LT1944 [Linear]

1.4A, 1.5MHz Synchronous Step-Up DC/DC Converter with Output Disconnect; 1.4A , 1.5MHz的同步升压型DC / DC转换器输出断接
LT1944
型号: LT1944
厂家: Linear    Linear
描述:

1.4A, 1.5MHz Synchronous Step-Up DC/DC Converter with Output Disconnect
1.4A , 1.5MHz的同步升压型DC / DC转换器输出断接

转换器
文件: 总16页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3458  
1.4A, 1.5MHz Synchronous  
Step-Up DC/DC Converter  
with Output Disconnect  
U
FEATURES  
DESCRIPTIO  
The LTC®3458 is a high efficiency, current mode, fixed  
frequency, step up DC/DC converter with true output  
disconnect and inrush current limiting. The LTC3458 is  
rated for a 7.5V output and includes a 0.3N-channel  
MOSFET switch and a 0.4P-channel MOSFET synchro-  
nous rectifier. The LTC3458 is well suited for battery  
powered applications and includes programmable output  
voltage, switching frequency and loop compensation. The  
oscillator frequency can be set up to 1.5MHz or synchro-  
nized to an external clock.  
High Efficiency: Up to 93%  
Inrush Current Limiting and Output Disconnect  
Programmable Output Voltages up to 7.5V  
1.5V to 6V Input Range  
Programmable/Synchronizable Fixed Frequency  
Operation up to 1.5MHz  
Programmable Automatic Burst Mode® Operation  
Current Mode Control with Programmable Soft-Start  
Period and Peak Current Limit  
700mA at 7V from 5V Input  
0.3N-Channel and 0.4P-Channel 1.4A Switches  
Quiescent current is only 15µA during Burst Mode opera-  
tion maximizing battery life in portable applications. The  
BurstModecurrentthreshold,peakcurrentlimit,andsoft-  
start are externally programmable. Other features include  
<1µA shutdown current, antiringing control, and thermal  
limit. The LTC3458 is available in a low profile (0.75mm),  
3mm × 4mm 12-pin DFN package.  
at 5VOUT  
Ultralow Quiescent Currents: 15µA Sleep, <1µA in  
Shutdown  
3mm × 4mm Thermally Enhanced DFN Package  
U
APPLICATIO S  
Point-of-Load Regulators  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
USB VBUS Power  
LCD Bias  
OLED Displays  
U
TYPICAL APPLICATIO  
USB to 7V at 1MHz  
COEV  
10µH  
DQ7545  
USB to 7VOUT  
1000  
100  
95  
90  
85  
80  
75  
70  
SW  
V
IN  
USB  
4.35V to 5.25V  
5.25V  
IN  
LTC3458  
2.2µF  
V
OUT  
V
GND/PGND  
SHDN  
7V  
OUT  
FB  
4.35V  
500mA  
IN  
10pF  
1.5M  
316k  
10  
ON OFF  
POWER LOSS  
COMP  
SS  
SYNC  
0.01µF  
33k  
R
I
T
22µF  
X5R  
0.01µF  
10pF  
0.1  
1000  
BURST  
0.1  
1
10  
100  
LIM  
LOAD CURRENT (mA)  
560pF  
200k 124k  
133k  
3458 TA01b  
3458 TA01a  
3458f  
1
LTC3458  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
VIN, SS, SYNC Voltages ................................. –0.3 to 7V  
BURST, SHDN, VOUT Voltages ....................... –0.3 to 8V  
Operating Temperature Range  
(Notes 2, 3) .........................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
SW Voltage  
SW  
1
2
3
4
5
6
12 V  
OUT  
V
11 BURST  
10 SS  
IN  
LTC3458EDE  
SYNC  
SHDN  
13  
9
8
7
GND  
COMP  
FB  
I
LIM  
R
T
DE PART MARKING  
3458  
DC ........................................................... –0.3V to 8V  
Pulsed <100ns ...................................... –0.3V to 10V  
DE12 PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
EXPOSED PAD IS PGND (PIN 13),  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 45°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 5V, RT = 200k, unless otherwise noted.  
PARAMETER  
CONDITIONS  
T = 0°C to 85°C  
T = –40°C to 0°C  
A
MIN  
TYP  
MAX  
UNITS  
Minimum V Operating Voltage  
1.4  
1.4  
1.5  
1.7  
V
V
IN  
A
Output Voltage Adjust Range  
Feedback Voltage  
2.0  
7.5  
V
0°C to 85°C, V  
–40°C to 0°C  
= 3.3V  
1.21  
1.20  
1.23  
1.25  
1.25  
V
V
OUT  
Undervoltage (Exit Burst Mode Operation)  
Feedback Input Current  
Below Feedback Voltage  
–4%  
1
V
V
= 1.23V  
50  
nA  
FB  
Quiescent Current - Burst Mode Operation  
V
V
Current at 3.3V  
15  
5
30  
10  
µA  
µA  
IN  
Current at 5V  
OUT  
Quiescent Current - Shutdown  
V
V
Current at 3.3V  
0.5  
1
1
3
µA  
µA  
IN  
Current at 0V  
OUT  
Quiescent Current - Active  
NMOS Switch Leakage  
PMOS Switch Leakage  
NMOS Switch On Resistance  
PMOS Switch On Resistance  
Fixed NMOS Current Limit  
Maximum Duty Cycle  
V
Current Switching  
1
3
5
5
mA  
µA  
µA  
IN  
0.05  
0.05  
0.3  
0.4  
1.6  
90  
V
V
= 5V  
OUT  
OUT  
= 5V  
R
= 124k  
1.4  
80  
A
ILIM  
V
= 3.3V, f  
= 1MHz  
OSC  
%
IN  
Minimum Duty Cycle  
0
%
Frequency Accuracy  
R = 200k  
0.85  
1
100  
7
1.15  
MHz  
µA/V  
µA  
µA  
V
T
Error Amplifier Transconductance  
Error Amplifier Source Current  
Error Amplifier Sink Current  
SYNC Input High  
7
1.5  
SYNC Input Low  
0.35  
V
3458f  
2
LTC3458  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 5V, RT = 200k, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SHDN Input High  
1.25  
V
V
A
V
SHDN Input Low  
0.3  
BURST Mode Peak Current  
BURST Threshold Voltage  
R
ILIM  
= 124k  
0.4  
1.10  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 2: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Note 3: The LTC3458 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
U W  
(TA = 25°C unless otherwise specified)  
TYPICAL PERFOR A CE CHARACTERISTICS  
ILIMIT, IBURST, TZERO Currents  
Current Limit Accuracy  
Burst Mode Quiescent Current  
20  
15  
10  
5
2000  
1800  
1600  
1400  
1200  
1000  
800  
1.8  
1,7  
1.6  
V
V
= 3.3V  
OUT  
R
ILIMIT  
= 124k  
IN  
= 5V  
I
LIMIT  
I
V
OUT  
= 7V  
VIN  
L = 10µH  
= 124k  
R
ILIM  
600  
I
BURST PEAK  
400  
1.5  
1.4  
I
VOUT  
200  
I
ZERO  
0
0
–200  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
–40  
–15  
10  
35  
60  
85  
–45 –30 –15  
0
15 30 45 60 75 90  
V
IN  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3458 G01  
3458 G02  
3458 G03  
Typical Burst Mode Threshold and  
Hysteresis vs RBURST  
Maximum Load Current in Burst  
Oscillator Programming Resistor  
250  
200  
150  
100  
50  
600  
160  
140  
120  
100  
80  
R
ILIM  
= 124k  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
5V  
OUT  
7.5V  
OUT  
3.3V  
OUT  
OUT OF  
BURST  
INTO  
BURST  
60  
40  
20  
0
0
3.5  
(V)  
400  
600  
1000 1200  
1400  
1.5 2.0 2.5 3.0  
4.0 4.5 5.0 5.5  
800  
100  
150  
R
250  
50  
300  
200  
(k)  
V
OSCILLATOR FREQUENCY (kHz)  
IN  
BURST  
3458 G04  
3458 G05  
3458 G06  
3458f  
3
LTC3458  
U W  
(TA = 25°C unless otherwise specified)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Frequency Accuracy  
Efficiency vs Frequency  
N-Channel and P-Channel RDS(ON)  
95  
93  
91  
89  
87  
85  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.05  
1.03  
V
V
= 3.3V  
V
V
= 3.3V  
= 5V  
RT = 200k  
IN  
OUT  
IN  
OUT  
= 5V at 100mA  
P-CHANNEL  
1.01  
N-CHANNEL  
0.99  
0.97  
0.95  
500  
700  
900  
1100  
1300  
1500  
–40  
–15  
10  
35  
60  
85  
–45 –30 –15  
0
15 30 45 60 75 90  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
3458 G07  
3458 G08  
3458 G09  
SHDN Pin Threshold and  
Hysteresis  
Maximum Load Current  
SYNC Pin Threshold  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1200  
1000  
800  
600  
400  
200  
0
1.0  
0.9  
1.8 to 5.5V at 700kHz  
IN  
ILIM  
5V  
OUT  
R
= 124k  
3.3V  
7.5V  
OUT  
OUT  
OPERATING  
SHUTDOWN  
0.8  
0.7  
0.6  
0.5  
1.5  
3.5  
4.5 5.0  
2.0 2.5 3.0  
4.0  
5.5  
–45 –30 –15  
0
15 30 45 60 75 90  
–45 –30 –15  
0
15 30 45 60 75 90  
V
IN  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3458 G11  
3458 G12  
3458 G10  
FB Voltage  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
–45 –30 –15  
0
15 30 45 60 75 90  
TEMPERATURE (°C)  
3458 G13  
3458f  
4
LTC3458  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Fixed Frequency (FF)  
Discontinuous Current  
Fixed Frequency (FF)  
Continuous Current  
I
L
200mA/DIV  
SW  
2V/DIV  
SW  
2V/DIV  
I
L
100mA/DIV  
0mA  
0mA  
V
V
= 3.3V  
OUT  
L = 10µH  
200ns/DIV  
V
V
= 3.3V  
OUT  
L = 10µH  
200ns/DIV  
IN  
IN  
= 7V  
= 7V  
Over-Current with 1.5A ILIMIT  
Burst Mode Operation  
V
OUT  
100mV/DIV  
SW  
2V/DIV  
SW  
5V/DIV  
I
L
0.5A/DIV  
I
L
200mA/DIV  
0mA  
0mA  
V
V
= 3.3V  
1µs/DIV  
V
V
= 3.3V  
OUT  
L = 10µH  
50µs/DIV  
IN  
IN  
= 7V  
= 7V  
OUT  
L = 10µH  
R
= 133k  
C
C
= 22µF  
ILIM  
OUT  
= 22pF  
FF  
Burst Mode Operation Close-Up  
Soft-Start into 50Load  
V
OUT  
V
OUT  
100mV/DIV  
2V/DIV  
V
IN  
2V/DIV  
SW  
5V/DIV  
SS  
200mV/DIV  
I
L
I
L
200mA/DIV  
200mA/DIV  
0mA  
V
V
= 3.3V  
= 7V  
2µs/DIV  
5ms/DIV  
V
V
= 3.3V  
= 7V  
IN  
OUT  
L = 10µH  
IN  
OUT  
L = 10µH  
C
C
= 22µF  
OUT  
= 22pF  
FF  
3458f  
5
LTC3458  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Sync Operation at 1.33MHz  
FF Mode 100-300mA Load Step  
SW  
5V/DIV  
V
OUT  
200mV/DIV  
SYNC  
2V/DIV  
COMP  
500mV/DIV  
I
L
200mA/DIV  
I
L
0.5A/DIV  
0mA  
0mA  
500ns/DIV  
V
V
= 3.3V  
= 5V  
200µs/DIV  
V
V
= 3.3V  
= 7V  
OSC  
IN  
OUT  
IN  
OUT  
R
R
= 33K  
= 200k  
Z
CC1 = 270pF  
CC2 = 10pF  
C
L = 10µH  
F = 1MHz  
= 22µF  
OUT  
Auto Mode 10mA to 100mA Load  
Step  
Burst Mode Operation 10mA to  
50mA Load Step  
V
V
OUT  
OUT  
200mV/DIV  
200mV/DIV  
50mA  
10mA  
BURST  
BURST  
1V/DIV  
500mV/DIV  
100mA  
10mA  
LOAD  
LOAD  
I
I
L
L
200mA/DIV  
200mA/DIV  
500µs/DIV  
V
V
= 3.3V  
200µs/DIV  
V
V
= 3.3V  
OUT  
L = 10µH  
IN  
IN  
= 5V  
= 5V  
OUT  
L = 10µH  
C
= 22µF  
C
R
= 0.015µF  
= 133k  
OUT  
BURST  
BURST  
10mA to 200mA Load Step  
Showing UV Trip  
Forced BURST to FF Mode  
Switch with 50mA Load  
V
OUT  
V
OUT  
200mV/DIV  
200mV/DIV  
4%  
FIXED  
FREQUENCY  
V
= 3.3V  
OUT  
IN  
BURST  
V
= 5V  
L = 10µH  
R = 33k  
CC1 = 270pF  
CC2 = 10pF  
C = 22µF  
V
= 3.3V  
IN  
V
= 5V  
Z
OUT  
L = 10µH  
I
L
I
L
500mA/DIV  
200mA/DIV  
C
BURST  
R
= 0.015µF  
= 133k  
OUT  
BURST  
200µs/DIV  
200µs/DIV  
3458f  
6
LTC3458  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin for Inductor Connection. During  
discontinuous conduction mode an antiring resistor con-  
nects SW to VIN to reduce noise.  
GND (Pin 9): Signal Ground Pin.  
SS (Pin 10): Connect a capacitor between this pin and  
ground to set soft-start period. 5µA of current is sourced  
from SS during soft-start.  
VIN (Pin 2): Input Supply Pin. Connect this to the input  
supply and decouple with 1µF minimum.  
t(msec) = CSS (µF )• 200  
SYNC (Pin 3): Oscillator Synchronization Pin. A clock  
pulse width of 100ns to 2µs is required to synchronize the  
internal oscillator. This pin is disabled when grounded.  
BURST (Pin 11): Burst Mode Threshold Adjust Pin. A  
resistor/capacitor combination from this pin to ground  
programs the average load current at which automatic  
BurstModeoperationisentered,accordingtotheformula:  
SHDN (Pin 4): Shutdown Pin. Grounding this pin shuts  
down the IC. Connect to >1.25V to enable.  
10  
IBURST  
RBURST  
=
ILIM (Pin 5): Adjustable Peak Current Limit. Connect a  
resistor from ILIM to GND to program the peak inductor  
current according to the following formula:  
where RBURST is in kand IBURST is in amps.  
200  
COUT VOUT  
ILIMIT  
=
CBURST  
=
R
ILIM  
10,000  
where ILIMIT is in amps and RT is in k.  
where CBURST(MIN) and COUT are in µF.  
RT (Pin 6): Connect a resistor to ground to program the  
oscillator frequency, according to the formula:  
To force fixed frequency PWM mode, connect BURST to  
VOUT through a 50k resistor.  
1
VOUT (Pin 12): Output of the Synchronous Rectifier and  
fOSC  
=
0.2 + 0.004 •RT  
where fOSC is in MHz and RT is in k.  
Internal Gate Drive Source for the Power Switches.  
R2  
R1  
VOUT = 1.23 1+  
FB (Pin 7): Connect Resistor Divider Tap Here. The output  
voltage can be adjusted from 2V to 7.5V. Feedback refer-  
ence voltage is typically 1.23V.  
Exposed Pad (PGND) (Pin 13): Must be soldered to PCB  
ground, for electrical contact and optimum thermal  
performance.  
COMP (Pin 8): gm Error Amp Output. A frequency com-  
pensation network is connected from this pin to ground to  
compensate the loop. See the section “Compensating the  
Feedback Loop” for guidelines.  
3458f  
7
LTC3458  
W
BLOCK DIAGRA  
BURST  
11  
SW  
1
V
CC  
2
V
CC  
ANTIRING  
OSC/SYNC  
SYNC  
SLOPE  
3
6
+
V
UNDER  
MODE  
SELECT  
BURST MODE  
CONTROL  
MAX  
DUTY  
P-DRIVE  
N-DRIVE  
R
T
SW1  
V
BEST  
I
ZERO  
I
ZERO  
DETECT  
P-DRIVE  
N-DRIVE  
PWM  
AND  
V
12  
OUT  
BURST MODE  
P-DRIVE  
4%  
UNDERVOLTAGE  
DRIVE LOGIC  
UNDER  
PGND  
ERROR AMPLIFIER/  
SLEEP TO  
ALL BLOCKS  
SLEEP  
MODE  
BURST COMPARATOR  
SLEEP  
CONTROL  
BURST ACTIVE  
+
7
FB  
V
CC  
(DISABLED IN  
BURST MODE)  
PEAK CURRENT  
COMPARATOR  
I
FIXED  
COMP/LIMIT_PEAK  
BIAS  
FREQUENCY  
BURST MODE  
MUX  
MODE  
I
BURST_PEAK  
SLOPE  
REFERENCE/  
BIAS  
CURRENTS  
I
I
, I ,  
COMP LIMIT  
BURST_PEAK  
SLOPE COMP  
I_SENSE  
UVLO  
,
TSD  
V
SD  
SOFT-START  
THERMAL SD  
BEST  
N-DRIVE  
SDB  
TO ALL BLOCKS  
PGND  
9
5
13  
PGND  
10  
8
4
3458 BD  
GND  
I
SS  
COMP  
SHDN  
LIM  
W U U  
U
APPLICATIO S I FOR ATIO  
Detailed Description  
LTC3458 Programmable Functions  
The LTC3458 provides high efficiency, low noise power  
forboostapplicationswithoutputvoltagesupto7.5V. The  
true output disconnect feature eliminates inrush current,  
and allows VOUT to go to zero during shutdown. The  
current mode architecture with adaptive slope compensa-  
tion provides ease of loop compensation with excellent  
transient load response. The low RDS(ON), low gate charge  
synchronous switches eliminate the need for an external  
Schottky rectifier, and provide efficient high frequency  
pulse width modulation (PWM) control. High efficiency is  
achieved at light loads when Burst Mode operation is  
entered, where the IC’s quiescent current is a low 15µA  
typicalonVIN.TheLTC3458isdesignedtoprovidecustom  
performance in a variety of applications with program-  
mable feedback, current limit, oscillator frequency, soft-  
start, and Burst Mode threshold.  
Current Limit/Peak Burst Current. The programmable  
current limit circuit sets the maximum peak current in the  
internal N-channel MOSFET switch. This clamp level is  
programmed using a resistor to ground on ILIM. In Burst  
Mode operation, the current limit is automatically set to  
~1/4 of the programmed current limit for optimal effi-  
ciency. A 124k RILIM resistor is recommended in most  
applications unless a lower limit is needed to prevent the  
external inductor from saturating.  
200  
R
ILIM  
=
I is in amps and R is in k.  
1
4
I
BURSTPEAK ILIM  
3458f  
8
LTC3458  
U
W U U  
APPLICATIO S I FOR ATIO  
ErrorAmp. Theerroramplifierisatransconductancetype,  
with its positive input internally connected to the 1.23V  
reference, anditsnegativeinputconnectedtoFB. Asimple  
compensation network is placed from COMP to ground.  
Internal clamps limit the minimum and maximum error  
amp output voltage for improved large signal transient  
response. During sleep (in Burst Mode), the compensa-  
tion pin is high impedance, however clamps limit the  
voltageontheexternalcompensationnetwork,preventing  
the compensation capacitor from discharging to zero  
during the sleep time.  
Current Sensing. Lossless current sensing converts the  
peak current signal to a voltage to sum in with the internal  
slope compensation. This summed signal is compared to  
theerroramplifieroutputtoprovideapeakcurrentcontrol  
command for the PWM. The slope compensation in the IC  
is adaptive to the input and output voltage, therefore the  
converterprovidestheproperamountofslopecompensa-  
tion to ensure stability, but not an excess to cause a loss  
of phase margin in the converter.  
Output Disconnect and Inrush Limiting. The LTC3458 is  
designed to allow true output disconnect by eliminating  
body diode conduction of the internal P-channel MOSFET  
rectifier. This allows V0UT to go to zero volts during  
shutdown, drawing no current from the input source. It  
also allows for inrush current limiting at turn-on, minimiz-  
ing surge currents seen by the input supply. Note that to  
obtaintheadvantagesofoutputdisconnect, theremustbe  
no external Schottky diodes connected between SW and  
Oscillator. The frequency of operation is set through a  
resistor from RT to ground. An internally trimmed timing  
capacitor resides inside the IC. The oscillator frequency is  
calculated using the following formula:  
1
fOSC  
=
0.2 + 0.004 •RT  
VOUT  
.
where fOSC is in MHz and RT is in kΩ  
Shutdown. The part is shut down by pulling SHDN below  
0.3V, andmadeactivebypullingthepinabove1.25V. Note  
that SHDN can be driven above VIN or VOUT, as long as it  
is limited to less than 8V.  
The oscillator can be synchronized with an external clock  
applied to the SYNC pin. When synchronizing the oscilla-  
tor, the free running frequency must be set to approxi-  
mately 30% lower than the desired synchronized fre-  
quency.  
Synchronous Rectifier. To prevent the inductor current  
from running away, the P-channel MOSFET synchronous  
rectifier is only enabled when VOUT > (VIN + 0.25V).  
Soft-Start. The soft-start time is programmed with an  
external capacitor to ground on SS. An internal current  
source charges it with a nominal 5µA. The voltage on the  
SS pin (in conjunction with the external resistor on ILIM) is  
used to control the peak current limit until the voltage on  
the capacitor exceeds ~1V, at which point the external  
resistor sets the peak current. In the event of a com-  
manded shutdown, severe short-circuit, or a thermal  
shutdown, the capacitor is discharged automatically.  
Thermal Shutdown. If the die temperature reaches ap-  
proximately 150°C, the part will go into thermal shutdown  
and all switches will be turned off and the soft-start  
capacitorwillbereset. Thepartwillbeenabledagainwhen  
the die temperature has dropped by 10°C (nominal).  
Zero Current Amplifier. The zero current amplifier moni-  
tors the inductor current to the output and shuts off the  
synchronous rectifier once the current is below 50mA  
typical, preventing negative inductor current.  
t(msec) = CSS (µF) • 200  
Other LTC3458 Features and Functions  
Burst Mode Operation  
Antiringing Control. The antiringing control places a  
resistoracrosstheinductortodamptheringingonSWpin  
discontinuous conduction mode. The LC ringing  
(L=inductor,CSW =CapacitanceonSWpin)islowenergy,  
but can cause EMI radiation.  
BurstModeoperationcanbeautomaticorusercontrolled.  
In automatic operation, the IC will automatically enter  
Burst Mode operation at light load and return to fixed  
frequency PWM mode for heavier loads. The user can  
program the average load current at which the mode  
3458f  
9
LTC3458  
W U U  
U
APPLICATIO S I FOR ATIO  
transition occurs using a single resistor. During Burst  
Mode operation, the oscillator is shut down, since the on  
time is determined by the time it takes the inductor current  
to reach a fixed peak current, and the off time is deter-  
minedbythetimeittakesfortheinductorcurrenttoreturn  
to zero.  
COUT VOUT  
10,000  
CBURST  
=
where CBURST(MIN) and COUT are in µF.  
Note: the BURST pin only sources current based on  
current delivered to VOUT through the P-channel MOSFET.  
Ifcurrentintheinductorisallowedtogonegative(thiscan  
occuratverylightloadsandhighstep-upratios), theburst  
threshold may become inaccurate, preventing the IC from  
entering Burst Mode operation. For RBURST values greater  
than200k,alargerthanrecommendedinductorvaluemay  
be needed to ensure positive inductor current and auto-  
matic Burst Mode operation.  
In Burst Mode operation, the IC delivers energy to the  
output until it is regulated and then goes into a sleep mode  
where the outputs are off and the IC is consuming only  
15µA of quiescent current. In this mode the output ripple  
voltage has a variable frequency component with load  
current and will be typically 2% peak-to-peak. This maxi-  
mizes efficiency at very light loads by minimizing switch-  
ing and quiescent losses. Burst Mode ripple can be re-  
duced slightly by using more output capacitance (22µF or  
greater). ThiscapacitordoesnotneedtobealowESRtype  
if low ESR ceramics are also used. Another method of  
reducing Burst Mode ripple is to place a small feed-  
forward capacitor across the upper resistor in the VOUT  
feedback divider network.  
Intheeventthatasuddenloadtransientcausesthevoltage  
level on FB to drop by more than 4% from the regulation  
value, an internal pull-up is applied to BURST, forcing the  
part quickly out of Burst Mode operation. For optimum  
transient response when going between Burst Mode op-  
eration and PWM mode, Burst can be controlled manually  
by the host. This way PWM mode can be commanded  
before the load step occurs, minimizing output voltage  
drop. Note that Burst Mode operation is inhibited during  
start-up and soft-start.  
During Burst Mode operation, COMP is disconnected  
from the error amplifier in an effort to hold the voltage on  
the external compensation network where it was before  
entering Burst Mode operation. To minimize the effects of  
leakage current and stray resistance, voltage clamps limit  
the minimum and maximum voltage on COMP during  
Burst Mode operation. This minimizes the transient expe-  
rienced when a heavy load is suddenly applied to the  
converter after being in Burst Mode operation for an  
extended period of time.  
Manual Control  
For applications requiring fixed frequency operation at all  
load currents, connect the BURST pin to VOUT through a  
50kresistor. To force Burst Mode operation, ground the  
BURST pin.  
Forapplicationswherealargeloadstepcanbeanticipated,  
the circuit below can be used to reduce the voltage  
transient on VOUT. Automatic operation is achieved when  
the external PMOS is off and fixed frequency operation is  
commanded when the external PMOS is on. In shutdown,  
the PMOS should be off.  
For automatic operation, an RC network should be con-  
nected from BURST to ground. The value of the resistor  
will control the average load current (IBURST) at which  
Burst Mode operation will be entered and exited (there is  
hysteresis to prevent oscillation between modes). The  
equation given for the capacitor on BURST is for the  
minimum value, to prevent ripple on the BURST pin from  
causing the part to oscillate in and out of Burst Mode  
operationatthecurrentwherethemodetransitionoccurs.  
V
IN  
HIGH: AUTO MODE  
LOW: FIXED FREQUENCY  
PMOS  
BURST  
0.01µF  
133k  
10  
RBURST  
=
IBURST  
3458 FO2  
where RBURST is in kand IBURST is in amps.  
Figure 1  
3458f  
10  
LTC3458  
W U U  
APPLICATIO S I FOR ATIO  
U
COMPONENT SELECTION  
Some example inductor part types are:  
Coilcraft: DO1608 and MSS5131 Series  
TDK: RLF5018T and SLF7045 Series  
Murata: LQH4C and LQN6C Series  
Sumida: CDRH4D28 and CDRH6D28 Series  
COEV: DQ7545 Series  
Inductor Selection  
The high frequency operation of the LTC3458 allows for  
the use of small surface mount inductors. Since the  
internalslopecompensationcircuitreliesontheinductor’s  
current slope and frequency, Table 1 should be used to  
select an inductor value for a given frequency of operation  
(± 25%). The recommended value will yield optimal tran-  
sient performance while maintaining stable operation.  
Inductor values larger than listed in Table 1 are permis-  
sible to reduce the current ripple.  
TOKO: D62CB and D63LCB Series  
..  
WURTH: WE-PD2 Series  
Output Capacitor Selection  
The output voltage ripple has three components to it. The  
bulk value of the capacitor is set to reduce the ripple due  
tochargeintothecapacitoreachcycle. Themaxrippledue  
to charge is given by:  
Table 1. Recommended Inductor Values  
Frequency  
1.5MHz  
1.25MHz  
1MHz  
Inductor Value(µH)  
3.3 to 4.7  
IP V  
COUT VOUT • f  
IN  
4.7 to 6.8  
VRBULK  
=
6.8 to 10  
750Hz  
10 to 15  
where IP = peak inductor current and f = switching  
frequency.  
500kHz  
15 to 22  
The ESR (equivalent series resistance) is usually the most  
dominant factor for ripple in most power converters. The  
ripple due to capacitor ESR is given by:  
For high efficiency, choose an inductor with high fre-  
quency core material, such as ferrite, to reduce core  
losses. The inductor should have low ESR (equivalent  
series resistance) to reduce the I2R losses, and must be  
able to handle the peak inductor current without saturat-  
ing. Molded chokes or chip inductors usually do not have  
enough core to support peak inductor currents in the  
1A to 3A region. To minimize radiated noise, use a  
toroidal or shielded inductor. (Note that the inductance of  
shielded types will drop more as current increases, and  
will saturate more easily). See Table 2 for a list of inductor  
manufacturers.  
VRCESR = IP • CESR  
where CESR = Capacitor Series Resistance.  
The ESL (equivalent series inductance) is also an impor-  
tant factor for high frequency converters. Using small,  
surface mount ceramic capacitors, placed as close as  
possible to the VOUT pins, will minimize ESL.  
Low ESR/ESL capacitors should be used to minimize  
outputvoltageripple.Forsurfacemountapplications,AVX  
TPS Series tantalum capacitors, Sanyo POSCAP, or Taiyo  
Yuden X5R type ceramic capacitors are recommended.  
For through-hole applications, Sanyo OS-CON capacitors  
offer low ESR in a small package size.  
Table 2. Inductor Vendor Information  
Supplier  
Coilcraft  
TDK  
Phone  
Website  
(847) 639-6400  
(847) 803-6100  
www.coilcraft.com  
www.component.tdk.com  
Murata  
USA: (814) 237-1431  
(800) 831-9172  
In all applications, a minimum of 4.7µF (generally 22µF is  
recommended), low ESR ceramic capacitor should be  
placed as close to the VOUT pin as possible, and grounded  
to a local ground plane.  
www.murata.com  
Sumida  
USA: (847) 956-0666  
Japan: 81-3-3607-5111  
www.japanlink.com/sumida  
www.coev.net  
COEV  
Toko  
(800) 227-7040  
(847) 297-0070  
(202) 785-8800  
www.tokoam.com  
..  
Wurth  
www.we-online.com  
3458f  
11  
LTC3458  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Capacitor Selection  
Compensating the Feedback Loop  
The input filter capacitor reduces peak currents drawn  
from the input source and reduces input switching noise.  
In most applications >1µF per amp of peak input current  
is recommended. See Table 3 for a list of capacitor  
manufacturers for input and output capacitor selection.  
The LTC3458 uses current mode control, with internal  
adaptiveslopecompensation.Currentmodecontrolelimi-  
nates the 2nd order filter due to the inductor and output  
capacitor exhibited in voltage mode controllers, and sim-  
plifies the power loop to a single pole filter response. The  
product of the modulator control to output DC gain, and  
the error amp open-loop gain gives the DC gain of the  
system:  
Table 3. Capacitor Vendor Information  
Supplier  
AVX  
Phone  
(803) 448 - 9411  
Website  
www.avxcorp.com  
www.sanyovideo.com  
www.component.tdk.com  
Sanyo  
TDK  
(619) 661 - 6322  
(847) 803 - 6100  
VREF  
VOUT  
GDC = GCONTROL •GEA  
•GCURRENT_SENSE  
Murata  
USA: (814) 237-1431  
(800) 831-9172  
www.murata.com  
www.t-yuden.com  
2•V  
IOUT  
IN  
GCONTROL  
=
,
Taiyo Yuden  
(408) 573 - 4150  
1
RDS(ON)  
GEA 1,000  
GCURRENT_SENSE  
=
Operating Frequency Selection  
Thereareseveralconsiderationsinselectingtheoperating  
frequency of the converter. The first is staying clear of  
sensitive frequency bands, which cannot tolerate any  
spectral noise. For example in products incorporating RF  
communications the 455kHz IF frequency is sensitive to  
any noise, therefore switching above 600kHz is desired.  
Some communications have sensitivity to 1.1MHz and in  
that case a 1.5MHz switching converter frequency may be  
employed.Thesecondconsiderationisthephysicalsizeof  
the converter. As the operating frequency goes up, the  
inductor and filter capacitors go down in value and size.  
Thetradeoffisinefficiency,sincetheswitchinglossesdue  
to gate charge increase proportional with frequency.  
The output filter pole is given by:  
IOUT  
fFILTER_POLE  
=
,
π VOUT COUT  
where COUT is the output filter capacitor.  
The output filter zero is given by:  
1
fFILTER_ZERO  
=
,
2π RESR COUT  
where RESR is the output capacitor equivalent series  
resistance.  
Thermal Considerations  
A troublesome feature of the boost regulator topology is  
the right half plane zero (RHP), and is given by:  
For the LTC3458 to deliver its full output power, it is  
imperative that a good thermal path be provided to dissi-  
pate the heat generated within the package. This can be  
accomplished by taking advantage of the large thermal  
pad on the underside of the IC. It is recommended that  
multiple vias in the printed circuit board be used to  
conductheatawayfromtheICandintoacopperplanewith  
asmuchareaaspossible. Ifthejunctiontemperaturerises  
above ~150°C, the part will go into thermal shutdown, and  
all switching will stop until the temperature drops.  
2
V
IN  
fRHPZ  
=
2π IOUT VOUT L  
At heavy loads this gain increase with phase lag can occur  
at a relatively low frequency. The loop gain is typically  
3458f  
12  
LTC3458  
W U U  
APPLICATIO S I FOR ATIO  
rolled off before the RHP zero frequency.  
U
V
1.25V  
OUT  
+
The typical error amp compensation is shown in Figure 2.  
The equations for the loop dynamics are as follows:  
R1  
R2  
ERROR  
AMP  
FB  
7
1
COMP  
8
fPOLE1  
fZERO1  
fPOLE2  
=
which is close to DC  
2π •10e6 CC1  
CC1  
Z
1
CC2  
R
2π RZ CC1  
1
2π RZ CC2  
3458 F01  
Figure 2  
3458f  
13  
LTC3458  
U
TYPICAL APPLICATIO S  
Lithium-Ion to 5V, 500mA at 850kHz  
WURTH  
12µH  
774775112  
Li-Ion to 5VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
4.2V  
SW  
IN  
V
IN  
Li-Ion  
2.5V to 4.2V  
LTC3458  
2.2µF  
V
3.6V  
OUT  
IN  
V
GND/PGND  
SHDN  
5V  
OUT  
450mA  
2.5V  
IN  
10pF  
1M  
FB  
ON OFF  
COMP  
SS  
SYNC  
324k  
0.01µF  
33k  
R
T
22µF  
X5R  
0.01µF  
10pF  
0.1  
1
10  
100  
1000  
BURST  
I
LIM  
LOAD CURRENT (mA)  
560pF  
243k 124k  
133k  
3458 TA03b  
3458 TA03a  
Two Cell to 5VOUT, 200mA at 850kHz  
WURTH  
12µH  
774775112  
Two Alkaline to 5VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
SW  
V
IN  
2 ALKALINE  
1.8V to 3.3V  
LTC3458  
2.2µF  
V
OUT  
3.3V  
IN  
V
GND/PGND  
SHDN  
5V  
OUT  
200mA  
10pF  
1M  
FB  
ON OFF  
1.8V  
IN  
COMP  
SS  
SYNC  
324k  
0.01µF  
33k  
R
T
22µF  
X5R  
0.01µF  
10pF  
BURST  
I
LIM  
0.1  
1
10  
100  
1000  
560pF  
243k 124k  
133k  
LOAD CURRENT (mA)  
3458 TA04a  
3458 TA04b  
Lithium-Ion Battery to 7VOUT, 250mA at 1MHz  
COEV  
10µH  
DQ7545  
Li-Ion to 7VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
SW  
V
IN  
Li-Ion  
2.5V to 4.2V  
LTC3458  
2.2µF  
V
OUT  
4.2V  
3.6V  
IN  
V
GND/PGND  
SHDN  
7V  
OUT  
FB  
250mA  
10pF  
1.5M  
316k  
IN  
ON OFF  
2.5V  
IN  
COMP  
SS  
SYNC  
0.01µF  
33k  
R
T
22µF  
X5R  
0.01µF  
10pF  
BURST  
I
LIM  
0.1  
1
10  
100  
1000  
560pF  
200k 124k  
133k  
LOAD CURRENT (mA)  
3458 TA05b  
3458 TA05a  
3458f  
14  
LTC3458  
U
PACKAGE DESCRIPTIO  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.58 ±0.05  
3.40 ±0.05  
2.24 ±0.05 (2 SIDES)  
1.70 ±0.05  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.20  
TYP  
3.00 ±0.10 1.70 ± 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
PIN 1  
NOTCH  
(UE12/DE12) DFN 0802  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.50  
BSC  
3.30 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
3458f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3458  
U
TYPICAL APPLICATIO  
Dual Lumiled Application with BURST Pin Current Regulation  
L1  
2-Lumileds in Series  
SW  
V
IN  
Li-Ion  
f
= 850kHz  
Z1  
100  
90  
80  
70  
60  
50  
C
OSC  
IN  
2.2µF  
LTC3458  
2.7V to 4.2V  
V
OUT  
6.4V TO 6.8V  
V
GND/PGND  
SHDN  
OUT  
150mA, 6.4V  
250mA, 6.6V  
FB  
ON OFF  
COMP  
SS  
SYNC  
D1  
D2  
350mA, 6.8V  
0.01µF  
33k  
C
OUT  
R
T
2.2µF  
0.01µF  
BURST  
I
LIM  
NOTE: LUMILED CURRENT REGULATION  
~10% OVER V RANGE  
0.01µF  
243k  
124k  
R
BURST  
IN  
2.5 3.0 3.5  
4.0 4.5 5.0 5.5  
2.0  
C
, C : TAIYO YUDEN JMK107BJ225MA  
D1, D2: LUXEON EMITTER LUMILED WHITE  
LXHLMW1D (2.9V AT 350mA)  
R
BURST  
: 35.7k FOR 350mA,  
47.5k FOR 250mA,  
82.5k FOR 150mA  
3458 TA06a  
IN OUT  
INPUT VOLTAGE (V)  
3458 TA06b  
L1: Wurth 12µH 774775112  
Z1: CENTRAL SEMI 6.8V ZENER DIODE SOT-23 CMPZ5235B  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1310  
1.5A I , 4.5MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.75V to 18V, V  
MS10E  
= 35V, I = 12mA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1613  
550mA I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA, ThinSOT  
OUT(MAX) Q SD  
= 34V, I = 20µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1615/  
300mA/80mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
LT1615-1  
Step-Up DC/DC Converter  
ThinSOT  
LT1618  
1.5A I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
= 35V, I = 1.8mA, I < 1µA, MS10  
OUT(MAX) Q SD  
= 34V, I = 20µA, I < 1µA, MS10  
OUT(MAX) Q SD  
SW  
IN  
LT1944 (Dual)  
Dual Output 350mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
Step-Up DC/DC Converter  
LT1945 (Dual)  
Dual Output Pos/Neg 350mA I , Constant Off-Time,  
High Efficiency Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
= ±34V, I = 20µA, I < 1µA, MS10  
OUT(MAX) Q SD  
SW  
IN  
LT1946/LT1946A 1.5A I , 1.2MHz/2.7MHZ, High Efficiency Step-Up  
V : 2.45V to 16V, V  
= 34V, I = 3.2mA, I < 1µA, MS8  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
LT1949/  
LT1949-1  
550mA I , 600kHz/1.1MHz, High Efficiency Step-Up  
DC/DC Converter  
V : 1.5V to 12V, V  
MS8  
= 28V, I = 4.5mA, I < 25µA, SO-8,  
OUT(MAX) Q SD  
SW  
IN  
LT1961  
1.5A I , 1.25MHz, High Efficiency Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 35V, I = 0.9mA, I < 6µA, MS8E  
OUT(MAX) Q SD  
SW  
IN  
LTC3400/  
LTC3400B  
600mA I , 1.2MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
ThinSOT  
= 5V, I = 19µA/300µA I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LTC3401  
LTC3402  
LTC3425  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 6V, I = 38µA I < 1µA, MS10  
Q SD  
SW  
IN  
OUT(MAX)  
= 6V, I = 38µA I < 1µA, MS10  
OUT(MAX) Q SD  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
IN  
SW  
5A I , 8MHz, 4-Phase Synchronous Step-Up DC/DC Converter  
V : 0.5V to 4.5V, V  
IN  
= 5.25V, I = 12µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
QFN32  
LTC3429  
600mA, 500kHz, Synchronous Step-Up DC/DC Converter  
with Output Disconnect and Soft-Start  
V : 0.5V to 5V, V  
ThinSOT  
= 5V, I = 20µA/300µA I < 1µA,  
OUT(MAX) Q SD  
IN  
LTC3459  
LT3460  
70mA I , 10V Micropower Synchronous Boost/Output Disconnect V : 1.5V to 5.5V, V  
= 10V, I = 10µA, ThinSOT  
OUT(MAX) Q  
= 36V, I = 2mA, I < 1µA, SC70,  
OUT(MAX) Q SD  
SW  
IN  
320mA I , 1.3MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.5V to 16V, V  
ThinSOT  
SW  
IN  
LT3464  
85mA I , Constant Off-Time, High Efficiency Step-Up DC/DC  
Converter with Integrated Schottky/Output Disconnect  
V : 2.3V to 10V, V  
ThinSOT  
= 34V, I = 25µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
3458f  
LT/TP 0904 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT1944-1

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944-1EMS

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944-1EMS#PBF

LT1944-1 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944EMS#PBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TR

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TRPBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TR

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TRPBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear