LT3579IFE-1-PBF [Linear]

6A Boost/Inverting DC/DC Converter with Fault Protection; 6A升压/负输出DC / DC转换器故障保护
LT3579IFE-1-PBF
型号: LT3579IFE-1-PBF
厂家: Linear    Linear
描述:

6A Boost/Inverting DC/DC Converter with Fault Protection
6A升压/负输出DC / DC转换器故障保护

转换器
文件: 总40页 (文件大小:512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3579/LT3579-1  
6A Boost/Inverting  
DC/DC Converter with Fault Protection  
FEATURES  
DESCRIPTION  
The LT®3579 is a PWM DC/DC converter with built-in fault  
protection features to aid in protecting against output shorts,  
input/output overvoltage, and overtemperature conditions.  
Thepartconsistsofa42Vmasterswitch,anda42Vslaveswitch  
that can be tied together for a total current limit of 6A.  
n
6A, 42V Combined Power Switch  
n
n
Output Short Circuit Protection  
Wide Input Range: 2.5V to 16V Operating,  
40V Maximum Transient  
LT3579-1: Dual-Phase Capable  
n
n
n
n
Master/Slave (3.4A/2.6A) Switch Design  
User Configurable Undervoltage Lockout  
Easily Configurable as a Boost, SEPIC, Inverting, or  
Flyback Converter  
The LT3579 is ideal for many local power supply designs. It  
canbeeasilyconfiguredinBoost,SEPIC,Inverting,orFlyback  
configurations, and is capable of generating 12V at 1.7A, or  
–12Vat1.2Afroma5Vinput. Inaddition, theLT3579’sslave  
switch allows the part to be configured in high voltage, high  
power charge pump topologies that are very efficient and  
require fewer components than traditional circuits.  
n
n
n
n
Low V  
Switch: 250mV at 5.5A (Typical)  
CESAT  
Can be Synchronized to External Clock  
Can Synchronize other Switching Regulators  
High Gain SHDN Pin Accepts Slowly Varying Input  
Signals  
TheLT3579’sswitchingfrequencyrangecanbesetbetween  
200kHz and 2.5MHz. The part may be clocked internally at  
a frequency set by the resistor from the RT pin to ground,  
or it may be synchronized to an external clock. A buffered  
version of the clock signal is driven out of the CLKOUT  
pin, and may be used to synchronize other compatible  
switching regulator ICs to the LT3579.  
n
20-Lead TSSOP and 20-Pin 4mm × 5mm QFN  
Packages  
APPLICATIONS  
n
Local Power Supply  
n
Vacuum Flourescent Display (VFD) Bias Supplies  
TheLT3579alsofeaturesinnovativeSHDNpincircuitrythat  
allows for slowly varying input signals and an adjustable  
undervoltage lockout function. Additional features such  
as frequency foldback and soft-start are integrated. The  
LT3579 is available in 20-lead TSSOP and 20-pin 4mm ×  
5mm QFN packages.  
n
TFT-LCD Bias Supplies  
Automotive Engine Control Unit (ECU) Power  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 7579816.  
TYPICAL APPLICATION  
Efficiency and Power Loss  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
1MHz, 5V to 12V Boost Converter with Output Short Circuit Protection  
2.2μH  
V
12V  
OUT  
V
5V  
IN  
1.7A  
10μF  
SW1 SW2  
130k 6.3k  
10μF  
FB  
GATE  
V
IN  
22μF  
100k  
200k  
FAULT  
V
IN  
LT3579  
TEMPERATURE  
MONITOR  
SHDN  
CLKOUT  
V
C
RT  
8k  
2.2nF  
SYNC GND SS  
86.6k  
0.1μF  
47pF  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
3579 TA01  
LOAD CURRENT (A)  
35791 TA02  
35791f  
1
LT3579/LT3579-1  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V Voltage.................................................0.3V to 40V  
FAULT.........................................................0.3V to 40V  
FAULT Current..................................................... 0.5mA  
CLKOUT .......................................................0.3V to 3V  
CLKOUT Current .................................................... 1mA  
Operating Junction Temperature Range  
IN  
SW1/SW2 Voltage .....................................0.4V to 42V  
R Voltage....................................................0.3V to 5V  
T
SS, FB Voltage .........................................0.3V to 2.5V  
V Voltage ...................................................0.3V to 2V  
C
SHDN Voltage ............................................0.3V to 40V  
SYNC Voltage............................................0.3V to 5.5V  
GATE Voltage .............................................0.3V to 80V  
LT3579E (Notes 2, 4).........................–40°C to 125°C  
LT3579I (Notes 2, 4)..........................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
FB  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SYNC  
SS  
V
C
20 19 18 17  
GATE  
R
T
GATE  
1
2
3
4
5
6
16 R  
T
FAULT  
SHDN  
CLKOUT  
SW2  
FAULT  
15 SHDN  
14 CLKOUT  
13 SW2  
V
21  
GND  
V
IN  
IN  
21  
GND  
SW1  
SW1  
SW1  
SW1  
SW1  
SW1  
SW1  
12 SW2  
SW2  
11 SW2  
SW2  
SW2  
7
8
9 10  
SW1 10  
SW2  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
UFD PACKAGE  
20-LEAD (4mm s 5mm) PLASTIC QFN  
T
= 125°C, θ = 38°C/W, θ = 10°C/W  
JA JC  
JMAX  
T
= 125°C, θ = 34°C/W, θ = 2.7°C/W  
JMAX JA JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LT3579FE  
LT3579FE  
3579  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3579EFE#PBF  
LT3579EFE#TRPBF  
LT3579IFE#TRPBF  
LT3579EUFD#TRPBF  
LT3579IUFD#TRPBF  
LT3579EFE-1#TRPBF  
LT3579IFE-1#TRPBF  
LT3579EUFD-1#TRPBF  
LT3579IUFD-1#TRPBF  
20-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3579IFE#PBF  
20-Lead Plastic TSSOP  
LT3579EUFD#PBF  
LT3579IUFD#PBF  
LT3579EFE-1#PBF  
LT3579IFE-1#PBF  
LT3579EUFD-1#PBF  
LT3579IUFD-1#PBF  
20-Lead (4mm × 5mm) Plastic QFN  
20-Lead (4mm × 5mm) Plastic QFN  
20-Lead Plastic TSSOP  
3579  
LT3579FE-1  
LT3579FE-1  
35791  
20-Lead Plastic TSSOP  
20-Lead (4mm × 5mm) Plastic QFN  
20-Lead (4mm × 5mm) Plastic QFN  
35791  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
35791f  
2
LT3579/LT3579-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, VSHDN = VIN, VFAULT = VIN unless otherwise noted. (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.3  
MAX  
2.5  
UNITS  
V
l
Minimum Input Voltage  
V
Overvoltage Lockout  
16.2  
1.195  
3
18.7  
1.215  
9
21.2  
1.230  
16  
V
IN  
l
l
l
l
Positive Feedback Voltage  
Negative Feedback Voltage  
Positive FB Pin Bias Current  
Negative FB Pin Bias Current  
Error Amp Transconductance  
Error Amp Voltage Gain  
V
mV  
μA  
V
V
=Positive Feedback Voltage, Current into Pin  
=Negative Feedback Voltage, Current out of Pin  
80.5  
81  
83.3  
83.3  
250  
70  
85  
FB  
85.5  
μA  
FB  
μmhos  
V/V  
mA  
μA  
ΔI=10ꢀA  
Quiescent Current  
Not Switching  
1.9  
2.4  
1
Quiescent Current in Shutdown  
Reference Line Regulation  
V
SHDN  
= 0V  
0
2.5V ≤ V ≤ 15V  
0.01  
2.5  
0.05  
2.8  
225  
%/V  
MHz  
kHz  
ratio  
kHz  
V
IN  
l
l
Switching Frequency, f  
R = 34kΩ  
2.2  
OSC  
T
R = 432kΩ  
175  
200  
1/6  
T
Switching Frequency in Foldback  
Switching Frequency Range  
SYNC High Level for Sync  
Compared to Normal f  
OSC  
l
l
l
Free-Running or Synchronizing  
200  
1.3  
2500  
SYNC Low Level for Sync  
0.4  
80  
V
SYNC Clock Pulse Duty Cycle  
Recommended Minimum SYNC Ratio  
V
SYNC  
= 0V to 2V  
20  
%
3/4  
f
/f  
SYNC OSC  
Minimum Off-Time  
Minimum On-Time  
SW1 Current Limit  
SW Current Sharing, I  
45  
55  
nS  
nS  
A
l
l
At All Duty Cycles (Note 3)  
SW1 and SW2 Tied Together  
3.4  
6
4.2  
5.1  
/I  
0.78  
7.5  
A/A  
A
SW2 SW1  
SW1 + SW2 Current Limit  
Switch V  
I
/I  
= 0.78, At All Duty Cycles (Note 3)  
9.4  
350  
1
SW2 SW1  
SW1 and SW2 Tied Together, I  
+ I = 5.5A  
SW2  
250  
0.01  
0.01  
mV  
μA  
μA  
CESAT  
SW1  
SW1 Leakage Current  
SW2 Leakage Current  
V
SW1  
V
SW2  
= 5V  
= 5V  
1
35791f  
3
LT3579/LT3579-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, VSHDN = VIN, VFAULT = VIN unless otherwise noted. (Note 2).  
PARAMETER  
CONDITIONS  
= 30mV, Current Flows Out of SS pin  
MIN  
TYP  
MAX  
UNITS  
l
l
Soft-Start Charge Current  
Soft-Start Discharge Current  
V
SS  
5.7  
8.7  
11.3  
μA  
Part in FAULT  
= 2.1V,  
V
SS  
5.7  
8.7  
11.3  
μA  
Current Flows into SS Pin  
l
l
Soft-Start High Detection Voltage  
Soft-Start Low Detection Voltage  
SHDN Minimum Input Voltage High  
Part in FAULT  
1.65  
30  
1.8  
50  
1.95  
85  
V
Part Exiting FAULT  
mV  
l
l
Active Mode, SHDN Rising  
Active Mode, SHDN Falling  
1.27  
1.24  
1.33  
1.3  
1.41  
1.38  
V
V
l
SHDN Input Voltage Low  
SHDN Pin Bias Current  
Shutdown Mode  
.3  
V
V
SHDN  
V
SHDN  
V
SHDN  
= 3V  
= 1.3V  
= 0V  
40  
11.4  
0
60  
13.4  
0.1  
μA  
μA  
μA  
9.5  
1.9  
CLKOUT Output Voltage High  
CLKOUT Output Voltage Low  
CLKOUT Duty Cycle  
C
C
= 50pF  
= 50pF  
2.1  
100  
42  
50  
12  
8
2.3  
V
mV  
%
CLKOUT  
CLKOUT  
200  
LT3579, T = 25°C  
J
LT3579-1, All T  
%
J
CLKOUT Rise Time  
CLKOUT Fall Time  
C
C
= 50pF  
ns  
ns  
CLKOUT  
CLKOUT  
= 50pF  
l
l
GATE Pull Down Current  
V
GATE  
V
GATE  
= 3V  
= 80V  
800  
800  
933  
933  
1100  
1100  
μA  
μA  
GATE Leakage Current  
V
= 50V, GATE Off  
0.01  
150  
1
300  
1
μA  
mV  
μA  
GATE  
l
FAULT Output Voltage Low  
FAULT Leakage Current  
100ꢀA into FAULT Pin  
= 40V, FAULT Off  
V
0.01  
750  
FAULT  
l
l
FAULT Input Voltage Low Threshold  
FAULT Input Voltage High Threshold  
700  
950  
800  
1050  
mV  
mV  
1000  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3579E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3579I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
Note 4: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation over the specified maximum operating junction  
temperature may impair device reliability.  
35791f  
4
LT3579/LT3579-1  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switch Current Limit  
Switch Saturation Voltage  
Switch Current Sharing  
10  
9
8
7
6
5
4
3
2
1
0
350  
300  
250  
200  
150  
100  
50  
1.0  
0.9  
V
= V  
SW2  
0.8  
0.7  
SW1  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.0  
20  
30  
40  
50  
60  
70  
80  
0
1
2
3
4
5
6
7
8
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
DUTY CYCLE (%)  
SW1 + SW2 CURRENT (A)  
SW1 CURRENT (A)  
35791 G01  
35791 G02  
35791 G03  
Switch Current Limit  
vs Temperature  
Commanded Switch Current vs SS  
Positive Feedback Voltage  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SS VOLTAGE (V)  
35791 G04  
35791 G05  
35791 G06  
Oscillator Frequency During  
Soft-Start  
Oscillator Frequency  
CLKOUT Duty Cycle  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1
80  
70  
60  
50  
40  
30  
20  
0
R
= 34k  
T
1/2  
1/3  
1/4  
1/5  
1/6  
R
T
= 432k  
INVERTING  
CONFIGURATIONS  
BOOSTING  
CONFIGURATIONS  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.2  
0.4  
0.6  
0.8 1.2  
1
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
FB VOLTAGE (V)  
35791 G07  
35791 G08  
35791 G09  
35791f  
5
LT3579/LT3579-1  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
CLKOUT Rise Time at 1MHz  
Gate Pin Current (VSS = 2.1V)  
Gate Pin Current (VGATE = 5V)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1000  
900  
800  
700  
600  
550  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= –40°C  
T
= 25°C  
T = 125°C  
A
CLKOUT RISE TIME  
A
A
CLKOUT FALL TIME  
0
0
50  
100  
150  
200  
250  
0
10 20 30 40 50 60 70 80  
GATE PIN VOLTAGE (V)  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
CLKOUT CAPACITIVE LOAD (pF)  
SS VOLTAGE (V)  
35791 G10  
35791 G11  
35791 G12  
Active/Lockout Threshold  
SHDN Pin Current  
SHDN Pin Current  
1.4  
1.38  
1.36  
1.34  
1.32  
1.3  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
T
= –40°C  
A
T
= 25°C  
A
SHDN RISING  
T
A
= 125°C  
SHDN FALLING  
1.28  
1.26  
1.24  
1.22  
1.2  
T
= 25°C  
A
T
= 125°C  
A
T
= –40°C  
A
0
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
0
5
10 15 20 25 30 35 40  
SHDN VOLTAGE (V)  
SHDN VOLTAGE (V)  
35791 G13  
35791 G14  
35791 G15  
Internal UVLO  
VIN OVLO  
Fault Input Threshold  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
2.5  
1.25  
1
FAULT RISING  
2.45  
2.4  
2.35  
2.3  
0.75  
0.5  
0.25  
0
FAULT FALLING  
2.25  
2.2  
2.15  
2.1  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
35791 G17  
35791 G16  
35791 G18  
35791f  
6
LT3579/LT3579-1  
PIN FUNCTIONS (QFN/TSSOP)  
GATE (Pin 1/Pin 3): PMOS Gate Drive Pin. The GATE pin  
is a pull-down current source, and can be used to drive  
the gate of an external PMOS transistor for output short  
circuit protection or output disconnect. The GATE pin  
current increases linearly with the SS pin’s voltage, with  
a maximum pull-down current of 933μA at SS voltages  
exceeding 500mV. Note that if the SS voltage is greater  
than 500mV, and the GATE pin voltage is less than 2V, the  
GATE pin looks like a 2kΩ impedance to ground. See the  
Appendix for more information.  
a temperature monitor since the CLKOUT pin’s duty cycle  
varies linearly with the part’s junction temperature. The  
CLKOUT pin signal of the LT3579-1 is 180° out of phase  
with the internal oscillator or SYNC pin, and the duty cycle  
is fixed at ~50%. The LT3579-1 is useful for multiphase  
switching regulators.  
SHDN (Pin 15/Pin 17): Shutdown Pin. In conjunction  
with the UVLO (undervoltage lockout) circuit, this pin is  
used to enable/disable the chip and restart the soft-start  
sequence. Drive below 0.3V to disable the chip with very  
low quiescent current. Drive above 1.33V (typical) to  
activate the chip and restart the soft-start sequence. Do  
not float this pin.  
FAULT (Pin 2/Pin 4): Fault Indication Pin. This active  
low, bidirectional pin can either be pulled low (below  
750mV) by an external source, or internally by the chip  
to indicate a fault. When pulled low, this pin causes the  
power switches to turn off, the GATE pin to become high  
impedance, the CLKOUT pin to become disabled, and the  
SS pin to go through a charge/discharge sequence. The  
end/absenceofafaultisindicatedwhenthevoltageonthis  
pin exceeds 1V. A pull-up resistor or some other form of  
pull-up network needs to exist on this pin to pull it above  
1V in the absence of a fault.  
RT (Pin 16/Pin 18): Timing Resistor Pin. Adjusts the  
LT3579’s switching frequency. Place a resistor from this  
pin to ground to set the frequency to a fixed free running  
level. Do not float this pin.  
SYNC (Pin 17/Pin 20): To synchronize the switching  
frequency to an outside clock, simply drive this pin with  
a clock. The high voltage level of the clock must exceed  
1.3V, and the low level must be less than 0.4V. Drive this  
pin to less than 0.4V to revert to the internal free running  
clock. See the Applications Information section for more  
information.  
V
(Pin 3/Pin 5): Input Supply Pin. Must be locally  
IN  
bypassed.  
SW1(Pins4-7/Pins6-10):MasterSwitchPin. Thisisthe  
collector of the internal master NPN power switch. SW1  
is designed to handle a peak collector current of 3.4A  
(minimum). Minimize the metal trace area connected to  
this pin to minimize EMI.  
SS (Pin 18/Pin 19): Soft-Start Pin. Place a soft-start  
capacitor here. Upon start-up, the SS pin will be charged  
by a (nominally) 250kΩ resistor to ~2.1V. During a fault,  
the SS pin will be slowly charged up and discharged as  
part of a timeout sequence.  
GND(Pins8,9,ExposedPadPin21/ExposedPadPin21):  
Ground. Must be soldered directly to local ground  
plane.  
V (Pin 19/Pin 2): Error Amplifier Output Pin. Tie external  
C
compensation network to this pin.  
SW2 (Pins 10-13/Pins 11-15): Slave Switch Pin. This is  
the collector of the internal slave NPN power switch. SW2  
is designed to handle a peak collector current of 2.6A  
(minimum). Minimize the metal trace area connected to  
this pin to minimize EMI.  
FB (Pin 20/Pin 1): Positive and Negative Feedback Pin.  
For a Boost or Inverting Converter, tie a resistor from the  
FB pin to V  
according to the following equations:  
OUT  
VOUT 1.215V  
83.3µA  
R =  
;Boost or SEPIC Converter  
FB  
CLKOUT (Pin 14/Pin 16): Clock Output Pin. Use this pin to  
synchronize one or more other ICs to the LT3579. This pin  
oscillatesatthesamefrequencyastheinternaloscillatorof  
the part or as the SYNC pin. CLKOUT may also be used as  
|VOUT |+9mV  
R =  
;Inverting Converter  
FB  
83.3µA  
35791f  
7
LT3579/LT3579-1  
BLOCK DIAGRAM  
OPTIONAL  
D1  
L1  
M
1
V
V
OUT  
IN  
C
C
OUT  
C
IN  
OUT1  
R
R
GATE  
FAULT  
FAULT  
GATE  
933μA  
SOFT-  
START  
DIE TEMP  
16.2V  
V
C
V
IN  
165°C  
750mV  
SW1  
+
2.1V  
**  
**  
+
42V (MIN)  
1.17V  
SW2  
+
50mV  
+
FB  
STARTUP  
& FAULT  
LOGIC  
42V (MIN)  
+
1.8V  
+
I
SW1  
+
45mV  
250k  
3.4A (MIN)  
SS  
SW2  
TD ~ 30ns  
DRIVER  
DISABLE  
C
SS  
VBE • 0.9  
+
Q2  
SW1  
+
SHDN  
COMPARATOR  
1.33V  
15.4m  
SR1  
S
DRIVER  
UVLO  
Q1  
V
R
Q
IN  
1.215V  
REFERENCE  
+
+
R
+
S
R
FB  
12m  
A4  
14.6k  
A1  
FB  
GND  
RAMP  
GENERATOR  
+
÷N  
FREQUENCY  
FOLDBACK  
ADJUSTABLE  
OSCILLATOR  
14.6k  
A2  
SS  
SYNC  
BLOCK  
V
RT  
SYNC  
CLKOUT  
C
R
C
R
T
C
C
3579 BD  
** SW OVERVOLTAGE PROTECTION IS NOT GUARANTEED TO PROTECT THE LT3579/LT3579-1 DURING SW OVERVOLTAGE EVENTS.  
Figure 1. Block Diagram  
35791f  
8
LT3579/LT3579-1  
STATE DIAGRAM  
SHDN < 1.33V  
OR  
< 2.3V  
V
IN  
CHIP OFF  
• ALL SWITCHES DISABLED  
• I  
OFF  
GATE  
• FAULTS CLEARED  
SHDN > 1.33V  
AND  
> 2.3V  
V
IN  
INITIALIZE  
• SS PULLED LOW  
FAULT1  
FAULT1  
FAULT2  
SS < 50mV  
FAULT DETECTED  
• SS CHARGES UP  
• IGATE OFF  
SOFT START  
ENABLED  
FAULT PULLED LOW INTERNALLY BY LT3579  
• SWITCHER DISABLED  
• CLKOUT DISABLED  
• I  
GATE  
• SS CHARGES UP  
• SWITCHER ENABLED  
SS > 1.8V  
AND NO FAULT1  
CONDITIONS STILL DETECTED  
POST FAULT DELAY  
• SS SLOWLY DISCHARGES  
FAULT1  
SAMPLE MODE  
• Q1 & Q2 SWITCHES  
FORCED ON EVERY CYCLE  
FOR AT LEAST MINIMUM  
ON-TIME  
FAULT1  
SS < 50mV  
• I  
FULLY ACTIVATED  
GATE  
WHEN SS > 500mV  
LOCAL FAULT OVER  
• INTERNAL FAULT PULLDOWN  
FAULT1  
RELEASED BY LT3579  
• SS CONTINUES DISCHARGING  
TO GND  
IF |V | DROPS CAUSING:  
OUT  
NORMAL MODE  
FB < 1.17V (BOOST)  
FAULT > 1.0V  
OR  
• NORMAL OPERATION  
• CLKOUT ENABLED WHEN  
SS > 1.8V  
FB > 45mV (INVERTING)  
FAULT1  
FAULT1 = OVER VOLTAGE PROTECTION ON V (V > 16.2V (MIN))  
FAULT2 = FAULT PULLED LOW EXTERNALLY (FAULT < 0.75V)  
IN IN  
OVER TEMPERATURE (T  
> 165°C (TYP))  
JUNCTION  
> 3.4A (MIN))  
OVER CURRENT ON SW1 (I  
SW1  
OVER VOLTAGE PROTECTION ON SW1 (V  
OVER VOLTAGE PROTECTION ON SW1 (V  
> 42V (MIN))  
> 42V (MIN))  
SW1  
SW2  
3759 SD  
Figure 2. State Diagram  
35791f  
9
LT3579/LT3579-1  
OPERATION  
OPERATION – OVERVIEW  
V
IN  
V
IN  
The LT3579 uses a constant-frequency, current mode  
controlschemetoprovideexcellentlineandloadregulation.  
Thepart’sundervoltagelockout(UVLO)function,together  
with soft-start and frequency foldback, offers a controlled  
means of starting up. Fault features are incorporated in  
the LT3579 to aid in the detection of output shorts, over-  
voltage,andovertemperatureconditions.RefertotheBlock  
Diagram (Figure 1) and the State Diagram (Figure 2) for  
the following description of the part’s operation.  
ACTIVE/  
1.33V  
+
R
UVLO1  
LOCKOUT  
SHDN  
11.6μA  
AT 1.33V  
R
UVLO2  
(OPTIONAL)  
GND  
3579 F03  
Figure 3. Configurable UVLO  
OPERATION – START-UP  
The LT3579 also has internal UVLO circuitry that disables  
the chip when V < 2.3V (typical).  
IN  
Several functions are provided to enable a very clean  
start-up for the LT3579.  
Soft-Start of Switch Current  
Precise Turn-On Voltage  
The soft-start circuitry provides for a gradual ramp-up of  
theswitchcurrent(refertoCommandedSwitchCurrentvs.  
SSinTypicalPerformanceCharacteristics). Whenthepart  
is brought out of shutdown, the external SS capacitor is  
firstdischargedwhichresetsthestatesofthelogiccircuits  
in the chip. Then an integrated 250k resistor pulls the SS  
pin to ~1.8V at a ramp rate set by the external capacitor  
connected to the pin. Once SS gets to 1.8V, the CLKOUT  
pin is enabled, and an internal regulator pulls the pin up  
quickly to ~2.1V. Typical values for the external soft-start  
capacitor range from 100nF to 1ꢀF.  
TheSHDNpincomparestoaninternalvoltagereferenceto  
give a precise turn on voltage level. Taking the SHDN pin  
above1.33V(typical)enablesthepart.TakingtheSHDNpin  
below0.3Vshutsdownthechip,resultinginextremelylow  
quiescent current. The SHDN pin has 30mV of hysteresis  
to protect against glitches and slow ramping.  
Undervoltage-Lockout (UVLO)  
The SHDN pin can also be used to create a configurable  
UVLO.TheUVLOfunctionsetstheturnon/offoftheLT3579  
at a desired input voltage (VIN  
). Figure 3 shows how  
Soft-Start of External PMOS (if used)  
UVLO  
a resistor divider (or single resistor) from V to the SHDN  
IN  
The soft-start circuitry also gradually ramps up the GATE  
pin pull-down current which allows an external PMOS  
to slowly turn on (M1 in Block Diagram). The GATE pin  
currentincreaseslinearlywithSSvoltage,withamaximum  
current of 933μA when the SS voltage gets above 500mV.  
Note that if the GATE pin voltage is less than 2V for SS  
voltages exceeding 500mV, then the GATE pin impedance  
to ground is 2kΩ. The soft turn on of the external PMOS  
helps limit inrush current at start-up, making hot plugs  
of the LT3579 feasible and safe.  
pin can be used to set VIN  
. R  
is optional. It may  
UVLO UVLO2  
be left out, in which case set it to infinite in the equation  
below. For increased accuracy, set R ≤ 10kΩ. Pick  
UVLO2  
R
as follows:  
UVLO1  
VINUVLO 1.33V  
RUVLO1  
=
1.33V  
+ 11.6µA  
RUVLO2  
35791f  
10  
LT3579/LT3579-1  
OPERATION  
Sample Mode  
sense resistor (R ) generating a voltage proportional to  
S
the total switch current. This voltage (amplified by A4) is  
added to a stabilizing ramp and the resulting sum is fed  
into the positive terminal of the PWM comparator A3.  
When the voltage on the positive input of A3 exceeds  
the voltage on the negative input, the SR latch is reset,  
turning off the master and slave power switches. The  
Sample Mode is the mechanism used by the LT3579 to  
aid in the detection of output shorts. It refers to a state of  
the LT3579 where the master and slave power switches  
(Q1 and Q2) are turned on for a minimum period of time  
every clock cycle (or every few clock cycles in frequency  
foldback) in order to “sample” the inductor current. If the  
sampled current through Q1 exceeds the master switch  
current limit of 3.4A (minimum), the LT3579 triggers an  
overcurrentfaultinternally(seeOperation-Faultsectionfor  
details). Sample Mode exists when FB is out of regulation  
by more than 3.7% or 45mV < FB < 1.17V (typical). The  
LT3579’s power switches are designed to handle a total  
peak current of 6A (minimum).  
voltage on the negative input of A3 (V pin) is set by A1  
C
(or A2), which is simply an amplified difference between  
the FB pin voltage and the reference voltage (1.215V if  
the LT3579 is configured as a boost converter, or 9mV  
if configured as an inverting converter). In this manner,  
the error amplifer sets the correct peak current level to  
maintain output regulation.  
As long as the part is not in fault (see Operation – FAULT  
section)andtheSSpinexceeds1.8V, theLT3579drivesits  
CLKOUTpinatthefrequencysetbytheRTpinortheSYNC  
pin. The CLKOUT pin can synchronize other compatible  
switchingregulatorICs(includingadditionalLT3579s)with  
the LT3579. Additionally, the duty cycle of CLKOUT varies  
linearly with the part’s junction temperature and may be  
used as a temperature monitor. The CLKOUT signal on the  
LT3579-1 is ~180° out of phase with the internal oscillator  
and has a fixed duty cycle of ~50%.  
Frequency Foldback  
The frequency foldback circuit reduces the switching  
frequency when 350mV < FB < 900mV (typical). This  
feature lowers the minimum duty cycle that the part can  
achieve,thusallowingbettercontroloftheinductorcurrent  
during start-up. When the FB voltage is pulled outside of  
this range, the switching frequency returns to normal.  
Note that the peak inductor current at start-up is a  
function of many variables including load profile, output  
capacitance,targetV ,V ,switchingfrequency,etc.Test  
OUT IN  
OPERATION – FAULT  
the applications performance at start-up to ensure that  
the peak inductor current does not exceed the minimum  
current limit.  
The LT3579’s FAULT pin is an active low, bidirectional  
pin (refer to Block Diagram) that pulls low to indicate a  
fault. Each of the following events can trigger a fault in  
the LT3579:  
OPERATION – REGULATION  
A. FAULT1 Events:  
1.SW Overcurrent  
The following description of the LT3579’s operation  
assumes the FB voltage is close enough to its regulation  
target so that the part is not in Sample Mode. Use the  
Block Diagram as a reference when stepping through  
the following description of the LT3579 operating in  
regulation. At the start of each oscillator cycle, the SR  
latch (SR1) is set, which turns on the power switches Q1  
and Q2. The collector current through the master switch,  
Q1, is ~1.3 times the collector current through the slave  
switch, Q2, when the collectors of the two switches are  
tied together. Q1’s emitter current flows through a current  
a. I  
> 3.4A (minimum)  
SW1  
b. (I  
+ I  
) > 6A (minimum)  
SW1  
SW2  
2.V Voltage > 16.2V (minimum)  
IN  
3.SW1 Voltage and/or SW2 Voltage > 42V  
(minimum)  
4.Die Temperature > 165°C  
B. FAULT2 Events:  
1.Pulling the FAULT pin low externally  
35791f  
11  
LT3579/LT3579-1  
OPERATION  
When a fault is detected, in addition to the FAULT pin  
being pulled low internally, the LT3579 also disables  
its CLKOUT pin, turns off its power switches, and the  
GATE pin becomes high impedance (refer to the State  
Diagram). The external PMOS, M1, turns off when the  
gate of M1 is pulled up to its source by the external  
V
OUT  
10V/DIV  
CLKOUT  
2V/DIV  
IL  
5A/DIV  
R
resistor (see Block Diagram) With the external  
FAULT  
5V/DIV  
GATE  
PMOS turned off, the power path from V to V  
is  
IN  
OUT  
35791 F04  
10μs/DIV  
cut off, protecting power components downstream.  
Figure 4. Output Short Circuit Protection of the LT3579  
At the same time, a timeout sequence commences where  
the SS pin is charged up to 1.8V(the SS pin will continue  
charging up to ~2.1V and be held there in the case of  
a FAULT1 event still existing), and then discharged to  
50mV. This timeout period relieves the part, the PMOS,  
and other downstream power components from electrical  
and thermal stress for a minimum amount of time as set  
by the voltage ramp rate on the SS pin.  
SS  
2V/DIV  
GATE  
5V/DIV  
IL  
5A/DIV  
FAULT  
In the absence of faults, the FAULT pin is pulled high by  
5V/DIV  
the external R  
resistor (typically 100k). Figures 4  
35791 F05  
FAULT  
50ms/DIV  
and 5 show the events that accompany the detection of  
an output short on the LT3579.  
Figure 5. Continuous Output Short Showing FAULT Timeout Cycle  
35791f  
12  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
BOOST CONVERTER COMPONENT SELECTION  
Table 1. Boost Design Equations  
PARAMETERS/EQUATIONS  
to calculate equations below.  
D1  
30V, 4A  
L1  
2.2μH  
OPTIONAL  
Step 1: Pick V , V , and f  
IN OUT OSC  
V
12V  
1.7A  
OUT  
M
1
V
5V  
IN  
Inputs  
C
10μF  
OUT1  
VOUT – V +0.5V  
OUT + 0.5V – 0.27V  
Step 2:  
DC  
IN  
R
130k  
R
6.3k  
DC ≅  
FB  
GATE  
V
SW1 SW2  
C
10μF  
OUT  
V
FB  
IN  
100k  
200k  
FAULT  
GATE  
V
IN  
V – 0.27V DC  
(
(
)
IN  
LTYP  
LMIN  
LMAX  
=
(1)  
(2)  
(3)  
LT3579  
fOSC 1.8A  
CLKOUT  
SHDN  
C
22μF  
V – 0.27V 2DC – 1  
IN  
) (  
)
IN  
V
C
RT  
=
R
8k  
C
C
47pF  
4A fOSC 1DC  
F
(
)
SYNC GND  
SS  
Step 3:  
L1  
R
C
SS  
0.1μF  
T
C
2.2nF  
C
V – 0.27V DC  
(
)
86.6k  
IN  
=
fOSC 0.5A  
37591 F06  
• Solve equations 1, 2, and 3.  
Figure 6. Boost Converter – The Component Values Given Are  
Typical Values for a 1MHz, 5V to 12V Boost  
• Choose the higher value between L and L  
for L1.  
TYP  
MIN  
L1 should never exceed L  
.
MAX  
The LT3579 can be configured as a Boost converter as in  
Figure 6. This topology allows for positive output voltages  
that are higher than the input voltage. An external PMOS  
(optional)drivenbytheGATEpinoftheLT3579canachieve  
input or output disconnect during a FAULT event. A single  
feedback resistor sets the output voltage. For output  
voltages higher than 40V, see the Charge Pump topology  
in the Charge Pump Aided Regulators section.  
V – 0.27V DC  
(
)
IN  
Step 4:  
RIPPLE  
IRIPPLE  
=
I
fOSC L1  
IRIPPLE  
2
Step 5:  
IOUT = 6A –  
1DC  
(
)
I
OUT  
Step 6:  
D1  
VR > VOUT ;IAVG >IOUT  
IOUT DC  
Step 7:  
C
OUT =COUT1 =  
C
C
OUT,  
OUT1  
Table 1 is a step-by-step set of equations to calculate  
component values for the LT3579 when operating as a  
Boost converter. Input parameters are input and output  
fOSC 0.01•V –0.5•IOUT RDSON_PMOS  
(
)
OUT  
CIN =CPWR +CVIN  
Step 8:  
voltage, and switching frequency (V , V  
and f  
IRIPPLE  
6A DC  
40 fOSC 0.005V  
IN  
OUT  
OSC  
C
CIN =  
+
IN  
respectively). RefertotheAppendixforfurtherinformation  
8 • fOSC 0.005• V  
IN  
IN  
on the design equations presented in Table 1.  
VOUT – 1.215V  
83.3μA  
Step 9:  
RFB  
=
R
FB  
Variable Definitions:  
V = Input Voltage  
OUT  
DC = Power Switch Duty Cycle  
87.6  
fOSC  
IN  
Step 10:  
T
RT =  
–1; fOSC inMHz andRT in kΩ  
R
V
= Output Voltage  
Only needed for input or output disconnect. See PMOS  
Selection in the Appendix for information on sizing the PMOS  
and the biasing resistor, R  
Step 11:  
PMOS  
f
I
I
= Switching Frequency  
OSC  
OUT  
.
GATE  
= Maximum Output Current  
Note: The maximum design target for peak switch current is 6A and  
is used in this table. The final values for C and C may deviate  
from the above equations in order to obtain desired load transient  
= Inductor Ripple Current  
RIPPLE  
OUT  
IN  
R
= R  
of External PMOS (set to 0 if not  
DSON_PMOS  
DSON  
using PMOS)  
performance for a particular application.  
35791f  
13  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
SEPIC CONVERTER COMPONENT SELECTION  
– COUPLED OR UN-COUPLED INDUCTORS  
Table 2. SEPIC Design Equations  
PARAMETERS/EQUATIONS  
Pick V , V , and f to calculate equations below.  
Step 1:  
Inputs  
IN OUT  
OSC  
C1  
4.7μF  
D1  
60V, 3A  
L1  
6.8μH  
V
12V  
1.6A (V  
1.9A (V  
OUT  
V
PWR  
VOUT +0.5V  
9V TO 16V  
>9V)  
>12V)  
PWR  
PWR  
DC ≅  
C
4.7μF  
PWR  
Step 2: DC  
L2  
6.8μH  
VIN + VOUT + 0.5V – 0.27V  
R
130k  
FB  
C
10μF  
s3  
OUT  
SW1 SW2  
V
3.3V  
TO 5V  
IN  
V – 0.27V DC  
(
(
)
IN  
V
FB  
IN  
LTYP  
LMIN  
LMAX  
=
(1)  
(2)  
(3)  
fOSC 1.8A  
SHDN  
GATE  
LT3579  
100k  
V – 0.27V 2DC – 1  
) (  
4A fOSC 1DC  
)
IN  
=
C
FAULT  
CLKOUT  
VIN  
4.7μF  
(
)
V
C
RT  
C
47pF  
V – 0.27V DC  
F
(
=
)
IN  
R
9.53k  
C
SYNC GND  
SS  
Step 3: L  
R
T
86.6k  
fOSC 0.5A  
C
SS  
C
2.2nF  
C
0.22μF  
• Solve equations 1, 2, and 3.  
• Choose the higher value between L and L  
3759 F07  
for L.  
MIN  
TYP  
L should never exceed L  
.
MAX  
• L = L1 = L2 for coupled inductors.  
Figure 7. SEPIC Converter – The Component Values Given Are  
Typical Values for a 1MHz, 9V–16V to 12V SEPIC Topology Using  
Coupled Inductors  
• L = L1⏐⏐L2 for un-coupled inductors.  
V – 0.27V DC  
(
=
)
IN  
Step 4:  
RIPPLE  
IRIPPLE  
The LT3579 can also be configured as a SEPIC as in  
Figure 7. This topology allows for positive output voltages  
thatarelower,equal,orhigherthantheinputvoltage.Output  
disconnect is inherently built into the SEPIC topology,  
meaning no DC path exists between the input and output  
due to capacitor C1. This implies that a PMOS controlled  
by the GATE pin is not required in the power path.  
I
fOSC L  
IRIPPLE  
2
IOUT = 6A –  
1DC  
(
Step 5: I  
)
OUT  
VR > V + VOUT ;IAVG >IOUT  
Step 6: D1  
Step 7: C1  
IN  
4.7μF (typical); VRATING > V  
IN  
Table 2 is a step-by-step set of equations to calculate  
component values for the LT3579 when operating as a  
SEPICconverterusingcoupledinductors.Inputparameters  
are input and output voltage, and switching frequency  
IOUT DC  
OSC 0.005 •V  
COUT  
=
Step 8: C  
OUT  
f
OUT  
IRIPPLE  
8 fOSC 0.005V  
CPWR  
=
(V , V  
and f  
respectively). Refer to the Appendix  
Step 9: C  
PWR  
IN OUT  
OSC  
IN  
for further information on the design equations presented  
in Table 2.  
6A DC  
40 fOSC 0.005V  
CVIN  
=
Step 10: C  
Step 11: R  
VIN  
FB  
T
IN  
Variable Definitions:  
VOUT – 1.215V  
83.3μA  
RFB  
=
V = Input Voltage  
IN  
OUT  
V
= Output Voltage  
DC = Power Switch Duty Cycle  
87.6  
fOSC  
RT =  
–1; fOSC inMHz andRT in kΩ  
Step 12: R  
f
I
I
= Switching Frequency  
OSC  
OUT  
= Maximum Output Current  
Note: The maximum design target for peak switch current is 6A and  
is used in this table. The final values for C , C , and C may  
= Inductor Ripple Current  
RIPPLE  
OUT PWR  
VIN  
deviate from the above equations in order to obtain desired load  
transient performance for a particular application.  
35791f  
14  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
DUAL INDUCTOR INVERTING CONVERTER COMPONENT  
SELECTION – COUPLED OR UN-COUPLED INDUCTORS  
Table 3. Dual Inductor Inverting Design Equations  
PARAMETERS/EQUATIONS  
to calculate equations below.  
Pick V , V , and f  
Step 1: Inputs  
Step 2: DC  
IN OUT  
OSC  
C1  
4.7μF  
L2  
3.3μH  
L1  
3.3μH  
V
–12V  
1.2A  
OUT  
|VOUT |+0.5V  
V +|VOUT |+0.5V – 0.27V  
V
5V  
IN  
DC ≅  
D1  
30V, 2A  
R
144k  
IN  
FB  
SW1 SW2  
V – 0.27V DC  
(
)
V
IN  
IN  
FB  
GATE  
LTYP  
LMIN  
LMAX  
=
=
(1)  
(2)  
(3)  
C
10μF  
OUT  
fOSC 1.8A  
C
22μF  
SHDN  
IN  
s2  
V – 0.27V 2DC – 1  
LT3579  
(
) (  
4A fOSC 1DC  
)
IN  
100k  
FAULT  
RT  
CLKOUT  
(
)
V
C
R
C
V – 0.27V DC  
(
)
IN  
SYNC  
GND  
SS  
C
F
27pF  
=
20k  
Step 3: L  
fOSC 0.5A  
R
T
C
C
1nF  
SS  
C
72k  
0.22μF  
• Solve equations 1, 2, and 3.  
• Choose the higher value between L and L  
3759 F08  
for L.  
MIN  
TYP  
L should never exceed L  
.
MAX  
Figure 8. Dual Inductor Inverting Converter – The Component  
Values Given Are Typical Values for a 1.2MHz, 5V to –12V Inverting  
Topology Using Coupled Inductors  
• L = L1 = L2 for coupled inductors.  
• L = L1⏐⏐L2 for un-coupled inductors.  
V – 0.27V DC  
(
=
)
IN  
Due to its unique FB pin, the LT3579 can work in a Dual  
Inductor Inverting configuration as in Figure 8. Changing  
the connections of L2 and the Schottky diode in the  
SEPIC topology, results in generating negative output  
voltages. This solution results in very low output voltage  
ripple due to inductor L2 in series with the output. Output  
disconnect is inherently built into this topology due to the  
capacitor C1.  
IRIPPLE  
Step 4: I  
Step 5: I  
RIPPLE  
fOSC L  
IRIPPLE  
2
IOUT = 6A –  
1DC  
(
)
OUT  
VR > V +|VOUT |;IAVG >IOUT  
Step 6: D1  
Step 7: C1  
IN  
4.7μF (typical); VRATING > V +|VOUT  
|
IN  
IRIPPLE  
8 fOSC 0.005|VOUT  
Table 3 is a step-by-step set of equations to calculate  
componentvaluesfortheLT3579whenoperatingasaDual  
InductorInvertingconverterusingcoupledinductors.Input  
parameters are input and output voltage, and switching  
COUT  
=
Step 8: C  
Step 9: C  
OUT  
|
CIN =CPWR +CVIN  
IRIPPLE  
8 • fOSC 0.005• V  
6A •DC  
40 • fOSC 0.005• V  
IN  
CIN =  
+
frequency (V , V  
and f  
respectively). Refer to the  
IN OUT  
OSC  
IN  
IN  
Appendix for further information on the design equations  
presented in Table 3.  
|VOUT |+ 9mV  
RFB  
=
Step 10: R  
Step 11: R  
FB  
83.3μA  
Variable Definitions:  
87.6  
fOSC  
RT =  
–1; fOSC inMHz andRT in kΩ  
V = Input Voltage  
T
IN  
OUT  
V
= Output Voltage  
Note: The maximum design target for peak switch current is 6A and  
is used in this table. The final values for C and C may deviate  
DC = Power Switch Duty Cycle  
OUT  
IN  
f
I
I
= Switching Frequency  
OSC  
OUT  
from the above equations in order to obtain desired load transient  
performance for a particular application.  
= Maximum Output Current  
= Inductor Ripple Current  
RIPPLE  
35791f  
15  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
LAYOUT GUIDELINES FOR BOOST, SEPIC, AND DUAL  
INDUCTOR INVERTING TOPOLOGIES  
• Place the bypass capacitor for the inductor (C  
close as possible to the inductor.  
) as  
PWR  
• Bypass capacitors, C  
and C , may be combined  
VIN  
PWR  
General Layout Guidelines  
intoasinglebypasscapacitor,C ,iftheinputsideofthe  
IN  
IN  
• To optimize thermal performance, solder the exposed  
ground pad of the LT3579 to the ground plane with  
multiple vias around the pad connecting to additional  
ground planes.  
inductor can be close to the V pin of the LT3579.  
• The load should connect directly to the positive and  
negative terminals of the output capacitor for best load  
regulation.  
• Agroundplaneshouldbeusedundertheswitchercircuitry  
to prevent interplane coupling and overall noise.  
Boost Topology Specific Layout Guidelines  
• Highspeedswitchingpath(seespecifictopologybelowfor  
more information) must be kept as short as possible.  
• Keep length of loop (high speed switching path)  
governingswitch, diodeD1, outputcapacitorC , and  
OUT  
groundreturnasshortaspossibletominimizeparasitic  
inductive spikes at the switch node during switching.  
• The V , FB, and RT components should be placed as  
C
close to the LT3579 as possible, while being as far  
away as practically possible from the switch node. The  
groundforthesecomponentsshouldbeseparatedfrom  
the switch current path.  
SEPIC Topology Specific Layout Guidelines  
• Keeplengthofloop(highspeedswitchingpath)governing  
switch,yingcapacitorC1,diodeD1,outputcapacitorC  
,
OUT  
• Place the bypass capacitor for the V pin (C ) as  
IN  
VIN  
andgroundreturnasshortaspossibletominimizeparasitic  
inductive spikes at the switch node during switching.  
close as possible to the LT3579.  
VIAS TO GROUND PLANE REQUIRED TO IMPROVE  
THERMAL PERFORMANCE  
GND  
21  
1
20  
SYNC  
2
3
4
5
19  
18  
17  
16  
15  
14  
13  
12  
11  
SHDN  
CLKOUT  
C
IN  
6
7
A
B
C
8
9
V
IN  
C
OUT1  
D1  
OUT  
10  
V
OUT  
+
M1  
L1  
+
D2  
3579 F08  
A– RETURN C GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE C GROUND  
IN  
IN  
WITH GND EXCEPT AT THE EXPOSED PAD.  
B– RETURN C  
AND C  
GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE  
OUT  
OUT1  
C
AND C  
GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
OUT1  
OUT  
Figure 9. Suggested Component Placement for Boost Topology in FE20 Package  
35791f  
16  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
Inverting Topology Specific Layout Guidelines  
• Keep ground return path from the cathode of D1 (to  
the heat generated within the package. This can be  
accomplished by taking advantage of the thermal pad on  
the underside of the IC. It is recommended that multiple  
vias in the printed circuit board be used to conduct heat  
away from the IC and into a copper plane with as much  
area as possible.  
chip) separated from output capacitor C ’s ground  
OUT  
return path (to chip) in order to minimize switching  
noise coupling into the output. Notice the separate  
ground return for D1’s cathode in Figure 11.  
• Keep length of loop (high speed switching path)  
governing switch, flying capacitor C1, diode D1, and  
groundreturnasshortaspossibletominimizeparasitic  
inductive spikes at the switch node during switching.  
Power & Thermal Calculations  
Power dissipation in the LT3579 chip comes from four  
2
primary sources: switch I R loss, NPN base drive loss  
(AC), NPN base drive loss (DC), and additional V pin  
IN  
current. These formulas assume continuous mode  
operation, so they should not be used for calculating  
thermal losses or efficiency in discontinuous mode or at  
light load currents.  
THERMAL CONSIDERATIONS  
For the LT3579 to deliver its full output power, it is imp-  
erative that a good thermal path be provided to dissipate  
VIAS TO GROUND PLANE REQUIRED TO IMPROVE  
THERMAL PERFORMANCE  
GND  
21  
1
2
3
4
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SYNC  
SHDN  
CLKOUT  
C
IN  
6
7
8
A
B
9
V
+
IN  
10  
C
OUT  
V
OUT  
C1  
D1  
L1  
L2  
+
3579 F10  
A– RETURN C AND L2 GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE C AND L2 GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
IN  
OUT  
IN  
B– RETURN C  
GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE C  
GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
OUT  
L1, L2 –MOST COUPLED INDUCTOR MANUFACTURERS USE CROSS PINOUT FOR IMPROVED PERFORMANCE.  
Figure 10. Suggested Component Placement for SEPIC Topology in FE20 Package  
35791f  
17  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
VIAS TO GROUND PLANE REQUIRED TO IMPROVE  
THERMAL PERFORMANCE  
GND  
21  
1
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SYNC  
SHDN  
CLKOUT  
5
C
IN  
6
7
8
9
A
C
B
V
+
IN  
10  
GND  
C
OUT  
C1  
D1  
–V  
OUT  
L1  
L2  
3579 F11  
A– RETURN C GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE C GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
IN  
OUT  
IN  
OUT  
B– RETURN C  
GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE C  
GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
C– RETURN D1 GROUND DIRECTLY TO LT3579 EXPOSED PAD PIN 21. IT IS ADVISED TO NOT COMBINE D1 GROUND WITH GND EXCEPT AT THE EXPOSED PAD.  
L1, L2 – MOST COUPLED INDUCTOR MANUFACTURERS USE CROSS PINOUT FOR IMPROVED PERFORMANCE.  
Figure11. SuggestedComponentPlacementforInvertingTopologyinFE20Package.  
Note Separate Ground Path for D1s Cathode  
35791f  
18  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
The following example calculates the power dissipation  
in the LT3579 for a particular boost application:  
where T =Die Junction Temperature, T =Ambient  
J
A
Temperature,P  
isthenalresultfromthecalculations  
TOTAL  
(V = 5V, V  
= 12V, I  
= 1.5A, f  
= 1MHz,  
shown in Table 4, and θ is the thermal resistance from  
IN  
OUT  
OUT  
= 0.185V).  
OSC  
JA  
V = 0.5V, V  
the silicon junction to the ambient air.  
D
CESAT  
To calculate die junction temperature, use the appropriate  
thermalresistancenumberandaddinworst-caseambient  
temperature:  
T = T + θ • P  
J
A
JA  
TOTAL  
Table 4. Boost Power Calculations Example with VIN = 5V, VOUT = 12V, IOUT = 1.5A, fOSC = 1MHz, VD = 0.5V, VCESAT = 0.185V  
DEFINITION OF VARIABLES  
EQUATIONS  
DESIGN EXAMPLE  
VALUE  
DC = Switch Duty Cycle  
DC = 60.9%  
VOUT – V + VD  
VOUT + VD VCESAT  
12V – 5V + 0.5V  
12V +0.5V .185V  
IN  
DC =  
DC =  
I
= Average Input Current  
I
= 4A  
IN  
IN  
V
OUT IOUT  
12V 1.5A  
5V 0.9  
I
=
I
=
IN  
η = Power Conversion Efficiency  
(typically 90% at high currents)  
IN  
V η  
IN  
2
P
= Switch I R Loss  
P
SW  
= 438mW  
SW  
PSW =DCI 2 RSW  
PSW = 0.609 (4A)2 45mΩ  
IN  
R
= Switch Resistance (typically  
45mꢁ combined SW1 and SW2)  
SW  
P
= Base Drive Loss (AC)  
= Base Drive Loss (DC)  
P
P
= 624mW  
= 305mW  
BAC  
BDC  
BAC  
PBAC = 13nsIIN VOUT fOSC  
PBAC = 13ns4A 12V 1MHz  
5V 4A 0.609  
P
BDC  
V IIN DC  
IN  
PBDC  
=
PBDC  
=
40  
40  
P
INP  
= Input Power Loss  
P
INP  
= 70mW  
P
= 14mA V  
P = 14mA 5V  
INP  
INP  
IN  
P
TOTAL  
= 1.437W  
35791f  
19  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
The published (http://www.linear.com/designtools/  
SWITCHING FREQUENCY  
packaging/Linear_Technology_Thermal_Resistance_  
Thereareseveralconsiderationsinselectingtheoperating  
frequency of the converter. The first is staying clear of  
sensitive frequency bands, which cannot tolerate any  
spectral noise. For example, in products incorporating RF  
communications, the 455kHz IF frequency is sensitive to  
any noise, therefore switching above 600kHz is desired.  
Some communications have sensitivity to 1.1MHz and in  
that case a 1.5MHz switching converter frequency may be  
employed. The second consideration is the physical size  
of the converter. As the operating frequency goes up, the  
inductor and filter capacitors go down in value and size.  
Thetradeoffisefficiency, sincetheswitchinglossesdueto  
NPN base charge (see Thermal Considerations), Schottky  
diode charge, and other capacitive loss terms increase  
proportionally with frequency.  
Table.pdf)θ valueis38°C/WfortheTSSOPExposedPad  
JA  
packageand34°C/Wforthe4mm×5mmQFNpackage. In  
practice, lower θ values are realizable if board layout is  
JA  
performedwithappropriategrounding(accountingforheat  
sinking properties of the board) and other considerations  
listed in the Layout Guidelines section. For instance, a θ  
JA  
valueof~22°C/WwasconsistentlyachievedforbothTSSOP  
and QFN packages of the LT3579 (at V = 5V, V = 12V,  
IN  
OUT  
I
=1.7A,f =1MHz)whenboardlayoutwasoptimized  
as per the suggestions in the Layout Guidelines section.  
OUT  
OSC  
Junction Temperature Measurement  
ThedutycycleoftheCLKOUTsignalontheLT3579islinearly  
proportional to die junction temperature, T (the CLKOUT  
J
duty cycle on the LT3579-1 is fixed at ~50%). To get an  
accurate reading, measure the duty cycle of the CLKOUT  
signal and use the following equation to approximate the  
junction temperature:  
Oscillator Timing Resistor (R )  
T
The operating frequency of the LT3579 can be set by the  
internalfree-runningoscillator.WhentheSYNCpinisdriven  
low (< 0.4V), the frequency of operation is set by a resistor  
from the RT pin to ground. An internally trimmed timing  
capacitor resides inside the IC. The oscillator frequency  
is calculated using the following formula:  
DCCLKOUT – 35%  
TJ =  
0.3%  
where DC  
is the CLKOUT duty cycle in % and T is  
J
CLKOUT  
the die junction temperature in °C. Although the absolute  
die temperature can deviate from the above equation by  
15°C, the relationship between change in CLKOUT duty  
cycle and change in die temperature is well defined. A  
3% increase in CLKOUT duty cycle corresponds to ~10°C  
increase in die temperature:  
87.6  
RT + 1  
fOSC  
=
where f  
is in MHz and R is in kꢁ. Conversely, R (in  
T T  
OSC  
kꢁ) can be calculated from the desired frequency (in  
MHz) using:  
Note that the CLKOUT pin is only meant to drive capacitive  
loads up to 50pF.  
87.6  
fOSC  
RT =  
–1  
Thermal Lockout  
Afaultconditionoccurswhenthedietemperatureexceeds  
~165°C(seeOperationFAULTSection),andthepartgoes  
into thermal lockout. The fault condition ceases when the  
die temperature drops by ~5°C (nominal).  
35791f  
20  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
Clock Synchronization  
V
18V  
1A  
3.3μH  
OUT  
10μF  
An external source can set the operating frequency of the  
LT3579 by providing a digital clock signal into the SYNC  
SW1 SW2  
CLKOUT  
200k  
10μF  
s2  
GATE  
V
pin (R resistor still required). The LT3579 will operate at  
FB  
IN  
T
LT3579  
SLAVE  
4.7μF  
the SYNC clock frequency. The LT3579 will revert to its  
internalfree-runningoscillatorclockwhentheSYNCpinis  
driven below 0.4V for a few free-running clock periods.  
V
C
SS  
FAULT  
SHDN  
RT  
68pF  
8k  
SYNC GND  
0.1μF  
3.3nF  
86.6k  
Driving SYNC high for an extended period of time  
effectively stops the operating clock and prevents latch  
SR1 from becoming set (see Block Diagram). As a result,  
the switching operation of the LT3579 will stop and the  
CLKOUT pin will be held at ground.  
V
12V  
2.2μH  
GATE  
OUT  
V
5V  
IN  
10μF  
1.7A  
SW1 SW2  
CLKOUT  
10k  
130k  
10μF  
s3  
The duty cycle of the SYNC signal must be between 20%  
and 80% for proper operation. Also, the frequency of the  
SYNC signal must meet the following two criteria:  
LT3579  
FB  
V
IN  
MASTER  
100k  
110k  
FAULT  
V
C
47pF  
SHDN  
RT  
SS  
SYNC GND  
1. SYNC may not toggle outside the frequency  
range of 200kHz-2.5MHz unless it is stopped  
below 0.4V to enable the free-running oscillator.  
8k  
4.7μF  
0.1μF  
2.2nF  
86.6k  
3579 F12  
2. The SYNC frequency can always be higher than  
thefree-runningoscillatorfrequency(assetbythe  
Figure 12. Synchronize Multiple LT3579s. The External PMOS  
Disconnects the Input from Both Power Paths During FAULT Events  
R resistor),f ,butshouldnotbelessthan25%  
T
OSC  
below f  
.
OSC  
Also, the FAULT pins can be tied together so that a fault  
condition from one LT3579 causes all of the LT3579s to  
enter fault, until the fault condition disappears.  
CLOCK SYNCHRONIZATION OF ADDITIONAL  
REGULATORS  
The CLKOUT pin of the LT3579 can synchronize additional  
switching regulators and/or additional LT3579s as shown  
in Figure 12.  
2-Phase Converters using LT3579-1  
The CLKOUT pin on the LT3579-1 is ~180° out of phase  
with the internal oscillator, which allows two LT3579-1s to  
operate in parallel for a high current, high power output.  
The advantage of multiphase converters is that the ripple  
current flowing into the output node is divided by the  
number of phases or ICs used to generate the output  
The frequency of the master LT3579 is set by the external  
R resistor. The SYNC pin of the slave LT3579 is driven  
T
by the CLKOUT pin of the master LT3579. Note that the  
RT pin of the slave LT3579 must have a resistor tied to  
ground. It takes a few clock cycles for the CLKOUT signal  
to begin oscillating, and it’s preferable for all LT3579s to  
have the same internal free-running frequency. Therefore,  
voltage. The V , SHDN, FAULT, FB, and V pins of all the  
IN  
C
LT3579-1sshouldbeconnectedtogether.Figure13shows  
a typical application of a 2-phase 12V to 24V boost with  
output disconnect.  
in general, use the same value R resistor for all of the  
T
synchronized LT3579s.  
35791f  
21  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
Use the following equations to calculate the FB resistor  
for 2-phase converters:  
4.7μH  
V
FAULT  
LT3579-1  
SLAVE  
4.7μF  
s2  
10μF  
SW1 SW2  
CLKOUT  
IN  
VOUT 1.215V  
283.3μA  
FB  
R =  
; Boost or SEPIC  
Multiphase Converter  
FB  
4.7μF  
SHDN  
RT  
GATE  
V
C
|VOUT |+9mV  
283.3μA  
R =  
; Inverting Multiphase  
Converter  
SYNC GND SS  
FB  
0.22μF  
86.6k  
V
24V  
OUT  
V
OUT1  
Note that the CLKOUT pin on the LT3579-1 runs at a fixed  
duty cycle of ~50%. If monitoring the die temperature is  
desired, the slave IC can be a LT3579.  
3.7A,  
89W  
4.7μH  
V
PWR  
12V  
6.4k  
4.7μF  
s2  
10μF  
OUT1  
4.7μF  
s2  
ItispossibletousetheLT3579-1inamultiphaseconverter  
of more than 2 phases. Consult the LTC Applications  
Engineering Department for more information.  
SW1 SW2  
V
IN  
137k  
V
IN  
CLKOUT  
5V  
V
100k  
FAULT  
FB  
LT3579-1  
MASTER  
V
500k  
21.5k  
PWR  
SHDN GATE  
RT  
CHARGE PUMP AIDED REGULATORS  
V
C
DesigningchargepumpswiththeLT3579canofferefficient  
solutions with fewer components than traditional circuits  
because of the master/slave switch configuration on the  
IC. The current in the master switch (SW1) is sensed by  
the current comparator (A4 in Block Diagram), but the  
currentintheslaveswitch(SW2)isnot.Notethattheslave  
switch, SW2, operates in phase with SW1. This method  
of operation by the master/slave switches can offer the  
following benefits to charge pump designs:  
4.7μF  
47pF 7k  
2.2nF  
SYNC GND SS  
86.6k  
5k  
0.22μF  
3579 F13  
Figure 13. 2-Phase Converters Using LT3579-1  
High V  
Charge Pump Topology  
OUT  
The LT3579 can be used in a charge-pump topology (refer  
to Figure 16), multiplying the output of an inductive boost  
converter. The master switch (SW1) can be used to drive  
theinductiveboostconverter,whiletheslaveswitch(SW2)  
canbeusedtodriveoneormorechargepumpstages.This  
topology is useful for high voltage applications including  
VFD Bias Supplies.  
• The slave switch, by not performing a current sense  
operation like the master switch, can sustain fairly  
large current spikes when the flying capacitors charge  
up. Since this current spike flows through SW2, it  
does not affect the operation of the current comparator  
(A4 in Block Diagram).  
Single Inductor Inverting Topology  
• The master switch, immune from the capacitor current  
spike, can sense the inductor current more accurately.  
If there is a need to use just 1 inductor to generate a  
negative output voltage whose magnitude is greater than  
V , the Single Inductor Inverting topology (shown in  
Figure15)canbeused.Sincethemasterandslaveswitches  
areisolatedbyanexternalSchottkydiode,thecurrentspike  
through C1 will flow through the slave switch, thereby  
preventing the current comparator (A4 in Block Diagram)  
from falsely tripping. Output disconnect is inherently built  
into the single inductor topology.  
• Since the slave switch can sustain large current spikes,  
the diodes that feed current into the flying capacitors  
do not need current limiting resistors, leading to  
efficiency and thermal improvements.  
IN  
35791f  
22  
LT3579/LT3579-1  
APPLICATIONS INFORMATION  
HOT PLUG  
C1  
D1  
D3  
L1  
V
–V  
IN  
OUT  
D2  
The high inrush current associated with hot-plugging V  
IN  
R
FB  
canbelargelyrejectedwiththeuseofanexternalPMOS. A  
SW1  
SW2  
V
FB  
IN  
simple hot-plug controller can be designed by connecting  
C
OUT  
SHDN  
GATE  
an external PMOS in series with V , with the gate of the  
IN  
LT3579  
100k  
FAULT  
PMOS being driven by the GATE pin of the LT3579. Since  
the GATE pin pull-down current is linearly proportional to  
theSSvoltage,andtheSSchargeuptimeisrelativelyslow,  
the GATE pin pull-down current will increase gradually,  
thereby turning on the external PMOS slowly. Controlled  
in this manner, the PMOS acts as an input current limiter  
CLKOUT  
C
IN  
RT  
V
C
R
C
SYNC GND  
SS  
C
F
R
T
C
C
C
SS  
3579 F15  
Figure 15. Single Inductor Inverting Topology  
when V hot-plugs or ramps up sharply.  
IN  
Likewise, when the PMOS is connected in series with the  
output, inrush currents into the output capacitor can be  
limitedduringahot-plugevent.Toillustratethis,thecircuit  
in Figure 6 was re-configured by adding a large 1500μF  
capacitor to the output. An 18ꢁ resistive load was used  
and a 2.2μF capacitor was placed on SS. Figure 14 shows  
the result of hot-plugging this re-configured circuit. The  
V
100V  
200mA  
OUT2  
4.7μF  
V
67V  
4.7μF  
4.7μF  
4.7μF  
OUT1  
100mA  
10μH  
inductor current is well behaved and V  
comes up once  
V
12V  
OUT  
IN  
V settles out.  
IN  
6.8μF  
383k  
V
6.5k  
6.8μF  
IN  
SW1 SW2  
5V/DIV  
V
FB  
IN  
100k  
536k  
FAULT  
GATE  
V
V
IN  
OUT  
LT3579  
10V/DIV  
SHDN  
CLKOUT  
I
L
5A/DIV  
V
C
RT  
10μF  
SYNC GND  
SS  
27pF  
34k  
SS  
1V/DIV  
86.6k  
2.2μF  
470pF  
3579 F16  
3579 F14  
1s/DIV  
Figure 16. High VOUT Charge Pump Topology  
Figure 14. VIN Hot-Plug Control. Inrush Current is Well Controlled  
35791f  
23  
LT3579/LT3579-1  
APPENDIX  
SETTING THE OUTPUT VOLTAGE  
For the boost topology (see Figure 6):  
The output voltage is set by connecting a resistor (R )  
VOUT – V + VD  
OUT + VD – VCESAT  
FB  
IN  
DCBOOST  
from V  
to the FB pin. R is determined from the  
OUT  
FB  
V
following equation:  
For the SEPIC or Dual Inductor Inverting topology (see  
Figures 7 and 8):  
|VOUT – V |  
FB  
RFB =  
83.3μA  
VD +|VOUT  
V +|VD |+ VOUT VCESAT  
|
DCSEPIC_&_INVERT  
where V is 1.215V (typical) for non-inverting topologies  
FB  
IN  
(i.e. boost and SEPIC regulators) and 9mV (typical) for  
inverting topologies (see Electrical Characteristics).  
FortheSingleInductorInvertingtopology(seeFigure14):  
|VOUT |V + VCESAT +3VD  
IN  
DCSI_INVERT  
POWER SWITCH DUTY CYCLE  
|VOUT |+3VD  
In order to maintain loop stability and deliver adequate  
current to the load, the power NPNs (Q1 and Q2 in the  
BlockDiagram)cannotremainonfor100%ofeachclock  
cycle. The maximum allowable duty cycle is given by:  
The LT3579 can be used in configurations where the duty  
cycle is higher than DC , but it must be operated in  
MAX  
the discontinuous conduction mode so that the effective  
duty cycle is reduced.  
T MinOffTime  
(
)
100%  
P
DCMAX  
=
INDUCTOR SELECTION  
TP  
The high frequency operation of the LT3579 allows for  
the use of small surface mount inductors. For high  
efficiency, choose inductors with high frequency core  
material, such as ferrite, to reduce core losses. Also to  
improve efficiency, choose inductors with more volume  
for a given inductance. The inductor should have low  
where T is the clock period and MinOffTime (found in the  
P
Electrical Characteristics) is typically 45nS.  
Conversely, the power NPNs (Q1 and Q2 in the Block  
Diagram) cannot remain “off” for 100% of each clock  
cycle, and will turn on for a minimum time (MinOnTime)  
wheninregulation.ThisMinOnTimegovernstheminimum  
allowable duty cycle given by:  
2
DCR (copper-wire resistance) to reduce I R losses, and  
must be able to handle the peak inductor current without  
saturating. Note that in some applications, the current  
handling requirements of the inductor can be lower, such  
as in the SEPIC topology where each inductor only carries  
one half of the total switch current. Multilayer chokes or  
chip inductors usually do not have enough core volume to  
support peak inductor currents in the 4A to 7A range. To  
minimizeradiatednoise,useatoroidalorshieldedinductor.  
See Table 5 for a list of inductor manufacturers.  
MinOnTime  
(
)
100%  
DCMIN  
=
TP  
where T is the clock period and MinOnTime (found in the  
P
Electrical Characteristics) is typically 55nS.  
Theapplicationshouldbedesignedsuchthattheoperating  
duty cycle is between DC  
and DC  
.
MIN  
MAX  
Duty cycle equations for several common topologies are  
given below where V is the diode forward voltage drop  
D
and V  
is typically 250mV at 5.5A for a combined  
SW1 and SW2 current.  
CESAT  
35791f  
24  
LT3579/LT3579-1  
APPENDIX  
where:  
Table 5. Inductor Manufacturers  
Vishay  
IHLP-2020BZ-01 and  
IHLP-2525CZ-01 Series  
www.vishay.com  
L
L
= L1 for Boost Topologies (see Figure 6)  
= L1 = L2 for Coupled Dual Inductor  
Topologies (see Figures 7 and 8)  
= L1 || L2 for Uncoupled Dual Inductor  
Topologies (see Figures 7 and 8)  
= Switch Duty Cycle (see Power Switch Duty  
Cycle section in Appendix)  
= Maximum Peak Switch Current; Should  
Not Exceed 6A for a Combined SW1 +  
SW2 Current or 3.4A of SW1 Current (see  
Electrical Characteristics section.)  
= Power Conversion Efficiency (typically 90%  
for Boost and 85% for Dual Inductor  
Topologies at high currents)  
BOOST  
DUAL  
Coilcraft  
XLP, MLC and MSS Series www.coilcraft.com  
Cooper Bussmann DRQ125 and DRQ127  
Series  
www.cooperbussmann.  
com  
L
DUAL  
Sumida  
TDK  
CDRH series  
www.sumida.com  
www.tdk.com  
DC  
RLF and SLF series  
Würth  
WE-PD, WE-PDF, WE-HC  
and WE-DD Series  
www.we-online.com  
I
PK  
Minimum Inductance  
Although there can be a tradeoff with efficiency, it is often  
desirable to minimize board space by choosing smaller  
inductors. When choosing an inductor, there are three  
conditionsthatlimittheminimuminductance;(1)providing  
adequate load current, (2) avoidance of subharmonic  
oscillation, and (3) supplying a minimum ripple current  
to avoid false tripping of the current comparator.  
η
f
I
= Switching Frequency  
= Maximum Output Current  
OSC  
OUT  
Negative values of L  
or L  
indicate that the  
BOOST  
DUAL  
output load current, I , exceeds the switch current limit  
OUT  
Adequate Load Current  
capability of the LT3579.  
Smallvalueinductorsresultinincreasedripplecurrentsand  
thus, due to the limited peak switch current, decrease the  
average current that can be provided to the load. In order  
to provide adequate load current, L should be at least:  
Avoiding Sub-Harmonic Oscillations  
The LT3579’s internal slope compensation circuit will  
prevent sub-harmonic oscillations that can occur when  
the duty cycle is greater than 50%, provided that the  
inductance exceeds a minimum value. In applications that  
operate with duty cycles greater than 50%, the inductance  
must be at least:  
DC V V  
(
)
Boost  
Topology  
IN  
CESAT  
LBOOST  
>
VOUT IOUT  
2fOSC I  
PK  
V η  
IN  
V V  
( CESAT ) (  
=
2DC1  
)
or  
IN  
LMIN  
SEPIC  
or  
4AfOSC 1DC  
(
)
DC V V  
(
)
IN  
CESAT  
LDUAL  
>
where:  
Inverting  
|VOUT |IOUT  
2fOSC I −  
IOUT  
Topologies  
PK  
L
L
= L1 for Boost Topologies (see Figure 6)  
= L1 = L2 for Coupled Dual Inductor  
Topologies (see Figures 7 and 8)  
= L1 || L2 for Uncoupled Dual Inductor  
Topologies (see Figures 7 and 8)  
MIN  
MIN  
V η  
IN  
L
MIN  
35791f  
25  
LT3579/LT3579-1  
APPENDIX  
Maximum Inductance  
DIODE SELECTION  
Excessive inductance can reduce ripple current to levels  
thataredifficultforthecurrentcomparator(A4intheBlock  
Diagram) to cleanly discriminate, thus causing duty cycle  
jitter and/or poor regulation. The maximum inductance  
can be calculated by:  
Schottky diodes, with their low forward voltage drops and  
fast switching speeds, are recommended for use with the  
LT3579. Choose a Schottky with low parasitic capacitance  
toreducereversecurrentspikesthroughthepowerswitch  
of the LT3579. The Diodes Inc. MBRM360 is a very good  
choice with a 60V reverse voltage rating and an average  
forward current of 3A.  
V V  
DC  
(
=
)
IN  
CESAT  
LMAX  
where:  
fOSC 0.5A  
OUTPUT CAPACITOR SELECTION  
L
L
= L1 for Boost Topologies (see Figure 6)  
= L1 = L2 for Coupled Dual Inductor  
Topologies (see Figures 7 and 8)  
= L1 || L2 for Uncoupled Dual Inductor  
Topologies (see Figures 7 and 8)  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R or X7R type are preferred, as these  
materials retain their capacitance over wide voltage and  
temperature ranges. A 22ꢀF to 47ꢀF output capacitor is  
sufficient for most applications, but systems with low  
output currents may need only 4.7ꢀF to 22ꢀF. Always  
use a capacitor with a sufficient voltage rating. Many  
ceramic capacitors, particularly 0805 or 0603 case sizes,  
have greatly reduced capacitance at the desired output  
voltage. Tantalum polymer or OS-CON capacitors can be  
used, but it is likely that these capacitors will occupy more  
board area than a ceramic, and will have higher ESR with  
greater output ripple.  
MAX  
MAX  
L
MAX  
Inductor Current Rating  
The inductor(s) must have a rating greater than its (their)  
peakoperatingcurrenttopreventinductorsaturation,which  
would result in catastrophic failure and efficiency losses.  
The maximum inductor current (considering start-up and  
steady-state conditions) is given by:  
V TMIN_PROP  
IN  
IL_PEAK =ILIM  
where:  
+
L
I
= Peak Inductor Current in L1 for a Boost  
Topology, or the sum of the Peak  
Inductor Currents in L1 and L2 for Dual  
Inductor Topologies.  
= For Hard-Saturation Inductors, 9.4A with  
SW1 and SW2 Tied Together, or 5.1A  
with just SW1 used. For Soft-Saturation  
Inductors, 6A with SW1 and SW2 Tied  
Together, or 3.4A with just SW1 used.  
= 100ns (Propagation Delay through the  
Current Feedback Loop).  
L_PEAK  
INPUT CAPACITOR SELECTION  
Ceramic capacitors make a good choice for the input  
decoupling capacitor, C , which should be placed as  
VIN  
I
LIM  
closeaspossibletotheV pinoftheLT3579.Thisensures  
IN  
that the voltage seen at the V pin of the LT3579 remains  
IN  
a nearly flat DC voltage. A 1ꢀF to 4.7ꢀF input capacitor is  
sufficient for most applications.  
T
A ceramic bypass capacitor, C  
, should also be placed  
MIN_PROP  
PWR  
as close as possible to the input of the inductor. This  
ensures that the inductor ripple current is supplied from  
the bypass capacitor and provides a nearly flat DC voltage  
to the input of the voltage converter. A 4.7μF to 10μF input  
power capacitor is sufficient for most applications.  
Note that these equations offer conservative results for  
the required inductor current ratings. The current ratings  
could be lower for applications with light loads, provided  
the SS capacitor is sized appropriately to limit inductor  
currents at start-up.  
35791f  
26  
LT3579/LT3579-1  
APPENDIX  
Table 6 shows a list of several ceramic capacitor man-  
ufacturers. Consult the manufacturers for detailed infor-  
mation on their entire selection of ceramic parts.  
the relationship between R  
(see Block Diagram) and  
GATE  
the desired V that the PMOS is biased with:  
SG  
RGATE  
V
if VGATE <2V  
S RGATE + 2kΩ  
V =  
Table 6. Ceramic Capacitor Manufacturers  
TDK  
SG  
www.tdk.com  
933μARGATE if VGATE >2V  
Murata  
www.murata.com  
www.t-yuden.com  
Taiyo Yuden  
WhenusingaPMOS,itisadvisabletoconfigurethespecific  
application for undervoltage lockout (see the Operations  
section). The goal is to have V get to a certain minimum  
IN  
PMOS SELECTION  
voltage where the PMOS has sufficient headroom to attain  
An external PMOS, controlled by the LT3579’s GATE pin,  
can be used to facilitate input or output disconnect. The  
GATE pin turns on the PMOS gradually during start-up  
(seeSoft-StartofExternalPMOSintheOperationsection),  
and turns the PMOS off when the LT3579 is in shutdown  
or in fault.  
a high enough V , which prevents it from entering the  
SG  
saturation mode of operation during start-up.  
Figure 6 shows the PMOS connected in series with the  
output to act as an output disconnect during a fault  
condition.TheSchottkydiodefromtheV pintotheGATE  
IN  
pin is optional and helps turn off the PMOS quicker in the  
The use of the external PMOS, controlled by the GATE pin,  
is particularly beneficial when dealing with unintended  
output shorts in a boost regulator. In a conventional boost  
regulator,theinductor,Schottkydiode,andpowerswitches  
are susceptible to damage in the event of an output short  
toground.UsinganexternalPMOSintheboostregulator’s  
event of hard shorts. The resistor from V to the SHDN  
IN  
pin sets a UVLO of 4V for this application.  
ConnectingthePMOSinserieswiththeoutputofferscertain  
advantages over connecting it in series with the input:  
• Since the load current is always less than the input  
current for a boost converter, the current rating of the  
PMOS goes down when connected in series with the  
output as opposed to the input.  
powerpath(pathfromV toV )controlledbytheGATE  
IN  
OUT  
pin, will serve to disconnect the input from the output  
when the output has a short to ground, thereby helping  
save the IC, and the other components in the power path  
from damage.  
• A PMOS in series with the output can be biased with  
a higher overdrive voltage than a PMOS used in series  
The PMOS chosen must be capable of handling the  
maximum input or output current depending on whether  
the PMOS is used at the input (see Figure 12) or the output  
(see Figure 13).  
with the input, since V  
> V . This higher overdrive  
OUT  
IN  
resultsinalowerR  
forthePMOS,therebyimproving  
DSON  
the efficiency of the regulator.  
In contrast, an input connected PMOS works as a simple  
hot-plug controller (covered in more detail in the Hot-Plug  
section). The input connected PMOS also functions as an  
inexpensive means of protecting against multiple output  
shorts in boost applications that synchronize the LT3579  
with other compatible ICs (see Figure 12).  
EnsurethatthePMOSisbiasedwithenoughsourcetogate  
voltage (V ) to enhance the device into the triode mode  
SG  
of operation. The higher the V voltage that biases the  
SG  
PMOS,thelowertheR  
ofthePMOS,therebylowering  
DSON  
power dissipation in the device during normal operation,  
as well as improving the efficiency of the application in  
which the PMOS is used. The following equations show  
35791f  
27  
LT3579/LT3579-1  
APPENDIX  
Table 7 shows a list of several discrete PMOS manufa-  
cturers.Consultthemanufacturersfordetailedinformation  
on their entire selection of PMOS devices.  
V
OUT  
500mV/DIV  
AC COUPLED  
I
L
Table 7. Discrete PMOS Manufacturers  
2A/DIV  
Vishay  
www.vishay.com  
Fairchild Semiconductor  
Central Semiconductor  
www.fairchildsemi.com  
www.centralsemi.com  
I
LOAD  
1A/DIV  
3579 F17a  
R
C
= 1k  
100μs/DIV  
COMPENSATION – ADJUSTMENT  
Figure 17a. Transient Response Shows Excessive Ringing  
To compensate the feedback loop of the LT3579, a series  
resistor-capacitornetworkinparallelwithanoptionalsingle  
V
OUT  
500mV/DIV  
capacitor must be connected from the V pin to GND. For  
C
AC COUPLED  
most applications, choose a series capacitor in the range  
of 1nF to 10nF with 2.2nF being a good starting value.  
The optional parallel capacitor should range in value from  
22pF to 180pF with 47pF being a good starting value. The  
I
L
2A/DIV  
I
compensation resistor, R , is usually in the range of 5k to  
LOAD  
1A/DIV  
C
50k. A good technique to compensate a new application is  
3579 F17b  
R
= 3.5k  
C
tousea100kpotentiometerinplaceoftheseriesresistor  
100μs/DIV  
R . With the series and parallel capacitors at 2.2nF and  
C
Figure 17b. Transient Response Is Better  
47pFrespectively,adjustthepotentiometerwhileobserving  
the transient response and the optimum value for R can  
C
V
OUT  
be found. Figures 17a to 17c illustrate this process for the  
circuit of Figure 20 with a load current stepped between  
0.7A and 1.5A. Figure 17a shows the transient response  
500mV/DIV  
AC COUPLED  
I
L
withR equalto1k.Thephasemarginispoorasevidenced  
C
2A/DIV  
bytheexcessiveringingintheoutputvoltageandinductor  
current. In Figure 17b, the value of R is increased to 3.5k,  
C
I
LOAD  
1A/DIV  
which results in a more damped response. Figure 17c  
shows the results when R is increased further to 8k. The  
3579 F17c  
C
R
= 8k  
C
100μs/DIV  
transientresponseisnicelydampedandthecompensation  
Figure 17c. Transient Response Is Well Damped  
procedure is complete.  
COMPENSATION – THEORY  
Like all other current mode switching regulators, the  
LT3579 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT3579: a  
fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard Bode plot  
analysis can be used to understand and adjust the voltage  
35791f  
28  
LT3579/LT3579-1  
APPENDIX  
feedback loop.  
are finite. The output of the g stage is limited by the  
mp  
minimumswitchcurrentlimit(seeElectricalSpecifications)  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 18 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
powerstageoftheIC,inductoranddiodehavebeenreplaced  
by a combination of the equivalent transconductance  
and g is nominally limited to about 12ꢀA.  
ma  
From Figure 18, the DC gain, poles and zeros can be  
calculated as follows:  
DC Gain:  
V
RL  
0.5R2  
IN  
ADC = gma RO gmp η•  
amplifier g and the current controlled current source  
mp  
VOUT 2 R1+0.5R2  
ηV  
(which converts I to  
). G acts as a current  
IN  
VIN  
mp  
I
VIN  
2
V
OUT  
Output Pole:P1=  
Error Amp Pole :P 2 =  
Error Amp Zero: Z1=  
ESR Zero: Z2 =  
2πRL COUT  
1
V
OUT  
g
2πR +R C  
mp  
(
1
)
I
O
C
C
VIN  
H
V
IN  
+
I
R
R
L
VIN  
ESR  
V
OUT  
C
OUT  
2πRC CC  
1.215V  
C
R1  
PL  
REFERENCE  
1
+
2πRESR COUT  
g
R2  
ma  
C
F
FB  
R
R
2
C
O
V RL  
IN  
2πVOUT2L  
RHP Zero: Z3 =  
C
R2  
C
3579 F18  
f
3
C : COMPENSATION CAPACITOR  
C
S
HighFrequency Pole:P3>  
C
C
: OUTPUT CAPACITOR  
: PHASE LEAD CAPACITOR  
OUT  
PL  
F
C : HIGH FREQUENCY FILTER CAPACITOR  
1
g
g
: TRANSCONDUCTOR AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
ma  
mp  
Phase Lead Zero: Z4 =  
2πR1CPL  
R : COMPENSATION RESISTOR  
C
L
O
R : OUTPUT RESISTANCE DEFINED AS V /I  
R : OUTPUT RESISTANCE OF gma  
R1, R2; FEEDBACK RESISTOR DIVIDER NETWORK  
OUT LOADMAX  
1
Phase Lead Pole:P4 =  
R10.5R  
R1+0.5R2  
R
ESR  
: OUTPUT CAPACITOR ESR  
2π•  
2 CPL  
H: CONVERTER EFFICIENCY (~90% AT HIGHER CURRENTS)  
Figure 18. Boost Converter Equivalent Model  
Error Amp Filter Pole:  
CC  
10  
1
source where the peak input current, I , is proportional  
P5 =  
, CF <  
VIN  
RC R  
RC +RO  
to the V voltage.  
2π•  
O CF  
C
Note that the maximum output currents of g and g  
mp  
ma  
35791f  
29  
LT3579/LT3579-1  
APPENDIX  
140  
120  
100  
80  
0
–45  
–90  
PHASE  
The current mode zero (Z3) is a right half plane zero  
which can be an issue in feedback control design, but is  
manageable with proper external component selection.  
–135  
60  
–180  
–225  
46° AT  
8kHz  
40  
GAIN  
100  
UsingthecircuitinFigure20asanexample, Table8shows  
the parameters used to generate the Bode plot shown in  
Figure 19.  
20  
–270  
–315  
–360  
0
–20  
10  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Table 8. Bode Plot Parameters  
3060 TA02  
PARAMETER  
VALUE  
7
UNITS  
COMMENT  
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Adjustable  
Figure 19. Bode Plot for Example Boost Converter  
R
L
C
30  
μF  
OUT  
R
ESR  
2
mꢁ  
kꢁ  
pF  
L1  
2.2μH  
D1  
V
OUT  
R0  
305  
2200  
47  
V
5V  
IN  
12V  
1.7A  
C
C
130k  
SW1 SW2  
LT3579  
C
F
pF  
Optional/Adjustable  
Optional/Adjustable  
Adjustable  
V
IN  
FB  
C
PL  
0
pF  
100k  
C
GATE  
FAULT  
OUT  
C
IN  
R
8
kꢁ  
kꢁ  
kꢁ  
V
10μF  
C
22μF  
s3  
SHDN  
CLKOUT  
VC  
R1  
R2  
130  
14.6  
12  
Adjustable  
RT  
Not Adjustable  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Adjustable  
SYNC GND SS  
47pF  
8k  
2.2nF  
V
86.6k  
OUT  
0.1μF  
V
IN  
5
V
3579 F20  
g
g
250  
28  
μmho  
mho  
μH  
ma  
mp  
Figure 20. 5V to 12V Boost Converter  
L
2.2  
1.0  
f
MHz  
OSC  
From Figure 19, the phase is –134° when the gain reaches  
0dBgivingaphasemarginof4.Thecrossoverfrequency  
35791f  
30  
LT3579/LT3579-1  
TYPICAL APPLICATION  
1MHz, 5V to 12V Boost Converter can Survive Output Shorts  
L1  
2.2μH  
D1  
V
12V  
1.7A  
M1  
OUT  
V
5V  
IN  
C
10μF  
OUT1  
C
10μF  
OUT  
130k  
6.3k  
SW1 SW2  
V
FB  
IN  
D2  
100k  
200k  
V
FAULT  
GATE  
IN  
LT3579  
SHDN  
CLKOUT  
C
22μF  
IN  
V
C
RT  
SYNC GND  
SS  
47pF  
8k  
86.6k  
0.1μF  
2.2nF  
3579 TA03a  
C
C
: 22μF, 16V, X7R, 1210  
, C : 10μF, 25V, X7R, 1210  
IN  
OUT1 OUT  
D1: VISHAY SSB43L  
D2: CENTRAL SEMI CMDSH-3TR  
L1: WÜRTH WE-PD 744771002  
M1: SILICONIX SI7123DN  
Efficiency and Power Loss  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3.2  
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
LOAD CURRENT (A)  
3579 TA03  
Output Short  
Transient Response with 0.7A to 1.5A to 0.7A Output Load Step  
V
OUT  
V
OUT  
10V/DIV  
500mV/DIV  
AC COUPLED  
CLKOUT  
2V/DIV  
I
L
2A/DIV  
I
L
2A/DIV  
I
FAULT  
5V/DIV  
LOAD  
1A/DIV  
3579 TA05  
3579 TA06  
10μs/DIV  
100μs/DIV  
35791f  
31  
LT3579/LT3579-1  
TYPICAL APPLICATION  
500kHz SEPIC Converter Generates 3.3V from a 3V to 33V Input  
D3  
C2  
4.7μF  
V
OUT  
L1  
3.3V  
D2  
3.3μH  
V
BAT  
1.8A (V  
3.1A (V  
3.4A (V  
= 3V)  
BAT  
BAT  
BAT  
3V TO 33V (OPERATING)  
6V TO 16V (START-UP)  
= 9V)  
C
PWR  
D4  
12V)  
4.7μF  
L
2
s2  
3.3μH  
10k  
200k  
24.9k  
4.7nF  
M1  
C
OUT  
SW1 SW2  
47μF  
C1  
10nF  
V
FB  
IN  
s6  
D1  
15V  
SHDN  
GATE  
LT3579  
100k  
C
FAULT  
VC  
VIN  
100pF  
10μF  
RT  
CLKOUT  
8.25k  
SYNC GND SS  
174k  
10k  
Q1  
0.22μF  
4.7nF  
3579 TA07a  
C1: 10nF, 16V, X7R, 0603  
C
C
C
: 10μF, 16V, X7R, 1206  
VIN  
, C2: 4.7μF, 50V, X7R, 1210  
: 47μF, 6.3V, X7R, 1210  
PWR  
OUT  
D1: CENTRAL SEMI CMHZ5245B-LTZ  
D2: VISHAY SS5P6  
D3: CENTRAL SEMI CMMSH2-40  
D4: CENTRAL SEMI CMMSH2-40  
L1, L2: WÜRTH WE-DD 744870003  
M1: 2N7002  
Q1: MMBT3904  
Efficiency and Power Loss  
Transient Response with 9V to 33V to 9V VBAT Glitch (RLOAD = 1.5Ω)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
4
V
OUT  
2V/DIV  
3.5  
3
V
BAT  
2.5  
2
10V/DIV  
V
= 12V  
BAT  
V
= 3V  
BAT  
1.5  
1
I
I
L1 + L2  
1A/DIV  
3579 TA08b  
50ms/DIV  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
LOAD CURRENT (A)  
3579 TA08a  
35791f  
32  
LT3579/LT3579-1  
TYPICAL APPLICATION  
1.2MHz, 5V to -12V Inverting Converter  
C1  
4.7μF  
L1  
3.3μH  
L2  
3.3μH  
V
–12V  
1.2A  
OUT  
V
5V  
IN  
D1  
143k  
SW1 SW2  
V
IN  
FB  
GATE  
C
SHDN  
OUT  
10μF  
LT3579  
100k  
s2  
FAULT  
CLKOUT  
VC  
C
IN  
22μF  
RT  
SYNC GND SS  
27pF  
20k  
71.5k  
0.22μF  
1nF  
3579 TA14  
C
: 22μF, 16V, X7R, 1210  
IN  
C1: 4.7μF, 25V, X7R, 1206  
: 10μF, 25V, X7R, 1210  
C
OUT  
D1: DIODES INC B230A  
L1, L2: COOPER BUSSMANN DRQ125-3R3-R  
Efficiency and Power Loss  
Transient Response with 0.5A to 1A to 0.5A Output Load Step  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3.2  
2.8  
2.4  
2
V
OUT  
500mV/DIV  
AC COUPLED  
I
+ I  
L1 L2  
1A/DIV  
1.6  
1.2  
0.8  
0.4  
0
I
LOAD  
1A/DIV  
3579 TA16  
100μs/DIV  
0
0.25  
0.5  
0.75  
1
1.25  
LOAD CURRENT (A)  
3579 TA15  
35791f  
33  
LT3579/LT3579-1  
TYPICAL APPLICATION  
VFD (Vacuum Flourescent Display) Power Supply Switches at 1MHz  
Danger High Voltage! Operation by High Voltage Trained Personnel Only  
V
100V  
OUT2  
D6  
330mA*  
C6  
2.2μF  
s2  
D5  
D4  
C4  
2.2μF  
s2  
V
67V  
500mA*  
OUT1  
C5  
2.2μF  
s2  
D3  
C3  
2.2μF  
s2  
D2  
D1  
L1  
10μH  
M1**  
V
IN  
9V TO 16V  
C1  
2.2μF  
s3  
D9**  
D8**  
8.2V  
C2  
383k  
6.5k**  
2.2μF  
s3  
SW1 SW2  
V
FB  
IN  
D7**  
100k  
536k  
V
IN  
FAULT  
GATE  
LT3579  
SHDN  
CLKOUT  
C
10μF  
IN  
V
C
RT  
SYNC GND  
SS  
34k  
470pF  
27pF  
86.6k  
2.2μF  
3579 TA17  
*MAX TOTAL  
OUTPUT POWER  
C
: 10μF, 25V, X7R, 1210  
IN  
C1-C6: 2.2μF, 50V, X7R, 1210  
D1-D6: DIODES INC SBR2A40P1  
D7: CENTRAL SEMI CMDSH-3TR  
D8: CENTRAL SEMI CMDZ5237B-LTZ  
D9: DIODES INC MBRM360  
L1: WÜRTH WE-PD 7447710  
M1: SILICONIX SI7461DP  
22W (V = 9V)  
IN  
27W (V = 12V)  
IN  
33W (V = 16V)  
IN  
**OPTIONAL FOR OUTPUT  
SHORT CIRCUIT PROTECTION  
Efficiency and Power Loss (VIN = 12V)  
Cycle-to-Cycle  
90  
5
4
3
2
1
0
V
OUT1  
2V/DIV  
AC COUPLED  
V
85  
80  
75  
70  
65  
OUT2  
2V/DIV  
AC COUPLED  
I
L
1A/DIV  
SW1  
20V/DIV  
3579 TA19  
1μs/DIV  
0
5
10  
15  
20  
25  
30  
TOTAL OUTPUT POWER (W)  
3579 TA18  
35791f  
34  
LT3579/LT3579-1  
TYPICAL APPLICATION  
1MHz, 5V to 12V Converter  
C2  
4.7μF  
D5  
V
–12V  
0.8A*  
OUT2  
C
10μF  
s2  
OUT2  
D4  
R1**  
1.2k  
C1  
4.7μF  
L1  
4.7μH  
D1  
D3  
V
OUT1  
V
5V  
IN  
12V  
0.8A*  
D2  
130k  
SW1  
IN  
SW2  
C
OUT1  
10μF  
V
FB  
SHDN  
GATE  
s2  
LT3579  
100k  
FAULT  
CLKOUT  
C
10μF  
V
C
RT  
IN  
SYNC GND  
SS  
27pF  
34k  
1nF  
86.6k  
0.1μF  
3579 TA20  
C
: 10μF, 16V, X7R, 1206  
*MAX TOTAL OUTPUT POWER = 9.6W  
IN  
C1, C2: 4.7μF, 25V, X7R, 1206  
, C : 10μF, 25V, X7R, 1210  
C
OUT1 OUT2  
D1-D5: DIODES INC SBR2A40P1  
L1: VISHAY IHLP-2525CZ-01-4R7  
R1: 1.2k, 2W  
**IF DRIVING ASYMMETRICAL LOADS, PLACE A 1.2k, 2W  
RESISTOR FROM THE +12V OUTPUT TO THE –12V OUTPUT FOR  
IMPROVED LOAD REGULATION OF THE –12V OUTPUT.  
Efficiency and Power Loss  
Transient Response with 0.15A to 0.35A to 0.15A  
Symmetrical Output Load Step  
90  
85  
3
V
2.7  
OUT1  
500mV/DIV  
2.4  
2.1  
1.8  
1.5  
1.2  
80  
75  
AC COUPLED  
V
OUT2  
500mV/DIV  
70  
65  
AC COUPLED  
I
L
60  
55  
1A/DIV  
0.9  
0.6  
50  
45  
40  
0.3  
0
3579 TA22  
100μs/DIV  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
3579 TA21  
35791f  
35  
LT3579/LT3579-1  
TYPICAL APPLICATION  
1MHz, 2-Phase Converter Generates a 24V Output from a 8V to 16V Input and Uses Small Components  
L2  
4.7μH  
D2  
C
4.7μF  
s2  
OUT1S  
C
10μF  
PWR2  
SW1 SW2  
V
CLKOUT  
IN  
FAULT  
FB  
LT3579-1  
SLAVE  
C
4.7μF  
VIN2  
SHDN  
GATE  
RT  
V
C
SYNC GND SS  
0.22μF  
86.6k  
V
24V  
M1**  
V
OUT1  
OUT  
L1  
4.7μH  
5.1A*  
D1  
V
PWR  
6.4k**  
8V TO 16V  
C
4.7μF  
s2  
C
OUT  
OUT1M  
C
10μF  
PWR1  
4.7μF  
s2  
SW1 SW2  
V
IN  
137k  
V
IN  
CLKOUT  
3.3V TO V  
PWR  
V
100k  
OUT1  
FAULT  
FB  
D3**  
LT3579-1  
MASTER  
V
500k  
21.5k  
5k  
PWR  
SHDN GATE  
RT  
V
C
C
4.7μF  
VIN1  
47pF  
7k  
SYNC GND SS  
86.6k  
0.22μF  
2.2nF  
3579 F23  
*MAX OUTPUT CURRENT  
C
C
C
C
: 10μF, 25V, X7R, 1210  
: 4.7μF, 25V, X7R, 1206  
PWR1, PWR2  
C
VIN1, VIN2  
V
PWR  
= 8V  
V
= 12V  
V
= 16V  
PWR  
PWR  
C
C
: 4.7μF, 50V, X5R, 1210  
OUT1M, OUT1S, OUT  
D1, D2: CENTRAL SEMI CTLSH5-40M833  
D3: CENTRAL SEMI CTLSH1-40M563  
L1, L2: VISHAY IHLP-2525CZ-01-4R7  
M1: SILICONIX SI7461DP  
V
= 3.3V TO 5V  
2.4A  
2.2A  
**OPTIONAL FOR OUTPUT SHORT CIRCUIT PROTECTION  
3.7A  
5.1A  
3.9A  
IN  
V
= V  
PWR  
3.1A  
IN  
Efficiency and Power Loss (VPWR = 12V)  
Transient Response with 1.5A to 3.25A to 1.5A  
Output Load Step (VPWR = 12V and VIN = 3.3V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
8
7
6
5
4
3
2
1
0
V
OUT  
1V/DIV  
AC COUPLED  
V
= 12V  
IN  
I
+ I  
L1 L2  
5A/DIV  
V
= 3.3V  
IN  
I
LOAD  
1A/DIV  
3579 TA25  
100μs/DIV  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
LOAD CURRENT (A)  
3579 TA24  
35791f  
36  
LT3579/LT3579-1  
TYPICAL APPLICATION  
2MHz, Boost Converter with Output Disconnect Generates a 5V Output from 2.8V to 4.2V Input  
L1  
0.47μH  
D1  
V
5V  
2A  
M1  
OUT  
V
IN  
2.8V TO 4.2V  
C
22μF  
OUT1  
43.5k  
10k  
SW1 SW2  
V
FB  
GATE  
IN  
SHDN  
LT3579  
100k  
C
22μF  
OUT  
FAULT  
RT  
CLKOUT  
C
IN  
V
C
10μF  
SYNC GND  
SS  
47pF  
6.34k  
2.2nF  
43.2k  
22nF  
3579 TA26  
C
C
: 10μF, 16V, X7R, 1206  
, C : 22μF, 16V, X7R, 1210  
IN  
OUT1 OUT  
D1: CENTRAL SEMI CTLSH3-30M833  
L1: VISHAY IHLP-2020BZ-01-R47  
M1: SILICONIX SI7123DN  
Efficiency and Power Loss  
Transient Response with 0.8A to 1.8A to 0.8A  
Output Load Step (VIN = 3.3V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
OUT  
200mV/DIV  
AC COUPLED  
I
L
1A/DIV  
V
= 3.3V  
IN  
I
LOAD  
1A/DIV  
3579 TA28  
100μs/DIV  
0
0.5  
1
1.5  
2
2.5  
LOAD CURRENT (A)  
3579 TA27  
35791f  
37  
LT3579/LT3579-1  
PACKAGE DESCRIPTION  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 0.10  
2.74  
(.108)  
4.50 0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 0.05  
1.05 0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
35791f  
38  
LT3579/LT3579-1  
PACKAGE DESCRIPTION  
UFD Package  
20-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev B)  
0.70 0.05  
2.65 0.05  
4.50 0.05  
3.10 0.05  
1.50 REF  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
4.10 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR  
C = 0.35  
0.75 0.05  
1.50 REF  
4.00 0.10  
(2 SIDES)  
R = 0.05 TYP  
19  
20  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 0.10  
(2 SIDES)  
2.50 REF  
3.65 0.10  
2.65 0.10  
(UFD20) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
R = 0.115  
TYP  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
35791f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
39  
LT3579/LT3579-1  
TYPICAL APPLICATION  
1MHz SEPIC Converter Generates a 12V Output from  
a 9V to 16V Input  
Efficiency and Power Loss  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3.2  
2.8  
2.4  
2
C1  
4.7μF  
L1  
6.8μH  
D1  
V
V
OUT  
PWR  
12V  
9V TO 16V  
1.9A*  
C
PWR  
4.7μF  
L
130k  
2
6.8μH  
1.6  
1.2  
0.8  
0.4  
0
V
V
= 12V  
PWR  
IN  
SW1 SW2  
V
IN  
= 5V  
C
OUT  
V
3.3V TO V  
FB  
IN  
PWR  
10μF  
s3  
SHDN  
GATE  
LT3579  
100k  
FAULT  
RT  
CLKOUT  
VC  
SYNC GND SS  
C
VIN  
4.7μF  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
LOAD CURRENT (A)  
2
47pF  
9.53k  
86.6k  
0.22μF  
3579 TA08  
2.2nF  
3579 TA29  
*MAX OUTPUT CURRENT  
= 9V  
C
C
: 4.7μF, 25V, X7R, 1206  
: 4.7μF, 25V, X7R, 1206  
PWR  
VIN  
V
PWR  
V
= 12V  
PWR  
C1: 4.7μF, 25V, X7R, 1206  
: 10μF, 25V, X7R, 1210  
C
V
IN  
IN  
= 3.3V TO 5V  
1.6A  
1.4A  
1.9A  
1.4A  
OUT  
D1: DIODES INC MBRM360  
L1, L2: COOPER BUSSMANN DRQ125-6R8-R  
V
= V  
PWR  
LINE REGULATION (V = 5V, I  
= 1A) = 0.017%/V  
OUT  
IN  
LOAD REGULATION (V  
= 12V, V = 5V) = –0.23%/A  
PWR  
IN  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT3581  
LT3580  
LT3479  
3.3A (I ), 42V, 2.5MHz, High Efficiency  
V : 2.5V to 22V, V  
= 42V, I = 1.9mA, I = < 1μA, 4mm × 3mm DFN-14,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Step-Up DC/DC Converter  
MSOP-16E  
2A (I ), 42V, 2.5MHz, High Efficiency Step-Up  
V : 2.5V to 32V, V  
= 42V, I = 1mA, I = < 1μA, 3mm × 3mm DFN-8,  
Q SD  
SW  
IN  
DC/DC Converter  
MSOP-8E  
3A (I ), 40V, 3.5MHz, High Efficiency Step-Up  
V : 2.5V to 24V, V  
= 40V, I = 5mA, I = < 1μA, 4mm × 3mm DFN-14,  
Q SD  
SW  
IN  
DC/DC Converter  
TSSOP-16E  
35791f  
LT 0410 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3579IFE-1-TRPBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IFE-PBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IFE-TRPBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IUFD#PBF

LT3579 - 6A Boost/Inverting DC/DC Converter with Fault Protection; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3579IUFD#TRPBF

LT3579 - 6A Boost/Inverting DC/DC Converter with Fault Protection; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3579IUFD-1#PBF

LT3579 - 6A Boost/Inverting DC/DC Converter with Fault Protection; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3579IUFD-1#TRPBF

LT3579 - 6A Boost/Inverting DC/DC Converter with Fault Protection; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3579IUFD-1-PBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IUFD-1-TRPBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IUFD-PBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579IUFD-TRPBF

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear

LT3579_15

6A Boost/Inverting DC/DC Converter with Fault Protection
Linear