, the regulated inductor current  
will be reduced so that the output voltage is limited. If the  
voltage at the FB pin reaches 1.3V (30% higher than the  
regulation level), an internal open-LED flag is set, shutting  
down switching for 13μs and switching in both output  
capacitors to fully drain the inductor’s current.  
During start-up, the SS pin is held low until the first time  
the PWM pin goes high. Once the PWM signal goes high,  
the capacitor at the SS pin is charged with a 10μA current  
source. The internal buffers for the CTRL_L and CTRL_H  
signals are limited by the voltage at the SS pin, slowly  
ramping the regulated inductor current to the current de-  
termined by the voltage at the CTRL_H or CTRL_L pins.  
The LT3743 uses a unique switched output capacitor  
topology and two independent compensation networks  
to transition between the two regulated current states in  
less than 2μs. When the CTRL_SEL pin is low and the  
PWM pin is high, the PWMGL output pin is high, switch-  
ing in the output capacitor for the CTRL_L current level.  
The CTRL_L output capacitor stores the LED forward  
3743f  
12  
LT3743  
APPLICATIONS INFORMATION  
Programming Inductor Current  
Inductor Selection  
The analog voltage at the CTRL_L and CTRL_H pins is  
The recovery time between regulated states is critical  
to maintaining accurate control of the LED current. For  
this reason, sizing the inductor to have no less than 30%  
peak-to-peak ripple will provide excellent recovery time  
with reasonable ripple. The overcurrent set point is equal  
to the high level regulated current level set by the CTRL_H  
buffered and produces a reference voltage, V  
, across  
CTRL  
aninternalresistor.Theregulatedaverageinductorcurrent  
is determined by:  
VCTRL  
IO =  
30RS  
+
pin with an additional 23mV offset between the SENSE  
and SENSE pins. The saturation current for the inductor  
where R is the external sense resistor and I is the aver-  
S
O
should be at least 20% higher than the maximum regu-  
lated current. The following equation sizes the inductor  
to achieve a reasonable recovery time while minimizing  
the inductor ripple:  
age inductor current, which is equal to the LED current.  
Figure 2 shows the LED current vs R . The maximum  
S
power dissipation in the resistor will be:  
2
0.05V  
RS  
(
)
2
V • V – V  
F
0.3fS IO • V  
PRS =  
( ) ( )  
IN  
F
L =  
IN  
Table 1 contains several resistors values, the correspond-  
ing maximum current and power dissipation in the sense  
whereV istheLEDforwardvoltagedrop,I isthemaximum  
F
O
regulated current in the inductor and f is the switching  
resistor. Figure 3 shows the power dissipation in R .  
S
S
frequency. Using this equation, the inductor will have ap-  
Table 1. Sense Resistor Values  
MAXIMUM LED  
proximately 15% ripple at maximum regulated current.  
CURRENT (A)  
RESISTOR, R (mΩ) POWER DISSIPATION (W)  
S
Table 2. Recommended Inductor Manufacturers  
1
5
50  
10  
5
0.05  
0.25  
0.5  
VENDOR  
Coilcraft  
WEBSITE  
www.coilcraft.com  
www.sumida.com  
www.vishay.com  
www.we-online.com  
www.nec-tokin.com  
10  
25  
Sumida  
2
1.25  
Vishay  
Würth Electronics  
NEC-Tokin  
30  
25  
1.4  
1.2  
20  
15  
1.0  
10  
5
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
R
10 12 14 16 18 20  
(mΩ)  
S
3743 F02  
0
0
6
2
4
8
10 12 14 16 18 20  
Figure 2. RS Value Selection for LED Current  
R
(mΩ)  
S
3743 F03  
Figure 3. Power Dissipation in RS  
3743f  
13  
LT3743  
APPLICATIONS INFORMATION  
Switching MOSFET Selection  
can be optimized by selecting a high side MOSFET with  
higher R and lower C . The power loss in the high  
side MOSFET can be approximated by:  
P = (ohmic loss) + (transition loss)  
LOSS  
DS(ON)  
GD  
When selecting switching MOSFETs, the following pa-  
rameters are critical in determining the best devices for  
a given application: total gate charge (Q ), on-resistance  
G
(R  
), gate to drain charge (Q ), gate-to-source  
DS(ON)  
GD  
V +R I  
(
)
IO RDS(ON) ρT  
F
D O  
2
charge (Q ), gate resistance (R ), breakdown voltages  
GS  
G
P
+
LOSS  
V
(maximumV andV )anddraincurrent(maximumI ).  
IN  
GS  
DS  
D
The following guidelines provide information to make the  
V •I  
IN OUT  
selection process easier.  
• QGD +QGS 2•R +R +R  
• f  
S
(
) (  
)
(
)
G
PU  
PD  
5V  
BothoftheswitchingMOSFETsneedtohavetheirmaximum  
rated drain currents greater than the maximum inductor  
current. The following equation calculates the peak induc-  
tor current:  
whereρ isatemperature-dependanttermoftheMOSFET’s  
T
on-resistance.Using7Casthemaximumambientoperat-  
ing temperature, ρ is roughly equal to 1.3. R and R  
T
PD  
PU  
are the LT3743 high side gate driver output impedance,  
2
V • V +R I – V +R I  
D O  
(
D O ) (  
)
1.3ꢀ and 2.3ꢀ respectively.  
IN  
F
F
IMAX =IO +  
2• fS •L • V  
IN  
A good approach to MOSFET sizing is to select a high  
side MOSFET, then select the low side MOSFET. The trade-  
whereV istheinputvoltage, Listheinductancevalue, V  
off between R  
, Q , Q and Q for the high side  
IN  
F
DS(ON) G GD GS  
MOSFET is shown in the following example. V is equal  
is the LED forward voltage drop, R is the dynamic series  
D
O
resistance of the LED, I is the regulated output current  
to 4V. Comparing two N-channel MOSFETs, with a rated  
O
and f is the switching frequency. During MOSFET selec-  
V
of 40V and in the same package, but with 8× different  
S
DS  
tion,noticethatthemaximumdraincurrentistemperature  
dependant. Most data sheets include a table or graph of  
the maximum rated drain current vs temperature.  
R
and 4.5× different Q and Q :  
DS(ON) G GD  
M1: R  
GS  
= 2.3mꢀ, Q = 45.5nF,  
G
DS(ON)  
Q
= 13.8nF, Q = 14.4nF, R = 1Ω  
GD G  
The maximum V should be selected to be higher than  
DS  
M2: R  
GS  
= 18mꢀ, Q = 10nF,  
G
GD G  
DS(ON)  
the maximum input supply voltage (including transient)  
for both MOSFETs. The signals driving the gates of the  
switching MOSFETs have a maximum voltage of 5V with  
respect to the source. During start-up and recovery con-  
ditions, the gate drive signals may be as low as 3V. To  
ensure that the LT3743 recovers properly, the maximum  
threshold should be less than 2V. For a robust design,  
Q
= 4.5nF, Q = 3.1nF, R = 3.5Ω  
PowerlossforbothMOSFETsisshowninFigure4.Observe  
thatwhiletheR ofM1iseighttimeslower,thepower  
DS(ON)  
loss at low input voltages is equal, but four times higher  
at high input voltages than the power loss for M2.  
AnotherpowerlossrelatedtoswitchingMOSFETselection  
isthepowerlosttodrivingthegates.Thetotalgatecharge,  
select the maximum V greater than 7V.  
GS  
Q ,mustbechargedanddischargedeachswitchingcycle.  
Power losses in the switching MOSFETs are related to  
G
The power is lost to the internal LDO within the LT3743.  
the on-resistance, R  
; the transitional loss related  
DS(ON)  
The power lost to the charging of the gates is:  
to the gate resistance, R ; gate-to-drain capacitance, Q  
G
GD  
and gate-to-source capacitance, Q . Power loss to the  
on-resistance is an Ohmic loss, I R  
GS  
P
≈ (V – 5V) • (Q  
+ Q ) • f  
GLG GHG S  
LOSS_LDO  
IN  
2
, and usually  
DS(ON)  
where Q  
is the low side gate charge and Q  
is the  
GLG  
GHG  
dominates for input voltages less than ~15V. Power losses  
to the gate capacitance dominate for voltages greater than  
~12V. When operating at higher input voltages, efficiency  
high side gate charge.  
3743f  
14  
LT3743  
APPLICATIONS INFORMATION  
7
6
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
TOTAL  
4
3
TOTAL  
TRANSITIONAL  
TRANSITIONAL  
OHMIC  
2
1
OHMIC  
0
10  
20  
40  
10  
20  
INPUT VOLTAGE (V)  
30  
0
30  
0
40  
INPUT VOLTAGE (V)  
3743 F04a  
3743 F04b  
Figure 4a. Power Loss Example for M1  
Figure 4b. Power Loss Example for M2  
Figure 4  
Whenever possible, utilize a switching MOSFET that  
minimizes the total gate charge to limit the internal power  
dissipation of the LT3743.  
be used as the input capacitance. Use only type X5R or  
X7R capacitors as they maintain their capacitance over a  
wide range of operating voltages and temperatures.  
Table 3. Recommended Switching FETs  
Output Capacitor Selection  
V
V
I
D
IN  
OUT  
(V) (V) (A)  
TOP FET  
BOTTOM FET MANUFACTURER  
TheoutputcapacitorsneedtohaveverylowESR(equivalent  
seriesresistance)toallowtheLEDcurrenttorampquickly.  
A minimum of 50μF/A of load current should be used in  
most designs. The capacitors also need to be surge rated  
to the maximum output current. To achieve the lowest  
possible ESR, several low ESR capacitors should be used  
in parallel. Many applications benefit from the use of high  
density POSCAP capacitors, which are easily destroyed  
when exposed to overvoltage conditions. To prevent this,  
select POSCAP capacitors that have a voltage rating that  
is at least 50% higher than the regulated voltage  
8
4
4
5-10 RJK0365DPA RJK0330DPB Renesas  
www.renesas.com  
24  
5
RJK0368DPA RJK0332DPB  
24 2-4 20 RJK0365DPA RJK0346DPA  
12 2-4 10 FDMS8680 FDMS8672AS Fairchild  
www.fairchildsemi.com  
36  
24  
4
4
20  
40  
Si7884BDP  
SiR470DP Vishay  
www.vishay.com  
PSMN4R0- RJK0346DPA NXP/Philips  
30YL www.nxp.com  
Input Capacitor Selection  
The input capacitor should be sized at 4μF for every 1A  
of output current and placed very close to the high side  
MOSFET. A small 1μF ceramic capacitor should be placed  
C
Capacitor Selection  
BOOT  
The C  
capacitor must be sized less than 220nF and  
BOOT  
near the V and ground pins of the LT3743 for optimal  
more than 50nF to ensure proper operation of the LT3743.  
Use 220nF for high current switching MOSFETs with high  
gate charge.  
IN  
noise immunity. The input capacitor should have a ripple  
currentratingequaltohalfofthemaximumoutputcurrent.  
ItisrecommendedthatseverallowESRceramiccapacitors  
3743f  
15  
LT3743  
APPLICATIONS INFORMATION  
60  
50  
V
Capacitor Selection  
CC_INT  
The bypass capacitor for the V  
pin should be larger  
CC_INT  
than 5μF for stability and has no ESR requirement. It  
is recommended that the ESR be lower than 50mΩ to  
reduce noise within the LT3743. For driving MOSFETs  
with gate charges larger than 10nC, use 0.5μF/nC of total  
gate charge.  
40  
30  
20  
10  
0
LED Current Dimming  
TheLT3743providesthecapabilityoftraditionalzerotofull  
current PWM dimming as well as PWM dimming between  
two regulated LED current states. When the PWM signal  
is low, no switching occurs and the output capacitors  
are disconnected from ground. When PWM is high and  
CTRL_SEL is low, the inductor current is regulated to the  
low current state. In this state, the PWMGL signal is high,  
connecting the output capacitor for the low regulated  
current state. When PWM and CTRL_SEL are both high,  
the inductor current is regulated to the high current state.  
In this state, the PWMGH signal is high, connecting the  
output capacitor for the high regulated current state. The  
transition time between each of the regulated inductor  
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
CTRL  
3743 F06  
Figure 6. LED Current vs CTRL Voltage  
V
REF  
LT3743  
CTRL_L  
R2  
R1  
3743 F07  
Figure 7. Analog Control of LED Current  
currents is determined by the inductor size, V and V .  
IN  
O
Due to the use of the switched output capacitors, the LED  
current will begin to flow within 130ns of the transition on  
the CTRL_SEL pin. Figure 8 shows the LED and inductor  
current waveforms with the various states of the control  
signals.  
t
PWM  
t
ON(PWM)  
PWM  
CTRL_SEL  
To adjust the regulated LED current for the two control  
states, an analog voltage is applied to the CTRL_L and  
CTRL_Hpins.Figure6showstheregulatedvoltageacross  
the sense resistor for control voltages up to 2V. Figure 7  
shows the CTRL_L voltage created by a voltage divider  
INDUCTOR  
CURRENT  
PWMGH  
PWMGL  
from V  
to ground. When sizing the resistor divider,  
REF  
please be aware that the V  
pin is current limited to  
REF  
500μA. Above 1.5V, the control voltage has no effect on  
the regulated LED current.  
ICTRL_H  
LED  
CURRENT  
ICTRL_L  
3743 F08  
For the widest dimming range, use the highest switching  
frequency possible and lowest PWM frequency. For con-  
figuration with the maximum PWM range, please contact  
factory for optimized component selection.  
Figure 8. LED Current vs CTRL Voltage  
3743f  
16  
LT3743  
APPLICATIONS INFORMATION  
MOSFET Selection for the Switched Output Capacitors  
If the voltage between the low state and the high state is  
verylarge(greaterthanthethresholdoftheMOSFET)then  
thecapacitormayonceagainbedischarged.Toaccountfor  
this, choose a MOSFET that has a threshold greater than  
the voltage difference. If the voltage difference exceeds  
1.5V, use the circuit shown in Figure 11. The circuit shown  
will keep the capacitor from discharging to a voltage dif-  
TheMOSFETsusedfortheswitched-outputcapacitorneed  
to also handle the maximum regulated current while the  
capacitor is charged. The output drivers on the PWMGH  
and PWMGL pins have a pull-up impedance of 3.2Ω and  
a pull-down impedance of 1.75Ω. This provides adequate  
gate drive for 30nC MOSFETs without the need for an  
additional gate driver. If the LED forward resistance and  
the difference between the two regulated currents is large  
enough,thentwoMOSFETsarerequiredtopreventthebody  
diode of the MOSFET from conducting and discharging  
the capacitor for the high current state. Figure 9 shows  
the output capacitor for the high current regulation state  
discharged with the body diode when a single MOSFET  
is used. Figure 10 shows the application circuit with a  
drain-to-drain configuration for the high current output  
capacitor. In this configuration, the body diode of the up-  
per MOSFET blocks conduction and prevents discharge  
of the high current output capacitor.  
ference of approximately 2V + V .  
TH  
I
= 1A  
= 20A  
CTRL_L  
I
CTRL_H  
V = 3V  
F
D
R
= 200mΩ  
PWMGH  
LT3743  
PWMGL  
V
CC_INT  
3.01k  
2V  
I
= 1A  
= 20A  
CTRL_L  
2k  
I
CTRL_H  
3743 F11  
V = 3V  
D
F
3.8V  
3.04V  
R
= 40mΩ  
Figure 11. Application for Large Differences  
in Regulated Currents  
0V  
5V  
PWMGH  
OFF  
LT3743  
PWMGL  
Board and Interconnect Inductance  
The board and interconnect inductance from the output  
capacitors to the load also determine the rate of change  
in load (LED) current. The rate of change in load current  
will be:  
ON  
3743 F09  
Figure 9. Body Diode of High Current FET  
Discharges the Output Capacitor  
VHIGH VLOW  
dIL  
dt  
I
= 1A  
= 20A  
CTRL_L  
=
I
CTRL_H  
LBOARD  
V = 3V  
D
F
3.8V  
3.04V  
R
= 40mΩ  
where dI /dt is the rate of change in the load current,  
L
V
HIGH  
is the output voltage when the inductor is regulated  
at the high level, and V  
is the output voltage when the  
LOW  
PWMGH  
inductor is regulated at the low state. When measuring the  
LED current do not use a current probe. The core material  
used in most probes adds inductance and slows the rise  
time of the LED current. Instead, when measuring the  
current, use a sense resistor.  
LT3743  
PWMGL  
3743 F10  
Figure 10. With a Drain-to-Drain Configuration, the Body  
Diode of the Top FET Blocks the Current Path That Would  
Discharge the High Current Output Capacitor  
3743f  
17  
LT3743  
APPLICATIONS INFORMATION  
Voltage Regulation and Overvoltage Protection  
The internal power consumption of the LT3743 is de-  
termined by the switching frequency, V , and the gate  
IN  
The LT3743 uses the FB pin to regulate the output to a  
maximumvoltageandtoprovideahighspeedovervoltage  
lockout to avoid high voltage conditions that may damage  
expensivehighcurrentLEDs.Theregulatedoutputvoltage  
is programmed using a resistor divider from the output  
and ground (Figure 12). When the output voltage exceeds  
130% of the regulated voltage level (1.3V at the FB pin),  
the internal open-LED flag is set, terminating switching  
and forcing both PWMGL and PWMGH signals high. The  
regulated output voltage must be greater than 2V and is  
set by the equation:  
charge, Q of the external switching MOSFETs selected.  
G
The 4mm × 5mm QFN package has a θ of 35°C/W. The  
JA  
following equation calculates the maximum switching  
frequency to avoid current limit and thermal shutdown at  
a given ambient operating temperature, T :  
A
163°C– T  
(
)
A
fS ≤  
fS ≤  
35°C/W • V 5V • QGHG +QGLG  
(
)
(
)
(
)
IN  
60mA  
Q
GLG +QGHG  
(
)
R2  
R1  
Since the regulated output current flowing into the LED  
may be very large, the switching frequency needs to be  
carefully considered. Higher switching frequencies will  
reduce the large size of high saturation current inductors,  
whilereducingefficiencyandincreasingpowerlosswithin  
the LT3743.  
VOUT =1V 1+  
V
OUT  
LT3743  
R2  
FB  
Table 4. Switching Frequency  
R1  
SWITCHING FREQUENCY (MHz)  
R (kΩ)  
T
3743 F12  
1
0.750  
0.5  
40  
54  
Figure 12. Output Voltage Regulation and Overvoltage Protection  
Feedback Connections  
83  
0.3  
142  
218  
Soft-Start  
0.2  
Unlikeconventionalvoltageregulators,theLT3743utilizes  
the soft-start function to control the regulated inductor  
current. The charging current is 5.5μA and reduces the  
regulated current for both the high and low regulated  
current states. The SS pin is latched in a discharge state  
untiltherstPWMpulseandisresetbyUVLOandthermal  
shutdown.  
0.1  
450  
1.2  
1.0  
0.8  
0.6  
Programming Switching Frequency  
0.4  
0.2  
0
The LT3743 has an operational switching frequency range  
between200kHzand1MHz.Thisfrequencyisprogrammed  
with an external resistor from the RT pin to ground. Do  
not leave this pin open under any condition. The RT pin  
is also current limited to 60μA. See Table 4 and Figure 13  
for resistor values and the corresponding switching  
frequencies.  
0
50 100 150 200 250 300 350 400 450 500  
(kΩ)  
R
T
3743 F13  
Figure 13. Frequency vs RT Resistance  
3743f  
18  
LT3743  
APPLICATIONS INFORMATION  
Thermal Shutdown  
The EN/UVLO pin as an absolute maximum voltage of  
6V. To accommodate the largest range of applications,  
there is an internal Zener diode that clamps this pin. For  
applications where the supply range is greater than 4:1,  
size R2 greater than 375k.  
TheinternalthermalshutdownwithintheLT3743engagesat  
163°Candterminatesswitching,resetssoft-startandshuts  
downthePWMGLandPWMGHdrivers. Whentheparthas  
cooled to 155°C, the internal reset is cleared and soft-start  
is allowed to charge once the PWM signal is asserted.  
V
IN  
V
IN  
Switching Frequency Synchronization  
LT3743  
EN/UVLO  
R2  
R1  
The nominal switching frequency of the LT3743 is deter-  
mined by the resistor from the RT pin to ground and may  
be set from 200kHz to 1MHz. The internal oscillator may  
alsobesynchronizedtoanexternalclockthroughtheSYNC  
pin. The external clock applied to the SYNC pin must have  
a logic low below 0.3V and a logic high higher than 1.25V.  
Theinputfrequencymustbe20%higherthanthefrequency  
determined by the resistor at the RT pin. The duty cycle of  
theinputsignalneedstobegreaterthan10%andlessthan  
90%. Input signals outside of these specified parameters  
will cause erratic switching behavior and subharmonic  
oscillations. When synchronizing to an external clock,  
pleasebeawarethattherewillbeaxeddelayfromtheinput  
clock edge to the edge of switch. The SYNC pin must be  
grounded if the synchronization to an external clock is not  
required.WhenSYNCisgrounded,theswitchingfrequency  
is determined by the resistor at the RT pin.  
3743 F14  
Figure 14. UVLO Configuration  
LED Current Derating Using the CTRL_T Pin  
The LT3743 is designed specifically for driving high cur-  
rent LEDs. Most high current LEDs require derating the  
maximum current based on operating temperature to  
preventdamagetotheLED. Inaddition, manyapplications  
have thermal limitations that will require the regulated  
current to be reduced based on LED and/or board tem-  
perature. To achieve this, the LT3743 uses the CTRL_T  
pin to reduce the effective regulated current in the LED  
for both the high and low control currents. While CTRL_H  
and CTRL_L program the regulated current in the LED,  
CTRL_T can be configured to reduce this regulated cur-  
rent based on the analog voltage at the CTRL_T pin. The  
LED/board temperature derating is programmed using a  
resistor divider with a temperature dependant resistance  
(Figure 15). When the board/LED temperature rises, the  
CTRL_T voltage will decrease. To reduce the regulated  
current, the CTRL_T voltage must be lower than voltage  
at the CTRL_L and CTRL_H pins.  
Shutdown and UVLO  
TheLT3743hasaninternalUVLOthatterminatesswitching,  
resetsallsynchronouslogic, anddischargesthesoft-start  
capacitor for input voltages below 4.2V. The LT3743 also  
has a precision shutdown at 1.55V on the EN/UVLO pin.  
Partial shutdown occurs at 1.55V and full shutdown is  
guaranteed below 0.5V with <2μA I in the full shutdown  
Q
state.Below1.5V,aninternalcurrentsourceprovides5.5μA  
of pull-down current to allow for programmable UVLO  
hysteresis. The following equations determine the voltage  
divider resistors for programming the UVLO voltage and  
hysteresis as configured in Figure 14.  
R
R
V
V
V
REF  
R
R
NTC  
R
R
R
R
X
LT3743  
NTC  
X
NTC  
NTC  
R2  
CTRL_T  
3743 F15  
R1  
(OPTION A TO D)  
A
B
C
D
VHYST  
R2=  
5.5μA  
Figure 15. LED Current Derating vs Temperature  
Using NTC Resistor  
1.55V •R2  
1.55V  
R1=  
V
UVLO  
3743f  
19  
LT3743  
APPLICATIONS INFORMATION  
Average Current Mode Control Compensation  
the error amplifier will be the compensation resistor, R .  
C
For optimized phase margin and bandwidth, R and C  
C
C
Theuseofaveragecurrentmodecontrolallowsforprecise  
regulation of the inductor and LED currents. Figure 16  
shows the average current mode control loop used in the  
LT3743, where the regulation current is programmed by  
a current source and a 3k resistor.  
should be sized to be:  
fS •L •1000V  
VO •RS  
0.002  
fS  
RC =  
[Ω], CC =  
[F]  
where f is the switching frequency, L is the inductance  
S
To design the compensation network, the maximum com-  
pensationresistorneedstobecalculated. Incurrentmode  
controllers, the ratio of the sensed inductor current ramp  
to the slope compensation ramp determines the stability  
of the current regulation loop above 50% duty cycle. In  
the same way, average current mode controllers require  
the slope of the error voltage to not exceed the PWM ramp  
slope during the switch off-time.  
value, V is the input voltage and R is the sense resistor.  
IN  
S
For most LED applications, a 4.7nF compensation capaci-  
tor is adequate and provides excellent phase margin with  
optimized bandwidth. Please refer to Table 6 for recom-  
mended compensation values.  
For applications where the load is not an LED, please call  
the factory for additional compensation assistance.  
Since the closed-loop gain at the switching frequency  
produces the error signal slope, the output impedance of  
Board Layout Considerations  
Average current mode control is relatively immune to the  
switching noise associated with other types of control  
schemes. Placing the sense resistor as close as possible  
V
• 11μA/V  
L
CTRL  
3k  
+
to the SENSE and SENSE pins avoids noise issues and  
ensures the fastest LED current transition time. Utilizing  
a good ground plane underneath the switching compo-  
nentswillminimizeinterplanenoisecoupling. Todissipate  
the heat from the switching components, increase the  
area of the switching node as much as possible without  
negatively affecting the radiated noise. The interconnect  
inductance and resistance between the output capacitors  
and the LED load directly impacts the rise time of the load  
current. To reduce the inductance and resistance, make  
the traces as wide as physically possible and minimize  
the trace length.  
R
S
MODULATOR  
LOAD  
+
g
m
ERROR AMP  
3743 F16  
R
C
C
C
Figure 16. LT3743 Average Current Mode Control Scheme  
Table 6. Recommended Compensation Values  
V
(V)  
V (V)  
I (A)  
f
SW  
(MHz)  
0.5  
L (μH)  
1.5  
R (mΩ)  
R (kΩ)  
C (nF)  
IN  
O
L
S
C
C
12  
4
4
5
4
4
5
5
47.5  
47.5  
38.3  
52.3  
52.3  
4.7  
4.7  
8.2  
4.7  
4.7  
12  
12  
24  
24  
10  
20  
2
0.5  
1.5  
5
0.25  
0.5  
1.8  
2.5  
2.5  
2.5  
1.0  
20  
0.5  
1.0  
3743f  
20  
LT3743  
TYPICAL APPLICATIONS  
12V, 20A LED Driver  
V
IN  
V
IN  
EN/UVLO  
PWM  
CTRL_SEL  
EN/UVLO  
12V  
PWM  
1μF  
200μF  
CTRL_SEL  
RT  
SYNC  
M1  
HG  
100nF  
82.5k  
40k  
L1  
1.0μH  
V
OUT  
CBOOT  
2.5mΩ  
20A MAXIMUM  
V
SW  
LT3743  
REF  
1μF  
2nF  
HOT  
D1  
CTRL_L  
V
CC_INT  
LG  
1mF  
20μF  
R
M2  
CTRL_H  
CTRL_T  
40k  
1mF  
45.2k  
GND  
+
M3  
SENSE  
SENSE  
R
NTC  
680k  
PWMGH  
M4  
SS  
PWMGL  
10nF  
40.2k  
FB  
VCL  
34k  
VCH  
1mF  
10k  
D1: LUMINUS PT120  
L1: IHLP4040DZER1R0M01  
M1: RJK0365DPA  
M2: RJK0346DPA  
M3, M4: Si7236DP  
3743 TA02  
34k  
4.7nF  
4.7nF  
Efficiency (Stepping from 2A to 20A)  
94  
V
= 12V  
IN  
GREEN LED  
92  
90  
88  
86  
84  
82  
80  
20  
40  
60  
100  
0
80  
CTRL_SEL DIMMING DUTY CYCLE (%)  
3743 TA02b  
3743f  
21  
LT3743  
TYPICAL APPLICATIONS  
6V to 36V, 2A LED Driver With Shunted Output  
V
IN  
V
IN  
EN/UVLO  
INTV  
EN/UVLO  
PWM  
CTRL_SEL  
6V TO 36V  
CC  
1μF  
8μF  
CTRL_SEL  
Shunted Output with CTRL_H  
Equal to CTRL_L  
RT  
SYNC  
HG  
M1  
100nF  
82.5k  
V
L1  
10μH  
OUT  
CTRL_SEL  
5V/DIV  
CBOOT  
2A MAXIMUM  
25mΩ  
V
REF  
SW  
LT3743  
I
L
2.2μF  
2nF  
HOT  
2A/DIV  
D1  
CTRL_L  
V
CC_INT  
LG  
20μF  
CONTROL  
INPUT  
R
M2  
CTRL_H  
CTRL_T  
I
LED  
45.3k  
GND  
+
1A/DIV  
SENSE  
SENSE  
SW  
2V/DIV  
R
NTC  
680k  
PWMGH  
3743 TA03b  
20μs/DIV  
SS  
PWMGL  
M3  
10nF  
40.2k  
FB  
VCL  
34k  
VCH  
10k  
D1: LUMINUS CBT-40  
L1: MSS1048-103MLB  
M1, M2: Si7848BDP  
M3: Si2312BDS  
3743 TA03  
34k  
4.7nF  
4.7nF  
6V to 36V, 2A LED Driver With Current Limited Shunted Output  
V
IN  
V
IN  
EN/UVLO  
INTV  
EN/UVLO  
PWM  
CTRL_SEL  
6V TO 36V  
CC  
1μF  
8μF  
CTRL_SEL  
Shunted Output with CTRL_L at GND  
RT  
SYNC  
M1  
HG  
100nF  
CTRL_SEL  
5V/DIV  
82.5k  
L1  
10μH  
V
OUT  
CBOOT  
2A MAXIMUM  
25mΩ  
V
REF  
SW  
LT3743  
I
L
2A/DIV  
2.2μF  
2nF  
CONTROL  
INPUT  
D1  
CTRL_H  
V
CC_INT  
LG  
20μF  
I
R
M2  
LED  
1A/DIV  
HOT  
CTRL_L  
CTRL_T  
45.3k  
GND  
+
SENSE  
SENSE  
SW  
10V/DIV  
R
NTC  
PWMGH  
680k  
3743 TA04b  
20μs/DIV  
M3  
SS  
PWMGL  
10nF  
40.2k  
FB  
VCL  
34k  
VCH  
D1: LUMINUS CBT-40  
L1: IHLP4040DZE10R0M01  
M1, M2: Si7848BDP  
M3: Si2312BDS  
10k  
3743 TA04  
34k  
4.7nF  
4.7nF  
3743f  
22  
LT3743  
TYPICAL APPLICATIONS  
6V to 30V, 20A LED Driver with Switched Cathode  
V
IN  
V
EN/UVLO  
PWM  
CC_INT  
EN/UVLO  
PWM  
CTRL_SEL  
IN  
6V TO 30V  
1μF  
80μF  
V
RT  
SYNC  
M1  
HG  
150nF  
82.5k  
L1  
1.1μH  
V
OUT  
CBOOT  
20A MAXIMUM  
2.5mΩ  
V
REF  
SW  
LT3743  
1mF  
2nF  
D1  
CTRL_L  
V
CC_INT  
LG  
20μF  
R
CONTROL  
INPUT  
M2  
HOT  
CTRL_H  
CTRL_T  
45.3k  
GND  
+
SENSE  
SENSE  
PWMGL  
R
680k  
NTC  
M3  
SS  
PWMGH  
10nF  
60.4k  
FB  
VCL  
VCH  
10k  
D1: LUMINUS PT121  
L1: MVR1261C-112ML  
M1: RJK0365DPA  
M2: RJK0328DPB  
M3: SiR496DP  
3743 TA05  
34k  
4.7nF  
Switched Cathode PWM Dimming (100:1) 0A to 20A  
0A to 20A Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM  
5V/DIV  
I
LED  
10A/DIV  
SW  
10V/DIV  
3743 TA05b  
10μs/DIV  
V
= 12V  
IN  
GREEN LED  
80  
100  
PWM DIMMING DUTY CYCLE (%)  
0
20  
40  
60  
3743 TA05c  
3743f  
23  
LT3743  
TYPICAL APPLICATIONS  
12V, 5A Lithium-Ion Battery Charger  
V
IN  
V
EN/UVLO  
PWM  
CTRL_SEL  
CTRL_H  
CTRL_L  
IN  
12V  
1μF  
20μF  
μCONTROLLER  
82.5k  
HG  
100nF  
V
RT  
SYNC  
OUT  
CBOOT  
3.6μH  
10mΩ  
5A MAXIMUM  
SW  
LT3743  
+
3.6V  
V
V
REF  
CC_INT  
LG  
20μF  
2nF  
R
HOT  
GND  
+
45.3k  
CTRL_T  
SS  
SENSE  
SENSE  
R
680k  
NTC  
PWMGH  
PWMGL  
10nF  
40.2k  
FB  
VCL  
VCH  
10k  
3743 TA06  
56.2k  
9nF  
56.2k  
9nF  
3743f  
24  
LT3743  
TYPICAL APPLICATIONS  
24V, 20A 3-LED Driver  
V
IN  
V
IN  
EN/UVLO  
PWM  
CC_INT  
EN/UVLO  
PWM  
CTRL_SEL  
24V  
1μF  
80μF  
V
RT  
SYNC  
HG  
100nF  
82.5k  
V
OUT  
CBOOT  
1.2μH  
2.5mΩ  
20A MAXIMUM  
V
REF  
SW  
LT3743  
2nF  
500μF  
20k  
V
CC_INT  
LG  
CTRL_H  
20μF  
60.4k  
R
HOT  
RED  
LEDs  
GND  
+
45.3k  
CTRL_L  
SENSE  
SENSE  
PWMGH  
CTRL_T  
SS  
PWMGL  
FB  
316k  
R
NTC  
10nF  
VCL  
680k  
VCH  
20k  
3743 TA07  
24.3k  
4.7nF  
Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
V
= 24V  
IN  
3 RED LEDs  
60  
0
20  
40  
60  
80  
100  
DUTY CYCLE (%)  
3743 TA07b  
3743f  
25  
LT3743  
PACKAGE DESCRIPTION  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 p0.05  
4.50 p 0.05  
3.10 p 0.05  
2.50 REF  
2.65 p 0.05  
3.65 p 0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
3.50 REF  
4.10 p 0.05  
5.50 p 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
s 45o CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(2 SIDES)  
27  
28  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 p 0.10  
(2 SIDES)  
3.50 REF  
3.65 p 0.10  
2.65 p 0.10  
(UFD28) QFN 0506 REV B  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3743f  
26  
LT3743  
PACKAGE DESCRIPTION  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 27 26 2524 23 22 21 20 1918 17 16 15  
2.74  
6.60 p0.10  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
(.108)  
4.50 p0.10  
SEE NOTE 4  
6.40  
(.252)  
BSC  
2.74  
(.108)  
0.45 p0.05  
1.05 p0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0o – 8o  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
3. DRAWING NOT TO SCALE  
3743f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3743  
TYPICAL APPLICATION  
24V, 40A Pulsed LED Driver  
V
IN  
24V  
VIN = 12V  
4A to 40A LED Current Step  
V
EN/UVLO  
PWM  
CTRL_SEL  
EN/UVLO  
PWM  
CTRL_SEL  
IN  
4.7μF  
s8  
200μF  
200μF  
RT  
SYNC  
HG  
M1  
220nF  
150k  
L1  
800nH  
CTRL_SEL  
5V/DIV  
V
OUT  
40A MAXIMUM  
CBOOT  
1.25mΩ  
V
SW  
LT3743  
REF  
1μF  
HOT  
1μF  
D1  
CTRL_L  
40k  
I
LED  
V
CC_INT  
LG  
1μF  
20A/DIV  
1mF  
20μF  
R
M2  
10Ω  
10Ω  
1mF  
45.2k  
CTRL_H  
40k  
GND  
+
1μF  
SW  
10V/DIV  
SENSE  
M3  
33nF  
1nF  
CTRL_T  
SS  
SENSE  
3743 TA08b  
M4  
20μs/DIV  
R
NTC  
680k  
PWMGH  
PWMGL  
1μF  
140k  
FB  
VCL  
VCH  
1mF  
20k  
3743 TA08  
51k  
5.6nF  
51k  
5.6nF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.5V to 40V, V  
LT3755/LT3755-1  
High Side 40V, 1MHz LED Controller with True Color  
3000:1 PWM Dimming  
= 60V, Dimming = 3000:1 True Color PWM™,  
IN  
OUT(MAX)  
OUT(MAX)  
I
< 1μA, 3mm × 3mm QFN16, MSOP16E  
SD  
LT3756/LT3756-1  
LTC3783  
High Side 100V, 1MHz LED Controller with True Color  
3000:1 PWM Dimming  
V : 6V to 100V, V  
= 100V, Dimming = 3000:1 True Color PWM,  
IN  
SD  
I
< 1μA, 3mm × 3mm QFN16, MSOP16E  
High Side 36V, 1MHz LED Controller with True Color  
3000:1 PWM Dimming  
V : 3V to 36V, V  
SD  
= 40V, Dimming = 3000:1 True Color PWM,  
IN  
OUT(MAX)  
I
< 20μA, 4mm × 5mm DFN16, TSSOP16E  
LT3517  
1.3A, 2.5MHz High Current LED Driver with 3000:1  
Dimming  
V : 3V to 30V, Dimming = 3000:1 True Color PWM, I < 1μA,  
IN  
SD  
4mm × 4mm QFN16  
LT3518  
2.3A, 2.5MHz High Current LED Driver with 3000:1  
Dimming  
V : 3V to 30V, Dimming = 3000:1 True Color PWM, I < 1μA,  
IN  
SD  
4mm × 4mm QFN16  
LT3496  
Triple Output 750mA, 2.1MHz High Current LED Driver  
with 3000:1 Dimming  
V : 3V to 30V, V  
SD  
= 40V, Dimming = 3000:1 True Color PWM,  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
I
< 1μA, 4mm × 5mm QFN28  
LT3474/LT3474-1  
LT3475/LT3475-1  
LT3476  
36V, 1A (I ), 2MHz Step-Down LED Driver  
V : 4V to 36V, V  
= 13.5V, Dimming = 400:1 True Color PWM,  
= 13.5V, Dimming = 3000:1 True Color PWM,  
LED  
IN  
SD  
I
< 1μA, TSSOP16E  
Dual 1.5A (I ), 36V Step-Down LED Driver  
V : 4V to 36V, V  
IN  
LED  
I
< 1μA, TSSOP20E  
SD  
Quad Output 1.5A, 2MHz High Current LED Driver with  
1000:1 Dimming  
V : 2.8V to 16V, V  
= 36V, Dimming = 1000:1 True Color PWM,  
IN  
SD  
OUT(MAX)  
I
< 10μA, 5mm × 7mm QFN10  
LT3478/LT3478-1  
4.5A, 2MHz High Current LED Driver with 3000:1  
Dimming  
V : 2.8V to 36V, V  
SD  
= 40V, Dimming = 1000:1 True Color PWM,  
IN  
OUT(MAX)  
I
< 10μA, 5mm × 7mm QFN10  
True Color PWM is a trademark of Linear Technology Corporation.  
3743f  
LT 1109 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3743EUFD#PBF

暂无描述
Linear

LT3743EUFD#TRPBF

LT3743 - High Current Synchronous Step-Down LED Driver with Three-State Control; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3743EUFDPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear

LT3743EUFDTRPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear

LT3743IFE#PBF

LT3743 - High Current Synchronous Step-Down LED Driver with Three-State Control; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3743IFE#TRPBF

LT3743 - High Current Synchronous Step-Down LED Driver with Three-State Control; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3743IFEPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear

LT3743IFETRPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear

LT3743IUFD#PBF

LT3743 - High Current Synchronous Step-Down LED Driver with Three-State Control; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3743IUFD#TRPBF

LT3743 - High Current Synchronous Step-Down LED Driver with Three-State Control; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3743IUFDPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear

LT3743IUFDTRPBF

High Current Synchronous Step-Down LED Driver with Three-State Control
Linear