LT3050EDDB-5#TRPBF [Linear]

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C;
LT3050EDDB-5#TRPBF
型号: LT3050EDDB-5#TRPBF
厂家: Linear    Linear
描述:

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总26页 (文件大小:394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3050 Series  
100mA, Linear Regulator  
with Precision Current Limit  
and Diagnostic Outputs  
DESCRIPTION  
FEATURES  
th  
The LT®3050 series are micro-power, low noise, low  
dropout voltage (LDO) linear regulators. The devices  
supply 100mA of output current with a dropout voltage of  
340mV. A 10nF bypass capacitor reduces output noise to  
n
Output Current Monitor: 1/100 of I  
OUT  
n
Fault Indicator: Current Limit, Minimum I  
or  
OUT  
Thermal Limit  
n
n
n
n
n
n
n
n
n
n
Output Current: 100mA  
Dropout Voltage: 340mV  
30μV  
in a 10Hz to 100kHz bandwidth and soft-starts  
RMS  
Input Voltage Range: 1.6V to 45V  
the reference. The LT3050’s 45V input voltage rating  
combined with its precision current limit and diagnostic  
functions make the IC an ideal choice for robust, high  
reliability applications.  
Programmable Precision Current Limit: 5ꢀ  
Programmable Minimum I  
Monitor  
(10Hz to 100kHz)  
OUT  
Low Noise: 30μV  
RMS  
Adjustable Output (V = V  
= 0.6V)  
REF  
OUT(MIN)  
AsingleresistorprogramstheLT3050’scurrentlimit,accurate  
to 5ꢀ over a wide input voltage and temperature range.  
A single resistor programs the LT3050’s minimum output  
currentmonitor,usefulfordetectingopen-circuitconditions.  
The current monitor function sources a current equal to  
1/100th of output current. A logic FAULT pin asserts low if  
the LT3050 is in current limit, operating below its minimum  
output current (open-circuit) or is in thermal shutdown.  
Fixed Output Voltages: 3.3V, 5V  
Output Tolerance: 2ꢀ Over Line, Load and Temperature  
Stable with Low ESR, Ceramic Output Capacitors  
(2.2μF minimum)  
n
n
Shutdown Current: <1μA  
Reverse-Battery, Reverse-Output and  
Reverse-Current Protection  
Thermal Limit Protection  
12-Lead 3mm × 2mm DFN and MSOP Packages  
n
n
The LT3050 optimizes stability and transient response  
with low ESR ceramic capacitors, requiring a minimum of  
2.2μF. The LT3050 is available in fixed output voltages of  
3.3V and 5V, and as an adjustable version with an output  
voltage range down to the 0.6V reference.The LT3050 is  
available in the thermally-enhanced 12-Lead 3mm × 2mm  
DFN and MSOP packages.  
APPLICATIONS  
n
Protected Antenna Supplies  
n
Automotive Telematics  
n
Industrial Applications (Trucks, Forklifts, etc.)  
High Reliability Applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
TYPICAL APPLICATION  
External Current Limit RIMAX = 1.15k  
105  
5V Supply with 100mA Precision Current Limit, 10mA IMIN  
V
OUT  
= 5V  
104  
103  
102  
101  
100  
99  
IN  
OUT  
5V  
12V  
IN  
SHDN  
2.2ꢁF  
V
= 15V  
1ꢁF  
120k  
IN  
V
FAULT  
V
V
= 12V  
LT3050-5  
IN  
IN  
I
MAX  
I
TO ꢁP ADC  
0.1ꢁF  
MON  
1.15k  
10nF  
= 5.6V  
98  
3k  
(THRESHOLD = 100mA)  
(ADC FULL SCALE = 3V)  
97  
I
REF/BYP  
96  
MIN  
11.3k  
0.1ꢁF  
GND  
95  
10nF  
(THRESHOLD = 10mA)  
–75 –50 –25  
0
–25 50 75 100 125 150 175  
3050 TA01  
TEMPERATURE (°C)  
3050 TA01a  
3050fa  
1
LT3050 Series  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
IN Pin Voltage ........................................................ 50V  
OUT Pin Voltage..................................................... 50V  
Input-to-Output Differential Voltage....................... 50V  
ADJ Pin Voltage (Note 16) ..................................... 50V  
REF/BYP Pin Voltage........................................–0.3V, 1V  
SHDN Pin Voltage ................................................... 50V  
FAULT Pin Voltage..........................................–0.3V, 50V  
Output Short-Circuit Duration .......................... Indefinite  
Operating Junction Temperature Range (Notes 2, 3)  
E, I Grades.........................................–40°C to 125°C  
MP Grade...........................................–55°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature: Soldering, 10 sec.................... 300°C  
(MSOP Package Only)  
I
I
I
Pin Voltage ..............................................–0.3V, 7V  
Pin Voltage ...............................................–0.3V, 7V  
Pin Voltage...............................................–0.3V, 7V  
MON  
MIN  
MAX  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
REF/BYP  
12 I  
11 I  
MON  
1
2
3
4
5
6
REF/BYP  
12  
11  
10 GND  
9
8
7
I
I
MON  
MAX  
I
MIN  
MAX  
I
MIN  
13  
GND  
FAULT  
SHDN  
IN  
10 GND  
FAULT  
SHDN  
IN  
13  
GND  
ADJ  
OUT  
OUT  
9
8
7
ADJ  
OUT  
OUT  
IN  
IN  
MSE PACKAGE  
DDB PACKAGE  
12-LEAD PLASTIC MSOP  
12-LEAD (3mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 45°C/W, θ = 5°C/W TO 10°C/W  
JA JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
T
= 125°C, θ = 49°C/W, θ = 13.5°C/W  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3050EMSE#PBF  
LT3050IMSE#PBF  
TAPE AND REEL  
PART MARKING*  
3050  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3050EMSE#TRPBF  
LT3050IMSE#TRPBF  
LT3050MPMSE#TRPBF  
LT3050EMSE-3.3#TRPBF  
LT3050IMSE-3.3#TRPBF  
12-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
3050  
12-Lead Plastic MSOP  
LT3050MPMSE#PBF  
LT3050EMSE-3.3#PBF  
LT3050IMSE-3.3#PBF  
3050  
12-Lead Plastic MSOP  
305033  
305033  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
LT3050MPMSE-3.3#PBF LT3050MPMSE-3.3#TRPBF 305033  
12-Lead Plastic MSOP  
LT3050EMSE-5#PBF  
LT3050IMSE-5#PBF  
LT3050MPMSE-5#PBF  
LT3050EDDB#PBF  
LT3050EMSE-5#TRPBF  
LT3050IMSE-5#TRPBF  
LT3050MPMSE-5#TRPBF  
LT3050EDDB#TRPBF  
30505  
30505  
30505  
LFGC  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
LT3050IDDB#PBF  
LT3050IDDB#TRPBF  
LFGC  
LT3050EDDB-3.3#PBF  
LT3050IDDB-3.3#PBF  
LT3050EDDB-3.3#TRPBF  
LT3050IDDB-3.3#TRPBF  
LFWR  
LFWR  
3050fa  
2
LT3050 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3050EDDB-5#PBF  
LT3050IDDB-5#PBF  
LEAD BASED FINISH  
LT3050EMSE  
TAPE AND REEL  
PART MARKING*  
LFWS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3050EDDB-5#TRPBF  
LT3050IDDB-5#TRPBF  
TAPE AND REEL  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
PACKAGE DESCRIPTION  
LFWS  
PART MARKING*  
3050  
LT3050EMSE#TR  
12-Lead Plastic MSOP  
LT3050IMSE  
LT3050IMSE#TR  
3050  
12-Lead Plastic MSOP  
LT3050MPMSE  
LT3050EMSE-3.3  
LT3050IMSE-3.3  
LT3050MPMSE-3.3  
LT3050EMSE-5  
LT3050IMSE-5  
LT3050MPMSE#TR  
LT3050EMSE-3.3#TR  
LT3050IMSE-3.3#TR  
LT3050MPMSE-3.3#TR  
LT3050EMSE-5#TR  
LT3050IMSE-5#TR  
LT3050MPMSE-5#TR  
LT3050EDDB#TR  
3050  
12-Lead Plastic MSOP  
305033  
305033  
305033  
30505  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
30505  
12-Lead Plastic MSOP  
LT3050MPMSE-5  
LT3050EDDB  
30505  
12-Lead Plastic MSOP  
LFGC  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
LT3050IDDB  
LT3050IDDB#TR  
LFGC  
LT3050EDDB-3.3  
LT3050IDDB-3.3  
LT3050EDDB-5  
LT3050IDDB-5  
LT3050EDDB-3.3#TR  
LT3050IDDB-3.3#TR  
LT3050EDDB-5#TR  
LT3050IDDB-5#TR  
LFWR  
LFWR  
LFWS  
LFWS  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
Minimum Input Voltage (Notes 3, 11)  
Regulated Output Voltage  
I
1.6  
2.2  
V
LOAD  
LT3050-3.3: V = 3.9V, I  
= 1mA  
LOAD  
LOAD  
3.267  
3.234  
3.3  
3.3  
3.333  
3.366  
V
V
IN  
3.9V < V < 15V, 1mA < I  
< 100mA (Note 15)  
IN  
LT3050-5: V = 5.6V, I  
= 1mA  
LOAD  
< 100mA (Note 15)  
LOAD  
4.95  
4.9  
5
5
5.05  
5.1  
V
V
IN  
5.6V < V 15V, 1mA < I  
IN  
ADJ Pin Voltage (Notes 3, 4)  
Line Regulation (Note 3)  
V
= 2.2V, I  
= 1mA  
LOAD  
594  
588  
600  
600  
606  
612  
mV  
mV  
IN  
2.2V < V < 15V, 1mA < I  
< 100mA (Note 15)  
LOAD  
IN  
l
l
l
LT3050-3.3: ΔV = 3.9V to 45V, I  
= 1mA  
LOAD  
2.2  
3.3  
0.4  
16.5  
25  
3
mV  
mV  
mV  
IN  
LT3050-5: ΔV = 5.6V to 45V, I  
= 1mA  
LOAD  
IN  
LT3050: ΔV = 2.2V to 45V, I  
= 1mA  
LOAD  
IN  
l
l
l
Load Regulation (Note 3)  
LT3050-3.3: V = 3.9V, I  
= 1mA to 100mA  
LOAD  
7.2  
8.4  
0.2  
33  
50  
4
mV  
mV  
mV  
IN  
LT3050-5: V = 5.6V, I  
= 1mA to 100mA  
LOAD  
IN  
LT3050: V = 2.2V, I  
= 1mA to 100mA  
LOAD  
IN  
3050fa  
3
LT3050 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
IN  
I
I
= 1mA  
= 1mA  
110  
150  
220  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
V
= V  
(Notes 5, 6)  
OUT(NOMINAL)  
I
I
= 10mA  
= 10mA  
195  
280  
340  
240  
340  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
330  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
400  
550  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
= V  
I
I
I
I
I
= 0mA  
45  
60  
175  
0.85  
2.2  
90  
160  
370  
2
ꢁA  
ꢁA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
+ 0.6V (Notes 6, 7, 11)  
OUT(NOMINAL)  
= 1mA  
IN  
= 10mA  
= 50mA  
= 100mA  
ꢁA  
mA  
mA  
5.2  
Quiescent Current in Shutdown  
ADJ Pin Bias Current (Notes 3, 12)  
Output Voltage Noise  
V
V
C
= 12V, V  
= 0V  
0.17  
12.5  
90  
1
ꢁA  
nA  
IN  
SHDN  
l
= 12V  
60  
IN  
= 10μF, I  
= 100mA, V  
= 600mV,  
ꢁV  
ꢁV  
OUT  
LOAD  
OUT  
RMS  
BW = 10Hz to 100kHz  
Output Voltage Noise  
Shutdown Threshold  
SHDN Pin Current (Note 13)  
Ripple Rejection  
C
OUT  
= 10μF, C = 0.01μF, I  
= 100mA, V = 600mV  
OUT  
30  
BYP  
LOAD  
RMS  
BW = 10Hz to 100kHz  
l
l
V
V
= Off to On  
= On to Off  
0.7  
0.6  
1.5  
V
V
OUT  
OUT  
0.3  
l
l
V
SHDN  
V
SHDN  
= 0V  
= 45V  
1
3
ꢁA  
ꢁA  
0.9  
V
– V  
= 2V, V  
= 0.5V  
,
IN  
OUT  
RIPPLE  
= 100mA  
LOAD  
P-P  
f
= 120Hz, I  
RIPPLE  
LT3050  
70  
55  
51  
85  
70  
66  
dB  
dB  
dB  
LT3050-3.3  
LT3050-5  
l
l
FAULT Pin Logic Low Voltage  
FAULT Pin Leakage Current  
V
= 2.2V, FAULT Asserted, I  
= 100μA  
140  
250  
1
mV  
ꢁA  
ꢁA  
ꢁA  
mA  
IN  
FAULT  
FAULT = 5V, FAULT Not Asserted  
0.01  
Input Reverse Leakage Current  
Reverse Output Current (Note 14)  
Internal Current Limit (Note 3)  
V
V
= –45V, V  
= 0  
300  
10  
IN  
OUT  
= 1.2V, V = 0  
0.2  
OUT  
IN  
V
IN  
V
IN  
= 2.2Vor V  
= 2.2Vor V  
+ 0.6V, V  
+ 0.6V, ΔV  
= 0V, I = 0V  
MAX  
= –5ꢀ  
240  
OUT(NOMINAL)  
OUT(NOMINAL)  
OUT  
l
110  
OUT  
External Programmed Current Limit  
(Notes 6, 8)  
LT3050-3.3  
3.9V < V < 13.3V, R  
= 2.26k  
IMAX  
FAULT  
= 1.5k  
IMAX  
IN  
l
l
l
FAULT Pin Threshold (I  
)
48.8  
73.6  
96  
51.4  
77.5  
101  
54  
mA  
mA  
mA  
3.9V < V < 13.3V, R  
IN  
FAULT Pin Threshold (I  
)
81.4  
106  
FAULT  
3.9V < V < 13.3V, R  
= 1.15k  
IMAX  
IN  
FAULT Pin Threshold (I  
)
FAULT  
LT3050, LT3050-5  
5.6V < V < 15V, R  
= 2.26k  
IMAX  
IN  
l
l
l
FAULT Pin Threshold (I  
)
)
)
47.8  
72.1  
94.4  
50.4  
75.9  
99.3  
52.9  
79.7  
mA  
mA  
mA  
FAULT  
5.6V < V < 15V, R  
= 1.5k  
IN  
IMAX  
FAULT Pin Threshold (I  
FAULT  
= 1.15k  
FAULT  
5.6V < V < 15V, R  
IN  
IMAX  
FAULT Pin Threshold (I  
104.3  
3050fa  
4
LT3050 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
Minimum I  
CONDITIONS  
LT3050-3.3: 3.9V < V < 13.3V, R = 110K  
IMIN  
MIN  
TYP  
MAX  
UNITS  
l
l
Threshold Accuracy  
0.92  
0.9  
1.03  
1
1.13  
1.1  
mA  
mA  
MIN  
IN  
(Notes 6, 9)  
LT3050, LT3050-5: 5.6V < V < 15V, R  
= 110K  
IN  
IMIN  
l
l
I
Threshold Accuracy (Notes 6, 9)  
LT3050-3.3: 3.9V < V < 13.3V, R = 11.3K  
IMIN  
9.2  
9
10.3  
10  
11.3  
11  
mA  
mA  
MIN  
IN  
LT3050, LT3050-5: 5.6V < V < 15V, R  
= 11.3K  
IMIN  
IN  
Current Monitor Ratio (Notes 6, 10)  
I
= 5mA, 25mA, 50mA, 75mA, 100mA  
LOAD  
l
l
Ratio = I /I  
95  
95  
100  
100  
105  
105  
LT3050-3.3: V  
= V , 3.9V < V < 13.3V  
OUT MON  
IMON  
OUT IN  
LT3050, LT3050-5: V  
= V , 5.6V < V < 15V  
OUT IN  
IMON  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. Absolute maximum input-to-output differential  
voltage is not achievable with all combinations of rated IN pin and OUT pin  
voltages. With the IN pin at 50V, the OUT pin may not be pulled below 0V.  
The total differential voltage from IN to OUT must not exceed 50V.  
10ꢁA to GND pin current. See the GND Pin Current curves in the Typical  
Performance Characteristics section.  
Note 8: Current limit varies inversely with the external resistor value tied  
from the I  
pin to GND. For detailed information on how to set the  
MAX  
I
pin resistor value, please see the Operation section. If a programmed  
MAX  
current limit is not needed, the I  
pin must be tied to GND and internal  
MAX  
protection circuitry implements short-circuit protection as specified.  
Note 2: The LT3050 is tested and specified under pulse load conditions  
Note 9: The I fault condition asserts if the output current falls below the  
MIN  
such that T ~ T . The LT3050E is 100ꢀ production tested at T = 25°C.  
J
A
A
I
threshold defined by an external resistor from the I  
pin to GND.  
MIN  
MIN  
Performance at –40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls. The LT3050I is  
guaranteed over the full –40°C to 125°C operating junction temperature  
range. The LT3050MP is 100ꢀ tested over the –55°C to 125°C operating  
junction temperature range.  
For detailed information on how to set the I  
pin resistor value, please  
MIN  
see the Operation section. I  
settings below the Minimum I  
Accuracy  
MIN  
MIN  
specification in the Electrical Characteristics section are not guaranteed  
to 10ꢀ tolerance. If the I fault condition is not needed, the I pin  
MIN  
MIN  
must be left floating (unconnected).  
Note 3: The LT3050 adjustable version is tested and specified for these  
conditions with ADJ pin connected to the OUT pin.  
Note 10: The current monitor ratio varies slightly when V  
detailed information on how to calculate the output current from the I  
≠ V . For  
OUT  
IMON  
MON  
Note 4: Maximum junction temperature limits operating conditions.  
Regulated output voltage specifications do not apply for all possible  
combinations of input voltage and output current. If operating at the  
maximum input voltage, limit the output current range. If operating at the  
maximum output current, limit the input voltage range.  
Note 5: Dropout voltage is the minimum differential IN-to-OUT voltage  
needed to maintain regulation at a specified output current. In dropout,  
pin, please see the Operation section. If the current monitor function is not  
needed, the I pin must be tied to GND.  
MON  
Note 11: To satisfy requirements for minimum input voltage, current limit  
is tested at V = V +1V or V = 2.2V, whichever is greater.  
IN  
OUT(NOMINAL)  
IN  
Note 12: ADJ pin bias current flows out of the ADJ pin:  
Note 13: SHDN pin current flows into the SHDN pin.  
Note 14: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the specified voltage. This current flows into the OUT pin  
and out of the GND pin.  
Note 15: 100mA of output current does not apply to the full range of input  
voltage due to the internal current limit foldback.  
Note 16: The ADJ pin cannot be externally driven for fixed output voltage  
options. LTC allows the use of a small feedforward capacitor from OUT  
to ADJ to reduce noise and improve transient response. See the Bypass  
Capacitance section of the Applications Information.  
the output voltage equals (V - V  
). For some output voltages,  
DROPOUT  
IN  
minimum input voltage requirements limit dropout voltage.  
Note 6: To satisfy minimum input voltage requirements, the LT3050  
adjustable version is tested and specified for these conditions with an  
external resistor divider (60k bottom, 440k top) which sets V  
to 5V.  
OUT  
The external resistor divider adds 10μA of DC load on the output. This  
external current is not factored into GND pin current.  
Note 7: GND pin current is tested with V = V  
+ 0.6V and  
IN  
OUT(NOMINAL)  
a current source load. GND pin current increases in dropout. For the  
fixed output voltage versions, an internal resistor divider adds about  
3050fa  
5
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Guaranteed Dropout Voltage  
Dropout Voltage  
Typical Dropout Voltage  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
=TEST POINTS  
I
= 100mA  
= 50mA  
L
I
T = 125°C  
J
T ≤ 125°C  
J
L
I
= 10mA  
T = 25°C  
J
L
T ≤ 25°C  
J
I
= 1mA  
L
0
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3050 G01  
3050 G02  
3050 G03  
Adjustable Quiescent Current  
ADJ Pin Voltage  
Output Voltage LT3050-3.3  
80  
70  
60  
50  
40  
30  
20  
10  
0
612  
610  
608  
606  
604  
602  
600  
598  
596  
594  
592  
590  
588  
3.366  
3.355  
3.344  
3.333  
3.322  
3.311  
3.300  
3.289  
3.278  
3.267  
3.256  
3.245  
3.234  
I
= 1mA  
I
= 1mA  
LOAD  
LOAD  
V
V
L
= V  
= 5V  
= 5ꢁA  
= 12V  
SHDN  
IN  
OUT  
I
V
= 12V  
IN  
ALL OTHER PINS = 0V  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G04  
3050 G05  
3050 G05a  
Output Voltage LT3050-5  
GND Pin Current LT3050-3.3  
Quiescent Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1mA  
T = 25°C  
J
LOAD  
LOAD  
I
= 10ꢁA  
R
= 33Ω, I = 100mA  
L
LT3050-5  
L
R
L
= 66Ω, I = 50mA  
L
LT3050-3.3  
R
L
= 3.3k, I = 1mA  
L
4.950  
4.925  
R
= 330Ω, I = 10mA  
L
L
V
SHDN  
= 0V, R = 0  
L
4.900  
0
1
2
3
4
5
6
7
8
9
10 11 12  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
(V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
V
IN  
3050 G07a  
3050 G06  
3050 G05b  
3050fa  
6
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
GND Pin Current LT3050-5  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 5.6V  
OUT  
I = 1mA  
L
IN  
= 5V  
R
= 50Ω, I = 100mA  
L
L
R
= 100Ω, I = 50mA  
L
OFF TO ON  
L
ON TO OFF  
R
= 5k, I = 1mA  
L
L
R
= 500Ω, I = 10mA  
L
L
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
10 20 30 40 50 60 70 80 90 100  
(mA)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
INPUT VOLTAGE (V)  
I
TEMPERATURE (°C)  
LOAD  
3050 G07  
3050 G08  
3050 G09  
SHDN Pin Input Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 45V  
SHDN  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
10  
20  
30  
40  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
3050 G10  
3050 G11  
3050 G12  
Internal Current Limit  
vs Output Voltage  
Internal Current Limit  
Internal Current Limit  
350  
300  
250  
200  
150  
100  
50  
250  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
V
V
= 12V  
= 0V  
V
– V  
= 1V  
OUT(NOMINAL)  
IN  
OUT  
IN  
T = 125°C  
J
T = 125°C  
J
50  
50  
T = 25°C  
J
T = 25°C  
J
CURRENT LIMIT  
AT FAULT  
THRESHOLD  
CURRENT LIMIT  
AT FAULT  
THRESHOLD  
T = –40°C  
J
T = –40°C  
J
25  
25  
T = –55°C  
J
T = –55°C  
J
0
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
0
5
10 15 20 25 30 35 40 45  
TEMPERATURE (°C)  
INPUT/OUTPUT DIFFERENTIAL (V)  
OUTPUT VOLTAGE (V)  
3050 G13  
3050 G14  
3050 G15  
3050fa  
7
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= V  
= 1.2V  
ADJ  
ALL PINS GROUNDED EXCEPT FOR OUT  
C
= 10nF  
= 100pF  
= 0  
OUT  
IN  
REF/BYP  
= 0  
C
C
REF/BYP  
REF/BYP  
I
ADJ  
I
= 100mA  
L
C
V
V
= 10ꢁF  
= 5V  
OUT  
OUT  
I
OUT  
= 5.8V + 50mV  
RIPPLE  
IN  
RMS  
0
0
10  
20  
V
30  
(V)  
40  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1K  
10K 100K 1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
OUT  
3050 G16  
3050 G17  
3050 G18  
Input Ripple Rejection  
Ripple Rejection vs Temperature  
Minimum Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
=100mA  
C
C
= 10ꢁF  
C
C
= 10µF  
L
OUT  
OUT  
OUT  
REF/BYP  
= 2.2ꢁF  
= 10nF  
I
= 100mA  
L
I
V
V
= 100mA  
= 5V  
IN  
C
V
V
= 100pF  
L
OUT  
REF/BYP  
= 5V  
OUT  
= 5.8V + 0.5V RIPPLE AT f = 120Hz  
= 5.8V + 50mV  
RIPPLE  
P-P  
IN  
RMS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1K  
10K 100K 1M  
10M  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3050 G19a  
3050 G19  
3050 G20  
Load Regulation  
Load Regulation  
Load Regulation  
–0  
–5  
–0  
–3  
4
3
ΔI = 1mA TO 100mA  
L
OUT  
IN  
V
V
= 0.6V  
= 2.2V  
–6  
–10  
–15  
–20  
2
–9  
–12  
1
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–25  
–30  
–35  
–40  
–45  
0
–1  
–2  
–3  
–4  
ΔI = 1mA TO 100mA  
L
ΔI = 1mA TO 100mA  
L
V
V
= 5V  
V
V
= 3.3V  
OUT  
OUT  
= 5.6V  
= 3.9V  
IN  
IN  
–50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G21b  
3050 G21a  
3050 G21  
3050fa  
8
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Output Noise Spectral Density  
CREF/BYP = 0, CFF = 0  
Output Noise Spectral Density  
vs CREF/BYP, CFF = 0  
Output Noise Spectral Density  
vs CFF, CREF/BYP = 10nF  
10  
1
10  
1
10  
1
C
= 100pF  
REF/BYP  
V
= 5V  
OUT  
C
FF  
= 0  
V
= 0.6V  
OUT  
C
= 10nF  
= 5V  
FF  
V
V
V
V
V
V
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.6V  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
C
= 10nF  
REF/BYP  
C
= 1nF  
C
= 1nF  
1k  
REF/BYP  
FF  
V
C
I
OUT  
C
I
= 10ꢁF  
= 100mA  
C
FF  
= 100pF  
10k  
C
I
= 10ꢁF  
OUT  
OUT  
L
= 10ꢁF  
OUT  
= 100mA  
= 100mA  
L
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1K  
FREQUENCY (Hz)  
10K  
100k  
10  
100  
100k  
FREQUENCY (Hz)  
3050 G22  
3050 G23  
3050 G23a  
RMS Output Noise vs Load  
Current vs CREF/BYP  
RMS Output Noise vs Load  
Current CREF/BYP = 10nF  
RMS Output Noise  
vs Feedforward Capacitor (CFF  
)
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
170  
160  
150  
140  
130  
120  
110  
100  
90  
f = 10Hz TO 100kHz  
V
C
= 0.6V  
= 10ꢁF  
f
= 10Hz TO 100kHz  
= 10ꢁF  
OUT  
OUT  
OUT  
OUT  
V
= 5V  
V
= 5V  
OUT  
OUT  
C
C
I
= 10nF  
C
C
= 0  
REF/BYP  
OUT  
REF/BYP  
V
= 3.3V  
= 10ꢁF  
OUT  
= 5ꢁA  
V
= 2.5V  
FB-DIVIDER  
L
OUT  
V
= 2.5V  
OUT  
I
= 100mA  
C
= 10pF  
V
= 3.3V  
REF/BYP  
OUT  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
C
= 100pF  
REF/BYP  
80  
70  
60  
C
= 1nF  
50  
REF/BYP  
40  
V
V
= 1.2V  
= 0.6V  
OUT  
OUT  
C
= 10nF  
30  
REF/BYP  
V
= 1.8V  
V
V
= 1.2V  
V
OUT  
= 0.6V  
OUT  
OUT  
20  
C
1
= 100nF  
REF/BYP  
= 1.5V  
10  
OUT  
0
0.01  
0.1  
10  
100  
10p  
100p  
1n  
10n  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
FEEDFORWARD CAPACITOR, C (F)  
LOAD CURRENT (mA)  
FF  
3050 G24  
3050 G25a  
3050 G25  
5V 10Hz to 100kHz Output Noise  
CREF/BYP = 10nF, CFF = 10nF  
Startup Time  
5V 10Hz to 100kHz Output Noise  
vs REF/BYP Capacitor  
C
REF/BYP = 10nF, CFF = 0  
60  
50  
40  
30  
20  
10  
0
V
V
OUT  
OUT  
100ꢁV/DIV  
100ꢁV/DIV  
3050 G27  
3050 G26  
C
LOAD  
= 10ꢁF  
= 100mA  
1ms/DIV  
C
I
= 10ꢁF  
= 100mA  
1ms/DIV  
OUT  
OUT  
LOAD  
I
0
10 20 30 40 50 60 70 80 90 100  
REF/BYP CAPACITOR (nF)  
3050 G33  
3050fa  
9
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
5V Transient Response  
CFF = 0, IOUT = 10mA to 100mA  
5V Transient Response  
Transient Response (Load Dump)  
C
FF = 10nF, IOUT = 10mA to 100mA  
V
OUT  
V
= 5V  
V
= 5V  
OUT  
OUT  
20mV/DIV  
20mV/DIV  
50mV/DIV  
45V  
12V  
I
V
I
= 5V  
= 50mA  
= 2.2ꢁF  
I
OUT  
OUT  
OUT  
OUT  
OUT  
V
50mA/DIV  
IN  
50mA/DIV  
10V/DIV  
C
3050 G29  
3050 G28b  
3050 G28a  
1ms/DIV  
V
C
= 6V  
IN  
OUT  
100ꢁs/DIV  
100ꢁs/DIV  
V
C
= 6V  
OUT  
IN  
= C = 10ꢁF  
= C = 10ꢁF  
IN  
IN  
I
= 10ꢁA  
I
= 10ꢁA  
FB-DIVIDER  
FB-DIVIDER  
SHDN Transient Response  
REF/BYP =0  
SHDN Transient Response  
REF/BYP = 10nF  
External Current Limit  
RIMAX = 2.26k  
C
C
54.0  
V
= 3.3V  
OUT  
53.6  
53.2  
52.8  
52.4  
OUT  
OUT  
5V/DIV  
5V/DIV  
I =100mA  
I
= 100mA  
V
= 13.3V  
L
L
IN  
52.0  
51.6  
51.2  
50.8  
50.4  
50.0  
49.6  
49.2  
48.8  
REF/BYP  
REF/BYP  
500mV/DIV  
500mV/DIV  
V
= 3.9V  
IN  
SHDN  
1V/DIV  
SHDN  
1V/DIV  
3050 G30  
3050 G31  
2ms/DIV  
2ms/DIV  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3050 G34a  
External Current Limit  
RIMAX = 1.5k  
External Current Limit  
RIMAX = 1.15k  
External Current Limit  
RIMAX = 2.26k  
106  
105  
104  
103  
102  
101  
81.10  
80.35  
79.60  
78.85  
78.10  
77.35  
52.8  
52.3  
51.8  
51.3  
50.8  
50.3  
49.8  
49.3  
48.8  
48.3  
47.8  
V
= 3.3V  
V
= 5V  
V
= 3.3V  
OUT  
OUT  
OUT  
V = 13.3V  
IN  
V
= 13.3V  
IN  
V
= 15V  
IN  
V
V
= 12V  
V
= 3.9V  
V
= 3.9V  
IN  
IN  
IN  
IN  
100  
99  
98  
97  
96  
76.60  
75.85  
75.10  
74.35  
73.60  
= 5.6V  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G36a  
3050 G35a  
3050 G34  
3050fa  
10  
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
External Current Limit  
RIMAX = 1.5k  
Minimum Output Current  
Threshold RIMIN = 11.3k  
External Current Limit  
RIMAX = 1.15k  
79.50  
78.75  
78.00  
77.25  
76.50  
75.75  
75.00  
74.25  
73.50  
72.75  
72.00  
11.3  
11.0  
10.7  
105  
104  
103  
102  
101  
100  
99  
V
= 5V  
V
= 5V  
V
= 3.3V  
OUT  
OUT  
OUT  
V
= 15V  
IN  
V
= 15V  
IN  
V
= 13.3V  
IN  
10.4  
10.1  
V
V
= 12V  
IN  
IN  
V
V
= 12V  
IN  
IN  
V
= 3.9V  
IN  
= 5.6V  
= 5.6V  
98  
9.8  
9.5  
9.2  
97  
96  
95  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
–25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G35  
3050 G38a  
3050 G36  
Minimum Output Current  
Threshold RIMIN = 110k  
Minimum Output Current  
Threshold RIMIN = 110k  
Minimum Output Current  
Threshold RIMIN = 11.3k  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
1.13  
1.10  
1.07  
11.00  
10.75  
10.50  
V
= 5V  
V
= 5V  
V
= 3.3V  
OUT  
OUT  
OUT  
V
= 13.3V  
IN  
V
= 15V  
10.25  
10.00  
IN  
V
= 15V  
IN  
1.04  
1.01  
V
V
= 12V  
IN  
IN  
V
V
= 12V  
IN  
IN  
= 5.6V  
V
= 3.9V  
= 5.6V  
IN  
9.75  
9.50  
9.25  
0.98  
0.95  
0.92  
9.00  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G37  
3050 G37a  
3050 G38  
IOUT/IMON Current Ratio  
VOUT = 3.3V, VIN = 12V  
IOUT/IMON Current Ratio  
VOUT = 3.3V, VIN = 3.9V  
IOUT/IMON Current Ratio  
VOUT = 3.3V, VIN = 3.9V  
103  
102  
101  
100  
99  
102  
101  
100  
99  
102  
101  
100  
99  
V
IMON  
= 3.3V  
98  
98  
98  
97  
97  
97  
96  
96  
V
IMON  
= 0V  
96  
95  
95  
V
= 0V  
V
= 0V  
IMON  
IMON  
IMON  
IMON  
IMON  
IMON  
IMON  
IMON  
95  
94  
94  
V
V
V
= 1V  
V
V
V
= 1V  
125°C  
25°C  
–55°C  
= 2V  
= 3.3V  
= 2V  
= 3.3V  
94  
93  
93  
93  
92  
92  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
I
I
I
OUT  
OUT  
OUT  
3050 G39a  
3050 G40a  
3050 G41a  
3050fa  
11  
LT3050 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
IOUT/IMON Current Ratio  
VOUT = 3.3V, VIN = 12V  
IOUT/IMON Current Ratio  
VOUT = 5V, VIN = 12V  
IOUT/IMON Current Ratio  
VOUT = 5, VIN = 5.6V  
103  
102  
101  
100  
99  
102  
101  
100  
99  
102  
101  
100  
99  
V
= 3.3V  
IMON  
V
V
= 5V  
= 4V  
IMON  
IMON  
98  
98  
98  
97  
97  
V
V
V
V
= 3V  
= 2V  
= 1V  
= 0V  
IMON  
IMON  
V
= 0V  
IMON  
97  
96  
96  
V
V
V
V
V
V
= 5V  
= 4V  
= 3V  
= 2V  
= 1V  
= 0V  
IMON  
IMON  
IMON  
IMON  
IMON  
IMON  
96  
95  
95  
IMON  
IMON  
95  
94  
94  
125°C  
25°C  
94  
93  
93  
–55°C  
93  
92  
92  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
I
75  
(mA)  
100  
125  
I
I
OUT  
OUT  
OUT  
3050 G42a  
3050 G39  
3050 G40  
I
OUT/IMON Current Ratio  
IOUT/IMON Current Ratio  
VOUT = 5V, VIN = 12V  
IOUT Calculated From IMON  
VOUT = 5V  
VOUT = 5V, VIN = 5.6V  
102  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
103  
102  
101  
100  
9
5
4
V
70 + V – V  
IN OUT  
IMON  
I
= I  
OUT MONR •  
R
70 + V – V  
IN OUT  
IMON  
V
= 5V  
IMON  
V
= 5V  
3
IMON  
(SEE OPERATION SECTION FOR DETAILS)  
2
125°C  
25°C  
1
125°C  
25°C  
–55°C  
98  
0
–55°C  
97  
–1  
–2  
–3  
–4  
–5  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
=5.6V, R  
=5.6V, R  
=5.6V, R  
=1k  
=2k  
=3k  
=1k  
=2k  
=3k  
V
= 0V  
IMON  
IMON  
IMON  
IMON  
96  
V
= 0V  
IMON  
95  
=12V, R  
=12V, R  
=12V, R  
IMON  
IMON  
IMON  
94  
93  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
I
I
I
OUT  
OUT  
OUT  
3050 G41  
3050 G42  
3050 G43  
3050fa  
12  
LT3050 Series  
PIN FUNCTIONS  
REF/BYP (Pin 1): Bypass/Soft-Start. Connecting a single  
capacitor from this pin to GND bypasses the LT3050’s  
reference noise and soft-starts the reference. A 10nF by-  
pass capacitor typically reduces output voltage noise to  
IN. The LT3050 does not function if the SHDN pin is not  
connected. The SHDN pin cannot be driven below GND  
unless tied to the IN pin. If the SHDN pin is driven below  
GND while IN is powered, the output may turn on. SHDN  
pin logic cannot be referenced to a negative rail.  
30μV  
in a 10Hz to 100kHz bandwidth. Soft-start time  
RMS  
is directly proportional to the REF/BYP capacitor value.  
If the LT3050 is placed in shutdown, REF/BYP is actively  
pulled low by an internal device to reset soft-start. If low  
noise or soft-start performance is not required, this pin  
must be left floating (unconnected). Do not drive this pin  
with any active circuitry. Because the REF/BYP pin is the  
reference input to the error amplifier, stray capacitance at  
this point should be minimized. Special attention should  
begiventoanystraycapacitancesthatcancoupleexternal  
signalsontotheREF/BYPpinproducingundesirableoutput  
transients or ripple. A minimum REF/BYP capacitance of  
100pF is recommended.  
IN (Pin 5,6):Input. These pinssupply powertothe device.  
The LT3050 requires a local IN bypass capacitor if it is  
located more than six inches from the main input filter  
capacitor. In general, battery output impedance rises  
with frequency, so adding a bypass capacitor in battery  
powered circuits is advisable. A minimum input of 1ꢁF  
generally suffices.  
OUT (Pin 7,8): Output. These pins supply power to the  
load. Stability requirements demand a minimum 2.2μF  
ceramic output capacitor to prevent oscillations. Large  
load transient applications require larger output capaci-  
tors to limit peak voltage transients. See the Applications  
Information section for details on transient response and  
reverseoutputcharacteristics. Permissibleoutputvoltage  
rangefortheadjustablevoltageversionis600mVto44.5V.  
The top of the resistor divider setting output voltage in  
the fixed 3.3V and 5V versions connects directly to OUT  
on the IC.  
I
(Pin 2): Minimum Output Current Programming  
MIN  
Pin. This pin is the collector of a PNP current mirror that  
outputs 1/200th of the power PNP load current. This pin  
is also the input to the minimum output current fault com-  
parator. Connecting a resistorbetween I  
the minimum output current fault threshold. For detailed  
information on how to set the I  
please see the Operation section.  
and GND sets  
MIN  
pin resistor value,  
MIN  
ADJ(Pin9):Adjust.Thispinistheerroramplifier’sinverting  
terminal. Its typical bias of 16nA current flows out of the  
pin (see curve of ADJ Pin Bias Current vs. Temperature  
in the Typical Performance Characteristics section). The  
typical ADJ pin voltage is 600mV referenced to GND.  
A small external decoupling capacitor (10nF minimum)  
is required to improve I PSRR. If minimum output  
MIN  
current programming is not required, the I  
be left floating (unconnected).  
pin must  
MIN  
GND (PIN 10, Exposed Pad Pin 13): Ground. The exposed  
pad of the DFN and MSOP packages is an electrical con-  
nection to GND. To ensure proper electrical and thermal  
performance, solder Pin 13 to the PCB ground and tie  
directly to Pin 10. Connect the bottom of the output volt-  
age setting resistor divider directly to GND (Pin 10) for  
optimum load regulation performance.  
FAULT (Pin 3): Fault Pin. This is an open collector logic  
pin which asserts during current limit, thermal limit or  
a minimum current fault condition. The maximum low  
logic output level is defined for sinking 100μA of current.  
Off state logic may be as high as 45V without damaging  
internal circuitry regardless of the V used.  
IN  
SHDN (Pin 4): Shutdown. Pulling the SHDN pin low puts  
the LT3050 into a low power state and turns the output  
off. Drive the SHDN pin with either logic or an open collec-  
tor/drain with a pull-up resistor. The resistor supplies the  
pull-up current to the open collector/drain logic, normally  
several microamperes, and the SHDN pin current, typi-  
cally less than 2μA. If unused, connect the SHDN pin to  
I
(Pin 11): Precision Current Limit Programming  
MAX  
Pin. This pin is the collector of a current mirror PNP that  
th  
is 1/200 the size of the output power PNP. This pin is  
also the input to the current limit amplifier. Current limit  
threshold is set by connecting a resistor between the I  
pin and GND.  
MAX  
3050fa  
13  
LT3050 Series  
PIN FUNCTIONS  
FordetailedinformationonhowtosettheI  
value, please see the Operation section.  
pinresistor  
of the power PNP current. When OUT = I  
current exactly equals 1/100 that of the output current.  
For detailed information on how to calculate the output  
, the pin  
MAX  
MON  
th  
The I  
pin requires a 10nF decoupling capacitor to  
MAX  
currentfromtheI  
pin,pleaseseetheOperationsection.  
MON  
ground. If not used, tie I  
to GND.  
MAX  
The I  
pin requires a small (22nF minimum) external  
MON  
I
(Pin 12): Output Current Monitor. This pin is the  
decoupling capacitor. If the I  
be tied to GND.  
pin is not used, it must  
MON  
MON  
th  
collector of a PNP current mirror that outputs 1/100  
BLOCK DIAGRAM  
IN  
5, 6  
R1  
D1  
OUT  
R2  
QI  
QI  
QI  
MAX  
1/200  
MIN  
MON  
1/200  
1/100  
QPOWER  
1
THERMAL/  
CURRENT LIMITS  
30k  
R4  
ADJ  
+
9
OUT  
7, 8  
Q3  
CURRENT  
LIMIT  
Q2  
100k  
R3  
R1  
AMPLIFIER  
ERROR  
AMPLIFIER  
I
MAX  
11  
12  
+
D2  
I
IDEAL  
DIODE  
D3  
MON  
I
MIN  
COMPARATOR  
100k  
R2  
+
I
MIN  
600mV  
REFERENCE  
SHDN  
2
3
+
4
FAULT  
U1  
QFAULT  
GND  
10, 13  
REF/BYP  
1
3050 BD01  
FIXED V  
3.3V  
R1  
60k  
60k  
R2  
OUT  
270k  
440k  
5V  
3050fa  
14  
LT3050 Series  
OPERATION  
I
Pin Operation (Current Monitor)  
A small decoupling capacitor (22nF minimum) from I  
MON  
MON  
to GND is required to improve I  
pin power supply  
MON  
The I  
pin is the collector of a PNP which mirrors the  
MON  
rejection. If the current monitor is not needed, it must be  
tied to GND.  
LT3050 output PNP at a ratio of 1:100 (see block diagram  
on page 11). The current sourced by the I  
pin is  
MON  
th  
~1/100 of the current sourced by the OUT pin when the  
Open Circuit Detection (I  
Pin)  
MIN  
I
and OUT pin voltages are equal and the device is not  
MON  
The I  
pin is the collector of a PNP which mirrors the  
operating in dropout. If the I  
and OUT pin voltages  
MIN  
MON  
LT3050 output at a ratio of approximately 1:200 (see block  
diagram on page 11). The I fault comparator asserts  
are not the same, the ratio deviates from 1/100 due to  
the Early voltages of the I  
to the equation:  
and OUT PNPs according  
MIN  
MON  
the FAULT pin if the I  
pin voltage is below 0.6V. This  
MIN  
low output current fault threshold voltage (I  
) is set  
OPEN  
¥
´
I
70V V  
1
by attaching a resistor from I  
to GND.  
IMON  
IN  
¦
IMON µ  
MIN  
v
IOUT IMONR  
70V V  
IN OUT  
§
119.85(1.68 – 36.8 •IOPEN )VOUT  
IOPEN  
144424443  
RIMIN  
=
Early Voltage Compensation  
where the Early voltage of the PNPs is 70V and I  
is  
MONR  
current ratio.  
This equation is empirically derived and partially  
compensates for early voltage effects in the I current  
a variable which represents the I  
to I  
OUT  
MON  
I
varies with V to V  
voltage according to the  
MIN  
MONR  
IN  
OUT  
mirror. It is valid for an input voltage range from 0.6V  
above the output to 10V above the output. It is valid for  
output voltages up to 12V. The accuracy of this equation  
for setting the resistor value is approximately 2ꢀ. Unit  
values are Amps, Volts, and Ohms.  
empirically derived equation:  
= 97 + 5 • log (1+V – V ) for (V – V )  
OUT  
I
MONR  
≥0.5  
10  
IN  
OUT  
IN  
I
= 96 + 2 • (V – V ) for (V – V ) < 0.5  
IN OUT IN OUT  
MONR  
The I  
pin current can be converted into a voltage for  
Iftheopencircuitdetectionfunctionisnotneeded,theI  
MIN  
MON  
use by monitoring circuitry simply by connecting the I  
pin to a resistor.  
pinmustbeleftoating(unconnected).Asmalldecoupling  
capacitor (10nF minimum) from I to GND is required  
MON  
MIN  
to improve I  
pin power supply rejection and to prevent  
MIN  
Connecting a resistor from I  
to GND converts the  
MON  
FAULT pin glitches.  
I
pin current into a voltage that can be monitored by  
MON  
circuitry such as an ADC.  
See the Typical Performance Characteristics section for  
additional information.  
For example, a 1.2k resistor results in a I  
pin voltage  
MON  
of 1.2V for an output current of 100mA and an output  
voltage of 1.2V.  
The output current of the device can be calculated from  
the I  
pin voltage by the following equation:  
MON  
¥
´
V
70V VOUT  
IMON  
IN  
IOUT IMONR  
v
v
¦
µ
{
OUT  
RIMON  
70V V  
§
IN  
IMON  
123  
144424443  
I
Ratio  
I
Early VoltageCompensation  
IMON  
I
MON  
3050fa  
15  
LT3050 Series  
OPERATION  
External Programmable Current Limit (I  
See the Typical Performance Characteristics section for  
additional information.  
Pin)  
MAX  
The I  
pin is the collector of a PNP which mirrors the  
MAX  
LT3050outputataratioofapproximately1:200(seeBlock  
Diagram). The I pin is also the input to the precision  
FAULT Pin Operation  
MAX  
The FAULT pin is an open collector logic pin which asserts  
during internal current limit, precision current limit, ther-  
mal limit, or a minimum current fault. There is no internal  
pull-up on the FAULT pin; an external pull-up resistor is  
required. The FAULT pin provides drive for up to 100μA  
of pull-down current. Off state logic may be as high as  
45V, regardless of the input voltage used. When asserted,  
the FAULT pin drive circuitry adds 50μA (nominal) of GND  
pin current.  
current limit amplifier. If the output load increases to the  
point where it causes the I pin voltage to reach 0.6V,  
MAX  
the current limit amplifier takes control of output regula-  
tion so that the I pin clamps at 0.6V, regardless of the  
MAX  
output voltage. The current limit threshold (I  
by attaching a resistor (R  
) is set  
LIMIT  
to GND:  
) from I  
IMAX  
MAX  
119.220.894VOUT  
RIMAX  
=
ILIMIT  
Depending on the I  
capacitance, BYP capacitance,  
This equation is empirically derived and partially compen-  
sates for early voltage effects in the I current mirror.  
It is valid for an input voltage range from 0.6V above the  
output to 10V above the output. It is valid for output volt-  
ages up to 12V. The accuracy of this equation for setting  
the resistor value is approximately 1ꢀ. Unit values are  
Amps, Volts, and Ohms.  
MIN  
and OUT capacitance, the FAULT pin may assert during  
startup. Consideration should be given to masking the  
FAULT signal during startup. The FAULT pin circuitry is  
inactive (not asserted) during shutdown and when the  
OUT pin is pulled above the IN pin.  
MAX  
Operation in Dropout  
In cases where the IN to OUT voltage exceeds 10V, fold-  
back current limit will lower the internal current level limit,  
possibly causing it to preempt the external programmable  
The LT3050 contains circuitry which prevents the PNP  
output power device from saturating in dropout. This also  
keepstheI  
, I , andI  
MON MIN  
currentmirrorsfunctioning  
current limit. See the Internal Current Limit vs V – V  
MAX  
IN  
OUT  
accurately, even in dropout. However, this anti-saturation  
circuitry becomes less active at lower output currents, so  
there is some degradation of current mirror function for  
output currents less than 10mA.  
graph in the Typical Performance Characteristics section.  
If the external programmable current limit is not needed,  
the I  
pin must be connected to GND. The I  
pin  
MAX  
MAX  
requires a 10nF decoupling capacitor.  
3050fa  
16  
LT3050 Series  
APPLICATIONS INFORMATION  
The LT3050 is a micropower, low noise and low dropout  
voltage,100mAlinearregulatorwithmicropowershutdown,  
programmablecurrentlimit,anddiagnosticfunctions.The  
device supplies up to 100mA at a typical dropout voltage  
of 340mV and operates over a 2.2V to 45V input range.  
referenced to ground. The current in R1 is then equal to  
0.6V/R1, and the current in R2 is the current in R1 minus  
the ADJ pin bias current.  
V
IN  
OUT  
LT3050  
OUT  
Asingleexternalcapacitorcanprovidelownoisereference  
performance and output soft-start functionality. For  
example,connectinga10nFcapacitorfromtheREF/BYPpin  
V
R2  
R1  
IN  
SHDN ADJ  
GND  
to GND lowers output noise to 30μV  
over a 10Hz to  
RMS  
3050 F01  
100kHz bandwidth. This capacitor also soft-starts the  
reference and prevents output voltage overshoot at turn-on.  
R2  
R1  
V
OUT = 0.6V 1+  
– I  
(
R2  
ADJ  
)
The LT3050’s quiescent current is merely 45μA but  
provides fast transient response with a minimum low ESR  
2.2μF ceramic output capacitor. In shutdown, quiescent  
current is less than 1μA and the reference soft-start  
capacitor is reset.  
V
ADJ = 0.6V  
ADJ = 16nA at 25°C  
OUTPUT RANGE = 0.6V to 44.5V  
I
Figure 1. Adjustable Operation  
The LT3050 optimizes stability and transient response  
with low ESR, ceramic output capacitors. The regulator  
does not require the addition of ESR as is common with  
other regulators. The LT3050 typically provides 0.1ꢀ line  
regulation and 0.1ꢀ load regulation. Internal protection  
circuitry includes reverse-battery protection, reverse-  
outputprotection,reverse-currentprotection,currentlimit  
with fold-back and thermal shutdown.  
The ADJ pin bias current, 16nA at 25°C, flows from the  
ADJ pin through R1 to GND. Calculate the output voltage  
using the formula in Figure 1. The value of R1 should be  
no greater than 124k to provide a minimum 5μA load  
current so that output voltage errors, caused by the ADJ  
pin bias current, are minimized. Note that in shutdown,  
the output is turned off and the divider current is zero.  
CurvesofADJPinVoltagevsTemperatureandADJPinBias  
CurrentvsTemperatureappearintheTypicalPerformance  
Characteristics Section.  
This “bullet-proof” protection set makes it ideal for use in  
battery-powered, automotive and industrial systems.  
In battery backup applications where the output is held  
up by a backup battery and the input is pulled to ground,  
the LT3050 acts like it has a diode in series with its output  
and prevents reverse current flow.  
The LT3050 is tested and specified with the ADJ pin tied  
to the OUT pin, yielding V  
= 0.6V. Specifications for  
OUT  
output voltages greater than 0.6V are proportional to the  
Adjustable Operation  
ratio of the desired output voltage to 0.6V: V /0.6V. For  
OUT  
example, load regulation for an output current change  
The adjustable LT3050 has an output voltage range of  
0.6V to 44.5V. The output voltage is set by the ratio of  
two external resistors, as shown in Figure 1. The device  
servos the output to maintain the ADJ pin voltage at 0.6V  
of 1mA to 100mA is –0.2mV (typical) at V  
= 0.6V.  
OUT  
at V  
= 12V, load regulation is:  
OUT  
12V  
0.6V  
–0.2mV = – 4mV  
(
)
3050fa  
17  
LT3050 Series  
APPLICATIONS INFORMATION  
Table1shows1resistordividervaluesforsomecommon  
output voltages with a resistor divider current of 5ꢁA.  
Using a feedforward capacitor (C ) from V  
to the ADJ  
OUT  
FF  
pin has the added benefit of improving transient response  
foroutputvoltagesgreaterthan0.6V. Withnofeedforward  
capacitor, the settling time will increase as the output  
voltage is raised above 0.6V. Use the equation in Figure 2  
Table 1. Output Voltage Resistor Divider Valves  
V
(V)  
R1 (kΩ)  
118  
R2 (kΩ)  
118  
OUT  
1.2  
to determine the minimum value of C to achieve a  
FF  
1.5  
1.8  
2.5  
3
121  
182  
transient response that is similar to 0.6V output voltage  
performance regardless of the chosen output voltage  
(See Figure 3 and Transient Response in the Typical Perf-  
ormance Characteristics section).  
124  
249  
115  
365  
124  
499  
3.3  
5
124  
562  
During start-up, the internal reference will soft-start if a  
reference bypass capacitor is present. Regulator start-  
up time is directly proportional to the size of the bypass  
capacitor, slowing to 6ms with a 10nF bypass capacitor  
(See Start-up Time vs REF/BYP Capacitor in the Typical  
Performance Characteristics section). The reference by-  
pass capacitor is actively pulled low during shutdown to  
reset the internal reference.  
115  
845  
Bypass Capacitance, Output Voltage Noise and  
Transient Response  
The LT3050 regulator provides low output voltage noise  
over the 10Hz to 100kHz bandwidth while operating at  
full load with the addition of a reference bypass capacitor  
(C  
) from the REF/BYP pin to GND. A good quality,  
REF/BYP  
lowleakagecapacitorisrecommended. Thiscapacitorwill  
bypass the internal reference of the regulator, providing a  
IN  
OUT  
V
OUT  
lowfrequencynoisepole.Withtheuseof10nFforC  
REF/BYP,  
C
C
OUT  
V
FF  
LT3050-5  
IN  
the output voltage noise decreases to as low as 30ꢁV  
RMS  
SHDN  
ADJ  
when the output voltage is set for 0.6V. For higher output  
voltages (generated by using a feedback resistor divider),  
the output voltage noise gains up accordingly when using  
GND REF/BYP  
10nF  
10ꢁA  
CFF  
IFB  
I  
FB DIVIDER  
(
)
C
REF/BYP  
VOUT  
=
10ꢁA FOR FIXED V  
(
)
DIVIDER  
OUT  
R1+R2  
C
by itself.  
3050 F02  
REF/BYP  
Figure 2. Feedforward Capacitor for Fast Transient Response  
Tolowertheoutputvoltagenoiseforhigheroutputvoltages,  
include a feedforward capacitor (C ) from V to the  
FF  
OUT  
ADJ pin. A good quality, low leakage capacitor is recom-  
mended. This capacitor will bypass the error amplifier of  
the regulator, providing a low frequency noise pole. With  
V
C
= 5V  
OUT  
OUT  
= 10ꢁF  
I
= 10ꢁA  
FB-DIVIDER  
0
the use of 10nF for both C and C  
, output voltage  
FF  
RMS  
REF/BYP  
when the output voltage is  
noise decreases to 30ꢁV  
100pF  
1nF  
set to 5V by a 5ꢁA feedback resistor divider. If the current  
in the feedback resistor divider is doubled, C must also  
FF  
10nF  
be doubled to achieve equivalent noise performance.  
LOAD CURRENT  
100mA/DIV  
Highervaluesofoutputvoltagenoiseareoftenmeasuredif  
care is not exercised with regard to circuit layout and test-  
ing. Crosstalkfromnearbytracesinducesunwantednoise  
onto the LT3050’s output. Power supply ripple rejection  
must also be considered. The LT3050 regulator does not  
have unlimited power supply rejection and passes a small  
portion of the input noise through to the output.  
3050 F03  
100ꢁs/DIV  
Figure 3. Transient Response vs Feedforward Capacitor  
3050fa  
18  
LT3050 Series  
APPLICATIONS INFORMATION  
Start-up time is also affected by the presence of a feed-  
forward capacitor. Start-up time is directly proportional to  
the size of the feedforward capacitor and the output volt-  
age, and is inversely proportional to the feedback resistor  
divider current, slowing to 15ms with a 4.7nF feedforward  
capacitoranda10ꢁFoutputcapacitorforanoutputvoltage  
set to 5V by a 5ꢁA feedback resistor divider.  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics, each with different behavior across tempera-  
ture and applied voltage. The most common dielectrics  
are specified with EIA temperature characteristic codes  
of Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
butexhibitstrongvoltageandtemperaturecoefficients, as  
shown in Figures 4 and 5. When used with a 5V regulator,  
a 16V 10μF Y5V capacitor can exhibit an effective value  
as low as 1μF to 2μF for the DC bias voltage applied, and  
over the operating temperature range. The X5R and X7R  
dielectrics yield much more stable characteristics and are  
more suitable for use as the output capacitor.  
Output Capacitance  
The LT3050 regulator is stable with a wide range of output  
capacitors.TheESRoftheoutputcapacitoraffectsstability,  
mostnotablywithsmallcapacitors.Useaminimumoutput  
capacitor of 2.2ꢁF with an ESR of 3Ω or less to prevent  
oscillations. If a feedforward capacitor is used with output  
voltages set for greater than 24V, use a minimum output  
capacitor of 4.7ꢁF. The LT3050 is a micropower device  
and output load transient response is a function of output  
capacitance. Larger values of output capacitance decrease  
the peak deviations and provide improved transient re-  
sponseforlargerloadcurrentchanges. Bypasscapacitors,  
used to decouple individual components powered by the  
LT3050, increase the effective output capacitor value. For  
applications with large load current transients, a low ESR  
ceramic capacitor in parallel with a bulk tantalum capacitor  
often provides an optimally damped response.  
The X7R type works over a wider temperature range and  
has better temperature stability, while the X5R is less  
expensive and is available in higher values. Care still must  
beexercisedwhenusingX5RandX7Rcapacitors;theX5R  
and X7R codes only specify operating temperature range  
and maximum capacitance change over temperature.  
Capacitance change due to DC bias with X5R and X7R  
capacitors is better than Y5V and Z5U capacitors, but can  
still be significant enough to drop capacitor values below  
appropriate levels. Capacitor DC bias characteristics tend  
toimproveascomponentcasesizeincreases,butexpected  
capacitance at operating voltage should be verified.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10ꢁF  
0
40  
20  
X5R  
–20  
X5R  
0
–20  
–40  
–60  
–40  
Y5V  
Y5V  
–60  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10ꢁF  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3050 F04  
3050 F05  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
Figure 5. Ceramic Capacitor Temperature Characteristics  
3050fa  
19  
LT3050 Series  
APPLICATIONS INFORMATION  
a heavy output load when the input voltage is high and the  
outputvoltageislow.Commonsituationsare:immediately  
after the removal of a short-circuit or if the shutdown pin  
is pulled high after the input voltage is already turned on.  
The load line for such a load intersects the output cur-  
rent curve at two points. If this happens, there are two  
stable output operating points for the regulator. With this  
double intersection, the input power supply needs to be  
cycled down to zero and brought up again to make the  
output recover.  
V
C
C
= 5V  
OUT  
OUT  
= 10ꢁF  
= 10nF  
REF/BYP  
V
OUT  
1mV/DIV  
3050 F06  
10ms/DIV  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
Thermal Considerations  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phoneworks.Foraceramiccapacitor,thestressisinduced  
by vibrations in the system or thermal transients. The  
resulting voltages produced cause appreciable amounts  
of noise. A ceramic capacitor produced the trace in  
Figure 6 in response to light tapping from a pencil. Similar  
vibration induced behavior can masquerade as increased  
output voltage noise.  
The LT3050’s maximum rated junction temperature of  
125°Climitsitspowerhandlingcapability.Twocomponents  
comprise the power dissipated by the device:  
1. Output current multiplied by the input/output  
voltage differential: I  
• (V – V ), and  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
I
GND  
IN  
GND pin current is determined using the GND Pin Current  
curvesintheTypicalPerformanceCharacteristicssection.  
Power dissipation equals the sum of the two components  
listed above.  
Overload Recovery  
The LT3050 regulator has internal thermal limiting that  
protects the device during overload conditions. For con-  
tinuous normal conditions, do not exceed the maximum  
junction temperature of 125°C. Carefully consider all  
sources of thermal resistance from junction-to-ambient  
including other heat sources mounted in proximity to the  
LT3050.  
Like many IC power regulators, the LT3050 has safe oper-  
ating area protection. The safe area protection decreases  
current limit as input-to-output voltage increases, and  
keeps the power transistor inside a safe operating region  
for all values of input-to-output voltage. The LT3050 pro-  
vides some output current at all values of input-to-output  
voltage up to the device breakdown.  
The undersides of the LT3050 DFN and MSOP packages  
have exposed metal from the lead frame to the die attach-  
ment. These packages allow heat to directly transfer from  
thediejunctiontotheprintedcircuitboardmetaltocontrol  
maximumoperatingjunctiontemperature.Thedual-in-line  
pin arrangement allows metal to extend beyond the ends  
of the package on the topside (component side) of a PCB.  
Connect this metal to GND on the PCB. The multiple IN  
and OUT pins of the LT3050 also assist in spreading heat  
to the PCB.  
Whenpowerisrstapplied, theinputvoltagerisesandthe  
output follows the input; allowing the regulator to start-up  
intoveryheavyloads. Duringstart-up, astheinputvoltage  
is rising, the input-to-output voltage differential is small,  
allowing the regulator to supply large output currents.  
With a high input voltage, a problem can occur wherein  
the removal of an output short will not allow the output  
to recover. Other regulators, such as the LT1083/LT1084/  
LT1085familyandLT1764Aalsoexhibitthisphenomenon,  
so it is not unique to the LT3050. The problem occurs with  
3050fa  
20  
LT3050 Series  
APPLICATIONS INFORMATION  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes also can spread the heat generated by  
power devices. The following tables list thermal resis-  
tance as a function of copper area in a fixed board size.  
All measurements were taken in still air on a four-layer  
FR-4 board with one ounce solid internal planes and two  
ounce external trace planes with a total board thickness  
of 1.6mm. For further information on thermal resistance  
and using thermal information, refer to JEDEC standard  
JESD51, notably JESD51-12.  
The power dissipated by the device equals:  
* (V – V ) + I * V  
IN(MAX)  
I
OUT(MAX)  
IN(MAX)  
OUT  
GND  
where,  
I
= 75mA  
= 12.6V  
OUT(MAX)  
V
IN(MAX)  
I
at (I = 75mA, V = 12V) = 1.5mA  
OUT IN  
GND  
So,  
P = 75mA • (12.6V - 5V) + 1.5mA • 12.6V = 0.589W  
Using a DFN package, the thermal resistance ranges from  
44°C/W to 49°C/W depending on the copper area. So the  
junction temperature rise above ambient approximately  
equals:  
Table 1. MSOP Measured Thermal Resistance  
COPPER AREA  
BOARD  
AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE  
BACKSIDE  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
100 sq mm 2500 sq mm 2500 sq mm  
40°C/W  
41°C/W  
43°C/W  
45°C/W  
0.589W • 49°C/W = 28.86°C  
The maximum junction temperature equals the maximum  
ambienttemperatureplusthemaximumjunctiontempera-  
ture rise above ambient or:  
Table 2. DFN Measured Thermal Resistance  
T
= 85°C + 28.86°C = 113.86°C  
JMAX  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
Protection Features  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
44°C/W  
The LT3050 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, the device also protects against reverse-input  
voltages, reverse-output voltages and reverse output-to-  
input voltages.  
45°C/W  
47°C/W  
49°C/W  
Calculating Junction Temperature  
Example: Given an output voltage of 5V, an input voltage  
range of 12V 5ꢀ, a maximum output current range of  
75mAandamaximumambienttemperatureof85°C, what  
will the maximum junction temperature be?  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. For normal operation, do not  
exceed a junction temperature of 125°C.  
3050fa  
21  
LT3050 Series  
APPLICATIONS INFORMATION  
TheLT3050INpinwithstandsreversevoltagesof50V. The  
devicelimitscurrentowtolessthan300μA(typicallyless  
than 10μA) and no negative voltage appears at OUT. The  
device protects both itself and the load against batteries  
that are plugged in backwards.  
the output can be pulled below ground by 50V. No cur-  
rent flows through the pass transistor from the output.  
However, current flows in (but is limited by) the resistor  
divider that sets the output voltage. Current flows from  
the bottom resistor in the divider and from the ADJ pin’s  
internal clamp through the top resistor in the divider to  
the external circuitry pulling OUT below ground. If the  
input is powered by a voltage source, the output sources  
current equal to its current limit capability and the LT3050  
protects itself by thermal limiting. In this case, grounding  
the SHDN pin turns off the device and stops the output  
from sourcing current.  
The SHDN pin cannot be driven below GND unless tied  
to the IN pin. If the SHDN pin is driven below GND while  
IN is powered, the output may turn on. SHDN pin logic  
cannot be referenced to a negative rail.  
The LT3050 incurs no damage if its output is pulled be-  
low ground. If the input is left open-circuit or grounded,  
1.0  
ALL PINS GROUNDED EXCEPT FOR OUT  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
10  
20  
V
30  
(V)  
40  
50  
OUT  
3050 F07  
Figure 7. Reverse Output Current  
3050fa  
22  
LT3050 Series  
PACKAGE DESCRIPTION  
DDB Package  
12-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1723 Rev Ø)  
0.64 0.05  
(2 SIDES)  
R = 0.115  
TYP  
7
0.40 0.10  
12  
3.00 0.10  
(2 SIDES)  
R = 0.05  
TYP  
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 s 45°  
PACKAGE  
OUTLINE  
0.64 0.10  
(2 SIDES)  
0.23 0.05  
CHAMFER  
6
1
(DDB12) DFN 0106 REV Ø  
0.25 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
0.45 BSC  
2.39 0.05  
(2 SIDES)  
2.39 0.10  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3050fa  
23  
LT3050 Series  
PACKAGE DESCRIPTION  
MSE Package  
12-Lead Plastic MSOP Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev B)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 p 0.102  
(.112 p .004)  
2.845 p 0.102  
(.112 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
6
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 p 0.102  
(.065 p .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
12  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
7
NO MEASUREMENT PURPOSE  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 p .003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
0o – 6o TYP  
4.90 p 0.152  
(.193 p .006)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MSE12) 0608 REV B  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3050fa  
24  
LT3050 Series  
REVISION HISTORY  
REV  
DATE DESCRIPTION  
PAGE NUMBER  
A
6/10 Updated data sheet to include fixed voltage options.  
1-14, 17-26  
3050fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT3050 Series  
TYPICAL APPLICATION  
5V Protected Antenna Supply with 100mA Current Limit, 10mA IMIN  
IN  
OUT  
5V  
C
FF  
12V  
IN  
1ꢁF  
10ꢁF  
SHDN  
FAULT  
120k  
10nF  
V
ADJ  
LT3050-5  
I
MAX  
1.15k  
I
10nF  
TO ꢁP ADC  
MON  
(THRESHOLD = 100mA)  
3k  
0.1ꢁF  
(ADC FULL SCALE = 3V)  
I
MIN  
REF/BYP  
GND  
11.3k  
0.1ꢁF  
10nF  
(THRESHOLD = 10mA)  
3050 TA02  
RELATED PARTS  
PART  
DESCRIPTION  
NUMBER  
COMMENTS  
LT1761  
LT1762  
LT1763  
LT1962  
100mA, Low Noise LDO  
150mA, Low Noise LDO  
500mA, Low Noise LDO  
300mA, Low Noise LDO  
300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, ThinSOT Package  
RMS IN  
300mV Dropout Voltage, Low Noise: 20μV  
300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
, V = 1.8V to 20V, SO-8 Package  
RMS IN  
270mV Dropout Voltage, Low Noise: 20μV  
340mV Dropout Voltage, Low Noise: 40μV  
Ceramic Capacitors, TO-220, DD-PAK, SOT-223 and SO-8 Packages  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
LT1963/A 1.5A Low Noise, Fast Transient  
Response LDO  
, V = 2.5V to 20V, “A” Version Stable with  
RMS IN  
LT1965  
1.1A, Low Noise, Low Dropout Linear  
Regulator  
290mV Dropout Voltage, Low Noise: 40μV , V : 1.8V to 20V, V : 1.2V to 19.5V, Stable  
RMS IN  
OUT  
with Ceramic Capacitors, TO-220, DD-PAK, MSOP and 3 × 3 DFN Packages  
LT3008  
20mA, 45V, 3ꢁA I Micropower LDO  
300mV Dropout Voltage, Low I : 3μA, V = 2.0V to 45V, V = 0.6V to 39.5V; ThinSOT and  
Q
Q
IN  
OUT  
2mm × 2mm DFN-6 Packages  
LT3009  
LT3010  
20mA, 3ꢁA I Micropower LDO  
Q
280mV Dropout Voltage, Low I : 3μA, V = 1.6V to 20V, ThinSOT and SC-70 Packages  
Q
IN  
50mA, High Voltage, Micropower LDO V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 30μA, ISD < 1μA, Low Noise: <100μV  
,
IN  
OUT  
Q
RMS  
Stable with 1μF Output Capacitor, Exposed MS8 Package  
LT3011  
LT3012  
LT3013  
50mA, High Voltage, Micropower LDO V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 46μA, ISD < 1μA, Low Noise: <100μV  
,
IN  
OUT  
Q
RMS  
with PWRGD  
Power Good, Stable with 1μF Output Capacitor, 3 × 3 DFN-10 and Exposed MS12E Packages  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 40μA, ISD < 1μA, TSSOP-16E and  
IN  
OUT  
Q
4mm × 3mm DFN-12 Packages  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator with  
PWRGD  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 65μA, ISD < 1μA, Power Good feature;  
IN  
OUT  
Q
TSSOP-16E and 4mm × 3mm DFN-12 Packages  
LT3014/HV 20mA, 3V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 3V to 80V (100V for 2ms, “HV” version), V : 1.22V to 60V, VDO = 0.35V, I = 7μA, ISD <  
IN  
OUT  
Q
1μA, ThinSOT and 3mm × 3mm DFN-8 Packages  
LT3060  
100mA, Low Noise LDO with Soft Start 300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 45V, DFN Package  
RMS IN  
LT3080/-1 1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mV Dropout Voltage (2-supply operation), Low Noise: 40μV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
set; Directly Parallelable (no op amp  
OUT  
required), Stable with Ceramic Caps, TO-220, SOT-223, MSOP and 3mm × 3mm DFN Packages;  
“–1” Version has Integrated Internal Ballast Resistor  
LT3085  
500mA, Parallelable. Low Noise, Low  
Dropout Linear Regulator  
275mV Dropout Voltage (2-supply operation), Low Noise: 40ꢁV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
set; Directly Parallelable (no op amp  
OUT  
required), Stable with Ceramic Caps, MSOP-8 and 2mm × 3mm DFN Packages  
3050fa  
LT 0610 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY