LT1724IS#TR [Linear]

LT1724 - Quad 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C;
LT1724IS#TR
型号: LT1724IS#TR
厂家: Linear    Linear
描述:

LT1724 - Quad 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总18页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1722/LT1723/LT1724  
Single, Dual, Quad 200MHz  
Low Noise Precision Op Amps  
FEATURES  
DESCRIPTION  
The LT®1722/LT1723/LT1724 are single/dual/quad, low  
noise,lowpower,highspeedoperationalamplifiers.These  
productsfeaturelowerinputoffsetvoltage,lowerinputbias  
current and higher DC gain than devices with comparable  
bandwidth. The 200MHz gain bandwidth ensures high  
open-loop gain at video frequencies.  
n
3.8nV/√Hz Input Noise Voltage  
n
3.7mA Supply Current  
n
200MHz Gain Bandwidth  
n
Low Total Harmonic Distortion: 85dBc at 1MHz  
n
70V/μs Slew Rate  
n
400μV Maximum Input Offset Voltage  
n
300nA Maximum Input Bias Current  
The low input noise voltage is achieved with reduced  
supply current. The total noise is optimized for a source  
resistance between 0.8k and 12k. Due to the input bias  
current cancellation technique used, the resistance seen  
by each input does not need to be balanced.  
n
Unity-Gain Stable  
n
Capacitive Load Stable Up to 100pF  
n
23mA Minimum Output Current  
n
Specified at 5V and Single 5V  
n
Low Profile (1mm) SOT-23 (ThinSot ) Package  
The output drives a 150Ω load to 3V with 5V supplies.  
On a single 5V supply the output swings from 1.5V to  
3.5V with a 500Ω load connected to 2.5V. The amplifier  
APPLICATIONS  
n
Video and RF Amplification  
is unity-gain stable (C  
≤ 100pF).  
LOAD  
n
ADSL, HDSL II, VDSL Receivers  
n
Active Filters  
The LT1722/LT1723/LT1724 are manufactured on Linear  
Technology’s advanced low voltage complementary  
bipolar process. The LT1722 is available in the SO-8 and  
5-pin SOT-23 packages. The LT1723 is available in the  
SO-8 and MS8 packages. The LT1724 is available in the  
14-lead SO package.  
n
Wideband Amplifiers  
n
Buffers  
n
Data Acquisition Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Differential Video Line Driver  
C1 5pF  
R3  
750Ω  
Line Driver Mulitburst Video Signal  
R5 2k  
R7  
62.5Ω  
+V  
OUT  
0.5V/DIV  
1/2 LT1723  
+
125Ω  
CAT-5  
TWISTED PAIR  
V
IN  
V
IN  
V
+V  
/2  
C2 5pF  
62.5Ω  
LOAD  
IN  
V
IN  
1V/DIV  
75Ω  
OUT  
R2  
2k  
SOURCE  
–V  
R4 2k  
OUT  
0.5V/DIV  
–V  
–V /2  
62.5Ω  
LOAD  
OUT  
IN  
R6  
62.5Ω  
R1  
75Ω  
1723 TA02  
1723 TA01  
1/2 LT1723  
–V  
+
IN  
172234fb  
1
LT1722/LT1723/LT1724  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ).............................12.6V  
Input Voltage............................................................. V  
Operating Temperature Range (Note 4) ...–40°C to 85°C  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
S
Differential Input Voltage (Note 2) ......................... 0.7V  
Input Current (Note 2).......................................... 10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
PIN CONFIGURATION  
LT1722  
LT1722  
LT1723  
TOP VIEW  
TOP VIEW  
TOP VIEW  
+
+
OUT 1  
5 V  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
V
2
+
OUT B  
–IN B  
+IN B  
V
+
A
+
+IN 3  
4 –IN  
OUT  
NC  
V
B
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
= 150°C, θ = 250°C/W  
V
T
JMAX  
S8 PACKAGE  
JA  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 190°C/W  
JMAX  
JA  
T
= 150°C, θ = 150°C/W  
JMAX  
JA  
LT1723  
LT1724  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
8
OUT D  
–IN D  
+IN D  
7 OUT B  
6 –IN B  
5 +IN B  
A
–IN A  
+
+
B
A
B
D
C
V
+IN A  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 250°C/W  
+
V
V
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
T
JMAX  
+
+
JA  
OUT B  
8
S PACKAGE  
14-LEAD PLASTIC SO  
= 150°C, θ = 100°C/W  
T
JMAX  
JA  
172234fb  
2
LT1722/LT1723/LT1724  
ORDER INFORMATION  
SPECIFIED  
TEMPERATURE RANGE  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
LT1722CS8#PBF  
LT1722IS8#PBF  
LT1722CS5#PBF  
LT1722IS5#PBF  
LT1723CS8#PBF  
LT1723IS8#PBF  
LT1723CMS8#PBF  
LT1723IMS8#PBF  
LT1724CS#PBF  
LT1724IS#PBF  
LT1722CS8#TRPBF  
LT1722IS8#TRPBF  
LT1722CS5#TRPBF  
LT1722IS5#TRPBF  
LT1723CS8#TRPBF  
LT1723IS8#TRPBF  
LT1723CMS8#TRPBF  
LT1723IMS8#TRPBF  
LT1724CS#TRPBF  
LT1724IS#TRPBF  
1722  
8-Lead Plastic SO  
0°C to 70°C  
1722I  
LTZB  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
8-Lead Plastic SO  
LTZB  
–40°C to 85°C  
0°C to 70°C  
1723  
1723I  
LTYC  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
14-Lead Plastic SO  
14-Lead Plastic SO  
LTZA  
–40°C to 85°C  
0°C to 70°C  
LT1724CS  
LT1724IS  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
172234fb  
3
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
(Note 6)  
100  
150  
400  
650  
μV  
μV  
LT1722 SOT-23 and LT1723 MS8  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
40  
40  
300  
300  
nA  
nA  
OS  
B
e
f = 10kHz  
f = 10kHz  
3.8  
1.2  
nV/√Hz  
pA/√Hz  
n
i
n
R
V
CM  
=
3.5V  
5
35  
50  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range +  
Input Voltage Range –  
3.5  
4
–4  
V
V
–3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 3.5V  
80  
78  
100  
90  
dB  
dB  
CM  
V = 2.3V to 5.5V  
S
A
VOL  
V
OUT  
=
3V, R = 500Ω  
3V, R = 150Ω  
L
10  
7
17  
14  
V/mV  
V/mV  
OUT  
L
V
=
V
Output Swing  
R = 500Ω, V = 10mV  
3.2  
3.1  
3.8  
3.4  
V
V
OUT  
L
IN  
R = 150Ω, V  
= 10ꢀV  
L
IN  
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
=
3V, 10mV Overdrive  
23  
35  
45  
50  
90  
mA  
mA  
OUT  
OUT  
OUT  
= 0V, V 1V  
=
SC  
IN  
SR  
A = –1, (Note 7)  
V
70  
V/μs  
MHz  
MHz  
Full Power Bandwidth  
Gain Bandwidth  
Settling Time  
3V Peak, (Note 8)  
f = 200kHz  
3.7  
200  
GBW  
115  
t
S
A = –1, 2V, 0.1%  
91  
112  
ns  
ns  
V
A = –1, 2V, 0.01%  
V
t, t  
r
Rise Time, Fall Time  
Overshoot  
A = 1, 10% to 90%, V = 0.2V , R = 150Ω  
6
15  
ns  
%
f
V
IN  
P-P  
L
A = 1, V = 0.2V , R = 150Ω, R = 0Ω  
V
IN  
P-P  
L
F
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V  
= 0.2V , R = 150Ω  
3
ns  
IN  
OUT  
P-P  
L
R
A = 1, f = 1MHz  
V
0.15  
90  
Ω
O
V
OUT  
= 3V, R = 150Ω  
82  
dB  
mA  
L
I
Per Amplifier  
3.7  
4.5  
S
TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.  
V
OS  
Input Offset Voltage  
(Note 6)  
250  
350  
550  
800  
μV  
μV  
LT1722 SOT-23 and LT1723 MS8  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
20  
20  
4
300  
300  
nA  
nA  
OS  
B
e
i
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
1.1  
n
R
V
CM  
= 1.5V to 3.5V  
5
32  
55  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range +  
Input Voltage Range –  
3.5  
4
1
V
V
1.5  
172234fb  
4
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
100  
10  
MAX  
UNITS  
dB  
CMRR Common Mode Rejection Ratio  
V
CM  
= 1.5V to 3.5V  
80  
A
VOL  
Large-Signal Voltage Gain  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
4
V/mV  
L
V
Output Swing+  
Output Swing–  
R = 500Ω, V = 10mV  
3.6  
3.8  
0.9  
V
V
OUT  
L
IN  
R = 500Ω, V = 10mV  
1.4  
L
IN  
I
I
Output Current  
V
V
= 3.5V or 1.5V, 10mV Overdrive  
10  
22  
40  
20  
55  
mA  
mA  
OUT  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = 1V  
IN  
SC  
SR  
A = –1, (Note 7)  
V
70  
V/µs  
MHz  
MHz  
ns  
Full Power Bandwidth  
Gain Bandwidth (Note 10)  
Rise Time, Fall Time  
Overshoot  
1V Peak, (Note 8)  
f = 200kHz  
8.7  
180  
5
GBW  
t, t  
115  
A = 1, 10% to 90%, V = 0.2V , R = 500Ω  
V
r
f
IN  
P-P  
L
A = 1, V = 0.2V , R = 500Ω  
V
16  
%
IN  
P-P  
L
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V , 0.1V, R = 500Ω  
3
ns  
IN  
OUT  
L
R
A = 1, f = 1MHz  
V
0.19  
90  
Ω
O
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
82  
dB  
L
3.8  
5
mA  
I
Per Aꢀplifier  
S
The denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 0V,  
unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
(Note 6)  
700  
850  
μV  
μV  
OS  
LT1722 SOT-23 and LT1723 MS8  
l
l
l
Input V Drift  
(Note 9)  
3
7
μV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
350  
350  
OS  
nA  
B
l
l
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
–3.5  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
3.5V  
75  
76  
dB  
dB  
CM  
V = 2.3V to 5.5V  
S
l
l
A
VOL  
9
6
V/mV  
V/mV  
V
OUT  
V
OUT  
=
=
3V, R = 500Ω  
L
3V, R = 150Ω  
L
l
l
V
OUT  
Output Swing  
R = 500ꢀ, V  
L
=
=
10mV  
10mV  
3.15  
3.05  
V
V
L
IN  
IN  
R = 150ꢀ, V  
l
l
l
l
l
l
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
=
3V, 10mV Overdrive  
22  
30  
mA  
mA  
OUT  
OUT  
OUT  
V
= 0V, V = 1V  
SC  
IN  
SR  
A = –1, (Note 7)  
V
35  
V/μs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
100  
81  
V
OUT  
= 3V, R = 150ꢀ  
L
I
S
Per Amplifier  
5.45  
mA  
172234fb  
5
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
(Note 6)  
850  
950  
μV  
μV  
OS  
LT1722 SOT-23 and LT1723 MS8  
l
l
l
Input V Drift  
(Note 9)  
3
7
μV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
350  
350  
OS  
nA  
B
l
l
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
1.5  
l
l
CMRR  
Common Mode Rejection Ratio  
V
= 1.5V to 3.5V  
75  
3
dB  
CM  
A
VOL  
V/mV  
Large-Signal Voltage Gain  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
L
l
l
V
Output Swing+  
Output Swing–  
R = 500ꢀ, V  
L
=
=
10mV  
10mV  
3.55  
V
V
OUT  
L
IN  
IN  
R = 500ꢀ, V  
1.45  
l
l
l
l
l
l
I
I
Output Current  
V
V
= 3.5V, or 1.5V, 10mV Overdrive  
9
11  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = 1V  
IN  
SR  
A = –1, (Note 7)  
V
30  
100  
81  
V/μs  
MHz  
dB  
GBW  
Gain Bandwidth (Note 10)  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
= 1.5V to 3.5V, R = 500ꢀ  
L
I
5.95  
mA  
S
The l denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 0V,  
unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
(Note 6)  
LT1722 SOT-23 and LT1723 MS8  
900  
1100  
μV  
μV  
OS  
l
l
l
Input V Drift  
(Note 9)  
3
10  
μV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
400  
400  
OS  
nA  
B
l
l
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
–3.5  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 3.5V  
75  
75  
dB  
dB  
CM  
V = 2.0V to 5.5V  
S
l
l
A
VOL  
V
OUT  
V
OUT  
= 3V, R = 500Ω  
= 3V, R = 150Ω  
8
5
V/mV  
V/mV  
L
L
l
l
V
Output Swing  
R = 500Ω, V = 10mV  
3.1  
3.0  
V
V
OUT  
L
IN  
R = 150Ω, V = 10mV  
L
IN  
l
l
l
l
l
l
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= 3V, 10mV Overdrive  
20  
25  
25  
90  
80  
mA  
mA  
OUT  
OUT  
OUT  
= 0V, V = 1V  
SC  
IN  
SR  
A = –1, (Note 7)  
V
V/μs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
= 3V, R = 150Ω  
L
I
S
5.95  
mA  
172234fb  
6
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the temperature range of  
–40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
(Note 6)  
1000  
1200  
µV  
µV  
OS  
LT1722 SOT-23 and LT1723 MS8  
l
l
l
Input V Drift  
(Note 9)  
3
10  
μV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
400  
400  
OS  
nA  
B
l
l
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
1.5  
l
l
CMRR  
Common Mode Rejection Ratio  
V
= 1.5V to 3.5V  
75  
2
dB  
CM  
V/mV  
A
VOL  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V, R = 500Ω  
OUT L  
l
l
3.5  
V
V
V
OUT  
Output Swing+  
Output Swing–  
R = 500Ω, V  
L
=
=
10ꢀV  
10ꢀV  
L
IN  
IN  
1.5  
R = 500Ω, V  
l
l
l
l
l
l
I
I
Output Current  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
8
mA  
mA  
OUT  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = 1V  
10  
20  
90  
80  
SC  
IN  
SR  
A = –1, (Note 7)  
V
V/μs  
MHz  
dB  
GBW  
Gain Bandwidth (Note 10)  
f = 200kHz  
Channel Separation  
V
= 1.5V to 3.5V, R = 500Ω  
OUT L  
I
Supply Current  
6.45  
mA  
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
designed, characterized and expected to ꢀeet specified perforꢀance froꢀ  
–40°C to 85°C but are not tested or QA saꢀpled at these teꢀperatures.  
The LT1722I/LT1723I/LT1724I are guaranteed to ꢀeet specified  
perforꢀance froꢀ –40°C to 85°C.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current should be liꢀited to less than  
10ꢀA.  
Note 3: A heat sink ꢀay be required to keep the junction teꢀperature  
below the absolute ꢀaxiꢀuꢀ rating when the output is shorted  
indefinitely.  
Note 6: Input offset voltage is pulse tested and is exclusive of warꢀ-up  
drift.  
Note 7: Slew rate is ꢀeasured between 2V on the output with 3V input  
for 5V supplies and 1V on the output with 1.5V input for single 5V  
supply. (For 5V supply, the voltage levels are 2.5V referred.)  
Note 8: Full power bandwidth is calculated froꢀ the slew rate:  
Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I are  
guaranteed functional over the operating teꢀperature range of  
–40°C to 85°C.  
FPBW = SR/2πV  
Note 9 : This paraꢀeter is not 100% tested.  
Note 10 : This paraꢀeter is guaranteed through correlation with slew rate.  
P
Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to ꢀeet specified  
perforꢀance froꢀ 0°C to 70°C. The LT1722C/LT1723C/LT1724C are  
172234fb  
7
LT1722/LT1723/LT1724  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current  
Supply Current vs Temperature  
vs Supply Voltage  
vs Common Mode Voltage  
0.5  
400  
300  
5.0  
4.5  
4.0  
3.5  
PER AMPLIFIER  
V
S
= 5V  
+
V
–0.5  
–1.0  
–1.5  
–1.2  
T
= 85°C  
A
200  
V
= 5V  
S
T
= 25°C  
A
100  
V
= 5V  
S
T
= –45°C  
A
T
A
= 25°C  
0
T
= 125°C  
A
ē(V ) < 500μV  
–100  
–200  
–300  
–400  
OS  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
V
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
7
0
1
2
3
4
5
6
–5 –4 –3 –2 –1  
0
1
2
3
4
5
SUPPLY VOLTAGE ( V)  
INPUT COMMON MODE VOLTAGE (V)  
1723 G01  
1723 G02  
1723 G03  
Input Bias Current  
vs Temperature  
Open-Loop Gain  
vs Resistive Load  
Input Noise Spectral Density  
100  
10  
1
10  
60  
40  
20  
0
89.0  
86.5  
84.0  
81.5  
79.0  
76.5  
74.0  
T
= 25°C  
A
V
= 5V, V = 3V  
O
S
V
= 5V  
S
i
n
I
B
1
V
S
= 2.5V, V = 1V  
O
+
I
B
e
n
–20  
–40  
–60  
+
I
I
B
B
V
S
=
5V  
50  
0.1  
100  
100 125  
–50 –25  
0
25  
75  
0.01  
0.1  
1
10  
100  
1000  
LOAD RESISTANCE (Ω)  
10000  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1723 G05  
1723 G06  
1723 G04  
Total Noise  
vs Unmatched Source Resistance  
Warm-Up Drift vs Time  
VOS Shift vs VCM and VS  
100  
10  
1
30  
25  
300  
200  
V
T
=
5V  
LT1722S8  
S
A
T
= 25°C  
A
V
S
= 6.3V  
= 25°C  
T
= 25°C  
TYPICAL PART  
A
f = 10kHz  
TYPICAL DATA  
V
S
= 6V  
V
= 5V  
TOTAL NOISE  
RESISTOR NOISE  
S
20  
15  
100  
0
V
S
=
5V  
4V  
V
S
=
V
S
=
2.5V  
V
S
=
3V  
=
10  
5
–100  
–200  
–300  
V
2.5V  
S
R
S
+
0.1  
0
0
10 20 30 40 50 60 70 80 90 100  
TIME AFTER POWER-UP (SEC)  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0.01  
0.1  
1
10  
100  
COMMON MODE VOLTAGE (V)  
SOURCE RESISTANCE, R (kΩ)  
S
1723 G07  
1723 G08  
1723 G09  
172234fb  
8
LT1722/LT1723/LT1724  
TYPICAL PERFORMANCE CHARACTERISTICS  
Undistorted Output Swing  
Undistorted Output Swing  
VOS vs Temperature  
vs Frequency  
vs Frequency  
200  
100  
10  
9
8
7
6
5
4
3
2
1
0
5.0  
TYPICAL PART  
V
= 5V  
S
L
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 500Ω  
2% MAX DISTORTION  
A
= 1, R = 0Ω, R = 500Ω  
F IN  
V
0
A
V
= –1, R = 500Ω  
F
A
V
= 1, R = 0Ω,  
F
IN  
V
S
= 5V  
R
= 500Ω  
–100  
–200  
–300  
–400  
–500  
V
=
2.5V  
A = –1, R = 500Ω  
V F  
S
V
=
5V  
S
L
R
= 150Ω  
2% MAX DISTORTION  
–60 –40 –20  
0
20 40  
120  
0.1  
1
10  
0.1  
1
10  
60 80 100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
1723 G11  
1723 G12  
1723 G10  
Output Voltage Swing  
vs Supply Voltage  
Output Short-Circuit Current  
vs Temperature  
Open-Loop Gain vs Temperature  
V+  
–0.5  
–1.0  
–1.5  
–2.0  
110  
105  
100  
95  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
T
= 25°C  
IN  
A
V
V
= 5V, V = 3V  
O
= 10mV  
S
R
= 500Ω  
L
R
R
= 500Ω  
= 150Ω  
L
L
SOURCE  
V
= 5V  
S
R
= 150Ω  
L
90  
SINK  
85  
2.0  
1.5  
1.0  
0.5  
80  
R
R
= 150Ω  
= 500Ω  
L
L
SOURCE  
= 5V  
V
= 5V, V  
=
O
1V  
75  
S
V
R
L
= 500Ω  
S
70  
SINK  
65  
V
60  
–50  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
2.0 2.5  
4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE ( V)  
–25  
0
25  
–25  
3.0 3.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1723 G13  
1723 G08  
1723 G15  
Gain and Phase vs Frequency  
Overshoot vs Capacitive Load  
Output Impedance vs Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
T
= 25°C  
= 5V  
PHASE  
5V  
V
=
5V  
A
S
S
L
V
R
V
= 500Ω  
5V  
= 2V  
5V  
IN  
P-P  
f = 1MHz  
5V  
A
V
= 100  
A
V
= 10  
A
V
= 1  
1
A
= 1, R = 500Ω,  
F
= 0Ω  
V
S
GAIN  
R
0.1  
A
V
= –1, R = 500Ω, R = 0Ω  
F
S
0.01  
0.001  
T
= 25°C  
= –1  
G
A
V
F
A
V
= 1, R = 0Ω, R = 500Ω  
A
F
S
R
= R = 500Ω  
–10  
–10  
100  
0.01  
0.1  
1
10  
0.01 0.1  
1
10  
100  
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
1723 G16  
1723 G18  
1723 G17  
172234fb  
9
LT1722/LT1723/LT1724  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = –1  
9
8
9
8
9
8
T
= 25°C  
= 1  
T
= 25°C  
= –1  
V
T
= 25°C  
= 1  
L
A
V
F
A
A
V
C = 100pF  
L
A
A
A
R
= 1k  
F
R
NO R  
= 0Ω  
R
= R = 500Ω  
F G  
NO R  
NO C  
7
7
7
NO R  
L
L
L
5V  
5V  
5V  
5V  
5V  
5V  
6
6
6
C
L
= 100pF  
5
5
5
C
L
= 50pF  
R
= 500Ω  
F
4
4
4
3
3
3
C
L
= 50pF  
2
2
2
C
L
= 0pF  
1
1
1
R
= 0Ω  
F
C
L
= 0pF  
0
0
0
–1  
–1  
–1  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1723 G19  
1723 G21  
1723 G20  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Channel Separation vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= 25°C  
P-P  
= 150Ω  
T
V
A
= 25°C  
T = 25°C  
A
A
O
L
A
S
V
V
= 6V  
=
5V  
V = 5V  
S
–PSRR  
R
= 1  
+PSRR  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G22  
1723 G23  
1723 G24  
Gain Bandwidth  
Slew Rate vs Temperature  
Phase Margin vs Supply Voltage  
vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
220  
80  
75  
70  
65  
60  
55  
50  
45  
40  
T
= 25°C  
= –1  
T
= 25°C  
= –1  
A
V
A
V
A
V
A
V
+
215  
210  
V
S
=
5V, SR  
5V, SR  
+
= –20dBm  
= –20dBm  
IN  
IN  
V
S
= 2.5V, SR  
R
= R = 500Ω  
R
= R = 500Ω  
R
R
= 500Ω  
= 150Ω  
G
F
G
F
L
L
R
L
= 150Ω  
C = 25pF  
L
205  
200  
195  
190  
185  
R
= 500Ω  
= 150Ω  
L
C
L
= 5pF  
C
L
= 55pF  
C
L
= 5pF  
V
=
S
R
L
C
L
= 25pF  
V
S
= 2.5V, SR  
C
= 25pF  
= 55pF  
L
R
= 150Ω  
= 500Ω  
L
C
L
= 5pF  
C
T
= 25°C  
= –1  
L
R
= 500Ω  
3
A
V
G
L
R
A
L
C
L
= 55pF  
R
= R = 500Ω  
F
180  
35  
–25  
0
50  
75 100 125  
3.5  
4.5  
5
5.5  
6
–50  
25  
2.5  
4
2.5  
3
3.5  
4
6
4.5  
5
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE ( V)  
1723 G40  
1723 G42  
1723 G41  
172234fb  
10  
LT1722/LT1723/LT1724  
TYPICAL PERFORMANCE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
AV = 1, VO = 0.2VP-P  
Harmonic Distortion vs Frequency  
AV = 1, VO = 0.2VP-P  
Slew Rate vs Supply Voltage  
80  
75  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= V , V  
S
V
A
R
R
V
=
5V  
V
A
R
R
V
= 5V  
= 1  
IN_P-P  
OUT_MES  
IN_P-P  
S
V
F
S
V
F
+
AT 2/3 OF V  
SR  
= 1  
= 0Ω  
= 0Ω  
SR  
= 0Ω  
= 0Ω  
IN  
IN  
= 0.2V  
= 0.2V  
P-P  
O
P-P  
O
70  
+
R
R
= 500Ω, 3RD  
= 150Ω, 3RD  
SR  
L
65  
60  
R
L
= 150Ω, 3RD  
L
SR  
V
IN  
=
1.5V, V  
AT 1V  
OUT_MES  
R
L
= 150Ω, 2ND  
R
L
= 150Ω, 2ND  
R
L
= 500Ω, 2ND  
R
= 500Ω, 2ND  
L
T
= 25°C  
= –1  
= R = R = 500Ω  
G L  
A
V
F
55  
50  
A
R
= 500Ω, 3RD  
L
R
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0.1  
1
10  
0.1  
1
10  
SUPPLY VOLTAGE ( V)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G26  
1723 G27  
1723 G25  
Harmonic Distortion vs Frequency  
AV = 2, VO = 0.2VP-P  
Harmonic Distortion vs Frequency  
AV = 2, VO = 0.2VP-P  
Harmonic Distortion vs Frequency  
AV = 1, VO = 2VP-P  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
=
5V  
V
A
= 5V  
V
A
R
R
V
=
5V  
S
V
F
S
V
F
S
V
F
= 2  
= 2  
= 1  
R
= 500Ω  
= 0.2V  
R
= 500Ω  
= 0.2V  
= 0Ω  
V
V
= 500Ω  
O
P-P  
O
P-P  
IN  
= 2V  
P-P  
O
R
= 150Ω, 3RD  
L
R
= 150Ω, 3RD  
L
R
= 150Ω, 2ND  
L
R
= 150Ω, 2ND  
L
R
L
= 150Ω, 2ND  
R
= 150Ω, 3RD  
L
R
= 500Ω, 3RD  
L
R
= 500Ω, 2ND  
L
R
= 500Ω, 3RD  
L
R
= 500Ω, 3RD  
L
R
L
= 500Ω, 2ND  
1
R
L
= 500Ω, 2ND  
0.1  
10  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G28  
1723 G29  
1723 G30  
Harmonic Distortion vs Frequency  
AV = 1, VO = 2VP-P  
Harmonic Distortion vs Frequency  
AV = 2, VO = 2VP-P  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
R
R
V
= 5V  
= 1  
V
A
=
5V  
S
V
F
S
V
F
= 2  
= 0Ω  
R
= 500Ω  
= 2V  
= 500Ω  
V
IN  
O
P-P  
= 2V  
O
P-P  
R
R
= 150Ω, 2ND  
= 150Ω, 3RD  
L
R
= 150Ω, 3RD  
L
L
R
= 500Ω, 3RD  
R = 500Ω, 2ND  
L
R
= 150Ω, 2ND  
L
L
R
= 500Ω, 2ND  
L
R
= 500Ω, 3RD  
1
L
0.1  
1
10  
0.1  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G31  
1723 G32  
172234fb  
11  
LT1722/LT1723/LT1724  
TYPICAL PERFORMANCE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
AV = 2, VO = 2VP-P  
Settling Time vs Output Step  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.0  
2.5  
2.0  
V
A
= 5V  
S
V
F
= 2  
0.1% SETTLING  
0.01% SETTLING  
R
= 500Ω  
= 2V  
V
O
P-P  
1.5  
1.0  
0.5  
R
= 150Ω, 3RD  
L
R
= 150Ω, 2ND  
L
V
A
=
5V  
S
V
F
= –1  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
R = 500Ω  
= 0pF  
C
F
R
= 500Ω, 2ND  
L
0.01% SETTLING  
R
L
= 500Ω, 3RD  
0.1% SETTLING  
0.1  
1
10  
60 70  
80 90 100 110 120 130 140  
SETTLING TIME (ns)  
1723 G43  
FREQUENCY (MHz)  
1723 G33  
Large-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
1V/DIV  
50mV/DIV  
50mV/DIV  
1723 G34  
1723 G35  
1723 G36  
A
R
R
= 1  
= 500Ω  
= 0Ω  
50ns/DIV  
A
R
R
= 1  
50ns/DIV  
A
R
R
= 1  
50ns/DIV  
V
S
F
V
S
F
V
S
F
= 0Ω  
= 0Ω  
= 0pF  
= 0Ω  
= 0Ω  
= 100pF  
C
C
L
L
Large-Signal Transient, AV = –1  
Small-Signal Transient, AV = –1  
Small-Signal Transient, AV = –1  
50mV/DIV  
50mV/DIV  
1V/DIV  
1723 G38  
1723 G39  
1723 G37  
A
= –1  
50ns/DIV  
A
= –1  
50ns/DIV  
A
R
R
= –1  
= 500Ω  
= 500Ω  
50ns/DIV  
V
G
F
V
G
F
V
G
F
R
R
C
= 500Ω  
= 500Ω  
= 0pF  
R
R
C
= 500Ω  
= 500Ω  
= 100pF  
L
L
172234fb  
12  
LT1722/LT1723/LT1724  
APPLICATIONS INFORMATION  
The LT1722/LT1723/LT1724 may be inserted directly into  
manyoperationalamplifierapplicationsimprovingbothDC  
and AC performance, as well as noise and distortion.  
+
V
S
D1  
D3  
D4  
D5  
–IN  
+IN  
R
R
EXT  
EXT  
Q1  
Q2  
–IN  
+IN  
D2  
R
Layout and Passive Components  
D6  
The LT1722/LT1723/LT1724 amplifiers are more tolerant  
of less than ideal layouts than other high speed amplifiers.  
Formaximumperformance(forexample,fastsettlingtime)  
use a ground plane, short lead lengths and RF quality  
bypasscapacitors(0.01μFto0.1μF).Forhighdrivecurrent  
applications, use low ESR supply bypass capacitors (1μF  
to 10μF tantalum). The output/input parasitic coupling  
should be minimized when high frequency performance  
is required.  
I
I
2
1
1723 F01  
V
S
Figure 1. Input Stage Protection  
adding resistance to balance source resistance is not  
recommended. The value of the source resistor should  
be below 12k as it actually degrades DC accuracy and  
also increases noise.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking  
or even oscillations. In parallel with the feedback resistor,  
a capacitor of value:  
Total Input Noise  
The total input noise of the LT1722/LT1723/LT1724 is  
optimized for a source resistance between 0.8k and 12k.  
Within this range, the total input noise is dominated by  
the noise of the source resistance itself. When the source  
resistance is below 0.8k, voltage noise of the amplifier  
dominates. When the source resistance is above 12k, the  
input noise current is the dominant contributor.  
C > R • C /R  
F
F
G
IN  
should be used to cancel the input pole and optimize  
dynamic performance. For unity-gain applications where  
a feedback resistor is used, such as an I-to-V converter,  
Capacitive Loading  
C should be five times greater than C ; an optimum  
F
IN  
value for C is 10pF.  
The LT1722/LT1723/LT1724 drive capacitive loads up to  
100pF with unity gain. As the capacitive load increases,  
boththebandwidthandthephasemargindecreasecausing  
peaking in the frequency response and overshoot in the  
transient response. When there is a need to drive a larger  
capacitive load, a 25Ω series resistance assures stability  
withanyvalueofloadcapacitor. Afeedbackcapacitoralso  
helps to reduce any peaking.  
F
Input Considerations  
EachoftheLT1722/LT1723/LT1724inputsisprotectedwith  
back-to-back diodes across the bases of the NPN input  
devices. If greater than 0.7V differential input voltages are  
anticipated, the input current must be limited to less than  
10mA with an external series resistor. Each input also has  
two ESD clamp diodes—one to each supply. If an input is  
drivenbeyondthesupply, limitthecurrentwithanexternal  
resistor to less than 10mA. The input stage protection  
circuit is shown in Figure 1.  
Power Dissipation  
The LT1722/LT1723/LT1724 combine high speed and  
large output drive in a small package. Maximum junction  
temperature(T )iscalculatedfromtheambienttemperature  
J
The input currents of the LT1722/LT1723/LT1724 are  
typically in the tens of nA range due to the bias current  
cancellation technique used at the input. As the input  
offset current can be greater than either input current,  
(T ), power dissipation per amplifier (P ) and number of  
A
D
amplifiers (n) as follows:  
T = T + (n • P θ )  
J
A
D
JA  
172234fb  
13  
LT1722/LT1723/LT1724  
APPLICATIONS INFORMATION  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is due  
to on-chip dissipation caused by the load current.  
Circuit Operation  
The LT1722/LT1723/LT1724 circuit topology is a voltage  
feedback amplifier. The operation of the circuit can be  
understood by referring to the Simplified Schematic. The  
first stage is a folded cascode formed by the transistors  
Q1 through Q4. A degeneration resistor, R, is used in the  
input stage. The current mirror Q5, Q6 is bootstrapped  
by Q7. The capacitor, C, assures the bandwidth and the  
slew rate performance. The output stage is formed by  
complementary emitter followers, Q8 through Q11. The  
diodes D1 and D2 protect against input reversed biasing.  
Theremainingpartofthecircuitassuresoptimumvoltage  
and current biases for all stages.  
Worst-case instantaneous power dissipation for a given  
resistive load in one amplifier occurs at the maximum  
supply current and when the output voltage is at half of  
either supply voltage (or the maximum swing if less than  
half supply voltage).  
Therefore P  
in one amplifier is:  
D(MAX)  
+
+
2
P
= (V – V )(I  
) + (V /2) /R  
D(MAX)  
S(MAX)  
L
or  
+
P
= (V – V )(I  
) +  
O(MAX) L  
D(MAX)  
S(MAX)  
+
Low noise, reduced current supply, high speed and  
DC accurate parameters are distinctive features of the  
(V – V  
)(V  
/R )  
O(MAX)  
Example. Worst-case conditions are: both op amps in  
the LT1723IS8 are at T = 85°C, V = 5V, R = 150Ω,  
LT1722/LT1723/LT1724  
.
A
S
L
V
= 2.5V.  
OUT  
2
P
= 2 •[(10V)(5.95mA) + (2.5V) /150Ω] = 203mW  
= 85°C + (203mW)(190°C/W) = 124°C  
D(MAX)  
J(MAX)  
T
which is less than the absolute maximum rating at 150°C.  
SIMPLIFIED SCHEMATIC  
+
V
S
R1  
R2  
I
5
Q4  
Q3  
Q5  
V
BIAS  
C
D1  
Q10  
Q11  
Q1  
Q2  
?–IN  
+IN  
Q7  
OUT  
Q8  
D2  
R
Q9  
Q6  
I
I
1
I
2
I
4
3
V
S
1723 SS  
172234fb  
14  
LT1722/LT1723/LT1724  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
172234fb  
15  
LT1722/LT1723/LT1724  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
.160 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.889 0.127  
(.035 .005)  
0.52  
(.0205)  
REF  
8
7 6  
5
5.23  
(.206)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
3.20 – 3.45  
4.90 0.152  
(.193 .006)  
(.126 – .136)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.65  
0.42 0.038  
(.0165 .0015)  
TYP  
1
2
3
4
(.0256)  
0.53 0.152  
(.021 .006)  
BSC  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 0.0508  
NOTE:  
(.009 – .015)  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
(.004 .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
172234fb  
16  
LT1722/LT1723/LT1724  
PACKAGE DESCRIPTION  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 .005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
7
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
s 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
172234fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1722/LT1723/LT1724  
TYPICAL APPLICATION  
4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifier  
10pF  
2k  
1k  
1/2 LT1739  
+
50Ω  
1k  
1/2 LT1723  
(n = 1)  
n:1  
+
V
V
V
R
R
L
D
L
LINE  
100Ω  
LINE  
LINE  
2
n
DRIVER  
RECEIVER  
+
1/2 LT1723  
+
50Ω  
1k  
2k  
1k  
1/2 LT1739  
1723 TA03  
10pF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
3V Operation, 2.5ꢀA Supply Current, 4.5nV/Hz Max e ,  
LT1677  
Single, Low Noise Rail-to-Rail Aꢀplifier  
n
60µV Max V  
OS  
LT1800/LT1801/LT1802 Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail  
Precision Aꢀplifier  
1.6ꢀA Supply Current, 350µV V , 2.3V Operation  
OS  
LT1806/LT1807  
LT1809/LT1810  
Single/Dual, Low Noise 325MHz Rail-to-Rail Aꢀplifiers  
Single/Dual, Low Distortion 180MHz Rail-to-Rail Aꢀplifiers  
2.5V Operation, 550µV  
V , 3.5nV/Hz  
MAX OS  
2.5V Operation, –90dBc at 5MHz Distortion  
LT1812/LT1813/LT1814 Single/Dual/Quad, 3ꢀA, 750V/µs Aꢀplifiers  
5V Operation, 3.6ꢀA Supply Current, 40ꢀA Min Output Current  
LT6202/LT6203/LT6204 Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Aꢀps 2nV/Hz, 2.5ꢀA on Single 3V Supply  
172234fb  
LT 0909 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1724IS#TRPBF

LT1724 - Quad 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1724_15

Single, Dual, Quad 200MHz Low Noise Precision Op Amps
Linear

LT1725

General Purpose Isolated Flyback Controller
Linear

LT1725CGN

General Purpose Isolated Flyback Controller
Linear

LT1725CGN#TRPBF

LT1725 - General Purpose Isolated Flyback Controller; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1725CS

General Purpose Isolated Flyback Controller
Linear

LT1725CS#PBF

LT1725 - General Purpose Isolated Flyback Controller; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1725IGN

General Purpose Isolated Flyback Controller
Linear

LT1725IGN#PBF

暂无描述
Linear

LT1725IGN#TR

LT1725 - General Purpose Isolated Flyback Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1725IGN#TRPBF

暂无描述
Linear

LT1725IS

General Purpose Isolated Flyback Controller
Linear