LT1790ACS6-3.3#PBF [Linear]

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LT1790ACS6-3.3#PBF
型号: LT1790ACS6-3.3#PBF
厂家: Linear    Linear
描述:

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

光电二极管
文件: 总26页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1790  
Micropower SOT-23  
Low Dropout Reference Family  
FEATURES  
DESCRIPTION  
TheLT®1790isafamilyofSOT-23micropowerlowdropout  
seriesreferencesthatcombinehighaccuracyandlowdrift  
with low power dissipation and small package size. These  
micropower references use curvature compensation to  
obtain a low temperature coefficient and trimmed preci-  
sionthin-filmresistorstoachievehighoutputaccuracy. In  
n
High Accuracy:  
A Grade—0.05% Max  
B Grade—0.1% Max  
Low Drift:  
n
A Grade—10ppm/°C Max  
B Grade—25ppm/°C Max  
n
n
n
n
n
n
n
Low Thermal Hysteresis 40ppm (Typical) –40°C to 85°C  
Low Supply Current: 60μA Max  
addition, each LT1790 is post-package trimmed to greatly  
reducethetemperaturecoefficientandincreasetheoutput  
accuracy. Output accuracy is further assured by excellent  
line and load regulation. Special care has been taken to  
minimize thermally induced hysteresis.  
Sinks and Sources Current  
Low Dropout Voltage  
Guaranteed Operational –40°C to 125°C  
Wide Supply Range to 18V  
Available Output Voltage Options: 1.25V, 2.048V,  
2.5V, 3V, 3.3V, 4.096V and 5V  
Low Profile (1mm) ThinSOT™ Package  
The LT1790s are ideally suited for battery-operated sys-  
tems because of their small size, low supply current and  
reduced dropout voltage. These references provide sup-  
ply current and power dissipation advantages over shunt  
referencesthatmustidletheentireloadcurrenttooperate.  
Since the LT1790 can also sink current, it can operate as  
a micropower negative voltage reference with the same  
performance as a positive reference.  
n
APPLICATIONS  
n
Handheld Instruments  
n
Negative Voltage References  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Industrial Control Systems  
n
Data Acquisition Systems  
n
Battery-Operated Equipment  
TYPICAL APPLICATION  
Positive Connection for LT1790-2.5  
Typical VOUT Distribution for LT1790-2.5  
50  
167 UNITS  
4
6
45  
V
= 2.5V  
LT1790-2.5  
1, 2  
2.6V ≤ V ≤ 18V  
OUT  
IN  
40  
0.1μF  
1μF  
LT1790B LIMITS  
35  
LT1790A LIMITS  
1790 TA01  
30  
25  
20  
15  
10  
5
0
2.498  
2.499 2.500  
2.501  
2.502  
OUTPUT VOLTAGE (V)  
1790 TA02  
1790fb  
1
LT1790  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Input Voltage.............................................................20V  
Specified Temperature Range  
Commercial............................................. 0°C to 70°C  
Industrial .............................................40°C to 85°C  
Output Short-Circuit Duration .......................... Indefinite  
Operating Temperature Range  
GND 1  
GND 2  
6 V  
OUT  
5 DNC*  
DNC* 3  
4 V  
IN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 230°C/W  
JA  
JMAX  
(Note 2)..................................................–40°C to 125°C  
Storage Temperature Range  
*DNC: DO NOT CONNECT  
(Note 3)..................................................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTXT  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1790ACS6-1.25#PBF  
LT1790AIS6-1.25#PBF  
LT1790BCS6-1.25#PBF  
LT1790BIS6-1.25#PBF  
LT1790ACS6-2.048#PBF  
LT1790AIS6-2.048#PBF  
LT1790BCS6-2.048#PBF  
LT1790BIS6-2.048#PBF  
LT1790ACS6-2.5#PBF  
LT1790AIS6-2.5#PBF  
LT1790BCS6-2.5#PBF  
LT1790BIS6-2.5#PBF  
LT1790ACS6-3#PBF  
LT1790AIS6-3#PBF  
LT1790ACS6-1.25#TRPBF  
LT1790AIS6-1.25#TRPBF  
LT1790BCS6-1.25#TRPBF  
LT1790BIS6-1.25#TRPBF  
LT1790ACS6-2.048#TRPBF  
LT1790AIS6-2.048#TRPBF  
LT1790BCS6-2.048#TRPBF  
LT1790BIS6-2.048#TRPBF  
LT1790ACS6-2.5#TRPBF  
LT1790AIS6-2.5#TRPBF  
LT1790BCS6-2.5#TRPBF  
LT1790BIS6-2.5#TRPBF  
LT1790ACS6-3#TRPBF  
LT1790AIS6-3#TRPBF  
LTXT  
–40°C to 85°C  
0°C to 70°C  
LTXT  
LTXT  
–40°C to 85°C  
0°C to 70°C  
LTXU  
LTXU  
LTXU  
LTXU  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
LTPZ  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
LTQA  
LTQA  
LTQA  
LTQA  
LTXW  
LTXW  
LTXW  
LTXW  
LTQB  
LTQB  
LTQB  
LTQB  
LTQC  
LTQC  
LTQC  
LTQC  
–40°C to 85°C  
0°C to 70°C  
LT1790BCS6-3#PBF  
LT1790BIS6-3#PBF  
LT1790BCS6-3#TRPBF  
LT1790BIS6-3#TRPBF  
–40°C to 85°C  
0°C to 70°C  
LT1790ACS6-3.3#PBF  
LT1790AIS6-3.3#PBF  
LT1790BCS6-3.3#PBF  
LT1790BIS6-3.3#PBF  
LT1790ACS6-4.096#PBF  
LT1790AIS6-4.096#PBF  
LT1790BCS6-4.096#PBF  
LT1790BIS6-4.096#PBF  
LT1790ACS6-5#PBF  
LT1790AIS6-5#PBF  
LT1790ACS6-3.3#TRPBF  
LT1790AIS6-3.3#TRPBF  
LT1790BCS6-3.3#TRPBF  
LT1790BIS6-3.3#TRPBF  
LT1790ACS6-4.096#TRPBF  
LT1790AIS6-4.096#TRPBF  
LT1790BCS6-4.096#TRPBF  
LT1790BIS6-4.096#TRPBF  
LT1790ACS6-5#TRPBF  
LT1790AIS6-5#TRPBF  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LT1790BCS6-5#PBF  
LT1790BIS6-5#PBF  
LT1790BCS6-5#TRPBF  
LT1790BIS6-5#TRPBF  
–40°C to 85°C  
1790fb  
2
LT1790  
ORDER INFORMATION  
LEAD BASED FINISH  
LT1790ACS6-1.25  
LT1790AIS6-1.25  
LT1790BCS6-1.25  
LT1790BIS6-1.25  
LT1790ACS6-2.048  
LT1790AIS6-2.048  
LT1790BCS6-2.048  
LT1790BIS6-2.048  
LT1790ACS6-2.5  
LT1790AIS6-2.5  
LT1790BCS6-2.5  
LT1790BIS6-2.5  
LT1790ACS6-3  
TAPE AND REEL  
PART MARKING*  
LTXT  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1790ACS6-1.25#TR  
LT1790AIS6-1.25#TR  
LT1790BCS6-1.25#TR  
LT1790BIS6-1.25#TR  
LT1790ACS6-2.048#TR  
LT1790AIS6-2.048#TR  
LT1790BCS6-2.048#TR  
LT1790BIS6-2.048#TR  
LT1790ACS6-2.5#TR  
LT1790AIS6-2.5#TR  
LT1790BCS6-2.5#TR  
LT1790BIS6-2.5#TR  
LT1790ACS6-3#TR  
LT1790AIS6-3#TR  
LTXT  
–40°C to 85°C  
0°C to 70°C  
LTXT  
LTXT  
–40°C to 85°C  
0°C to 70°C  
LTXU  
LTXU  
LTXU  
LTXU  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
LTPZ  
LTPZ  
–40°C to 85°C  
0°C to 70°C  
LTQA  
LTQA  
LTQA  
LTQA  
LTXW  
LTXW  
LTXW  
LTXW  
LTQB  
LTQB  
LTQB  
LTQB  
LTQC  
LTQC  
LTQC  
LTQC  
LT1790AIS6-3  
–40°C to 85°C  
0°C to 70°C  
LT1790BCS6-3  
LT1790BCS6-3#TR  
LT1790BIS6-3#TR  
LT1790BIS6-3  
–40°C to 85°C  
0°C to 70°C  
LT1790ACS6-3.3  
LT1790AIS6-3.3  
LT1790BCS6-3.3  
LT1790BIS6-3.3  
LT1790ACS6-4.096  
LT1790AIS6-4.096  
LT1790BCS6-4.096  
LT1790BIS6-4.096  
LT1790ACS6-5  
LT1790ACS6-3.3#TR  
LT1790AIS6-3.3#TR  
LT1790BCS6-3.3#TR  
LT1790BIS6-3.3#TR  
LT1790ACS6-4.096#TR  
LT1790AIS6-4.096#TR  
LT1790BCS6-4.096#TR  
LT1790BIS6-4.096#TR  
LT1790ACS6-5#TR  
LT1790AIS6-5#TR  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LT1790AIS6-5  
–40°C to 85°C  
0°C to 70°C  
LT1790BCS6-5  
LT1790BCS6-5#TR  
LT1790BIS6-5#TR  
LT1790BIS6-5  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1790fb  
3
LT1790  
AVAILABLE OPTIONS  
TEMPERATURE RANGE  
0°C TO 70°C  
–40°C TO 85°C  
OUTPUT  
VOLTAGE  
INITIAL  
ACCURACY  
TEMPERATURE  
COEFFICIENT  
ORDER PART NUMBER  
ORDER PART NUMBER  
1.250V  
2.048V  
2.500V  
3.000V  
3.300V  
4.096V  
5.000V  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-1.25  
LT1790BCS6-1.25  
LT1790AIS6-1.25  
LT1790BIS6-1.25  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-2.048  
LT1790BCS6-2.048  
LT1790AIS6-2.048  
LT1790BIS6-2.048  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-2.5  
LT1790BCS6-2.5  
LT1790AIS6-2.5  
LT1790BIS6-2.5  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-3  
LT1790BCS6-3  
LT1790AIS6-3  
LT1790BIS6-3  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-3.3  
LT1790BCS6-3.3  
LT1790AIS6-3.3  
LT1790BIS6-3.3  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-4.096  
LT1790BCS6-4.096  
LT1790AIS6-4.096  
LT1790BIS6-4.096  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-5  
LT1790BCS6-5  
LT1790AIS6-5  
LT1790BIS6-5  
1.25V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 2.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
1.24937  
–0.05  
1.25  
1.25062  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
1.24875  
–0.1  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25125  
0.1  
V
%
l
l
1.24850  
–0.12  
1.2515  
0.12  
V
%
l
l
1.24781  
–0.175  
1.25219  
0.175  
V
%
l
l
1.24656  
–0.275  
1.25344  
0.275  
V
%
l
l
1.24484  
–0.4125  
1.25516  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
2.6V ≤ V ≤ 18V  
50  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA, V = 2.8V  
100  
120  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
IN  
I
Sink = 1mA, V = 3.2V  
180  
250  
ppm/mA  
ppm/mA  
IN  
Minimum Operating Voltage (Note 7)  
V , ΔV  
= 0.1%  
OUT  
IN  
1.95  
2.15  
2.50  
2.90  
2.95  
V
V
V
V
I
= 0mA  
OUT  
l
l
l
I
I
Source = 5mA  
Sink = 1mA  
OUT  
OUT  
1790fb  
4
LT1790  
1.25V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 2.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Current  
No Load  
35  
60  
75  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
= 1.25V, 0.1%  
100  
250  
125  
μA  
OUT  
Turn-On Time  
C
= 1μF  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
10  
14  
μV  
P-P  
RMS  
μV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
2.048V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the  
specified temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.04697  
–0.05  
2.048  
2.04902  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.04595  
–0.1  
2.048  
2.048  
2.048  
2.048  
2.048  
2.05005  
0.1  
V
%
l
l
2.04554  
–0.12  
2.05046  
0.12  
V
%
l
l
2.04442  
–0.175  
2.05158  
0.175  
V
%
l
l
2.04237  
–0.275  
2.05363  
0.275  
V
%
l
l
2.03955  
–0.4125  
2.05645  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
2.8V ≤ V ≤ 18V  
50  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
120  
130  
200  
280  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
260  
450  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
OUT  
IN  
OUT  
50  
100  
500  
750  
450  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
75  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 2.048V, 0.1%  
100  
350  
125  
μA  
OUT  
Turn-On Time  
= 1μF  
μs  
LOAD  
1790fb  
5
LT1790  
2.048V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the  
specified temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
μV  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
22  
41  
P-P  
μV  
RMS  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
2.5V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.49875  
–0.05  
2.5  
2.50125  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.4975  
–0.1  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5025  
0.1  
V
%
l
l
2.4970  
–0.12  
2.5030  
0.12  
V
%
l
l
2.49563  
–0.175  
2.50438  
0.175  
V
%
l
l
2.49313  
–0.275  
2.50688  
0.275  
V
%
l
l
2.48969  
–0.4125  
2.51031  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3V ≤ V ≤ 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
OUT  
IN  
OUT  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 2.5V, 0.1%  
100  
700  
125  
μA  
OUT  
Turn-On Time  
= 1μF  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
32  
48  
μV  
P-P  
RMS  
μV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
1790fb  
6
LT1790  
3V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 3.5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.9985  
–0.05  
3
3.0015  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.9970  
–0.10  
3
3
3
3
3
3.0030  
0.10  
V
%
l
l
2.99640  
–0.12  
3.00360  
0.12  
V
%
l
l
2.99475  
–0.175  
3.00525  
0.175  
V
%
l
l
2.99175  
–0.275  
3.00825  
0.275  
V
%
l
l
2.98763  
–0.4125  
3.01238  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3.5V ≤ V ≤ 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
OUT  
IN  
OUT  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
OUT  
= 3V, 0.1%  
100  
125  
μA  
Turn-On Time  
C
= 1μF  
700  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
50  
56  
μV  
P-P  
RMS  
μV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
1790fb  
7
LT1790  
3.3V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 3.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
3.29835  
–0.05  
3.3  
3.30165  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
3.2967  
–0.10  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3033  
0.10  
V
%
l
l
3.29604  
–0.120  
3.30396  
0.120  
V
%
l
l
3.29423  
–0.175  
3.30578  
0.175  
V
%
l
l
3.29093  
–0.275  
3.30908  
0.275  
V
%
l
l
3.28639  
–0.4125  
3.31361  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3.8V ≤ V ≤ 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
IN  
OUT  
OUT  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
OUT  
= 3.3V, 0.1%  
100  
125  
μA  
Turn-On Time  
C
= 1μF  
700  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
50  
67  
μV  
P-P  
RMS  
μV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
1790fb  
8
LT1790  
4.096V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the  
specified temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 4.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
4.094  
–0.05  
4.096  
4.098  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
4.092  
–0.10  
4.096  
4.096  
4.096  
4.096  
4.096  
4.10  
0.10  
V
%
l
l
4.09108  
–0.120  
4.10092  
0.120  
V
%
l
l
4.08883  
–0.175  
4.10317  
0.175  
V
%
l
l
4.08474  
–0.275  
4.10726  
0.275  
V
%
l
l
4.07910  
–0.4125  
4.11290  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
4.6V ≤ V ≤ 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
OUT  
IN  
OUT  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
= 4.096V, 0.1%  
100  
125  
μA  
OUT  
Turn-On Time  
C
= 1μF  
700  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
60  
89  
μV  
P-P  
RMS  
μV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
1790fb  
9
LT1790  
5V ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1μF and VIN = 5.5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
4.9975  
–0.05  
5
5.0025  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
4.995  
–0.10  
5
5
5
5
5
5.005  
0.10  
V
%
l
l
4.99400  
–0.120  
5.00600  
0.120  
V
%
l
l
4.99125  
–0.175  
5.00875  
0.175  
V
%
l
l
4.98625  
–0.275  
5.01375  
0.275  
V
%
l
l
4.97938  
–0.4125  
5.02063  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
≤ T ≤ T  
MIN A MAX  
LT1790A  
LT1790B  
l
l
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
5.5V ≤ V ≤ 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
l
l
l
Load Regulation (Note 6)  
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
I
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , ΔV  
OUT  
= 0.1%  
OUT  
IN  
OUT  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
= 0mA  
l
l
l
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
μA  
μA  
l
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
OUT  
= 5V, 0.1%  
100  
125  
μA  
Turn-On Time  
C
= 1μF  
700  
μs  
LOAD  
Output Noise (Note 8)  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
80  
118  
μV  
P-P  
μV  
RMS  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/√kHr  
l
l
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
40  
ppm  
ppm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: ESD (Electrostatic Discharge) sensitive device. Extensive use of  
ESD protection devices are used internal to the LT1790, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 2: The LT1790 is guaranteed functional over the operating  
temperature range of 40°C to 125°C. The LT1790-1.25 at 125°C is  
typically less than 2% above the nominal voltage. The other voltage  
options are typically less than 0.25% above their nominal voltage.  
Note 3: If the part is stored outside of the specified temperature range, the  
output voltage may shift due to hysteresis.  
Note 5: Temperature coefficient is measured by dividing the change in  
output voltage by the specified temperature range. Incremental slope is  
also measured at 25°C.  
Note 6: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 7: Excludes load regulation errors.  
1790fb  
10  
LT1790  
ELECTRICAL CHARACTERISTICS  
Note 8: Peak-to-peak noise is measured with a single pole highpass filter  
at 0.1Hz and a 2-pole lowpass filter at 10Hz. The unit is enclosed in a still  
air environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds. Integrated RMS noise is measured from 10Hz to 1kHz  
with the HP3561A analyzer.  
Note 10: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or –40°C before a successive measurements. Hysteresis  
is roughly proportional to the square of the temperature change.  
Hysteresis is not a problem for operational temperature excursions where  
the instrument might be stored at high or low temperature. See the  
Applications Information section.  
Note 9: Long-term drift typically has a logarithmic characteristic and  
therefore changes after 1000 hours tend to be smaller than before that  
time. Long-term drift is affected by differential stress between the IC and  
the board material created during board assembly. See the Applications  
Information section.  
1.25V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Output Voltage Temperature Drift  
Differential (Sinking)  
10  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
FOUR TYPICAL PARTS  
100μA  
1mA  
5mA  
T
= 125°C  
T
T
= –55°C  
= 25°C  
A
A
A
1
0.1  
50 70  
–50 –30 –10 10 30  
TEMPERATURE (°C)  
90 110  
0.5  
1
1.5  
2
2.5  
0
–50 –30 –10 10 30 50 70 90 110 130  
TEMPERATURE (°C)  
INPUT-OUTPUT VOLTAGE (V)  
17901.25 G02  
17091.25 G01  
17091.25 G03  
Supply Current vs Input Voltage  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
= –55°C  
A
T
= –55°C  
A
–400  
T
A
= 25°C  
T
A
= 25°C  
–600  
–800  
T
= –55°C  
= 125°C  
1
T
A
= 125°C  
A
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= 125°C  
A
600  
T
A
400  
T
= 25°C  
A
200  
0
0.1  
1
OUTPUT CURRENT (mA)  
10  
0.1  
10  
0
5
10  
INPUT VOLTAGE (V)  
15  
20  
OUTPUT CURRENT (mA)  
17901.25 G04  
17901.25 G05  
17901.25 G06  
1790fb  
11  
LT1790  
1.25V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Power Supply Rejection Ratio  
Line Regulation  
Output Impedance vs Frequency  
vs Frequency  
500  
100  
10  
0
1.285  
1.280  
1.275  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
V
= 3V  
V
C
= 3V  
IN  
IN  
L
= 1μF  
T
= 125°C  
A
C
L
= 0.47μF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
1
C
= 4.7μF  
L
T
= 25°C  
A
C
= 1μF  
L
T
= –55°C  
A
0
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
17901.25 G09  
17901.25 G08  
17901.25. G07  
Long-Term Drift  
(Data Points Reduced After 500 Hr)  
1.25V Characteristics  
Output Noise 0.1Hz to 10Hz  
0.30  
0.25  
140  
120  
100  
80  
LT1790S6-1.25V  
R1 10k  
3V  
2 TYPICAL PARTS SOLDERED TO PCB  
4
T
= 30°C  
A
LT1790-1.25  
6
1
2
V
OUT  
0.20  
0.15  
R
L
1μF  
60  
5k  
–V  
EE  
40  
20  
0.10  
0.05  
0
0
T
T
T
= 25°C  
= 125°C  
= –55°C  
A
A
A
–20  
–40  
–60  
0
1
2
3
4
5
6
7
8
9
10  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
0
200  
400  
600  
800  
1000  
OUTPUT TO GROUND VOLTAGE (V)  
TIME (SEC)  
HOURS  
17901.25 G12  
17091.25 G10  
17901.25 G11  
Output Voltage Noise Spectrum  
Integrated Noise 10Hz to 1kHz  
5.0  
4.5  
4.0  
3.5  
100  
10  
1
C
= 1μF  
L
3.0  
2.5  
I
= 100μA  
= 0μA  
O
2.0  
1.5  
1.0  
0.5  
0
I
O
I
= 250μA  
O
I
O
= 1mA  
10  
100  
1k  
10k  
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
17901.25 G13  
17901.25 G14  
1790fb  
12  
LT1790  
2.048V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Output Voltage Temperature Drift  
Differential (Sinking)  
2.056  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
2.042  
10  
130  
110  
90  
FOUR TYPICAL PARTS  
T
= 125°C  
T
= 25°C  
A
A
70  
5mA  
1mA  
T
= –55°C  
A
50  
1
30  
10  
100μA  
–10  
–30  
0.1  
–50  
–50 –30 –10 10 30 50  
TEMPERATURE (°C)  
130  
70 90 110  
0
0.1  
0.2  
INPUT-OUTPUT VOLTAGE (V)  
0.7  
0.3 0.4 0.5  
0.6  
–50 –30 –10 10  
TEMPERATURE (°C)  
90 110 130  
30 50 70  
17902.048 G01  
17902.048 G02  
17902.048 G03  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
2000  
1800  
1600  
1400  
1200  
1000  
800  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= –55°C  
A
–200  
–400  
T
= –55°C  
A
T
= 25°C  
A
–600  
T
A
= 125°C  
T
= 25°C  
–800  
A
T
= –40°C  
A
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= 125°C  
A
600  
T
= 125°C  
A
400  
T
= 25°C  
A
200  
0
0.1  
1
10  
0.1  
1
OUTPUT CURRENT (mA)  
10  
10  
INPUT VOLTAGE (V)  
0
5
15  
20  
OUTPUT CURRENT (mA)  
17902.048 G05  
17902.048 G04  
17902.048 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
20  
10  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
1000  
100  
10  
C
= 1μF  
L
T
T
= 125°C  
= 25°C  
A
0
C
= 0.47μF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
A
T
= –55°C  
A
C
= 4.7μF  
= 1μF  
L
C
L
2.042  
1
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
17902.048 G08  
17902.048 G09  
17902.048 G07  
1790fb  
13  
LT1790  
2.048V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
2.048V Characteristics  
Long-Term Drift  
0.30  
0.25  
100  
80  
R1 10k  
3V  
4
LT1790-2.048  
6
60  
1
2
40  
V
OUT  
0.20  
0.15  
R
L
1μF  
20  
5k  
–V  
EE  
0
–20  
–40  
–60  
–80  
–100  
0.10  
0.05  
0
T
T
T
= 125°C  
= 25°C  
A
A
A
= –55°C  
–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5  
OUTPUT TO GROUND VOLTAGE (V)  
0
0
200  
400  
600  
800  
1000  
HOURS  
17092.048 G10  
17902.048 G11  
Output Voltage Noise Spectrum  
Output Noise 0.1Hz to 10Hz  
10  
9
C
= 1μF  
L
8
7
6
5
I
= 100μA  
O
4
3
2
1
0
I
= 0μA  
O
I
= 250μA  
O
I
= 1mA  
1k  
O
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
10k  
TIME (SEC)  
FREQUENCY (Hz)  
17902.048 G13  
17902.048 G12  
Integrated Noise 10Hz to 1kHz  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
17902.048 G14  
1790fb  
14  
LT1790  
2.5 TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Differential (Sinking)  
Output Voltage Temperature Drift  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
90  
70  
10  
FOUR TYPICAL PARTS  
T
= –55°C  
T = 125°C  
A
A
50  
T
= 25°C  
A
30  
10  
1
100μA  
1mA  
5mA  
–10  
–30  
0.1  
50  
TEMPERATURE (°C)  
90  
130  
110  
–50 –30 –10 10  
90  
110 130  
30  
70  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
–50 –30 –10 10 30 50 70  
TEMPERATURE (°C)  
INPUT-OUTPUT VOLTAGE (V)  
17902.5 G02  
17902.5 G01  
17902.5 G03  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
0
–200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
T
= –55°C  
A
–400  
T
= –55°C  
A
–600  
T
= 125°C  
A
–800  
T
= 25°C  
A
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= –55°C  
A
T
= 125°C  
600  
A
400  
T
A
= 125°C  
200  
T
= 25°C  
A
0
0.1  
1
OUTPUT CURRENT (mA)  
10  
0.1  
1
10  
10  
0
5
15  
20  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
17902.5 G04  
17902.5 G05  
17902.5 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
1000  
100  
10  
20  
10  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
C
= 1μF  
L
T
= 125°C  
A
C
= 0.47μF  
L
0
C
= 1μF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
T
= 25°C  
A
C
= 4.7μF  
L
T
= –55°C  
A
1
2.489  
100  
1k  
10k  
100k  
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
17902.5 G09  
17902.5 G08  
17902.5 G07  
1790fb  
15  
LT1790  
2.5V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Long-Term Drift  
(Data Points Reduced After 500 Hr)  
2.5V Characteristics  
140  
120  
100  
80  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
R1 10k  
3V  
4
LT1790-2.5  
1, 2  
6
V
OUT  
R
L
5k  
1μF  
60  
–V  
40  
EE  
20  
0
T
T
T
= 25°C  
= 125°C  
= –55°C  
A
A
A
–20  
–40  
–60  
0
200  
400  
600  
800  
1000  
–4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
OUTPUT TO GROUND VOLTAGE (V)  
0
HOURS  
17902.5 G11  
17902.5 G10  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
10  
8
C
= 1μF  
L
I
= 0μA  
O
6
I
= 250μA  
O
4
I
= 1mA  
O
2
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
TIME (SEC)  
17902.5 G13  
17902.5 G12  
Integrated Noise 10Hz to 1kHz  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
17902.5 G14  
1790fb  
16  
LT1790  
5V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Differential (Sinking)  
Output Voltage Temperature Drift  
90  
70  
10  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
FOUR TYPICAL PARTS  
50  
T
= –55°C  
A
100μA  
1mA  
T
A
= 125°C  
A
30  
T
= 25°C  
1
10  
–10  
–30  
–50  
5mA  
0.1  
–50 –30 –10 10 30 50  
110 130  
70 90  
30 50  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
–50 –30 –10 10  
70 90 110 130  
INPUT-OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
17905 G02  
17905 G03  
17905 G01  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
0
–200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= –55°C  
A
T
= –55°C  
= 25°C  
A
–400  
T
= 25°C  
A
–600  
T
A
T
A
= 125°C  
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= –40°C  
A
T
= 125°C  
A
600  
400  
T
= 125°C  
A
200  
T
= 25°C  
A
0
0.1  
1
OUTPUT CURRENT (mA)  
10  
0.1  
1
10  
10  
INPUT VOLTAGE (V)  
0
5
15  
20  
OUTPUT CURRENT (mA)  
17905 G04  
17905 G05  
17905 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
20  
10  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
1000  
100  
10  
C
= 1μF  
L
T
T
= 125°C  
= 25°C  
A
0
C
= 0.47μF  
L
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
C
= 1μF  
L
T
= –55°C  
A
C
= 4.7μF  
L
4.92  
1
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
17905 G08  
17905 G09  
17905 G07  
1790fb  
17  
LT1790  
5V TYPICAL PERFORMANCE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Long-Term Drift  
5V Characteristics  
0.30  
0.25  
100  
80  
T
= 30°C  
R1 10k  
5.5V  
4
A
2 TYPICAL PARTS SOLDERED TO PCB  
LT1790-5  
6
60  
1
2
40  
V
OUT  
0.20  
0.15  
R
L
1μF  
20  
5k  
–V  
EE  
0
–20  
–40  
–60  
–80  
–100  
0.10  
0.05  
0
T
= 125°C  
A
T
A
= 25°C  
T
= –55°C  
A
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1  
OUTPUT TO GROUND VOLTAGE (V)  
0
0
200  
400  
600  
800  
1000  
HOURS  
17905 G10  
17905 G11  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
10  
8
C
= 1μF  
L
I
= 0μA  
O
6
I
O
= 250μA  
4
I
= 1mA  
O
2
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
TIME (SEC)  
17905 G13  
17905 G12  
Integrated Noise 10Hz to 1kHz  
1000  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
17905 G14  
1790fb  
18  
LT1790  
APPLICATIONS INFORMATION  
Bypass and Load Capacitors  
Figure 1 shows the turn-on time for the LT1790-2.5 with a  
1μF input bypass and 1μF load capacitor. Figure 2 shows  
TheLT1790voltagereferencesshouldhaveaninputbypass  
capacitorof0.1μForlarger,howeverthebypassingofother  
localdevicesmayserveastherequiredcomponent. These  
references also require an output capacitor for stability.  
The optimum output capacitance for most applications  
is 1μF, although larger values work as well. This capaci-  
tor affects the turn-on and settling time for the output to  
reach its final value.  
the output response to a 0.5V transient on V with the  
IN  
same capacitors.  
The test circuit of Figure 3 is used to measure the stability  
ofvariousloadcurrents.WithR =1k,the1Vstepproduces  
L
a current step of 1mA. Figure 4 shows the response to a  
0.5mAload.Figure5istheoutputresponsetoasourcing  
stepfrom4mAto5mA,andFigure 6istheoutputresponse  
of a sinking step from –4mA to –5mA.  
All LT1790 voltages perform virtually the same, so the  
LT1790-2.5 is used as an example.  
V
V
V
V
3V  
2V  
1V  
0V  
3V  
2V  
1V  
0V  
IN  
OUT  
IN  
OUT  
1790 F01  
1790 F02  
Figure 1. Turn-On Characteristics of LT1790-2.5  
Figure 2. Output Response to 0.5V Ripple on VIN  
1k  
4
6
V
IN  
LT1790-2.5  
1, 2  
3V  
C
C
L
1μF  
IN  
V
1V  
GEN  
0.1μF  
1790 F03  
Figure 3. Response Time Test Circuit  
V
GEN  
3V  
2V  
V
V
OUT  
OUT  
(AC COUPLED)  
(AC COUPLED)  
V
–2V  
GEN  
–3V  
1790 F05  
1790 F04  
Figure 4. LT1790-2.5 Sourcing and Sinking 0.5mA  
Figure 5. LT1790-2.5 Sourcing 4mA to 5mA  
1790fb  
19  
LT1790  
APPLICATIONS INFORMATION  
Positive or Negative Operation  
turning on and driving the grounded output. C1 provides  
stabilityduringloadtransients.Thisconnectionmaintains  
nearly the same accuracy and temperature coefficient of  
the positive connected LT1790.  
Series operation is ideal for extending battery life. If an  
LT1790 is operated in series mode it does not require an  
external current setting resistor. The specifications guar-  
antee that the LT1790 family operates to 18V. When the  
circuitry being regulated does not demand current, the  
series connected LT1790 consumes only a few hundred  
μW, yet the same connection can sink or source 5mA of  
load current when demanded. A typical series connection  
is shown on the front page of this data sheet.  
Long-Term Drift  
Long-termdriftcannotbeextrapolatedfromaccelerated  
hightemperaturetesting.Thiserroneoustechniquegives  
drift numbers that are widely optimistic. The only way  
long-term drift can be determined is to measure it over  
the time interval of interest. The LT1790S6 drift data was  
taken on over 100 parts that were soldered into PC boards  
similar to a real world application. The boards were then  
The circuit in Figure 7 shows the connection for a 2.5V  
reference, although any LT1790 voltage option can be  
configured this way to make a negative reference. The  
LT1790 can be used as very stable negative references,  
however, they require a positive voltage applied to Pin 4  
to bias internal circuitry. This voltage must be current  
limited with R1 to keep the output PNP transistor from  
placed into a constant temperature oven with T = 30°C,  
A
their outputs scanned regularly and measured with an 8.5  
digitDVM. Long-termdriftcurvesareshownintheTypical  
Performance Characteristics section.  
V
GEN  
8V  
R1  
10k  
3V  
4
6V  
4V  
2V  
0V  
6
C1  
0.1μF  
LT1790-2.5  
1, 2  
V
OUT  
(AC COUPLED)  
V
OUT  
= –2.5V  
V
EE  
– V  
OUT  
125μA  
C
L
R
=
L
1μF  
V
EE  
1790 F07  
1790 F06  
Figure 6. LT1790-2.5 Sinking 4mA to –5mA  
Figure 7. Using the LT1790-2.5 to Build a –2.5V Reference  
1790fb  
20  
LT1790  
APPLICATIONS INFORMATION  
Hysteresis  
For lead-free solder, IR reflow temperatures are much  
higher, often 240°C to 260°C at the peak. As a result, the  
Hysteresis data shown in Figures 8 and 9 represent the  
worst-case data taken on parts from 0°C to 70°C and from  
4Cto85°C. Unitswerecycledseveraltimesoverthese  
temperature ranges and the largest change is shown. As  
expected, the parts cycled over the higher temperature  
range have higher hysteresis than those cycled over the  
lower range.  
packaging materials have been optimized to reduce V  
OUT  
shift as possible during high temperature reflow. In addi-  
tion, care should be taken when using lead-free solder to  
minimize the peak temperature and dwell time as much  
as is practical. A typical lead-free reflow profile is shown  
in Figure 10. LT1790 units were heated using a similar  
profile, with a peak temperature of 250°C. These parts  
were run through the heating process 3 times to show the  
cumulative effect of these heat cycles. Figure 11 shows  
In addition to thermal hysteresis, the thermal shock as-  
sociated with high temperature soldering may cause the  
output to shift. For traditional PbSn solder temperatures,  
the output shift of the LT1790 is typically just 150ppm  
(0.015%).  
300  
380s  
T
= 260°  
P
RAMP  
DOWN  
T = 217°C  
L
225  
150  
30  
25  
20  
T
= 200°C  
S(MAX)  
T = 190°C  
t
P
130s  
T = 150°C  
t
L
130s  
RAMP TO  
150°C  
0°C TO 25°C  
70°C TO 25°C  
15  
75  
0
40s  
120s  
10  
5
0
2
4
6
8
10  
MINUTES  
1790 F10  
0
–60 –50 –40 –30 –20 –10  
0
10 20 30 40 50 60  
Figure 10. Lead-Free Reflow Profile  
DISTRIBUTION (ppm)  
1790 F08  
Figure 8. Worst-Case 0°C to 70°C Hysteresis on 79 Units  
9
8
7
6
5
4
3
50  
45  
40  
35  
30  
25  
80°C TO 25°C  
2
1
20  
–40°C TO 25°C  
15  
10  
5
0
0
10  
20  
30  
40  
50  
PPM  
0
1790 F11  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
DISTRIBUTION (ppm)  
Figure 11. 1X IR Reflow Peak Temperature = 250°C,  
Delta Output Voltage (ppm)  
1790 F09  
Figure 9. Worst-Case –40°C to 85°C Hysteresis on 80 Units  
1790fb  
21  
LT1790  
APPLICATIONS INFORMATION  
the shift after 1 cycle, while Figure 12 shows shift after  
3 cycles. In the worst case, shifts are typically 150ppm,  
but may be as high as 290ppm. Shifts in output voltage  
are proportional to temperature and dwell time.  
Assuming 80μA max supply current for the LT1790, a  
25μA load, 120mV max dropout and a 4V to 30V input  
specification, the largest that R1 can be is (4V – 3.3V  
– 120mV)/(80μA + 25μA) = 5.5k. Furthermore, assum-  
ing 220mW of dissipation in the 18V SOT-23 Zener, this  
gives a max current of (220mW)/(18V) = 12.2mA. So the  
smallest that R1 should be is (30V – 18V)/12.2mA = 1k,  
rated at 150mW.  
In general, the output shift can be reduced or fully recov-  
ered by a long (12-24 hour) bake of the completed PC  
Board assembly at high temperature (100°C to 150C°)  
after soldering to remove mechanical stress that has been  
inducedbythermalshock.OncethePCBoardshavecooled  
to room temperature, they may continue to shift for up to  
3 times the bake time. This should be taken into account  
before any calibration is performed.  
With R1 = 1k, and assuming a 450mV worst-case drop-  
out, the LT1790 can deliver a minimum current of (4V  
– 3.3V–450mV)/(1k) = 250μA. In Figure 13, R1 and C1  
provide filtering of the Zener noise when the Zener is in  
its noisy V-I knee.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Thereareothervariationsforhighervoltageoperationthat  
use a pass transistor shown in Figures 14 and 15. These  
circuits allow the input voltage to be as high as 160V while  
maintaining low supply current.  
V
S
6V TO 160V  
R1  
330k  
R2  
4.7k  
ON SEMI  
MMBT5551  
0.5  
BZX84C12  
0
70 90 110 130 150 170 190 210 230 250 270 290  
C1  
0.1μF  
LT1790  
V
OUT  
PPM  
C2  
1μF  
1790 F12  
Figure 12. 3X IR Reflow Peak Temperature = 250°C,  
Delta Output Voltage (ppm)  
1790 F14  
Figure 14. Extended Supply Range Reference  
Higher Input Voltage  
The circuit in Figure 13 shows an easy way to increase the  
input voltage range of the LT1790. The Zener diode can be  
anywherefrom6Vto18V.Forequalpowersharingbetween  
R1 and the Zener (at 30V), the 18V option is better. The  
circuit can tolerate much higher voltages for short periods  
and is suitable for transient protection.  
V
S
6.5V TO 160V  
C1  
R1  
330k  
0.1μF  
ON SEMI  
MMBT5551  
BAV99  
4V TO 30V  
R1  
V
LT1790  
OUT  
C2  
1μF  
1790 F15  
V
LT1790-3.3  
OUT  
C1  
0.1μF  
BZX84C18  
1μF  
Figure 15. Extended Supply Range Reference  
1790 F13  
Figure 13. Extended Supply Range Reference  
1790fb  
22  
LT1790  
APPLICATIONS INFORMATION  
More Output Current  
bandwidth is √990 = 31.4. The total noise 10Hz to 1kHz  
noise is (450nV)(31.4) = 14.1μV. This agrees well with the  
measured noise.  
The circuit in Figure 16 is a compact, high output current,  
low dropout precision supply. The circuit uses the SOT-23  
LT1782 and the ThinSOT LT1790. Resistive divider R1 and  
This estimate may not be as good with higher voltage  
options, there are several reasons for this. Higher voltage  
options have higher noise and they have higher variability  
due to process variations. 10Hz to 1kHz noise may vary by  
2dB on the LT1790-5 and 1dB on the LT1790-2.5.  
R2 set a voltage 22mV below V . For under 1mA of output  
S
current, the LT1790 supplies the load. Above 1mA of load  
current, the (+) input of the LT1782 is pulled below the  
22mV divider reference and the output FET turns on to  
supply the load current. Capacitor C1 stops oscillations in  
the transition region. The no load standing current is only  
120μA, yet the output can deliver over 300mA.  
Measured noise may also vary because of peaking in the  
noise spectrum. This effect can be seen in the range of  
1kHz to 10kHz with all voltage options sourcing different  
load currents. From the Typical Performance curves the  
10Hz to 1kHz noise spectrum of the LT1790-5 is shown  
to be 3μV/√Hz at low frequency. The estimated noise is  
(3μV)(31.4) = 93.4μV. The actual integrated 10Hz to 1kHz  
noise measures 118.3μV. The peaking shown causes this  
larger number. Peaking is a function of output capacitor  
as well as load current and process variations.  
Noise  
Anestimateofthetotalintegratednoisefrom10Hzto1kHz  
can be made by multiplying the flat band spot noise by  
BW. For example, from the Typical Performance curves,  
the LT1790-1.25 noise spectrum shows the average spot  
noise to be about 450nV/√Hz. The square root of the  
V
S
2.8V TO 3.3V  
NO LOAD  
SUPPLY CURRENT  
120μA  
R3  
22Ω  
5%  
R4  
1k  
5%  
R1  
+
680Ω  
5%  
VISHAY SILICONIX  
Si3445DV  
LT1782  
C1  
0.1μF  
R2  
100k  
5%  
V
I
= 2.5V  
= 0mA to 300mA  
OUT  
LOAD  
LT1790-2.5  
17909 F16  
C2  
1μF  
NOTE: NOT CURRENT LIMITED  
Figure 16. Compact, High Output Current, Low Dropout, Precision 2.5V Supply  
1790fb  
23  
LT1790  
SIMPLIFIED SCHEMATIC  
V
V
4
6
IN  
OUT  
GND  
1, 2  
1790 SS  
1790fb  
24  
LT1790  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1790fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT1790  
TYPICAL APPLICATION  
2.5V Negative 50mA Series Reference  
No Load Supply Current  
I
CC = 1.6mA  
IEE = 440μA  
V
= 5V  
CC  
2k  
4
6
LT1790-2.5  
1, 2  
V
Z
= 5.1V  
5.1k  
–2.5V  
50mA  
V
EE  
= –5V  
MPS2907A  
1μF  
1790 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1019  
Precision Reference  
Low Noise Bandgap, 0.05%, 5ppm/°C  
®
LTC 1798  
Micropower Low Dropout Reference  
Micropower Precision Series Reference  
0.15% Max, 6.5μA Supply Current  
LT1460  
LT1461  
Bandgap, 130μA Supply Current, 10ppm/°C, Available in SOT-23  
Bandgap 0.04%, 3ppm/°C, 50μA Max Supply Current  
Micropower Precision Low Dropout Reference  
1790fb  
LT 0609 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1790ACS6-3.3#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-3.3-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-4.096

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-4.096#PBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-4.096#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-4.096-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-5

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-5#PBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-5#TR

暂无描述
Linear

LT1790ACS6-5#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-5-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790AI

Micropower SOT-23 Low Dropout Reference Family
Linear