LT3460 [Linear]

1.3MHz Step-Up DC/DC Converter in SC70 and ThinSOT; 1.3MHz升压型DC / DC转换器, SC70和ThinSOT封装
LT3460
型号: LT3460
厂家: Linear    Linear
描述:

1.3MHz Step-Up DC/DC Converter in SC70 and ThinSOT
1.3MHz升压型DC / DC转换器, SC70和ThinSOT封装

转换器
文件: 总12页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3460  
1.3MHz Step-Up DC/DC  
Converter in SC70 and ThinSOT  
U
DESCRIPTIO  
FEATURES  
The LT®3460 is a general purpose step-up DC/DC con-  
verter. The LT3460 switches at 1.3MHz, allowing the use  
of tiny, low cost and low height capacitors and inductors.  
The constant frequency results in low, predictable output  
noise that is easy to filter.  
1.3MHz Switching Frequency  
High Output Voltage: Up to 36V  
300mA Integrated Switch  
12V at 70mA from 5V Input  
5V at 60mA from 3.3V Input  
Wide Input Range: 2.5V to 16V  
The high voltage switch in the LT3460 is rated at 38V,  
making the device ideal for boost converters up to 36V.  
The LT3460 can generate 12V at up to 70mA from a 5V  
supply.  
Uses Small Surface Mount Components  
Low Shutdown Current: <1µA  
Low Profile (1mm) SC70 and SOT-23 (ThinSOTTM)  
Packages  
U
The LT3460 is available in SC70 and SOT-23 packages.  
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation  
Digital Cameras  
CCD Bias Supply  
XDSL Power Supply  
TFT-LCD Bias Supply  
Local 5V or 12V Supply  
Medical Diagnostic Equipment  
Battery Backup  
U
Efficiency  
TYPICAL APPLICATIO  
90  
85  
80  
75  
5V to 12V, 70mA Step-Up DC/DC Converter  
22µH  
V
OUT  
70  
V
IN  
12V  
5V  
70mA  
130k  
15k  
22pF  
65  
60  
V
4.7µF  
SW  
IN  
LT3460  
GND  
OFF ON  
SHDN  
FB  
0
20  
40  
60  
80  
1µF  
LOAD CURRENT (mA)  
3460 F01a  
Switching Waveforms  
3460 F01  
VSW  
5V/DIV  
IL  
100mA/DIV  
0.2µs/DIV  
3460 F01b  
3460f  
1
LT3460  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Input Voltage (VIN) .................................................. 16V  
SW Voltage .............................................................. 38V  
FB Voltage ................................................................. 5V  
SHDN Voltage .......................................................... 16V  
Operating Ambient  
Temperature Range (Note 2) .................. 40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
SW 1  
GND 2  
FB 3  
5 V  
IN  
LT3460ES5  
LT3460ESC6  
SW 1  
GND 2  
FB 3  
6 V  
IN  
5 GND  
4 SHDN  
4 SHDN  
S5 PACKAGE  
S5 PART MARKING  
LTB1  
SC6 PART MARKING  
LAAF  
5-LEAD PLASTIC TSOT-23  
SC6 PACKAGE  
6-LEAD PLASTIC SC70  
TJMAX = 125°C, θJA = 256°C/W IN FREE AIR  
θJA = 120°C ON BOARD OVER  
GROUND PLANE  
TJMAX = 125°C, θJA = 400°C/W IN FREE AIR  
θJA = 270°C/W ON BOARD OVER GROUND  
PLANE  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 3V, VSHDN = 3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.5  
V
V
16  
1.235  
1.225  
1.255  
1.275  
1.280  
V
V
Feedback Line Regulation  
FB Pin Bias Current  
Supply Current  
2.5V < V < 16V  
0.015  
25  
%/V  
nA  
IN  
5
80  
2.0  
0.1  
3.0  
0.5  
mA  
µA  
SHDN = 0V  
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
1.0  
85  
1.3  
90  
1.7  
MHz  
%
300  
420  
320  
0.01  
600  
450  
1
mA  
mV  
µA  
V
Switch V  
I
= 250mA  
= 5V  
CESAT  
SW  
Switch Leakage Current  
SHDN Voltage High  
SHDN Voltage Low  
V
SW  
1.5  
0.4  
V
SHDN Pin Bias Current  
40  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT3460E is guaranteed to meet specifications from 0°C to  
70°C. Specifications over the –40°C to 85°C operating temperature range  
are assured by design, characterization and correlation with statistical  
process controls.  
3460f  
2
LT3460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Bias Current  
Quiescent Current  
Switching Frequency  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
–50°C  
25°C  
SHDN = 16V  
100°C  
SHDN = 3V  
25  
0
50  
TEMPERATURE (°C)  
100  
50  
100  
0
5
10  
15  
–50 –25  
0
25  
75  
–50 –25  
0
75  
V
IN  
(V)  
TEMPERATURE (°C)  
3460 G01  
3460 G02  
3460 G03  
Feedback Bias Current  
Feedback Voltage  
30  
1.260  
1.255  
1.250  
1.245  
1.240  
25  
20  
15  
10  
5
0
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
3460 G04  
3460 G05  
Switch Saturation Voltage  
(VCESAT  
)
Current Limit vs Duty Cycle  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 250mA  
C
I
C
I
C
= 200mA  
= 100mA  
0
0
50  
TEMPERATURE (°C)  
100  
0.8  
1.0  
–50 –25  
0
25  
75  
0
0.2  
0.4  
0.6  
DUTY CYCLE  
3460 G06  
3460 G07  
3460f  
3
LT3460  
U
U
U
PI FU CTIO S  
(ThinSOT/SC70 Packages)  
SW (Pin 1/Pin 1): Switch Pin. Connect inductor/diode  
SHDN (Pin 4/Pin 4): Shutdown Pin. Tie to 1.5V or higher  
to enable device; 0.4V or less to disable device. Also  
functions as soft-start. Use RC filter (47k, 47nF typ) as  
shown in Figure 1.  
here. Minimize trace at this pin to reduce EMI.  
GND (Pin 2/Pins 2 and 5): Ground Pin. Tie directly to local  
ground plane.  
VIN (Pin 5/Pin 6): Input Supply Pin. Must be locally  
bypassed.  
FB (Pin 3/Pin 3): Feedback Pin. Reference  
voltage is 1.255V. Connect resistor divider tap here.  
Minimize trace area at FB. Set VOUT according to  
V
OUT = 1.255V (1 + R1/R2).  
W
BLOCK DIAGRA  
COMPARATOR  
V
IN  
(PIN 6 SC70 PACKAGE)  
1.255V  
REFERENCE  
5
1
SW  
+
DRIVER  
A1  
V
OUT  
A2  
R
Q
Q1  
R
C
S
R1 (EXTERNAL)  
FB  
+
C
C
3
FB  
+
R2 (EXTERNAL)  
0.1Ω  
RAMP  
GENERATOR  
R
S
(EXTERNAL)  
4
SHUTDOWN  
SHDN  
C
(EXTERNAL)  
S
1.3MHz  
OSCILLATOR  
GND  
2
R , C OPTIONAL SOFT-START COMPONENTS  
(PINS 2 AND 5 SC70 PACKAGE)  
S
S
3460 BD  
Figure 1. Block Diagram  
U
OPERATIO  
latch is reset turning off the power switch. The level at the  
negative input of A2 is set by the error amplifier A1, and is  
simply an amplified version of the difference between the  
feedback voltage and the reference voltage of 1.255V. In  
this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered.  
The LT3460 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
block diagram in Figure 1. At the start of each oscillator  
cycle, the SR latch is set, which turns on the power switch  
Q1. A voltage proportional to the switch current is added  
to a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltageexceedsthelevelatthenegativeinputofA2,theSR  
3460f  
4
LT3460  
U
OPERATIO  
Feedback Loop Compensation  
is about 70kHz.  
The LT3460 has an internal feedback compensation net-  
work as shown in Figure 1 (RC and CC). However, because  
thesmallsignalcharacteristicsofaboostconverterchange  
with operation conditions, the internal compensation net-  
work cannot satisfy all applications. A properly designed  
external feed forward capacitor from VOUT to FB (CF in  
Figure 2) will correct the loop compensation for most  
applications.  
The feedback loop gain T(s) = K3 • GP(s) • GC(s). If it  
crosses over 0dB far before fZ, the phase margin will be  
small. Figure 3 is the Bode plot of the feedback loop gain  
measured from the converter shown in Figure 2 without  
the feedforward capacitor CF. The result agrees with  
the previous discussion: Phase margin of about 20° is  
insufficient.  
60  
50  
90  
L1  
22µH  
45  
D1  
V
GAIN  
OUT  
V
IN  
12V  
40  
0
5V  
5
1
70mA  
R2  
C
30  
–45  
–90  
–135  
–180  
–225  
–270  
–315  
–360  
F
C1  
V
SW  
IN  
130k  
22pF  
4.7µF  
20  
LT3460  
4
3
PHASE  
10  
OFF ON  
SHDN  
FB  
C2  
1µF  
0
R1  
15k  
GND  
2
–10  
–20  
–30  
–40  
C1: TAIYO YUDEN X5R JMK212BJ475KG  
C2: TAIYO YUDEN X5R EMK316BJ105  
D1: CENTRAL SEMICONDUCTOR CMDSH2-3  
L1: MURATA LQH32CN-220 OR EQUIVALENT  
3460 F02  
1
10  
100  
1000  
FREQUENCY (kHz)  
3460 F03  
Figure 2. 5V to 12V Step-Up Converter  
The LT3460 uses peak current mode control. The current  
feedback makes the inductor very similar to a current  
source in the medium frequency range. The power stage  
transfer function in the medium frequency range can be  
approximated as:  
Figure 3  
In order to improve the phase margin, a feed-forward  
capacitor CF in Figure 2 can be used.  
Without the feed-forward capacitor, the transfer function  
from VOUT to FB is:  
K1  
s C2  
GP(s)  
=
,
FB  
R1  
=
VOUT R1+R2  
where C2 is the output capacitance, and K1 is a constant  
based on the operating point of the converter. In continu-  
ous current mode, K1 increases as the duty cycle de-  
creases.  
With the feed-forward capacitor CF, the transfer function  
becomes:  
FB  
R1  
s R2 CF + 1  
TheinternalcompensationnetworkRC,CC canbeapproxi-  
mated as follows in medium frequency range:  
=
R1R2  
VOUT R1+R2  
s •  
CF + 1  
R1+R2  
s RC CC +1  
GC(s) =K2 •  
The feed-forward capacitorCF generatesa zeroand apole.  
The zero always appears before the pole. The frequency  
distance between the zero and the pole is determined only  
bytheratiobetweenVOUT andFB. Togivemaximumphase  
s CC  
The zero  
1
fZ =  
2 • π RC CC  
3460f  
5
LT3460  
U
OPERATIO  
margin, CF should be chosen so that the midpoint fre-  
quency between the zero and the pole is at the cross over  
frequency.  
The feed-forward capacitor increases the gain at high  
frequency. The feedback loop therefore needs to have  
enoughattenuationattheswitchingfrequencytorejectthe  
switching noise. Additional internal compensation com-  
ponents have taken this into consideration.  
With CF = 20pF, the feedback loop Bode plot is reshaped  
as shown in Figure 4. The phase margin is about 60°.  
For most of the applications of LT3460, the output capaci-  
tor ESR zero is at very high frequency and can be ignored.  
If a low frequency ESR zero exists, for example, when a  
high-ESR Tantalum capacitor is used at the output, the  
phasemarginmaybeenoughevenwithoutafeed-forward  
capacitor.Inthesecases,thefeed-forwardcapacitorshould  
not be added because it may cause the feedback loop to  
not have enough attenuation at the switching frequency.  
60  
50  
90  
45  
GAIN  
40  
0
30  
–45  
–90  
–135  
–180  
–225  
–270  
–315  
–360  
20  
PHASE  
10  
0
–10  
–20  
–30  
–40  
Layout Hints  
The high speed operation of the LT3460 demands careful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 5 shows the  
recommended component placement.  
1
10  
100  
1000  
FREQUENCY (kHz)  
3460 F04  
Figure 4.  
L1  
L1  
D1  
C1  
D1  
C1  
V
V
V
OUT  
V
IN  
OUT  
IN  
+
+
C2  
C2  
SHUTDOWN  
SHUTDOWN  
R2  
R2  
R1  
C
R1  
C
F
F
GND  
GND  
(SOT-23 PACKAGE)  
(SC70 PACKAGE)  
3460 F05  
Figure 5. Suggested Layout  
3460f  
6
LT3460  
U
TYPICAL APPLICATIO S  
Efficiency  
5V to 12V Step-Up Converter  
90  
85  
80  
75  
70  
65  
60  
L1  
D1  
22µH  
V
OUT  
V
IN  
12V  
5V  
5
1
70mA  
C1  
130k  
15k  
22pF  
V
SW  
IN  
4.7µF  
LT3460  
4
3
SHDN  
SHDN  
FB  
C2  
1µF  
GND  
2
C1: TAIYO YUDEN X5R JMK212BJ475  
C2: TAIYO YUDEN X5R EMK212BJ105  
D1: CENTRAL SEMICONDUCTOR CMDSH2-3  
L1: MURATA LQH32CN-220 OR EQUIVALENT  
3460 TA01  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
3460 TA01a  
Load Step Response  
VOUT  
100mV/DIV  
58mA  
ILOAD  
34mA  
100µs/DIV  
3460 TA01b  
Input Current and Output Voltage  
5V to 12V with Soft-Start Circuit  
L1  
22µH  
D1  
V
OUT  
V
IN  
12V  
IIN  
5V  
70mA  
100mA/DIV  
CONTROL  
SIGNAL  
C1  
4.7µF  
130k  
15k  
22pF  
V
SW  
IN  
47k  
C2  
LT3460  
GND  
VO  
5V/DIV  
1µF  
SHDN  
FB  
16V  
47nF  
CONTROL  
SIGNAL  
2V/DIV  
500µs/DIV  
3460 TA02b  
C1: TAIYO YUDEN X5R JMK212BJ475  
C2: TAIYO YUDEN X5R EMK212BJ105  
3460 TA02  
D1: CENTRAL SEMICONDUCTOR CMDSH2-3  
L1: MURATA LQH32CN-220 OR EQUIVALENT  
3460f  
7
LT3460  
U
TYPICAL APPLICATIO S  
3.3V to 12V Step-Up Converter  
Efficiency  
85  
80  
75  
70  
65  
60  
55  
L1  
D1  
22µH  
V
OUT  
V
IN  
12V  
3.3V  
40mA  
C1  
4.7µF  
130k  
15k  
22pF  
V
SW  
IN  
C2  
LT3460  
GND  
1µF  
SHDN  
FB  
16V  
C1: TAIYO YUDEN X5R JMK212BJ475  
C2: TAIYO YUDEN X5R EMK212BJ105  
D1: CENTRAL SEMICONDUCTOR CMDSH2-3  
L1: MURATA LQH32CN-220 OR EQUIVALENT  
3460 TA03  
0
10  
20  
30  
40  
LOAD CURRENT (mA)  
3460 TA03a  
Li-Ion to 5V Step-Up Converter  
Efficiency  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
L1  
D1  
10µH  
V
OUT  
V
IN  
V
= 4.2V  
5V  
IN  
2.7V  
TO  
4.2V  
V
= 3.6V  
IN  
39.2k  
13k  
50pF  
V
SW  
IN  
+
C1  
4.7µF  
C2  
LT3460  
GND  
V
IN  
= 3V  
4.7µF  
V
= 2.7V  
SHDN  
FB  
IN  
6.3V  
C1: TAIYO YUDEN X5R JMK212BJ475  
C2: TAIYO YUDEN X5R JMK212BJ475  
D1: PHILIPS PMEG2010  
3460 TA07  
200  
250  
0
50  
100  
150  
L1: MURATA LQH32CN-100 OR EQUIVALENT  
LOAD CURRENT (mA)  
3460 TA07a  
3460f  
8
LT3460  
U
TYPICAL APPLICATIO S  
12V to 36V Step-Up Converter  
L1  
47µH  
Load Step Response  
D1  
V
OUT  
V
IN  
36V  
12V  
4mA  
D2  
C1  
1µF  
16V  
VOUT  
100mV/DIV  
278k  
10k  
22pF  
V
SW  
IN  
C2  
LT3460  
GND  
0.22µF  
SHDN  
FB  
50V  
4mA  
ILOAD  
2mA  
C1: TAIYO YUDEN X5R EMK212BJ105  
C2: TAIYO YUDEN X7R UMK212BJ224  
3460 TA04  
100µs/DIV  
3460 TA04a  
D1, D2: CENTRAL SEMICONDUCTOR CMOD4448  
L1: TAIYO YUDEN LB2012  
5V to 36V Step-Up Converter  
L1  
47µH  
Load Step Response  
D1  
V
OUT  
V
IN  
36V  
5V  
4mA  
D2  
C1  
1µF  
6.3V  
VOUT  
100mV/DIV  
278k  
10k  
22pF  
V
SW  
IN  
C2  
LT3460  
GND  
0.22µF  
SHDN  
FB  
50V  
4mA  
ILOAD  
2mA  
C1: TAIYO YUDEN X5R JMK107BJ105  
C2: TAIYO YUDEN X7R UMK212BJ224  
3460 TA05  
100µs/DIV  
3460 TA05a  
D1, D2: CENTRAL SEMICONDUCTOR CMOD4448  
L1: TAIYO YUDEN LB2012  
3460f  
9
LT3460  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3460f  
10  
LT3460  
U
PACKAGE DESCRIPTIO  
SC6 Package  
6-Lead Plastic SC70  
(Reference LTC DWG # 05-08-1638)  
0.47  
MAX  
0.65  
REF  
1.80 – 2.20  
(NOTE 4)  
1.16 REF  
0.96 MIN  
INDEX AREA  
(NOTE 6)  
1.15 – 1.35  
1.80 – 2.40  
3.26 MAX 2.1 REF  
(NOTE 4)  
PIN 1  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.15 – 0.30  
6 PLCS (NOTE 3)  
0.65 BSC  
0.10 – 0.40  
0.80 – 1.00  
0.00 – 0.10  
REF  
1.00 MAX  
0.10 – 0.30  
SC6 SC70 0802  
0.10 – 0.18  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. DETAILS OF THE PIN 1 INDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE INDEX AREA  
7. EIAJ PACKAGE REFERENCE IS EIAJ SC-70  
3460f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT3460  
U
TYPICAL APPLICATIO S  
5V to 5V SEPIC  
Efficiency  
80  
75  
70  
65  
60  
55  
50  
C3  
L1  
V
= 6.5V  
IN  
0.22µF  
D1  
22µH  
V
OUT  
V
IN  
5V  
3V TO 10V  
V
= 5V  
IN  
50mA  
V
= 4V  
IN  
C1  
1µF  
L2  
22µH  
30k  
10k  
50pF  
V
SW  
IN  
LT3460  
GND  
C2  
1µF  
SHDN  
FB  
C1, C2: TAIYO YUDEN X5R LMK107BJ105  
C3: TAIYO YUDEN X7R LMK107BJ224  
D1: ON SEMICONDUCTOR MBR0520  
3460 TA06  
0
50  
100  
150  
LOAD CURRENT (mA)  
L1, L2: MURATA LQH32CN-220 OR EQUIVALENT  
3460 TA06a  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up DC/DC  
Converter  
V : 0.9V to 10V, V  
ThinSOT Package  
= 34V, I = 3mA, I <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
LT1615/LT1615-1  
LT1944/LT1944-1  
LT1945  
300mA/80mA (I ), Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I <1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
ThinSOT Package  
Dual Output 350mA/100mA (I ), Constant Off-Time,  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I <1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
MS Package  
Dual Output, Pos/Neg, 350mA (I ), Constant Off-Time,  
V : 1.2V to 15V, V  
IN  
= ±34V, I = 20µA, I <1µA,  
Q SD  
SW  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1961  
1.5A (I ), 1.25MHz, High Efficiency Step-Up DC/DC  
Converter  
V : 3V to 25V, V  
MS8E Package  
= 35V, I = 0.9mA, I <6µA,  
OUT(MAX) Q SD  
SW  
IN  
LTC3400/LTC3400B  
600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC  
Converter  
V : 0.85V to 5V, V  
ThinSOT Package  
= 5V, I = 19µA/300µA, I <1µA,  
OUT(MAX) Q SD  
SW  
IN  
LTC3401/LTC3402  
LT3461/LT3461A  
1A/2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter V : 0.5V to 5V, V  
= 6V, I = 38µA, I <1µA, MS Package  
SW  
IN  
OUT(MAX) Q SD  
0.3A (I ), 1.3MHz/3MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 16V, V  
SC70, ThinSOT Packages  
= 38V, I = 2.8mA, I <1µA,  
OUT(MAX) Q SD  
SW  
IN  
Converter with Integrated Schottky  
LT3464  
0.08A (I ), High Efficiency Step-Up DC/DC Converter  
with Integrated Schottky, Output Disconnect  
V : 2.3V to 10V, V  
ThinSOT Package  
= 34V, I = 25µA, I <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
LT3465/LT3465A  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White  
LED Boost Regulator with Integrated Schottky Diode  
V : 2.7V to 16V, V  
= 30V, I = 1.9mA, I <1µA,  
Q SD  
IN  
ThinSOT Package  
3460f  
LT/TP 0204 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3460-1

1.3 MHz/650kHz Step-Up DC/DC Converter in SC70, ThinSOT and DFN
Linear

LT3460-1_15

1.3 MHz/650kHz Step-Up DC/DC Converter in SC70, ThinSOT and DFN
Linear

LT3460EDC-1#TRMPBF

LT3460 - 1.3 MHz/650kHz Step-Up DC/DC Converter in SC70 and ThinSOT; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3460EDC-1#TRPBF

LT3460 - 1.3 MHz/650kHz Step-Up DC/DC Converter in SC70 and ThinSOT; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3460ES5

1.3MHz Step-Up DC/DC Converter in SC70 and ThinSOT
Linear

LT3460ES5#PBF

LT3460 - 1.3 MHz/650kHz Step-Up DC/DC Converter in SC70 and ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3460ES5#TR

LT3460 - 1.3 MHz/650kHz Step-Up DC/DC Converter in SC70 and ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3460ES5#TRM

暂无描述
Linear

LT3460ES5#TRMPBF

LT3460 - 1.3 MHz/650kHz Step-Up DC/DC Converter in SC70 and ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3460ES5#TRPBF

暂无描述
Linear

LT3460ESC6

1.3MHz Step-Up DC/DC Converter in SC70 and ThinSOT
Linear

LT3460ESC6#PBF

暂无描述
Linear