LT1722CS5#PBF [Linear]

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT1722CS5#PBF
型号: LT1722CS5#PBF
厂家: Linear    Linear
描述:

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1722/LT1723/LT1724  
Single, Dual, Quad 200MHz  
Low Noise Precision Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®1722/LT1723/LT1724 are single/dual/quad, low  
noise,lowpower,highspeedoperationalamplifiers.These  
products feature lower input offset voltage, lower input  
bias current and higher DC gain than devices with compa-  
rable bandwidth. The 200MHz gain bandwidth ensures  
high open-loop gain at video frequencies.  
3.8nV/Hz Input Noise Voltage  
3.7mA Supply Current  
200MHz Gain Bandwidth  
Low Total Harmonic Distortion: 85dBc at 1MHz  
70V/µs Slew Rate  
400µV Maximum Input Offset Voltage  
300nA Maximum Input Bias Current  
The low input noise voltage is achieved with reduced  
supply current. The total noise is optimized for a source  
resistance between 0.8k and 12k. Due to the input bias  
current cancellation technique used, the resistance seen  
by each input does not need to be balanced.  
Unity-Gain Stable  
Capacitive Load Stable Up to 100pF  
23mA Minimum Output Current  
Specified at ±5V and Single 5V  
U
The output drives a 150load to ±3V with ±5V supplies.  
On a single 5V supply the output swings from 1.5V to 3.5V  
witha500loadconnectedto2.5V.Theamplifierisunity-  
gain stable (CLOAD 100pF).  
APPLICATIO S  
Video and RF Amplification  
ADSL, HDSL II, VDSL Receivers  
The LT1722/LT1723/LT1724 are manufactured on Linear  
Technology’s advanced low voltage complementary  
bipolar process. The LT1722 is available in the SO-8 and  
5-pin SOT-23 packages. The LT1723 is available in the  
SO-8 and MS8 packages. The LT1724 is available in the  
14-lead SO package.  
Active Filters  
Wideband Amplifiers  
Buffers  
Data Acquisition Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Differential Video Line Driver  
C1 5pF  
Line Driver Mulitburst Video Signal  
R3  
750  
R5 2k  
R7  
62.5Ω  
+VOUT  
0.5V/DIV  
1/2 LT1723  
+
125Ω  
CAT-5  
TWISTED PAIR  
V
IN  
VIN  
1V/DIV  
V
+V  
/2  
62.5Ω  
C2 5pF  
IN  
V
IN  
LOAD  
75Ω  
OUT  
R2  
2k  
SOURCE  
R4 2k  
–V  
–V /2  
VOUT  
0.5V/DIV  
62.5Ω  
LOAD  
OUT  
IN  
R6  
62.5Ω  
R1  
75Ω  
1723 TA01  
1/2 LT1723  
1723 TA02  
–V  
IN  
+
172234fa  
1
LT1722/LT1723/LT1724  
W W U W  
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V)............................ 12.6V  
Input Voltage ........................................................... ±VS  
Differential Input Voltage (Note 2) ........................ ±0.7V  
Input Current (Note 2) ........................................ ±10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4)...–40°C to 85°C  
Specified Temperature Range (Note 5)... –40°C to 85°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
+
LT1722CS8  
LT1722IS8  
LT1722CS5  
OUT 1  
5 V  
+
V
+
V
2
LT1722IS5  
+
OUT  
NC  
+IN 3  
4 –IN  
V
S8 PART  
MARKING  
S5 PART  
MARKING*  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 250°C/W  
LTZB  
1722  
1722I  
TJMAX = 150°C, θJA = 150°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
LT1723CMS8  
LT1723IMS8  
LT1723CS8  
LT1723IS8  
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT B  
–IN B  
+IN B  
7 OUT B  
6 –IN B  
5 +IN B  
A
A
B
V
B
V
S8 PART  
MARKING  
MS8 PART  
MARKING  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 250°C/W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1723  
1723I  
LTYC  
LTZA  
TJMAX = 150°C, θJA = 190°C/W  
TOP VIEW  
ORDER PART  
NUMBER  
OUT A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
8
OUT D  
–IN D  
+IN D  
–IN A  
+IN A  
+
+
A
B
D
C
LT1724CS  
LT1724IS  
+
V
V
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+
+
8
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 100°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grades are identified by a label on the shipping container.  
172234fa  
2
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS MIN TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 6)  
100  
150  
400  
650  
µV  
µV  
OS  
LT1722 SOT-23 and LT1723 MS8  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
40  
40  
300  
300  
nA  
nA  
OS  
B
e
f = 10kHz  
f = 10kHz  
3.8  
1.2  
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±3.5V  
CM  
5
35  
50  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range +  
Input Voltage Range –  
3.5  
4
–4  
V
V
–3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±3.5V  
80  
78  
100  
90  
dB  
dB  
CM  
V = ±2.3V to ±5.5V  
S
A
V
V
= ±3V, R = 500Ω  
10  
7
17  
14  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
L
= ±3V, R = 150Ω  
V
Output Swing  
R = 500, V = ±10mV  
±3.2  
±3.1  
±3.8  
±3.4  
V
V
OUT  
L
IN  
R = 150, V = ±10mV  
L
IN  
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 10mV Overdrive  
23  
35  
45  
50  
90  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, V = ±1V  
IN  
SR  
A = –1, (Note 7)  
70  
V/µs  
MHz  
MHz  
V
Full Power Bandwidth  
Gain Bandwidth  
Settling Time  
3V peak, (Note 8)  
f = 200kHz  
3.7  
200  
GBW  
115  
t
A = –1, 2V, 0.1%  
A = –1, 2V, 0.01%  
91  
112  
ns  
ns  
S
V
V
t , t  
r
Rise Time, Fall Time  
Overshoot  
A = 1, 10% to 90%, V = 0.2V , R = 150Ω  
6
15  
ns  
%
f
V
IN  
P-P  
L
A = 1, V = 0.2V , R = 150, R = 0Ω  
V
IN  
P-P  
L
F
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V  
= 0.2V , R = 150Ω  
3
ns  
IN  
OUT  
P-P  
L
R
A = 1, f = 1MHz  
V
0.15  
90  
O
V
= ±3V, R = 150Ω  
82  
dB  
mA  
OUT  
L
I
Per Amplifier  
3.7  
4.5  
S
TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
(Note 6)  
250  
350  
550  
800  
µV  
µV  
LT1722 SOT-23 and LT1723 MS8  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
20  
20  
4
300  
300  
nA  
nA  
OS  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
1.1  
n
R
V
CM  
= 1.5V to 3.5V  
5
32  
55  
MΩ  
kΩ  
IN  
Differential  
C
IN  
Input Capacitance  
2
pF  
Input Voltage Range +  
Input Voltage Range –  
3.5  
4
1
V
V
1.5  
1.4  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= 1.5V to 3.5V  
80  
4
100  
10  
dB  
CM  
A
VOL  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
V/mV  
OUT  
L
Output Swing+  
Output Swing–  
R = 500, V = ±10mV  
R = 500, V = ±10mV  
3.6  
3.8  
0.9  
V
V
L
L
IN  
IN  
172234fa  
3
LT1722/LT1723/LT1724  
TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
20  
MAX  
UNITS  
mA  
mA  
V/µs  
MHz  
MHz  
ns  
I
I
Output Current  
V
V
= 3.5V or 1.5V, 10mV Overdrive  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = ±1V  
22  
55  
IN  
SR  
A = -1, (Note 7)  
40  
70  
V
Full Power Bandwidth  
Gain Bandwidth (Note 10)  
Rise Time, Fall Time  
Overshoot  
1V peak, (Note 8)  
f = 200kHz  
8.7  
180  
5
GBW  
115  
82  
t , t  
A = 1, 10% to 90%, V = 0.2V , R = 500Ω  
V IN P-P L  
r
f
A = 1, V = 0.2V , R = 500Ω  
16  
%
V
IN  
P-P  
L
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V , 0.1V, R = 500Ω  
3
ns  
IN  
OUT  
L
R
O
A = 1, f = 1MHz  
V
0.19  
90  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
dB  
L
I
Per Amplifier  
3.8  
5
mA  
S
The denotes the specifications which apply over the temperature range of 0°C TA 70°C. VS = ±5V, VCM = 0V,  
unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 6)  
700  
850  
µV  
µV  
OS  
LT1722 SOT-23 and LT1723 MS8  
Input V Drift  
(Note 9)  
3
7
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
350  
350  
OS  
nA  
B
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
–3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±3.5V  
75  
76  
dB  
dB  
CM  
V = ±2.3V to ±5.5V  
S
A
V
V
= ±3V, R = 500Ω  
9
6
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
= ±3V, R = 150Ω  
L
V
Output Swing  
R = 500, V = ±10mV  
±3.15  
±3.05  
V
V
OUT  
L
IN  
R = 150, V = ±10mV  
L
IN  
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 10mV Overdrive  
22  
30  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, V = ±1V  
IN  
SR  
A = 1, (Note 7)  
35  
V/µs  
MHz  
dB  
V
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
100  
81  
V
= ±3V, R = 150Ω  
L
OUT  
I
Per Amplifier  
5.45  
mA  
S
172234fa  
4
LT1722/LT1723/LT1724  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
0°C TA 70°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 6)  
LT1722 SOT-23 and LT1723MS8  
850  
950  
µV  
µV  
OS  
Input V Drift  
(Note 9)  
3
7
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
350  
350  
OS  
nA  
B
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= 1.5V to 3.5V  
75  
3
dB  
CM  
A
V
= 1.5V to 3.5V, R = 500Ω  
V/mV  
VOL  
OUT  
OUT  
L
Output Swing+  
Output Swing–  
R = 500, V = ±10mV  
R = 500, V = ±10mV  
3.55  
V
V
L
IN  
1.45  
L
IN  
I
I
Output Current  
V
V
= 3.5V or 1.5V, 10mV Overdrive  
9
11  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = ±1V  
IN  
SR  
A = –1, (Note 7)  
30  
V/µs  
MHz  
dB  
V
GBW  
Gain Bandwidth (Note 10)  
Channel Separation  
Supply Current  
f = 200kHz  
100  
81  
V
= 1.5V to 3.5V, R = 500Ω  
L
OUT  
I
5.95  
mA  
S
The denotes the specifications which apply over the temperature range of –40°C TA 85°C. VS = ±5V, VCM = 0V,  
unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 6)  
900  
1100  
µV  
µV  
OS  
LT1722 SOT-23 and LT1723 MS8  
Input V Drift  
(Note 9)  
3
10  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
400  
400  
OS  
nA  
B
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
–3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±3.5V  
75  
75  
dB  
dB  
CM  
V = ±2.0V to ±5.5V  
S
A
V
V
= ±3V, R = 500Ω  
8
5
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
= ±3V, R = 150Ω  
L
V
Output Swing  
R = 500, V = ±10mV  
±3.1  
±3.0  
V
V
OUT  
L
IN  
R = 150, V = ±10mV  
L
IN  
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 10mV Overdrive  
20  
25  
25  
90  
80  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, V = ±1V  
IN  
SR  
A = –1, (Note 7)  
V/µs  
MHz  
dB  
V
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
= ±3V, R = 150Ω  
L
OUT  
I
5.95  
mA  
S
172234fa  
5
LT1722/LT1723/LT1724  
The denotes the specifications which apply over the temperature range of  
ELECTRICAL CHARACTERISTICS  
40°C TA 85°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 6)  
1000  
1200  
µV  
µV  
OS  
LT1722 SOT-23 and LT1723 MS8  
Input V Drift  
(Note 9)  
3
10  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
400  
400  
OS  
nA  
B
Input Voltage Range +  
Input Voltage Range –  
3.5  
V
V
1.5  
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= 1.5V to 3.5V  
75  
2
dB  
CM  
A
V
= 1.5V to 3.5V, R = 500Ω  
V/mV  
VOL  
OUT  
OUT  
L
Output Swing+  
Output Swing–  
R = 500, V = ±10mV  
R = 500, V = ±10mV  
3.5  
V
V
L
IN  
L
IN  
I
I
Output Current  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
8
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = ±1V  
10  
20  
90  
80  
IN  
SR  
A = –1, (Note 7)  
V/µs  
MHz  
dB  
V
GBW  
Gain Bandwidth (Note 10)  
Channel Separation  
Supply Current  
f = 200kHz  
V
= 1.5V to 3.5V, R = 500Ω  
L
OUT  
I
6.45  
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the  
life of a device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current should be limited to less than  
10mA.  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C but are not tested or QA sampled at these temperatures.  
The LT1722I/LT1723I/LT1724I are guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 6: Input offset voltage is pulse tested and is exclusive of warm-up  
drift.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: Slew rate is measured between ±2V on the output with ±3V input  
for ±5V supplies and ±1V on the output with ±1.5V input for single 5V  
supply. (For 5V supply, the voltage levels are 2.5V referred.)  
Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I  
are guaranteed functional over the operating temperature range of  
–40°C to 85°C.  
Note 8: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
P
Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1722C/LT1723C/LT1724C are  
Note 9 : This parameter is not 100% tested.  
Note 10 : This parameter is guaranteed through correlation with slew rate.  
172234fa  
6
LT1722/LT1723/LT1724  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current  
vs Common Mode Voltage  
400  
Supply Current vs Temperature  
vs Supply Voltage  
0.5  
5.0  
4.5  
4.0  
3.5  
V
S
= ±5V  
PER AMPLIFIER  
+
V
300  
200  
–0.5  
–1.0  
–1.5  
–1.2  
T
= 85°C  
A
V
S
= 5V  
T
= 25°C  
A
100  
V
S
= ±5V  
T
= –45°C  
A
T
= 25°C  
A
0
T
= 125°C  
A
–100  
–200  
–300  
–400  
(V ) < 500µV  
OS  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
V
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
50  
100 125  
–50 –25  
0
25  
75  
SUPPLY VOLTAGE (±V)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
1723 G03  
1723 G02  
1723 G01  
Open-Loop Gain  
vs Resistive Load  
Input Bias Current  
vs Temperature  
Input Noise Spectral Density  
100  
10  
1
10  
60  
40  
20  
0
89.0  
86.5  
84.0  
81.5  
79.0  
76.5  
74.0  
T
= 25°C  
A
V
= ±5V, V = ±3V  
O
S
V
= 5V  
S
i
n
I
B
1
V
= ±2.5V, V = ±1V  
O
S
+
I
B
e
n
–20  
–40  
–60  
+
I
I
B
B
V
S
= ±5V  
0.1  
100  
0.01  
0.1  
1
10  
50  
100 125  
100  
1000  
LOAD RESISTANCE ()  
10000  
–50 –25  
0
25  
75  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1723 G05  
1723 G06  
1723 G04  
Total Noise vs Unmatched Source  
Resistance  
Warm-Up Drift vs Time  
VOS Shift vs VCM and VS  
100  
10  
1
30  
25  
300  
200  
LT1722S8  
V
T
= ±5V  
T
= 25°C  
S
A
A
V
= ±6.3V  
S
T
= 25°C  
= 25°C  
TYPICAL PART  
A
TYPICAL DATA  
f = 10kHz  
V
= ±6V  
S
V
= ±5V  
S
TOTAL NOISE  
RESISTOR NOISE  
20  
15  
100  
0
V
= ±5V  
S
V
= ±4V  
S
V
= ±2.5V  
V
= ±3V  
S
S
10  
5
–100  
–200  
–300  
V
= ±2.5V  
S
R
S
+
0
0.1  
0
10 20 30 40 50 60 70 80 90 100  
TIME AFTER POWER-UP (SEC)  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0.01  
0.1  
1
10  
100  
COMMON MODE VOLTAGE (V)  
SOURCE RESISTANCE, R (k)  
S
1723 G07  
1723 G08  
1723 G09  
172234fa  
7
LT1722/LT1723/LT1724  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undistorted Output Swing  
vs Frequency  
Undistorted Output Swing  
vs Frequency  
VOS vs Temperature  
200  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
8
7
6
5
4
3
2
1
0
V
= 5V  
TYPICAL PART  
S
L
R
= 500Ω  
2% MAX DISTORTION  
A
= 1, R = 0, R = 500Ω  
F IN  
V
0
A
= –1, R = 500Ω  
V
F
A
= 1, R = 0,  
F
IN  
V
R
V
S
= ±5V  
= 500Ω  
–100  
–200  
–300  
–400  
–500  
A
V
= –1, R = 500Ω  
V
= ±2.5V  
F
S
V
R
= ±5V  
= 150Ω  
S
L
2% MAX DISTORTION  
0.1  
1
10  
0.1  
1
10  
–60 –40 –20  
0
20 40  
120  
60 80 100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
1723 G12  
1723 G11  
1723 G10  
Output Voltage Swing  
vs Supply Voltage  
Output Short-Circuit Current  
vs Temperature  
Open-Loop Gain vs Temperature  
V+  
–0.5  
–1.0  
–1.5  
–2.0  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
110  
105  
100  
95  
T
= 25°C  
IN  
A
V
= ±5V, V = ±3V  
V
= 10mV  
S
O
R
L
= 500Ω  
R
R
= 500Ω  
= 150Ω  
L
L
SOURCE  
V
S
= ±5V  
R
= 150Ω  
L
90  
SINK  
85  
2.0  
1.5  
1.0  
0.5  
80  
R
R
= 150Ω  
= 500Ω  
L
L
SOURCE  
= 5V  
V
S
= 5V, V = ±1V  
O
75  
V
S
R
L
= 500Ω  
70  
SINK  
65  
V
60  
–50  
0
25  
50  
75 100 125  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
–25  
50  
125  
–50  
0
25  
75 100  
–25  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1723 G13  
1723 G08  
1723 G15  
Gain and Phase vs Frequency  
Overshoot vs Capacitive Load  
Output Impedance vs Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
80  
T
= 25°C  
= ±5V  
PHASE  
V
= ±5V  
A
S
S
L
±5V  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
V
R
V
= 500Ω  
±5V  
= 2V  
5V  
IN  
P-P  
f = 1MHz  
5V  
A
V
= 100  
A
V
= 10  
A
V
= 1  
1
A
= 1, R = 500,  
V
S
F
GAIN  
R
= 0Ω  
0.1  
A
V
= –1, R = 500, R = 0Ω  
F
S
0.01  
0.001  
T
= 25°C  
A
V
F
A
V
= 1, R = 0, R = 500Ω  
A
= –1  
F
S
R = R = 500Ω  
G
–10  
–10  
100  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
1723 G16  
1723 G18  
1723 G17  
172234fa  
8
LT1722/LT1723/LT1724  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain vs Frequency, AV = –1  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = 1  
9
8
9
8
9
T
= 25°C  
T
= 25°C  
= 1  
T
= 25°C  
A
A
V
A
V
F
C = 100pF  
L
A
= 1  
A
8
7
A
= –1  
V
F
R
= 1k  
F
NO R  
NO C  
R
NO R  
= 0Ω  
R
= R = 500Ω  
G
L
7
7
NO R  
L
L
L
±5V  
5V  
±5V  
±5V  
5V  
6
6
6
5V  
C
L
= 100pF  
5
5
5
R
= 500Ω  
F
C = 50pF  
L
4
4
4
3
3
3
C
L
= 50pF  
2
2
2
1
C = 0pF  
L
1
1
R
= 0Ω  
F
0
C
L
= 0pF  
0
0
–1  
–1  
–1  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1723 G20  
1723 G19  
1723 G21  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Channel Separation vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
A
= 25°C  
T = 25°C  
A
V = ±5V  
S
T
= 25°C  
P-P  
= 150Ω  
A
S
V
A
O
L
= ±5V  
V
= 6V  
–PSRR  
= 1  
R
+PSRR  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G23  
1723 G24  
1723 G22  
Gain Bandwidth  
vs Supply Voltage  
Slew Rate vs Temperature  
Phase Margin vs Supply Voltage  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
220  
T
= 25°C  
= –1  
T
= 25°C  
A
V
A
V
A
V
A
V
= –1  
+
215  
210  
V
= ±5V, SR  
S
+
= –20dBm  
= –20dBm  
F
IN  
IN  
V
= ±2.5V, SR  
S
R
= R = 500Ω  
F
R
= R = 500Ω  
R
R
= 500Ω  
= 150Ω  
G
G
L
R
= 150Ω  
C = 25pF  
L
L
205  
200  
195  
190  
185  
L
R
= 500Ω  
= 150Ω  
L
C
= 5pF  
L
C
= 55pF  
L
C
L
= 5pF  
V
= ±5V, SR  
S
R
L
C
= 25pF  
L
V
= ±2.5V, SR  
S
C
L
= 25pF  
= 55pF  
R
L
= 150Ω  
= 500Ω  
C
= 5pF  
L
C
T
= 25°C  
= –1  
= R = 500Ω  
F
L
R
L
= 500Ω  
A
V
G
R
L
A
C
= 55pF  
L
R
35  
180  
25  
0
50  
75 100 125  
2.5  
3
3.5  
4
6
3
3.5  
4.5  
5
5.5  
6
50  
25  
2.5  
4
4.5  
5
5.5  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
1723 G40  
1723 G41  
1723 G42  
172234fa  
9
LT1722/LT1723/LT1724  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
AV = 1, VO = 0.2VP-P  
Harmonic Distortion vs Frequency  
AV = 1, VO = 0.2VP-P  
Slew Rate vs Supply Voltage  
80  
75  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
V
= V , V  
V
A
R
R
= ±5V  
= 1  
V
A
R
R
V
= 5V  
= 1  
IN_P-P  
S
OUT_MES  
IN_P-P  
S
V
F
S
V
F
+
AT 2/3 OF V  
SR  
= 0Ω  
= 0Ω  
SR  
= 0Ω  
= 0Ω  
IN  
IN  
V
O
= 0.2V  
P-P  
= 0.2V  
P-P  
O
70  
+
R
R
= 500, 3RD  
= 150, 3RD  
L
SR  
65  
60  
R
= 150, 3RD  
L
L
SR  
–80  
–90  
–100  
–80  
–90  
–100  
V
IN  
= ±1.5V, V  
AT ±1V  
OUT_MES  
R
= 150, 2ND  
R
= 150, 2ND  
L
L
R
= 500, 2ND  
R
= 500, 2ND  
L
L
T
= 25°C  
A
V
F
55  
50  
A
= –1  
R = 500, 3RD  
L
R
= R = R = 500Ω  
G L  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
1723 G26  
1723 G27  
1723 G25  
Harmonic Distortion vs Frequency  
AV = 2, VO = 0.2VP-P  
Harmonic Distortion vs Frequency  
AV = 1, VO = 2VP-P  
Harmonic Distortion vs Frequency  
AV = 2, VO = 0.2VP-P  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
V
A
= ±5V  
= 2  
V
A
= 5V  
V
A
R
R
V
= ±5V  
= 1  
S
V
F
S
V
F
S
V
F
= 2  
R
= 500Ω  
R
= 500Ω  
= 0.2V  
= 0Ω  
V
= 0.2V  
V
= 500Ω  
O
P-P  
O
P-P  
IN  
= 2V  
P-P  
O
R
L
= 150, 3RD  
R
= 150, 3RD  
L
R
= 150, 2ND  
L
R
= 150, 2ND  
L
R
= 150, 2ND  
L
R
= 150, 3RD  
L
–80  
–90  
–100  
–80  
–90  
–100  
–80  
–90  
–100  
R
= 500, 3RD  
L
R
= 500, 2ND  
L
R
L
= 500, 3RD  
R
= 500, 3RD  
L
R
= 500, 2ND  
R
L
= 500, 2ND  
L
0.1  
1
10  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G28  
1723 G29  
1723 G30  
Harmonic Distortion vs Frequency  
AV = 1, VO = 2VP-P  
Harmonic Distortion vs Frequency  
AV = 2, VO = 2VP-P  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
V
A
R
R
V
= 5V  
= 1  
V
A
= ±5V  
= 2  
S
V
F
S
V
F
= 0Ω  
R
= 500Ω  
= 500Ω  
V
= 2V  
IN  
O
P-P  
= 2V  
O
P-P  
R
= 150, 2ND  
L
R
L
= 150, 3RD  
R
L
= 150, 3RD  
R
= 500, 3RD  
R = 500, 2ND  
L
R
= 150, 2ND  
L
L
–80  
–90  
–100  
–80  
–90  
–100  
R
= 500, 2ND  
L
R
= 500, 3RD  
L
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1723 G31  
1723 G32  
172234fa  
10  
LT1722/LT1723/LT1724  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
AV = 2, VO = 2VP-P  
Settling Time vs Output Step  
–40  
3.0  
2.5  
2.0  
V
A
= 5V  
S
V
F
= 2  
0.1% SETTLING  
0.01% SETTLING  
R
= 500Ω  
= 2V  
–50  
–60  
–70  
V
O
P-P  
1.5  
1.0  
0.5  
R
L
= 150, 3RD  
R
= 150, 2ND  
L
V
A
= ±5V  
S
V
F
= –1  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
R = 500Ω  
= 0pF  
C
F
–80  
–90  
–100  
R
= 500, 2ND  
L
0.01% SETTLING  
R
L
= 500, 3RD  
0.1% SETTLING  
0.1  
1
10  
100 110  
SETTLING TIME (ns)  
60 70  
80 90  
120 130 140  
FREQUENCY (MHz)  
1723 G33  
1723 G43  
Large-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
50mV/DIV  
50mV/DIV  
1V/DIV  
AV = 1  
RS = 500Ω  
RF = 0Ω  
50ns/DIV  
1723 G34  
AV = 1  
50ns/DIV  
1723 G35  
AV = 1  
50ns/DIV  
1723 G36  
RS = 0Ω  
RF = 0Ω  
CL = 0pF  
RS = 0Ω  
RF = 0Ω  
CL = 100pF  
Large-Signal Transient, AV = –1  
Small-Signal Transient, AV = –1  
Small-Signal Transient, AV = –1  
50mV/DIV  
50mV/DIV  
1V/DIV  
AV = –1  
RG = 500Ω  
RF = 500Ω  
50ns/DIV  
1723 G37  
AV = –1  
50ns/DIV  
1723 G38  
AV = –1  
50ns/DIV  
1723 G39  
RG = 500Ω  
RF = 500Ω  
CL = 0pF  
RG = 500Ω  
RF = 500Ω  
CL = 100pF  
172234fa  
11  
LT1722/LT1723/LT1724  
W U U  
U
APPLICATIO S I FOR ATIO  
+
V
S
The LT1722/LT1723/LT1724 may be inserted directly into  
many operational amplifier applications improving both  
DC and AC performance, as well as noise and distortion.  
D1  
D3  
D4  
D5  
–IN  
+IN  
R
R
EXT  
EXT  
Q1  
Q2  
–IN  
+IN  
D2  
R
Layout and Passive Components  
D6  
I
I
2
The LT1722/LT1723/LT1724 amplifiers are more tolerant  
of less than ideal layouts than other high speed amplifiers.  
For maximum performance (for example, fast settling  
time)useagroundplane,shortleadlengthsandRFquality  
bypass capacitors (0.01µF to 0.1µF). For high drive cur-  
rent applications, use low ESR supply bypass capacitors  
(1µF to 10µF tantalum). The output/input parasitic cou-  
pling should be minimized when high frequency perfor-  
mance is required.  
1
1723 F01  
V
S
Figure 1. Input Stage Protection  
adding resistance to balance source resistance is not  
recommended. The value of the source resistor should be  
below 12k as it actually degrades DC accuracy and also  
increases noise.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
even oscillations. In parallel with the feedback resistor, a  
capacitor of value:  
Total Input Noise  
The total input noise of the LT1722/LT1723/LT1724 is  
optimized for a source resistance between 0.8k and 12k.  
Within this range, the total input noise is dominated by the  
noise of the source resistance itself. When the source  
resistance is below 0.8k, voltage noise of the amplifier  
dominates. When the source resistance is above 12k, the  
input noise current is the dominant contributor.  
CF > RG • CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance. For unity-gain applications where  
afeedbackresistorisused, suchasanI-to-Vconverter, CF  
shouldbefivetimesgreaterthanCIN;anoptimumvaluefor  
CF is 10pF.  
Capacitive Loading  
The LT1722/LT1723/LT1724 drive capacitive loads up to  
100pF with unity gain. As the capacitive load increases,  
both the bandwidth and the phase margin decrease  
causingpeakinginthefrequencyresponseandovershoot  
in the transient response. When there is a need to drive a  
larger capacitive load, a 25series resistance assures  
stability with any value of load capacitor. A feedback  
capacitor also helps to reduce any peaking.  
Input Considerations  
Each of the LT1722/LT1723/LT1724 inputs is protected  
with back-to-back diodes across the bases of the NPN  
input devices. If greater than 0.7V differential input volt-  
ages are anticipated, the input current must be limited to  
lessthan10mAwithanexternalseriesresistor. Eachinput  
also has two ESD clamp diodes—one to each supply. If an  
input is driven beyond the supply, limit the current with an  
external resistor to less than 10mA. The input stage  
protection circuit is shown in Figure 1.  
Power Dissipation  
The LT1722/LT1723/LT1724 combine high speed and  
large output drive in a small package. Maximum junction  
temperature (TJ) is calculated from the ambient tempera-  
ture(TA),powerdissipationperamplifier(PD)andnumber  
of amplifiers (n) as follows:  
The input currents of the LT1722/LT1723/LT1724 are  
typically in the tens of nA range due to the bias current  
cancellation technique used at the input. As the input  
offset current can be greater than either input current,  
TJ = TA + (n • PD θJA)  
172234fa  
12  
LT1722/LT1723/LT1724  
W U U  
APPLICATIO S I FOR ATIO  
U
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is due  
to on-chip dissipation caused by the load current.  
Circuit Operation  
The LT1722/LT1723/LT1724 circuit topology is a voltage  
feedback amplifier. The operation of the circuit can be  
understood by referring to the Simplified Schematic. The  
first stage is a folded cascode formed by the transistors  
Q1 through Q4. A degeneration resistor, R, is used in the  
input stage. The current mirror Q5, Q6 is bootstrapped by  
Q7. The capacitor, C, assures the bandwidth and the slew  
rate performance. The output stage is formed by comple-  
mentary emitter followers, Q8 through Q11. The diodes  
D1 and D2 protect against input reversed biasing. The  
remainingpartofthecircuitassuresoptimumvoltageand  
current biases for all stages.  
Worst-case instantaneous power dissipation for a given  
resistive load in one amplifier occurs at the maximum  
supply current and when the output voltage is at half of  
either supply voltage (or the maximum swing if less than  
half supply voltage).  
Therefore PD(MAX) in one amplifier is:  
PD(MAX) = (V+ – V)(IS(MAX)) + (V+/2)2/RL  
or  
PD(MAX) = (V+ – V)(IS(MAX)) +  
(V+ – VO(MAX))(VO(MAX)/RL)  
Low noise, reduced current supply, high speed and DC  
accurateparametersaredistinctivefeaturesoftheLT1722/  
Example. Worst-caseconditionsare:bothopampsinthe  
LT1723IS8 are at TA = 85°C, VS = ±5V, RL = 150,  
VOUT = 2.5V.  
LT1723/LT1724  
.
PD(MAX) =2[(10V)(5.95mA)+(2.5V)2/150]=203mW  
TJ(MAX) = 85°C + (203mW)(190°C/W) = 124°C  
which is less than the absolute maximum rating at 150°C.  
W
W
SI PLIFIED SCHE ATIC  
+
V
S
R1  
R2  
I
5
Q4  
Q3  
Q5  
V
BIAS  
C
D1  
Q10  
Q11  
Q1  
Q2  
–IN  
+IN  
Q7  
OUT  
Q8  
D2  
R
Q9  
Q6  
I
1
I
2
I
3
I
4
V
S
1723 SS  
172234fa  
13  
LT1722/LT1723/LT1724  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
0.62  
MAX  
0.95  
REF  
2.80 – 3.10  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.60 – 3.00  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
0.25 – 0.50  
TYP 5 PLCS  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.95 BSC  
0.90 – 1.30  
0.20 BSC  
DATUM ‘A’  
0.00 – 0.15  
0.90 – 1.45  
0.35 – 0.55 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 SOT-23 0502  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
ATTENTION: ORIGINAL SOT23-5L PACKAGE.  
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23  
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY  
APRIL 2001 SHIP DATE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
N
1
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
172234fa  
14  
LT1722/LT1723/LT1724  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
0.52  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
(.206)  
REF  
(NOTE 3)  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
(8.560 – 8.738)  
NOTE 3  
.045 ±.005  
.050 BSC  
14  
N
13  
12  
11  
10  
9
8
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
172234fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1722/LT1723/LT1724  
U
TYPICAL APPLICATIO  
4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifier  
10pF  
1k  
2k  
1k  
1/2 LT1739  
+
50Ω  
1/2 LT1723  
(n = 1)  
n:1  
+
V
V
L
V
R
R
L
D
LINE  
100Ω  
LINE  
2
n
DRIVER  
LINE  
RECEIVER  
+
1/2 LT1723  
+
50Ω  
1k  
2k  
1k  
1/2 LT1739  
1723 TA03  
10pF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
3V Operation, 2.5mA Supply Current, 4.5nV/Hz Max e ,  
LT1677  
Single, Low Noise Rail-to-Rail Amplifier  
n
60µV Max V  
OS  
LT1800/LT1801/LT1802 Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail  
Precision Amplifier  
1.6mA Supply Current, 350µV V , 2.3V Operation  
OS  
LT1806/LT1807  
Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers  
Single/Dual, Low Distortion 180MHz Rail-to-Rail Amplifiers 2.5V Operation, –90dBc at 5MHz Distortion  
5V Operation, 3.6mA Supply Current, 40mA Min Output Current  
LT6202/LT6203/LT6204 Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Amp 2nV/Hz, 2.5mA on Single 3V Supply  
2.5V Operation, 550µV  
V , 3.5nV/Hz  
MAX OS  
LT1809/LT1810  
LT1812/LT1813/LT1814 Single/Dual/Quad, 3mA, 750V/µs Amplifiers  
172234fa  
LT/TP 1002 1K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1722CS5#TR

暂无描述
Linear

LT1722CS5#TRM

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1722CS5#TRMPBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1722CS5#TRPBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1722CS8

Single, Dual, Quad 200MHz Low Noise Precision Op Amps
Linear

LT1722CS8#PBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1722CS8#TRPBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1722IS5

Single, Dual, Quad 200MHz Low Noise Precision Op Amps
Linear

LT1722IS5#PBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1722IS8

Single, Dual, Quad 200MHz Low Noise Precision Op Amps
Linear

LT1722IS8#PBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1722IS8#TRPBF

LT1722 - Single 200MHz Low Noise Precision Op Amps; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear