LT3433_1 [Linear]

High Voltage Step-Up/Step-Down DC/DC Converter; 高电压升压/降压型DC / DC转换器
LT3433_1
型号: LT3433_1
厂家: Linear    Linear
描述:

High Voltage Step-Up/Step-Down DC/DC Converter
高电压升压/降压型DC / DC转换器

转换器
文件: 总16页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3433  
High Voltage  
Step-Up/Step-Down  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LT®3433 is a 200kHz fixed-frequency current mode  
switching regulator that provides both step-up and step-  
down regulation using a single inductor. The IC operates  
over a 4V to 60V input voltage range making it suitable for  
use in various wide input voltage range applications such  
as automotive electronics that must withstand both load  
dump and cold crank conditions.  
Automatic Step-Up and Step-Down Conversion  
Uses a Single Inductor  
Wide 4V to 60V Input Voltage Range  
VOUT from 3.3V to 20V  
Dual Internal 500mA Switches  
100µA No-Load Quiescent Current  
Low Current Shutdown  
±1% Output Voltage Accuracy  
Internal control circuitry monitors system conditions and  
converts from single switch buck operation to dual switch  
bridged operation when required, seamlessly changing  
between step-down and step-up voltage conversion.  
Optional Burst Mode® operation reduces no-load quies-  
cent current to 100µA and maintains high efficiencies with  
light loads.  
200kHz Operating Frequency  
Boosted Supply Pin to Saturate High Side Switch  
Frequency Foldback Protection  
Current Limit Foldback Protection  
Current Limit Unaffected by Duty Cycle  
16-lead Thermally Enhanced TSSOP Package  
U
APPLICATIO S  
Current limit foldback and frequency foldback help pre-  
vent inductor current runaway during start-up. Program-  
mablesoft-starthelpspreventoutputovershootatstart-up.  
12V Automotive Systems  
Wall Adapter Powered Systems  
Battery Power Voltage Buffering  
The LT3433 is available in a 16-lead thermally enhanced  
TSSOP package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
U.S. patent number: 5731694  
U
TYPICAL APPLICATIO  
Maximum Output  
Current vs VIN  
4V to 60V to 5V DC/DC Converter  
with Burst Mode Operation  
Efficiency  
1N4148  
90  
80  
70  
60  
50  
40  
30  
20  
500  
400  
300  
200  
V
= 5V  
OUT  
V
V
IN  
V
BST  
IN  
2.2µF  
0.01µF  
0.1µF  
BUCK  
V = 13.8V  
IN  
SHDN  
SWH  
LT3433  
B160A  
SS  
100µH  
330pF  
1nF  
B120A  
V
C
V
SWL  
OUT  
V
IN  
= 4V  
+
68k  
V
OUT  
47µF  
1N4148  
BRIDGED  
V
BIAS  
0.1µF  
309k  
100k  
100  
0
BURST_EN  
V
FB  
SGND PGND  
0.1  
1
10  
100  
1000  
0
20  
30  
(V)  
40  
50  
60  
10  
OUTPUT CURRENT (mA)  
V
IN  
3433 TA01  
3433 TA01b  
3433 TA01c  
3433f  
1
LT3433  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Input Supply (VIN) .................................... –0.3V to 60V  
Boosted Supply (VBST) .............. –0.3V to VSW_H + 30V  
(VBST(MAX) = 80V)  
ORDER PART  
SGND  
1
2
3
4
5
6
7
8
16  
SGND  
NUMBER  
V
15 SW_L  
BST  
LT3433EFE  
LT3433IFE  
SW_H  
14  
13  
12  
11  
10  
9
PWRGND  
Internal Supply (VBIAS) ............................. 0.3V to 30V  
SW_H Switch Voltage.................................. 2V to 60V  
SW_L Switch Voltage ............................... 0.3V to 30V  
Feedback Voltage (VFB)............................... 0.3V to 5V  
Burst Enable Pin (VBURST_EN) ................... 0.3V to 30V  
Shutdown Pin (VSHDN) ............................. 0.3V to 60V  
Operating Junction Temperature Range (Note 5)  
LT3433E (Note 6) ............................ – 40°C to 125°C  
LT3433I ........................................... – 40°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
IN  
V
V
OUT  
17  
BURST_EN  
BIAS  
V
C
SHDN  
SS  
V
FB  
FE PART MARKING  
SGND  
SGND  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
3433EFE  
3433IFE  
TJMAX = 125°C, θJA = 40°C/W, θJC = 10°C/W  
EXPOSED PAD (PIN 17)  
MUST BE SOLDERED TO SGND  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = 13.8V, VFB = 1.25V, VOUT = 5V, VBURST_EN = 0V, VBST – VIN = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
60  
UNITS  
V
V
Operating Voltage Range  
Undervoltage Lockout  
Undervoltage Lockout Hysteresis  
Operating Voltage Range  
Operating Voltage Range  
4
V
V
IN  
Enable Threshold  
3.4  
3.95  
IN(UVLO)  
160  
mV  
V
V
V
3.3  
3.3  
20  
OUT  
BST  
V
V
< V  
– V  
+ 20V  
75  
20  
V
V
BST  
BST  
SW_H  
SW_H  
I
Normal Operation  
Burst Mode Operation  
Shutdown  
(Notes 2, 3)  
580  
100  
10  
940  
190  
25  
µA  
µA  
µA  
VIN  
V
V
< 0.6V  
< 0.4V  
VC  
SHDN  
V
Internal Supply Output Voltage  
Operating Voltage Range  
2.6  
2.9  
20  
V
V
BIAS  
I
Normal Operation  
Burst Mode Operation  
Shutdown  
660  
0.1  
0.1  
4.5  
990  
µA  
µA  
µA  
VBIAS  
V
V
< 0.6V  
VC  
< 0.4V  
SHDN  
Short-Circuit Current Limit  
mA  
R
R
Boost Supply Switch On-Resistance  
Output Supply Switch On-Resistance  
Shutdown Pin Thresholds  
I
I
= 500mA  
= 500mA  
0.8  
0.6  
1.2  
1
SWH(ON)  
SWL(ON)  
SHDN  
SW  
SW  
V
Disable  
Enable  
0.4  
V
V
1
I
I
I
/I  
Boost Supply Switch Drive Current  
Output Supply Switch Drive Current  
Switch Current Limit  
High Side Switch On, I = 500mA  
30  
30  
50  
50  
0.9  
mA/A  
mA/A  
A
VBST SW  
SW  
/I  
Low Side Switch On, I = 500mA  
SW  
VOUT SW  
0.5  
3
0.7  
0.35  
5
LIM  
SS  
Foldback Current Limit  
V
= 0V  
A
FB  
I
Soft-Start Output Current  
9
µA  
3433f  
2
LT3433  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = 13.8V, VFB = 1.25V, VOUT = 5V, VBURST_EN = 0V, VBST – VIN = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Feedback Reference Voltage  
1.224  
1.215  
1.231  
1.238  
1.245  
V
V
FB  
V  
Feedback Reference Line Regulation  
5.5V V 60V  
0.002  
35  
0.01  
100  
330  
%/V  
nA  
FB  
IN  
I
V
Pin Input Bias Current  
FB  
FB  
g
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
200  
270  
66  
umhos  
dB  
m
A
V
I
f
/V  
Control Voltage to Switch Transconductance  
Operating Frequency  
0.6  
A/V  
SW VC  
O
V
V
> 1V  
= 0V  
185  
170  
200  
215  
230  
kHz  
kHz  
FB  
FB  
Foldback Frequency  
50  
0.8  
35  
kHz  
V
V
Burst Enable Threshold  
Input Bias Current  
BURST_EN  
BURST_EN  
ON(MIN)  
I
t
t
V
2V  
µA  
ns  
ns  
BURST_EN  
Minimum Switch On Time  
Minimum Switch Off Time  
R = 35(Note 4)  
250  
500  
450  
800  
L
R = 35(Note 4)  
OFF(MIN)  
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Supply current specification does not include switch drive  
currents. Actual supply currents will be higher.  
Note 5: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: “Normal Operation” supply current specification does not include  
Note 6: The LT3433E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the 40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3433I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
I
currents. Powering the V  
pin externally reduces I supply  
BIAS  
BIAS CC  
current.  
Note 4: Minimum times are tested using the high side switch with a 35Ω  
load to ground.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Output Current  
vs VIN  
VBIAS Output Voltage  
vs Temperature  
VIN Supply Current  
vs VIN Supply Voltage  
2.8  
2.6  
2.4  
2.2  
620  
590  
560  
530  
500  
500  
400  
300  
200  
V
A
= 5V  
OUT  
T
A
= 25°C  
T
= 25°C  
BUCK  
BRIDGED  
100  
0
SEE TYPICAL APPLICATION  
ON THE FIRST PAGE OF  
THIS DATA SHEET  
0
15  
30  
(V)  
45  
60  
–50  
0
50  
100 125  
0
20  
30  
(V)  
40  
50  
60  
10  
V
TEMPERATURE (°C)  
V
IN  
IN  
3433 G02  
3433 G01  
3433 G11  
3433f  
3
LT3433  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Amp Reference  
vs Temperature  
Soft-Start Current vs Temperature  
Switch Current Limit vs VFB  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
1.232  
1.231  
1.230  
1.229  
1.228  
700  
600  
500  
400  
300  
T
= 25°C  
A
–50  
0
50  
100 125  
0.2  
0.6  
(V)  
0.8  
–50  
0
50  
100 125  
0
0.4  
V
1.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FB  
3433 G03  
3433 G04  
3433 G05  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency vs VFB  
Current Limit vs Temperature  
210  
205  
200  
195  
190  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
200  
150  
100  
50  
T
= 25°C  
A
W/C HIGH  
TYPICAL  
W/C LOW  
0
–50  
0
50  
100 125  
–50 –25  
0
25  
50  
75  
125  
100  
0
0.2  
0.4  
V
0.6  
(V)  
0.8  
1.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FB  
3433 G06  
3433 G08  
3433 G07  
Maximum Boost Supply Switch  
Drive Current vs Boost Supply  
Voltage  
Maximum Output Supply Switch  
Drive Current vs Output Supply  
Voltage  
70  
65  
60  
55  
50  
45  
70  
65  
60  
55  
50  
45  
T
= 25°C  
T
= 25°C  
A
A
8
8
4
5
6
7
9
10 11 12  
4
5
6
7
9
10 11 12  
V
– V  
(V)  
V
(V)  
OUT  
BST  
SW_H  
3433 G09  
3433 G10  
3433f  
4
LT3433  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Resistance  
vs Temperature (ISW = 500mA)  
VBST Supply Switch Drive Current  
vs Temperature (ISW = 500mA)  
VOUT Supply Switch Drive Current  
vs Temperature (ISW = 500mA)  
1.1  
1.0  
40  
37  
34  
31  
28  
25  
40  
37  
34  
31  
28  
25  
0.9  
0.8  
0.7  
0.6  
0.5  
R
SWH  
R
SWL  
0.4  
50  
100 125  
0
25  
50  
75 100 125  
0
25  
50  
75 100 125  
–50 –25  
0
25  
75  
–50 –25  
–50 –25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3433 G12  
3433 G13  
3433 G14  
U
U
U
PI FU CTIO S  
SGND (Pins 1, 8, 9, 16): Low Noise Ground Reference.  
the switch transistor.This pin also supplies power to most  
of the IC’s internal circuitry if the VBIAS pin is not driven  
externally. This supply will be subject to high switching  
transientcurrentssothispinrequiresahighqualitybypass  
capacitor that meets whatever application-specific input  
ripple current requirements exist.  
VBST (Pin 2): Boosted Switch Supply. This “boosted” sup-  
ply rail is referenced to the SW_H pin. Supply voltage is  
maintained by a bootstrap capacitor tied from the VBST pin  
to the SW_H pin. A 1µF capacitor is generally adequate for  
most applications.  
BURST_EN (Pin 5): Burst Mode Enable/Disable. When  
this pin is below 0.3V, Burst Mode operation is enabled.  
Pin input bias current < 1µA when Burst Mode operation  
is enabled. If Burst Mode operation is not desired, pulling  
this pin above 2V will disable the burst function. When  
Burst Mode operation is disabled, typical pin input current  
= 35µA. BURST_EN should not be pulled above 20V. This  
pin is typically shorted to SGND for Burst Mode function,  
orconnectedtoeitherVBIAS orVOUT todisableBurstMode  
operation.  
Thechargeonthebootstrapcapacitorisrefreshedthrough  
a diode, typically connected from the converter output  
(VOUT), during the switch-off period. Minimum off-time  
operationassuresthattheboostcapacitorisrefreshedeach  
switch cycle. The LT3433 supports operational VBST sup-  
ply voltages up to 75V (absolute maximum) as referenced  
to ground.  
SW_H (Pin 3): Boosted Switch Output. This is the current  
returnfortheboostedswitchandcorrespondstotheemitter  
of the switch transistor. The boosted switch shorts the  
SW_H pin to the VIN supply when enabled. The drive cir-  
cuitry for this switch is boosted above the VIN supply  
through the VBST pin, allowing saturation of the switch for  
maximum efficiency. The “ON” resistance of the boosted  
switch is 0.8.  
VC (Pin 6): Error Amplifier Output. The voltage on the VC  
pincorrespondstothemaximumswitchcurrentperoscil-  
latorcycle. Theerroramplifieristypicallyconfiguredasan  
integrator circuit by connecting an RC network from this  
pin to ground. This circuit typically creates the dominant  
polefortheconverterregulationfeedbackloop.Specificin-  
tegratorcharacteristicscanbeconfiguredtooptimizetran-  
sient response. See Applications Information.  
VIN (Pin 4): Input Power Supply. This pin supplies power  
to the boosted switch and corresponds to the collector of  
3433f  
5
LT3433  
U
U
U
PI FU CTIO S  
VFB (Pin7):ErrorAmplifierInvertingInput.Thenoninvert-  
ing input of the error amplifier is connected to an internal  
1.231V reference. The VFB pin is connected to a resistor  
divider from the converter output. Values for the resistor  
connected from VOUT to VFB (RFB1) and the resistor con-  
nectedfromVFB toground(RFB2)canbecalculatedtopro-  
gram converter output voltage (VOUT) via the following  
relation:  
The time from VSS = 0V to maximum available current can  
be calculated given a capacitor CSS as:  
tSS = (2.7 • 105)CSS or 0.27s/µF  
SHDN (Pin 11): Shutdown. If the SHDN pin is externally  
pulledbelow0.5V,lowcurrentshutdownmodeisinitiated.  
Duringshutdownmode,allinternalfunctionsaredisabled,  
and ICC is reduced to 10µA. This pin is intended to receive  
a digital input, however, there is a small amount of input  
hysteresisbuiltintotheSHDNcircuittohelpassureglitch-  
free mode switching. If shutdown is not desired, connect  
the SHDN pin to VIN.  
VOUT = 1.231 • (RFB1 + RFB2)/RFB2  
The VFB pin input bias current is 35nA, so use of extremely  
high value feedback resistors could cause a converter  
output that is slightly higher than expected. Bias current  
error at the output can be estimated as:  
VBIAS (Pin 12): Internal Local Supply. Much of the LT3433  
circuitry is powered from this supply, which is internally  
regulated to 2.5V through an on-board linear regulator.  
CurrentdriveforthisregulatorissourcedfromtheVIN pin.  
The VBIAS supply is short-circuit protected to 5mA.  
VOUT(BIAS) = 35nA • RFB1  
The voltage on VFB also controls the LT3433 oscillator  
frequencythroughafrequency-foldbackfunction.When  
theVFB pinvoltageisbelow0.8V,theoscillatorrunsslower  
than the 200kHz typical operating frequency. The oscilla-  
torfrequencyslowswithreducedvoltageonthepin, down  
to 50kHz when VFB = 0V.  
The VBIAS supply only sources current, so forcing this pin  
abovetheregulatedvoltageallowstheuseofexternalpower  
formuchoftheLT3433circuitry.Whenusingexternaldrive,  
this pin should be driven above 3V to assure the internal  
supply is completely disabled. This pin is typically diode-  
connectedtotheconverteroutputtomaximizeconversion  
efficiency. This pin must be bypassed with at least a 0.1µF  
ceramic capacitor to SGND.  
The VFB pin voltage also controls switch current limit  
throughacurrent-limitfoldbackfunction.AtVFB=0V,the  
maximum switch current is reduced to half of the normal  
value. The current limit value increases linearly until VFB  
reaches 0.6V when the normal maximum switch current  
level is restored. The frequency and current-limit foldback  
functions add robustness to short-circuit protection and  
help prevent inductor current runaway during start-up.  
VOUT (Pin 13): Converter Output Pin. This pin voltage is  
compared with the voltage on VIN internally to control  
operation in single or 2-switch mode. When the ratios of  
thetwovoltagesaresuchthata>75%dutycycleisrequired  
forregulation,thelowsideswitchisenabled.Drivebiasfor  
the low side switch is also derived directly from this pin.  
SS(Pin10):SoftStart. Connectacapacitor(CSS)fromthis  
pin to ground. The output voltage of the LT3433 error  
amplifier corresponds to the peak current sense amplifier  
output detected before resetting the switch output(s). The  
soft-start circuit forces the error amplifier output to a zero  
peak current for start-up. A 5µA current is forced from the  
SS pin onto an external capacitor. As the SS pin voltage  
ramps up, so does the LT3433 internally sensed peak cur-  
rent limit. This forces the converter output current to ramp  
from zero until normal output regulation is achieved. This  
function reduces output overshoot on converter start-up.  
PWRGND (Pin 14): High Current Ground Reference. This  
isthecurrentreturnforthelowsideswitchandcorresponds  
to the emitter of the low side switch transistor.  
SW_L(Pin15):GroundReferencedSwitchOutput.Thispin  
is the collector of the low side switch transistor. The low  
sideswitchshortstheSW_LpintoPWRGNDwhenenabled.  
The series impedance of the ground-referenced switch is  
0.6.  
Exposed Pad (Pin 17): Exposed Pad must be soldered to  
PCB ground for optimal thermal performance.  
3433f  
6
LT3433  
W
BLOCK DIAGRA  
V
BIAS  
12  
BURST  
CONTROL  
CIRCUITS  
BIAS  
BURST_EN  
5
4
1.25V  
V
IN  
SENSE  
AMPLIFIER  
V
BST  
2
3
COMPARATOR  
BOOSTED  
DRIVER  
SW_H  
SWITCH  
CONTROL  
LOGIC  
SLOPE  
COMP  
OSCILLATOR 200kHz  
SW_L  
GND  
15  
14  
7
FREQUENCY  
CONTROL  
DRIVER  
MODE  
CONTROL  
V
FB  
ERROR  
AMPLIFIER  
30%  
LOAD  
1.231V  
V
C
6
SHDN  
+
11  
Burst Mode  
CONTROL  
SHUTDOWN  
15%  
LOAD  
0.7V  
SS  
10  
13  
5µA  
V
OUT  
+
SGND  
1, 8, 9,16,17  
3433 BD  
V
OUT  
3433f  
7
LT3433  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
condition as requiring a duty cycle greater than 75%. If  
suchaconditionexists, asecondswitchisenabledduring  
theswitchontime,whichactstopulltheoutputsideofthe  
inductor to ground. This “bridged” operation allows volt-  
age conversion to continue when VOUT approaches or  
exceeds VIN.  
The LT3433 is a high input voltage range, step-up/step-  
down DC/DC converter IC using a 200kHz constant fre-  
quency, currentmodearchitecture. Dualinternalswitches  
allow the full input voltage to be imposed across the  
switched inductor, such that both step-up and step-down  
modes of operation can be realized using the same single  
inductor topology.  
Shutdown  
The LT3433 incorporates a low current shutdown mode  
where all IC functions are disabled and the VIN current is  
reduced to 10µA. Pulling the SHDN pin down to 0.4V or  
less activates shutdown mode.  
The LT3433 has provisions for high efficiency, low load  
operation for battery-powered applications. Burst Mode  
operation reduces average quiescent current to 100µA in  
noloadconditions.Alowcurrentshutdownmodecanalso  
be activated, reducing total quiescent current to 10µA.  
Burst Mode Operation  
Much of the LT3433’s internal circuitry is biased from an  
internal low voltage linear regulator. The output of this  
regulatorisbroughtouttotheVBIAS pin, allowingbypass-  
ing of the internal regulator. The associated internal  
circuitry can be powered directly from the output of the  
converter, increasing overall converter efficiency. Using  
externally derived power also eliminates the IC’s power  
dissipation associated with the internal VIN to VBIAS  
regulator.  
TheLT3433employslowcurrentBurstModefunctionality  
to maximize efficiency during no load and low load condi-  
tions. Burst Mode function is disabled by shorting the  
BURST_EN pin to either VBIAS or VOUT. Burst Mode  
function is enabled by shorting BURST_EN to SGND.  
In certain wide current range applications, the IC could  
enterburstoperationduringnormalloadconditions. Ifthe  
additional output ripple and noise generated by Burst  
Mode operation is not desired for normal operation,  
BURST_EN can be biased using an external supply that is  
disabled during a no-load condition. This enables Burst  
Mode operation only when it is required. The BURST_EN  
pin typically draws 35µA when Burst Mode operation is  
disabled (VBURST_EN 2V) and will draw no more than  
75µA with VBURST_EN = 2V.  
Theory of Operation (See Block Diagram)  
The LT3433 senses converter output voltage via the VFB  
pin. The difference between the voltage on this pin and an  
internal 1.231V reference is amplified to generate an error  
voltage on the VC pin which is, in turn, used as a threshold  
for the current sense comparator.  
When the required switch current, sensed via the VC pin  
voltage, is below 30% of maximum, the Burst Mode  
functionisemployed.WhenthevoltageonVC dropsbelow  
the 30% load level, that level of sense current is latched  
intotheIC. Iftheoutputloadrequireslessthanthislatched  
currentlevel,theconverterwilloverdrivetheoutputslightly  
during each switch cycle. This overdrive condition forces  
the voltage on the VC pin to continue to drop. When the  
voltage on VC drops below the 15% load level, switching  
isdisabled,andtheLT3433shutsdownmostofitsinternal  
circuitry, reducing quiescent current to 100µA. When the  
voltage on the VC pin climbs back to 20% load level, the IC  
returns to normal operation and switching resumes.  
During normal operation, the LT3433 internal oscillator  
runs at 200kHz. At the beginning of each oscillator cycle,  
the switch drive is enabled. The switch drive stays enabled  
until the sensed switch current exceeds the VC-derived  
threshold for the current sense comparator and, in turn,  
disables the switch driver. If the current comparator  
threshold is not obtained for the entire oscillator cycle, the  
switch driver is disabled at the end of the cycle for 250ns.  
This minimum off-time mode of operation assures regen-  
eration of the VBST bootstrapped supply.  
If the converter input and output voltages are close  
together, proper operation in normal buck configuration  
would require high duty cycles. The LT3433 senses this  
3433f  
8
LT3433  
W U U  
APPLICATIO S I FOR ATIO  
U
Antislope Compensation  
switches the VOUT side of the inductor. The LT3433  
bridged topology merges the elements of buck and boost  
topologies, providing switches on both sides of the induc-  
tor. Operating both switches simultaneously achieves  
both step-up and step-down functionality.  
Most current mode switching controllers use slope com-  
pensationtopreventcurrentmodeinstability. TheLT3433  
is no exception. A slope compensation circuit imposes an  
artificial ramp on the sensed current to increase the rising  
slope as duty cycle increases. Unfortunately, this addi-  
tional ramp corrupts the sensed current value, reducing  
the achievable current limit value by the same amount as  
the added ramp represents. As such, current limit is  
typically reduced as duty cycles increase.  
Step-Down (V > V  
)
IN  
OUT  
SW  
L
V
IN  
V
OUT  
C
IN  
D
C
OUT  
TheLT3433containscircuitrytoeliminatethecurrentlimit  
reduction associated with slope-compensation, or anti-  
slope compensation. As the slope compensation ramp is  
addedtothesensedcurrent, asimilarrampisaddedtothe  
current limit threshold reference. The end result is that  
current limit is not compromised so the LT3433 can  
provide full power regardless of required duty cycle.  
Step-Up (V < V  
IN  
)
OUT  
D
L
V
IN  
V
OUT  
C
IN  
SW  
C
OUT  
Step-Up/Step-Down (V > V  
or V < V  
)
IN  
OUT  
IN  
OUT  
D
SW  
L
V
IN  
V
OUT  
Mode Switching  
TheLT3433switchesbetweenbuckandbuck/boostmodes  
of operation automatically. While in buck mode, if the  
converter input voltage becomes close enough to the  
output voltage to require a duty cycle greater than 75%,  
the LT3433 enables a second switch which pulls the  
output side of the inductor to ground during the switch-on  
time. This “bridged” switching configuration allows volt-  
ageconversiontocontinuewhenVIN approachesorisless  
C
D
SW  
C
OUT  
IN  
3433 F01  
Maximumdutycyclecapability(DCMAX)gatesthedropout  
capabilities of a buck converter. As VIN – VOUT is reduced,  
the required duty cycle increases until DCMAX is reached,  
beyond which the converter loses regulation. With a  
secondswitchbridgingtheswitchedinductorbetweenVIN  
and ground, the entire input voltage is imposed across the  
inductor during the switch-on time, which subsequently  
reduces the duty cycle required to maintain regulation.  
Using this topology, regulation is maintained as VIN ap-  
than VOUT  
.
When the converter input voltage falls to where the duty  
cycle required for continuous buck operation is greater  
than 75%, the LT3433 enables its ground-referred switch,  
changing the converter operation to a dual-switch bridged  
configuration. Because the voltage available across the  
switched inductor is greater while bridged, operational  
duty cycle will decrease. Voltage drops associated with  
external diodes and loss terms are estimated internally so  
that required operating duty cycle can be calculated re-  
gardless of specific operating voltages.  
proaches or drops below VOUT  
.
Inductor Selection  
TheprimarycriterionforinductorvalueselectioninLT3433  
applications is the ripple current created in that inductor.  
Design considerations for ripple current are converter  
output capabilities in bridged mode, output voltage ripple  
and the ability of the internal slope compensation wave-  
form to prevent current mode instability.  
In the simplest terms, a buck DC/DC converter switches  
the VIN side of the inductor, while a boost converter  
3433f  
9
LT3433  
W U U  
U
APPLICATIO S I FOR ATIO  
The requirement for avoiding current mode instability is  
that the rising slope of sensed inductor ripple current (S1)  
isgreaterthanthefallingslope(S2). Atdutycyclesgreater  
than50%thisisnottrue.Toavoidtheinstabilitycondition,  
a false signal is added to the sensed current with a slope  
(SX) that is sufficient to prevent current mode instability,  
or S1 + SX S2. This leads to the following relations:  
Converter Capabilities  
The output current capability of an LT3433 converter is  
affected by a myriad of variables. The current in the  
switches is limited by the LT3433. Switch current is  
measured coming from the VIN supply, and does not  
directly translate to a limitation in load current. This is  
especially true during bridged mode operation when the  
converter output current is discontinuous.  
SX S2(2DC – 1)/DC  
If the forward voltages of a converter’s catch and pass  
diodes are defined as VF1 and VF2, then:  
During bridged mode operation, the converter output  
current is discontinuous, or only flowing to the output  
while the switches are off (not to be confused with discon-  
tinuous switcher operation). As a result, the maximum  
output current capability of the converter is reduced from  
that during buck mode operation by a factor of roughly  
1 – DC, not including additional losses. Most converter  
losses are also a function of DC, so operational duty cycle  
must be accurately determined to predict converter load  
capabilities.  
S2 = (VOUT + VF1 + VF2)/L  
Solving for L yields a relation for the minimum inductance  
that will satisfy slope compensation requirements:  
LMIN = (VOUT + VF1 + VF2)(2DC – 1)/(DC • SX)  
The LT3433 maximizes available dynamic range using a  
slope compensation generator that generates a continu-  
ously increasing slope as duty cycle increases. The slope  
compensationwaveformiscalibratedat80%dutycycleto  
generate an equivalent slope of at least 0.05A/µs. The  
equation for minimum inductance then reduces to:  
V
IN  
SW_H  
LT3433  
SW_L  
D1  
V
LMIN = (VOUT + VF1 + VF2)(15e-6)  
L
D2  
For example, with VOUT = 5V and using VF1 + VF2 = 1.1V  
(cold):  
OUT  
LMIN = (5 + 1.1)(15e-6) = 91.5µH  
3433 AI02  
Slope Compensation Requirements  
Typical Minimum Inductor Values vs VOUT  
Application variables:  
VIN = Converter input supply voltage  
VOUT = Converter programmed output voltage  
VBST = Boosted supply voltage (VBST – VSWH  
DC = Operational duty cycle  
fO = Switching frequency  
IMAX = Peak switch current limit  
IL = Inductor ripple current  
ISW = Average switch current or peak switch current  
less half the ripple current (IMAX IL/2)  
350  
300  
250  
200  
150  
100  
50  
)
14 16  
4
6
8
10 12  
18 20  
RSWH = Boosted switch “on” resistance  
RSWL = Grounded switch “on” resistance  
V
(V)  
OUT  
3433 AI01  
L = Inductor value  
3433f  
10  
LT3433  
W U U  
APPLICATIO S I FOR ATIO  
U
RL = Inductor series resistance  
Once DC is determined, maximum output current can be  
determined using current conservation on the converter  
output:  
BST = Boosted switch drive currents IVBST/ISW (in A/A)  
= Grounded switch drive currents IVOUT/ISW  
OUT  
(in A/A)  
Bridged Operation: IOUT(MAX) = ISW • [1 – DC •  
(1 + BST + OUT)] – IBIAS  
VF1 = Switch node catch diode forward voltage  
VF2 = Pass diode forward voltage  
Buck Operation:  
IOUT(MAX) = ISW • (1 – DC • BST)  
– IBIAS  
IVIN = VIN quiescent input current  
IIN = VIN switched current  
IBIAS = VBIAS quiescent input current  
PIN = POUT + PLOSS, where PLOSS = PSWON + PSWOFF + PIC,  
correspondingtothepowerlossintheconverter.PIC isthe  
quiescent power dissipated by the LT3433. PSWON is the  
loss associated with the power path during the switch on  
interval, and PSWOFF is the PowerPathTM loss associated  
with the switch off interval.  
RCESR = Output capacitor ESR  
Operational duty cycle is a function of voltage imposed  
across the switched inductance and switch on/off times.  
Using the relation for change in current in an inductor:  
PLOSS equals the sum of the power loss terms:  
PVIN = VIN • IVIN  
δI = V • δt/L  
and putting the application variables into the above rela-  
tion yields:  
PBIAS = VOUT • IBIAS  
PSWON(BRIDGED) = DC • [ISW 2 • (RSWH + RSW2 L+ RL)  
δION(BRIDGED) = (DC/fO • L)[VIN – ISW • (RSWH + RSWL  
+ RL)]  
+ ISW • VOUT • (BST + OUT) + RCESR • IOUT  
]
PSWON(BUCK) = DC • [ISW 2 • (RSWH + RL) + ISW  
VOUT BST + RCESR • (ISW • (1 – BST) – IBIAS  
IOUT)2]  
δION(BUCK) = (DC/fO • L)[VIN – VOUT – VF2 – ISW  
• (RSWH + RL + RESR)]  
δIOFF = [(1 – DC)/fO • L][VOUT + VF1 + VF2 – ISW  
• (RL + RESR)]  
PSWOFF = (1 – DC) • [ISW • (VF1 + VF2) + ISW2 • RL +  
RCESR • (ISW – IBIAS – IOUT)2]  
Current conservation in an inductor dictates δION = δIOFF  
sopluggingintheaboverelationsandsolvingforDCyields:  
,
Efficiency (E) is described as POUT/PIN, so:  
–1  
Efficiency = {1 + (PVIN + PBIAS + PSWON + PSWOFF)/POUT  
}
DC(BRIDGED) = [VOUT + VF1 + VF2 – ISW • (RL + RESR)]/  
[VIN – ISW • (RSWH + RSWL + 2RL + RESR) + VOUT  
VF1 + VF2  
+
Empirical determination of converter capabilities is ac-  
complished by monitoring inductor currents with a cur-  
rent probe under various input voltages and load currents.  
Decreasing input voltage or increasing load current re-  
sults in an inductor current increase. When peak inductor  
currents reach the switch current limit value, maximum  
output current is achieved. Limiting the inductor currents  
to the LT3433 specified W/C current limit of 0.5V (cold)  
will allow margin for operating limit variations. These  
limitations should be evaluated at the operating tempera-  
ture extremes required by the application to assure robust  
performance.  
]
DC(BUCK) = [VOUT + VF1 + VF2 – ISW • (RL + RESR)]/  
[VIN – ISW • (RSWH + 2RL + 2RESR) + VF1]  
In order to solve the above equations, inductor ripple  
current (I) must be determined so ISW can be calculated.  
I follows the relation:  
I = (VOUT + VF1 + VF2 – ISW • RL)(1 – DC)/(L • fO)  
As I is a function of DC and vice-versa, the solution is  
iterative. Seed I and solve for DC. Using the resulting  
value for DC, solve for I. Use the resulting I as the new  
seed value and repeat. The calculated value for DC can be  
usedoncetheresultingIisclose(<1%)totheseedvalue.  
PowerPath is a trademark of Linear Technology Corporation  
3433f  
11  
LT3433  
W U U  
U
APPLICATIO S I FOR ATIO  
Design Example  
CALCULATED VALUES  
ITERATION #  
SEED I  
0
I
DC  
I  
SW  
4V-60V to 5V DC/DC converter (the application on the  
1
2
3
0.55  
0.503  
0.501  
0.683  
0.674  
0.674  
0.095  
0.098  
0.098  
frontpageofthisdatasheet), loadcapabilityforTA =85°C.  
0.095  
0.098  
Application Specific  
Constants:  
LT3433 W/C Constants:  
VIN = 4V  
IMAX = 0.55A  
RSWH = 1.2Ω  
RSWL = 1Ω  
After iteration, DC = 0.674 and I = 0.098.  
V
OUT = 5V  
Use iteration result for DC and above design constants to  
solve the IOUT(MAX) relation:  
L = 100µH  
RL = 0.28Ω  
fO = 190kHz  
IOUT(MAX) = 0.501 • [1 – 0.674 • (1 + 0.05 + 0.05)] –  
800µA  
V
F1 = 0.45V  
BST = 0.05  
OUT = 0.05  
VF2 = 0.4V  
RCESR = 0.01Ω  
IOUT(MAX) = 129mA  
IVIN = 600µA  
IBIAS = 800µA  
Increased Output Voltages  
The LT3433 can be used in converter applications with  
output voltages from 3.3V through 20V, but as converter  
output voltages increase, output current and duty cycle  
limitations prevent operation with VIN at the extreme low  
end of the LT3433 operational range. When a converter  
operates as a buck/boost, the output current becomes  
discontinuous,whichreducesoutputcurrentcapabilityby  
roughly a factor of 1 – DC, where DC = duty cycle. As such,  
the output current requirement dictates a minimum input  
voltage where output regulation can be maintained.  
TheLT3433operatesinbridgedmodewithVIN =4V,sothe  
relations used are:  
DC = [VOUT + VF1 + VF2 – ISW • (RL + RESR)]/[VIN –  
ISW • (RSWH + RSWL + 2RL + RESR) + VOUT + VF1 +  
VF2]  
I = (VOUT + VF1 + VF2 - ISW • RL) • (1 – DC)/(L • fO)  
IOUT(MAX) = ISW • [1 – DC • (1 + BST + OUT)] – IBIAS  
Iteration procedure for DC:  
(1) Set initial seed value for I (this example will set  
I = 0).  
Typical Minimum Input Voltage as a Function of  
Output Voltage and Required Load Current  
(2) Using seed value for I, determine ISW (ISW = 0.55 –  
24  
0 = 0.55).  
(3) Use calculated ISW and above design constants to  
solve the DC relation (DC = 0.683).  
20  
200mA  
16  
(4) Use calculated DC to solve the I relation (yields I =  
175mA  
0.0949).  
12  
125mA  
(5) If calculated I is equal to the seed value, stop.  
Otherwise, use calculated I as new seed value and  
repeat (2) through (4).  
150mA  
8
4
4
8
12  
16  
20  
V
(V)  
OUT  
3433 AI03  
3433f  
12  
LT3433  
W U U  
APPLICATIO S I FOR ATIO  
U
4V-50V to 5V Converter Input Transient Response  
1ms 13.8V to 4V Input Transition  
Input Voltage Transient Suppression  
Not only does a LT3433 converter operate across a large  
range of DC input voltages, it also maintains tight output  
regulation during significant input voltage transients. The  
LT3433 automatic transitioning between buck and buck/  
boostmodesofoperationprovidesseamlessoutputregu-  
lationovertheseinputvoltagetransients.Inanautomotive  
environment, input voltage transients are commonplace,  
such as those experienced during a cold crank condition.  
During the initiation of cold crank, the battery rail can be  
pulleddownto4Vinaslittleas1ms. Ina4V-60Vto5VDC/  
DC converter application (shown on the first page of this  
data sheet) a cold crank transient condition, simulated  
with a 1ms 13.8V to 4V input transition, yields regulation  
maintained to 1% with a 125mA load.  
VIN  
5V/DIV  
VOUT  
0.1V/DIV  
1ms/DIV  
3433 AI04  
U
TYPICAL APPLICATIO S  
4V-60V to 5V Converter with Switched Burst Enable and Shutdown  
L1  
D
S1  
100µH  
B160A  
COEV DU1352-101M  
V
OUT  
5V  
4V < V < 8.5V: 125mA  
D2  
IN  
8.5V < V < 60V: 350mA  
D
+
S2  
C7  
47µF  
10V  
1N4148  
IN  
B120A  
Efficiency  
C5  
1µF  
10V  
V
SW_L  
BST  
90  
80  
R4  
20k  
V
= 13.8V  
IN  
V
BATT  
(SWITCHED)  
SW_H PWRGND  
LT3433  
V
BATT  
4V TO 60V  
V
V
70  
V
IN  
OUT  
D1  
V
= 4V  
C4  
2.2µF  
100V  
IN  
= 13.8V  
BURST  
1N4148  
IN  
BURST_EN  
V
BIAS  
60  
50  
40  
30  
20  
C6  
0.1µF 10V  
C3 330pF  
DZ1  
20V  
V
C
SHDN  
SS  
C2  
1nF  
V
= 4V  
R3  
100k  
R1  
68k  
IN  
V
FB  
(BURST)  
C1  
SGND  
0.01µF  
R2  
100k  
1%  
R5  
309k  
1%  
0.1  
1
10  
100  
1000  
MODE SWITCH:  
OUTPUT CURRENT (mA)  
V
V
H-L: 7.9V  
L-H: 8.3V  
IN  
IN  
3433 TA03b  
3433 TA03a  
SHDN  
3433f  
13  
LT3433  
U
TYPICAL APPLICATIO S  
8V-60V to 12V Converter  
L1  
200µH  
TDK SLF12565T-221M1R0  
D
S1  
B160A  
V
OUT  
12V  
8V < V < 18V: 125mA  
D2  
IN  
D
S2  
C5  
47µF  
25V  
+
1N4148  
18V < V < 60V: 380mA  
IN  
B120A  
C7  
0.47µF  
20V  
V
SW_L  
BST  
SW_H PWRGND  
LT3433  
V
IN  
V
V
IN  
OUT  
8V TO 60V  
D1  
1N4148  
C3 330pF  
C6  
2.2µF  
100V  
(BURST)  
BURST_EN  
V
BIAS  
C6  
0.1µF  
20V  
R1 68k  
V
C
SHDN  
SS  
C2 1nF  
V
FB  
C4  
0.01µF  
R2  
20k  
1%  
R3  
174k  
1%  
SGND  
MODE SWITCH:  
V
V
H-L: 16.6V  
L-H: 17V  
IN  
IN  
(NO BURST)  
3433 TA04a  
Efficiency  
Minimum Output Current vs VIN  
500  
400  
300  
200  
100  
100  
V
= 20V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
BRIDGED  
V
= 8V  
IN  
V
= 20V  
IN  
(BURST)  
V
= 8V  
IN  
BUCK  
(BURST)  
0
0
20  
30  
(V)  
40  
50  
60  
10  
0.1  
1
10  
100  
1000  
V
OUTPUT CURRENT (mA)  
IN  
3433 TA04b  
3433 TA04c  
3433f  
14  
LT3433  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3433f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
15  
LT3433  
U
TYPICAL APPLICATIO  
Burst Only Low Noise 5V Maintenance Supply  
L1  
D
D
S1  
B160A  
S2  
B120A  
33µH  
COILCRAFT LPO1704-333  
D1  
1N4148  
V
SW_L  
BST  
C1  
0.1µF  
SW_H PWRGND  
LT3433  
V
IN  
V
V
IN  
OUT  
4V TO 60V  
D2  
1N4148  
2.2µF  
BURST_EN  
V
BIAS  
C6 100pF  
C2  
0.1µF  
V
C
SHDN  
SS  
V
FB  
V
OUT  
R2  
510k  
5%  
R1  
5V  
IN  
OUT  
BYP  
SGND  
C4  
0.01µF  
C5  
2.2µF  
2.2M  
LT1761-5  
10mA  
5%  
SHDN  
GND  
C3  
10µF  
3433 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 7.3V to 45V/64V, V  
LT1076/LT1076HV  
1.6A (I ), 100kHz High Efficiency Step-Down DC/DC Converters  
= 2.21V, I = 8.5mA,  
Q
OUT  
IN  
OUT(MIN)  
I
< 10µA, DD5/DD7, TO220-5/TO220-7  
SD  
LT1676  
60V, 440mA (I ), 100kHz High Efficiency Step-Down  
V : 7.4V to 60V, V  
SD  
= 1.24V, I = 3.2mA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converter  
I
< 2.5µA, SO-8  
LT1765  
25V, 2.75A (I ), 1.25MHz High Efficiency Step-Down  
V : 3V to 25V, V  
SD  
= 1.20V, I = 1mA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converter  
I
< 15µA, SO-8, TSSOP16E  
LT1766/LT1956  
LT1767  
60V, 1.2A (I ), 200kHz/500kHz High Efficiency Step-Down  
V : 5.5V to 60V, V  
SD  
= 1.20V, I = 2.5mA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converters  
I
< 25µA, TSSOP16/TSSOP16E  
25V, 1.2A (I ), 1.25MHz High Efficiency Step-Down  
V : 3V to 25V, V  
SD  
= 1.20V, I = 1mA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converter  
I
< 6µA, MS8/MS8E  
LT1776  
40V, 550mA (I ), 200kHz High Efficiency Step-Down  
V : 7.4V to 40V, V  
SD  
= 1.24V, I = 3.2mA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
DC/DC Converter  
I
< 30µA, N8, SO-8  
LT1976  
60V, 1.2A (I ), 200kHz High Efficiency Micropower (I < 100µA)  
V : 3.3V to 60V, V  
= 1.20V, I = 100µA,  
Q
OUT  
Q
IN  
SD  
Step-Down DC/DC Converter  
I
< 1µA, TSSOP16E  
LT3010  
80V, 50mA Low Noise Linear Regulator  
V : 1.5V to 80V, V  
= 1.28V, I = 30µA,  
Q
IN  
SD  
I
< 1µA, MS8E  
LTC3412/LTC3414  
LTC3414  
2.5A (I ), 4MHz Synchronous Step-Down DC/DC Converters  
V : 2.5V to 5.5V, V  
SD  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
OUT(MIN)  
< 1µA, TSSOP16E  
I
4A (I ), 4MHz Synchronous Step-Down DC/DC Converter  
V : 2.3V to 5.5V, V  
SD  
= 0.8V, I = 64µA,  
Q
OUT  
IN  
OUT(MIN)  
< 1µA, TSSOP20E  
I
LTC3727/LTC3727-1 36V, 500kHz High Efficiency Step-Down DC/DC Controllers  
V : 4V to 36V, V  
SD  
= 0.8V, I = 670µA,  
IN  
OUT(MIN) Q  
< 20µA, QFN32, SSOP28  
I
LT3430/LT3431  
60V, 2.75A (I ), 200kHz/500kHz High Efficiency Step-Down  
V : 5.5V to 60V, V  
SD  
= 1.20V, I = 2.5mA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converters  
I
< 30µA, TSSOP16E  
LTC3440/LTC3441  
600mA/1.2A (I ), 2MHz/1MHz Synchronous Buck-Boost DC/DC Converter V : 2.5V to 5.5V, V  
= 2.5V, I = 25µA,  
OUT(MIN) Q  
OUT  
IN  
with 95% Efficiency  
I
< 1µA, MS10  
SD  
3433f  
LT/TP 0504 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3434

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear

LT3434EFE

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear

LT3434EFE#PBF

暂无描述
Linear

LT3434EFE#TR

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3434EFE#TRPBF

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3434IFE

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear

LT3434IFE#PBF

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3434IFE#TRPBF

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3435

High Voltage 3A, 500kHz Step-Down Switching Regulator with 100® Quiescent Current
Linear

LT3435EFE

High Voltage 3A, 500kHz Step-Down Switching Regulator with 100® Quiescent Current
Linear

LT3435EFE#PBF

LT3435 - High Voltage 3A, 500kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3435EFE#TR

LT3435 - High Voltage 3A, 500kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear