LT1630IS8 [Linear]

30MHz, 10V/μs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps; 为30MHz , 10V / μs的,双/四轨至轨输入和输出精密运算放大器
LT1630IS8
型号: LT1630IS8
厂家: Linear    Linear
描述:

30MHz, 10V/μs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
为30MHz , 10V / μs的,双/四轨至轨输入和输出精密运算放大器

运算放大器 光电二极管
文件: 总20页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1630/LT1631  
30MHz, 10V/µs, Dual/Quad  
Rail-to-Rail Input and Output  
Precision Op Amps  
FeaTures  
DescripTion  
The LT®1630/LT1631 are dual/quad, rail-to-rail input and  
output op amps with a 30MHz gain-bandwidth product  
and a 10V/µs slew rate.  
n
Gain-Bandwidth Product: 30MHz  
n
Slew Rate: 10V/µs  
n
Low Supply Current per Amplifier: 3.5mA  
n
Input Common Mode Range Includes Both Rails  
The LT1630/LT1631 have excellent DC precision over the  
full range of operation. Input offset voltage is typically  
less than 150µV and the minimum open-loop gain of one  
million into a 10k load virtually eliminates all gain error.  
Tomaximizecommonmoderejection, theLT1630/LT1631  
employ a patented trim technique for both input stages,  
one at the negative supply and the other at the positive  
supply, that gives a typical CMRR of 106dB over the full  
input range.  
n
Output Swings Rail-to-Rail  
n
Input Offset Voltage, Rail-to-Rail: 525µV Max  
n
Input Offset Current: 150nA Max  
n
Input Bias Current: 1000nA Max  
n
Open-Loop Gain: 1000V/mV Min  
n
Low Input Noise Voltage: 6nV/√Hz Typ  
n
Low Distortion: –91dBc at 100kHz  
n
Wide Supply Range: 2.7V to 15V  
n
Large Output Drive Current: 35mA Min  
n
TheLT1630/LT1631maintaintheirperformanceforsupplies  
from 2.7V to 36V and are specified at 3V, 5V and 15V  
supplies. The inputs can be driven beyond the supplies  
withoutdamageorphasereversaloftheoutput.Theoutput  
delivers load currents in excess of 35mA.  
Dual in 8-Pin PDIP and SO Packages  
n
Quad in Narrow 14-Pin SO Package  
applicaTions  
n
Active Filters  
The LT1630 is available in 8-pin PDIP and SO packages  
withthestandarddualopamppinout.TheLT1631features  
the standard quad op amp configuration and is available  
in a 14-pin plastic SO package. These devices can be used  
as plug-in replacements for many standard op amps to  
improve input/output range and performance.  
n
Rail-to-Rail Buffer Amplifiers  
n
Driving A/D Converters  
n
Low Voltage Signal Processing  
n
Battery-Powered Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Typical applicaTion  
Frequency Response  
10  
0
Single Supply, 400kHz, 4th Order Butterworth Filter  
–10  
–20  
–30  
–40  
–50  
47pF  
2.32k  
6.65k  
2.32k  
22pF  
2.74k  
5.62k  
V
IN  
2.74k  
220pF  
1/2 LT1630  
+
470pF  
V
1/2 LT1630  
+
–60  
–70  
–80  
–90  
OUT  
V
V
= 3V, 0V  
V /2  
S
S
1630/31 TA01  
= 2.5V  
IN  
P-P  
0.1k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1630/31 TA02  
16301fa  
LT1630/LT1631  
absoluTe MaxiMuM raTings (Note 1)  
Total Supply Voltage (V+ to V–) ............................... 36V  
Input Current....................................................... 10mA  
Output Short-Circuit Duration (Note 2)........ Continuous  
Operating Temperature Range  
Specified Temperature Range (Note 4) ..........................  
C-Grade/I-Grade ................................. –40°C to 85°C  
H-Grade............................................. –40°C to 125°C  
Junction Temperature ......................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
C-Grade/I-Grade ................................. –40°C to 85°C  
H-Grade............................................. –40°C to 125°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
OUTA  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
A
B
D
C
OUT B  
–IN B  
+IN B  
A
+
V
V
B
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
V
N8 PACKAGE  
S8 PACKAGE  
OUT B  
8
8-LEAD PDIP 8-LEAD PLASTIC SO  
T
= 150°C, θ = 130°C/W (N8)  
JA  
= 150°C, θ = 190°C/W (S8)  
JA  
JMAX  
S PACKAGE  
14-LEAD PLASTIC SO  
T
JMAX  
T
JMAX  
= 150°C, θ = 150°C/W  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LT1630CN8#PBF  
LT1630CS8#PBF  
LT1630IN8#PBF  
LT1630IS8#PBF  
LT1630HS8#PBF  
LT1631CS#PBF  
LT1631IS#PBF  
TAPE AND REEL  
PART MARKING  
LT1630CN8  
1630  
PACKAGE DESCRIPTION  
8-Lead PDIP  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
LT1630CN8#TRPBF  
LT1630CS8#TRPBF  
LT1630IN8#TRPBF  
LT1630IS8#TRPBF  
LT1630HS8#TRPBF  
LT1631CS#TRPBF  
LT1631IS#TRPBF  
8-Lead Plastic SO  
8-Lead PDIP  
LT1630IN8  
1630I  
8-Lead Plastic SO  
8-Lead Plastic SO  
14-Lead Plastic SO  
14-Lead Plastic SO  
1630H  
LT1631CS  
LT1631IS  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
16301fa  
LT1630/LT1631  
elecTrical characTerisTics TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
CM  
V
CM  
= V  
= V  
150  
150  
525  
525  
µV  
µV  
OS  
+
Input Offset Shift  
V
V
= V to V  
150  
200  
525  
950  
µV  
µV  
V  
CM  
CM  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V , V (Note 5)  
+
I
V
CM  
V
CM  
= V  
0
540  
–540  
1000  
0
nA  
nA  
B
= V  
–1000  
+
Input Bias Current Shift  
V
CM  
= V to V  
1080  
2000  
nA  
I  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
25  
25  
300  
300  
nA  
nA  
= V (Note 5)  
+
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V  
= V  
20  
20  
150  
150  
nA  
nA  
+
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
40  
300  
6
300  
nA  
I  
CM  
OS  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
n
f = 1kHz  
0.9  
5
C
IN  
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 300mV to 4.7V, R = 10k  
500  
400  
3500  
2000  
V/mV  
V/mV  
S
O
L
V = 3V, V = 300mV to 2.7V, R = 10k  
S
O
L
+
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
79  
75  
90  
86  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V to V  
72  
67  
96  
88  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = 2.7V to 12V, V = V = 0.5V  
87  
80  
105  
107  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 2.7V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
V
No Load  
14  
31  
600  
500  
30  
60  
1200  
1000  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
S
= 20mA, V = 3V  
S
V
Output Voltage Swing High (Note 6)  
No Load  
15  
42  
900  
680  
40  
80  
1800  
1400  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
SOURCE  
SOURCE  
SOURCE  
= 20mA, V = 5V  
= 15mA, V = 3V  
S
S
I
I
Short-Circuit Current  
V = 5V  
S
20  
15  
41  
30  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
3.5  
30  
4.4  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
15  
MHz  
4.6  
4.2  
9.2  
8.5  
V/µs  
V/µs  
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
S
t
S
Settling Time  
V = 5V, A = 1, R = 1k, 0.01%, V = 2V  
STEP  
520  
ns  
S
V
L
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range of 0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
175  
175  
700  
700  
µV  
µV  
OS  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
2.5  
1
5.5  
3.5  
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
175  
200  
750  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V 0.1V (Note 5)  
1200  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
585  
–585  
1100  
0
nA  
nA  
B
= V + 0.2V  
–1100  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1170  
2200  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
25  
25  
340  
340  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
20  
20  
170  
170  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
40  
340  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
450  
350  
3500  
2000  
V/mV  
V/mV  
S
S
O
O
L
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
75  
71  
89  
83  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
70  
65  
90  
85  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
l
l
l
PSRR  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
82  
78  
101  
102  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 3V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
l
l
l
l
V
V
No Load  
17  
36  
700  
560  
40  
80  
1400  
1200  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
S
= 20mA, V = 3V  
S
l
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
16  
50  
820  
550  
40  
100  
1600  
1100  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
SOURCE  
SOURCE  
SOURCE  
= 15mA, V = 5V  
= 10mA, V = 3V  
S
S
l
l
I
I
Short-Circuit Current  
V = 5V  
S
18  
13  
36  
25  
mA  
mA  
SC  
S
V = 3V  
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.0  
28  
5.1  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
14  
MHz  
l
l
4.2  
3.9  
8.3  
7.7  
V/µs  
V/µs  
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
S
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range of –40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
250  
250  
775  
775  
µV  
µV  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
2.5  
1
5.5  
3.5  
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
200  
210  
750  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V (Note 5)  
1500  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
650  
–650  
1300  
0
nA  
nA  
B
= V + 0.2V  
–1300  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1300  
2600  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
25  
25  
390  
390  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
25  
25  
195  
195  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
390  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
400  
300  
3500  
1800  
V/mV  
V/mV  
S
S
O
O
L
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
75  
71  
87  
83  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
69  
65  
89  
85  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
l
l
l
PSRR  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
82  
78  
98  
102  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 3V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
l
l
l
l
V
V
No Load  
18  
38  
730  
580  
40  
80  
1500  
1200  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
S
= 20mA, V = 3V  
S
l
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
15  
55  
860  
580  
40  
110  
1700  
1200  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
SOURCE  
SOURCE  
SOURCE  
= 15mA, V = 5V  
= 10mA, V = 3V  
S
S
l
l
I
I
Short-Circuit Current  
V = 5V  
S
17  
12  
34  
24  
mA  
mA  
SC  
S
V = 3V  
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.1  
28  
5.2  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
14  
MHz  
l
l
3.5  
3.3  
7
6.5  
V/µs  
V/µs  
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
S
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range of –40°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
345  
345  
950  
950  
µV  
µV  
OS  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
2.5  
1
5.5  
3.5  
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
200  
210  
750  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V (Note 5)  
1500  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
650  
–650  
1300  
0
nA  
nA  
B
= V + 0.2V  
–1300  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1300  
2600  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
25  
25  
390  
390  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
25  
25  
195  
195  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
390  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
200  
150  
3100  
1625  
V/mV  
V/mV  
S
S
O
O
L
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
72  
69  
87  
83  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
67  
63  
89  
85  
dB  
dB  
S
CM  
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
l
l
l
PSRR  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
82  
78  
98  
102  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 3V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
l
l
l
l
V
V
No Load  
18  
38  
730  
580  
40  
100  
1600  
1300  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
S
= 20mA, V = 3V  
S
l
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
15  
55  
860  
580  
40  
120  
1800  
1300  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
SOURCE  
SOURCE  
SOURCE  
= 15mA, V = 5V  
= 10mA, V = 3V  
S
S
l
l
I
I
Short-Circuit Current  
V = 5V  
S
17  
12  
34  
24  
mA  
mA  
SC  
S
V = 3V  
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.1  
28  
5.6  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
13  
MHz  
l
l
3.5  
3.3  
7
6.5  
V/µs  
V/µs  
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
S
16301fa  
LT1630/LT1631  
elecTrical characTerisTics TA = 25°C, VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
CM  
V
CM  
= V  
= V  
220  
220  
1000  
1000  
µV  
µV  
OS  
+
Input Offset Voltage Shift  
V
V
= V to V  
150  
200  
1000  
1500  
µV  
µV  
V  
CM  
CM  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V , V (Note 5)  
+
I
V
CM  
V
CM  
= V  
0
550  
–550  
1100  
0
nA  
nA  
B
= V  
–1100  
+
Input Bias Current Shift  
V
CM  
= V to V  
1100  
2200  
nA  
I  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
20  
20  
300  
300  
nA  
nA  
= V (Note 5)  
+
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V  
= V  
20  
20  
150  
150  
nA  
nA  
+
Input Offset Current Shift  
Input Noise Voltage  
V
CM  
= V to V  
40  
300  
6
300  
nA  
I  
OS  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
n
f = 1kHz  
0.9  
3
C
IN  
f = 100kHz  
A
VOL  
Large-Signal Voltage Gain  
V = –14.5V to 14.5V, R = 10k  
1000  
650  
5000  
3500  
V/mV  
V/mV  
O
L
V = –10V to 10V, R = 2k  
O
L
Channel Separation  
V = –10V to 10V, R = 2k  
112  
89  
86  
87  
82  
134  
106  
110  
105  
107  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V to V  
CM  
CM  
+
= V to V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = 5V to 15V  
S
V
V
No Load  
16  
150  
600  
35  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
300  
SINK  
SINK  
1200  
Output Voltage Swing High (Note 6)  
No Load  
15  
40  
mV  
mV  
mV  
OH  
I
I
= 5mA  
250  
500  
SINK  
SINK  
= 25mA  
1200  
2400  
I
I
Short-Circuit Current  
35  
70  
4.1  
30  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.0  
S
GBW  
SR  
f = 100kHz  
A = –1, R = Open, V = 10V,  
15  
5
MHz  
V/µs  
10  
V
L
O
Measure at V = 5V  
O
t
S
Settling Time  
0.01%, V  
= 10V, A = 1, R = 1k  
1.2  
µs  
STEP  
V
L
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range of 0°C < TA < 70°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
300  
300  
1250  
1250  
µV  
µV  
OS  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
4.5  
1.5  
7
4
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
180  
300  
1100  
2000  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V 0.1V (Note 5)  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
600  
–600  
1200  
0
nA  
nA  
B
= V + 0.2V  
–1200  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1200  
2400  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
30  
30  
350  
350  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
25  
25  
175  
175  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
350  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
900  
600  
6000  
4000  
V/mV  
V/mV  
O
O
L
L
l
l
l
l
l
Channel Separation  
V = –10V to 10V, R = 2k  
112  
88  
84  
86  
80  
132  
104  
104  
100  
104  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V + 0.2V to V – 0.1V  
CM  
CM  
+
= V + 0.2V to V – 0.1V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = 5V to 15V  
S
l
l
l
V
V
No Load  
19  
175  
670  
45  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
350  
SINK  
SINK  
1400  
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
15  
40  
mV  
mV  
mV  
I
I
= 5mA  
300  
600  
SOURCE  
SOURCE  
= 25mA  
1400  
2800  
l
l
l
l
I
I
Short-Circuit Current  
28  
57  
4.6  
28  
9
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.6  
S
GBW  
SR  
f = 100kHz  
A = –1, R = Open, V = 10V,  
14  
MHz  
V/µs  
4.5  
V
L
O
Measured at V = 5V  
O
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range of –40°C < TA < 85°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
350  
350  
1400  
1400  
µV  
µV  
OS  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
4.5  
1.5  
7
4
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
180  
350  
1200  
2200  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V 0.1V (Note 5)  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
690  
–690  
1400  
0
nA  
nA  
B
= V + 0.2V  
–1400  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1380  
2800  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
30  
30  
420  
420  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
30  
30  
210  
210  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
60  
420  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
700  
400  
6000  
4000  
V/mV  
V/mV  
O
O
L
L
l
l
l
l
l
Channel Separation  
V = –10V to 10V, R = 2k  
112  
87  
84  
84  
80  
132  
104  
104  
100  
100  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V + 0.2V to V – 0.1V  
CM  
CM  
+
= V + 0.2V to V – 0.1V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = 5V to 15V  
S
l
l
l
V
V
No Load  
22  
180  
700  
50  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
350  
SINK  
SINK  
1400  
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
15  
40  
mV  
mV  
mV  
I
I
= 5mA  
300  
600  
SOURCE  
SOURCE  
= 25mA  
1500  
3000  
l
l
l
l
I
I
Short-Circuit Current  
27  
54  
4.8  
27  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.9  
S
GBW  
SR  
f = 100kHz  
A = –1, R = Open, V = 10V,  
14  
MHz  
V/µs  
4.2  
8.5  
V
L
O
Measured at V = 5V  
O
16301fa  
LT1630/LT1631  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range of –40°C < TA < 125°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
525  
525  
1600  
1600  
µV  
µV  
OS  
= V + 0.2V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
4.5  
1.5  
7
4
µV/°C  
µV/°C  
OS  
+
V
V
V
= V – 0.1V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
220  
350  
1300  
2200  
µV  
µV  
V  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.2V, V 0.1V (Note 5)  
+
l
l
I
V
CM  
V
CM  
= V – 0.1V  
0
750  
–750  
1500  
0
nA  
nA  
B
= V + 0.2V  
–1500  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
1380  
2800  
nA  
I  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
42  
42  
460  
460  
nA  
nA  
= V + 0.2V (Note 5)  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
30  
30  
210  
210  
nA  
nA  
OS  
= V + 0.2V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
60  
420  
nA  
I  
CM  
OS  
l
l
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
700  
400  
6000  
4000  
V/mV  
V/mV  
O
O
L
L
l
l
l
l
l
Channel Separation  
V = –10V to 10V, R = 2k  
112  
87  
84  
84  
80  
132  
104  
104  
100  
100  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V + 0.2V to V – 0.1V  
CM  
CM  
+
= V + 0.2V to V – 0.1V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = 5V to 15V  
S
l
l
l
V
V
No Load  
22  
180  
700  
60  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
400  
SINK  
SINK  
1500  
l
l
l
Output Voltage Swing High (Note 6)  
No Load  
15  
50  
mV  
mV  
mV  
I
I
= 5mA  
300  
675  
SOURCE  
SOURCE  
= 25mA  
1500  
3300  
l
l
l
l
I
I
Short-Circuit Current  
27  
54  
4.8  
27  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
6.4  
S
GBW  
SR  
f = 100kHz  
A = –1, R = Open, V = 10V,  
13  
MHz  
V/µs  
4.2  
8.5  
V
L
O
Measured at V = 5V  
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT1631; between the two amplifiers on the  
LT1630.  
Note 6: Output voltage swings are measured between the output and  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
power supply rails.  
Note 7: V = 3V, V = 15V GBW limit guaranteed by correlation to  
S
S
5V tests.  
Note 3: This parameter is not 100% tested.  
Note 8: V = 3V, V = 5V slew rate limit guaranteed by correlation to  
S
S
Note 4: The LT1630C/LT1631C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1630C/LT1631C and are designed,  
characterized and expected to meet specified performance from –40°C  
to 85°C but are not tested or QA sampled at these temperatures. The  
LT1630I/LT1631I are guaranteed to meet specified performance from  
–40°C to 85°C. The LT1630H is guaranteed to meet specified performance  
from –40°C to 125°C.  
15V tests.  
Note 9: Minimum supply voltage is guaranteed by testing the change of  
to be less than 250µV when the supply voltage is varied from 3V to  
V
OS  
2.7V.  
16301fa  
ꢀ0  
LT1630/LT1631  
Typical perForMance characTerisTics  
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution, VCM = 5V  
(NPN Stage)  
VOS Shift for VCM = 0V to 5V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V = 5V, 0V  
S
S
S
= 0V  
= 5V  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1630/31 G32  
1630/31 G33  
1630/31 G34  
Input Bias Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
vs Common Mode Voltage  
600  
400  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
V
= 5V, 0V  
S
V
= 15V  
S
T
= 125°C  
= 25°C  
A
200  
0
T
A
V
= 5V, 0V  
S
–200  
–400  
–600  
–800  
–1000  
T
= 125°C  
= 25°C  
A
T
= –55°C  
A
T
A
T
= –55°C  
A
16 20 24  
TOTAL SUPPLY VOTAGE (V)  
–50 –25  
25 50 75 100 125  
0
0
4
8
12  
28 32 36  
–75  
0
–2 –1  
1
2
3
4
5
6
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
1630/31 G01  
1630/31 G02  
1630/31 G03  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
Input Bias Current vs Temperature  
1.0  
0.8  
10  
1
10  
1
V
= 5V, 0V  
V = 5V, 0V  
S
S
V
= 5V, 0V  
CM  
S
V
= 5V  
0.6  
V
CM  
=
15V  
= 15V  
S
0.4  
V
0.2  
0
T = 125°C  
A
T
= 125°C  
A
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
= 25°C  
A
V
CM  
= 15V  
S
0.1  
0.01  
0.1  
0.01  
T
= 25°C  
A
V
= –15V  
T
= –55°C  
T
A
= –55°C  
A
V
= 5V, 0V  
S
V
= 0V  
CM  
–50 –35 –20 –5 10 25 40 55 70 85 100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1630/31 G05  
1630/31 G06  
1630/31 G04  
16301fa  
ꢀꢀ  
LT1630/LT1631  
Typical perForMance characTerisTics  
Minimum Supply Voltage  
Noise Voltage Spectrum  
Current Noise Spectrum  
35  
30  
25  
20  
15  
10  
5
10  
9
300  
250  
200  
150  
100  
50  
V
= 5V, 0V  
S
V = 5V, 0V  
S
8
V
= 2.5V  
CM  
PNP ACTIVE  
7
V
= 4.25V  
6
5
CM  
NPN ACTIVE  
T
= 25°C  
A
4
3
2
1
0
V
= 4.25V  
CM  
NPN ACTIVE  
T
= 125°C  
T
= –55°C  
A
A
V
= 2.5V  
CM  
PNP ACTIVE  
0
0
4
1
2
3
5
1
10  
100  
1000  
1
10  
100  
1000  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
11630/31 G09  
1630/31 G10  
1630/31 G07  
0.1Hz to 10Hz Output  
Voltage Noise  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain and Phase vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
135  
90  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V /2  
S
CM  
V
V
=5V, 0V  
S
= V /2  
CM  
S
PHASE  
GAIN  
45  
GAIN BANDWIDTH  
PHASE MARGIN  
0
–45  
–90  
–135  
–180  
–225  
–270  
R
V
V
= 1k  
L
S
S
= 3V, 0V  
–10  
–20  
=
15V  
0
0.01  
0.1  
1
10  
100  
0
5
15  
20  
25  
30  
10  
TIME (1s/DIV)  
FREQUENCY (MHz)  
TOTAL SUPPLY VOLTAGE (V)  
1630/31 G25  
1630/31 G11  
1630/31 G14  
CMRR vs Frequency  
PSRR vs Frequency  
Channel Separation vs Frequency  
120  
110  
100  
90  
100  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 15V  
S
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
=
15V  
POSITIVE SUPPLY  
S
80  
70  
V
= 5V, 0V  
NEGATIVE SUPPLY  
S
60  
–100  
–110  
–120  
–130  
–140  
50  
40  
30  
20  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1630/31 G12  
1630/31 G13  
1630/31 G15  
16301fa  
ꢀꢁ  
LT1630/LT1631  
Typical perForMance characTerisTics  
Output Step vs  
Capacitive Load Handling  
Slew Rate vs Supply Voltage  
Settling Time to 0.01%  
60  
50  
40  
30  
20  
10  
0
10  
8
14  
13  
12  
11  
10  
9
V
= 15V  
S
V
A
= 5V, 0V  
= 1  
= 1k  
V
A
= 80% OF V  
S
S
V
L
OUT  
V
= –1  
R
6
NONINVERTING  
NONINVERTING  
INVERTING  
4
RISING EDGE  
2
0
FALLING EDGE  
–2  
–4  
–6  
–8  
–10  
INVERTING  
1.00 1.25  
8
24  
1
10  
100  
1000  
0
4
8
12 16 20  
28 32  
0
0.25  
0.75  
0.50  
1.50  
TOTAL SUPPLY VOLTAGE (V)  
SETTLING TIME (µs)  
CAPACITIVE LOAD (pF)  
1630/31 G16  
1630/31 G17  
1630/31 G18  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
200  
150  
100  
50  
20  
15  
8
6
V
= 15V  
V
=
15V  
S
V = 5V, 0V  
S
S
L
R
= 100Ω  
10  
5
4
R
= 1k  
L
2
R
= 10k  
L
0
0
0
R
= 10k  
L
R
= 1k  
L
–5  
–50  
–100  
–150  
–200  
–2  
–4  
–6  
–8  
–10  
–15  
–20  
0
5
0
1
2
4
6
–20 –15 –10 –5  
10 15 20  
–5 –4 –3 –2 –1  
3
5
7
1
2
4
0
5
6
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1630/31 G19  
1630/31 G21  
1630/31 G20  
Maximum Undistorted Output  
Signal vs Frequency  
Total Harmonic Distortion + Noise  
vs Frequency  
Warm-Up Drift vs Time  
40  
0
5
4
3
2
1
0
1
0.1  
V
= 2V  
P-P  
= 10k  
S8 PACKAGE  
= ꢀV, 0V  
N8 PACKAGE  
= ꢀV, 0V  
IN  
L
R
V
V
S
S
V
= 5V, 0V  
V
S
A
= –1  
–40  
–80  
–120  
–160  
–200  
LT1631CS  
= ꢀV, 0V  
V
= 5V, 0V  
V
N8 PACKAGE  
1ꢀV  
S
V
S
A
= 1  
V
S
=
V = 3V, 0V  
S
0.01  
A
= 1  
V
S8 PACKAGE  
1ꢀV  
V
=
S
V
= 5V, 0V AND 3V, 0V  
S
A
= –1  
0.001  
V
LT1631CS  
1ꢀV  
V
S
=
V
= 5V, 0V  
S
A
= 1  
V
0.0001  
80  
TIME AFTER POWER-UP (SEC)  
0
20 40 60  
100 120 140 160  
1
10  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1630/31 G24  
1630/31 G22  
163031 G23  
16301fa  
ꢀꢂ  
LT1630/LT1631  
Typical perForMance characTerisTics  
Harmonic Distortion vs Frequency  
5V Small-Signal Response  
5V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= 1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
–40  
2ND  
–60  
3RD  
2ND  
–80  
163031 G26  
163031 G27  
V
A
= 5V, 0V  
= 1  
= 1k  
V
A
= 5V, 0V  
= 1  
= 1k  
3RD  
S
V
L
S
V
L
R
R
–100  
100  
1000  
200  
500  
FREQUENCY (kHz)  
1630/31 G30  
Harmonic Distortion vs Frequency  
15V Small-Signal Response  
15V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= –1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
–40  
2ND  
–60  
3RD  
–80  
±6303± G28  
±6303± G29  
2ND  
V
= ±±1V  
= ±  
= ±k  
V
= ±±1V  
= ±  
= ±k  
S
V
L
S
V
L
3RD  
A
A
R
R
–100  
100  
1000  
200  
500  
FREQUENCY (kHz)  
1630/31 G31  
applicaTions inForMaTion  
Rail-to-Rail Input and Output  
tor Q5 will steer the tail current I to the current mirror  
1
Q6/Q7, activating the NPN differential pair and the PNP  
pair becomes inactive for the rest of the input common  
mode range up to the positive supply.  
The LT1630/LT1631 are fully functional for an input and  
output signal range from the negative supply to the posi-  
tive supply. Figure 1 shows a simplified schematic of the  
amplifier. The input stage consists of two differential am-  
plifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4 that  
are active over different ranges of input common mode  
voltage. The PNP differential input pair is active for input  
The output is configured with a pair of complementary  
common emitter stages Q14/Q15 that enables the output  
to swing from rail to rail. These devices are fabricated on  
Linear Technology’s proprietary complementary bipolar  
process to ensure similar DC and AC characteristics. Ca-  
pacitors C1 and C2 form local feedback loops that lower  
the output impedance at high frequencies.  
common mode voltages V between the negative supply  
CM  
to approximately 1.4V below the positive supply. As V  
CM  
moves closer toward the positive supply, the transis-  
16301fa  
ꢀꢃ  
LT1630/LT1631  
applicaTions inForMaTion  
+
V
R3  
R4  
R5  
+
Q12  
I
1
Q11  
Q13  
Q15  
D1  
R6  
225Ω  
+IN  
+
V
BIAS  
Q5  
I
C2  
2
D2  
D5  
D6  
R7  
225Ω  
C
C
V
OUT  
–IN  
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
Q9  
R1  
Q8  
D4  
C1  
Q7  
Q6  
Q14  
R2  
V
1630/31 F01  
Figure 1. LT1630 Simplified Schematic Diagram  
To ensure that the LT1630/LT1631 are used properly,  
calculate the worst-case power dissipation, get the ther-  
mal resistance for a chosen package and its maximum  
junction temperature to derive the maximum ambient  
temperature.  
Power Dissipation  
The LT1630/LT1631 amplifiers combine high speed and  
large output current drive in a small package. Because  
the amplifiers operate over a very wide supply range, it  
is possible to exceed the maximum junction temperature  
of 150°C in plastic packages under certain conditions.  
Example: An LT1630CS8 operating on 15V supplies and  
driving a 500Ω, the worst-case power dissipation per  
amplifier is given by:  
Junction temperature, T , is calculated from the ambient  
J
temperature, T , and power dissipation, P , as follows:  
A
D
P
= (30V • 4.75mA) + (15V – 7.5V)(7.5/500)  
LT1630CN8: T = T + (P • 130°C/W)  
DMAX  
J
A
D
= 0.143 + 0.113 = 0.256W  
LT1630CS8: T = T + (P • 190°C/W)  
J
A
D
LT1631CS: T = T + (P • 150°C/W)  
J
A
D
If both amplifiers are loaded simultaneously, then the  
total power dissipation is 0.512W. The SO-8 package has  
a junction-to-ambient thermal resistance of 190°C/W in  
stillair. Therefore, themaximumambienttemperaturethat  
the part is allowed to operate is:  
The power dissipation in the IC is the function of the  
supply voltage, output voltage and load resistance. For  
a given supply voltage, the worst-case power dissipation  
P
occurs at the maximum supply current and when  
DMAX  
the output voltage is at half of either supply voltage (or the  
maximumswingiflessthan1/2supplyvoltage).Therefore  
DMAX  
T = T – (P  
• 190°C/W)  
DMAX  
A
A
J
T = 150°C – (0.512W • 190°C/W) = 53°C  
P
is given by:  
For a higher operating temperature, lower the supply  
voltage or use the DIP package part.  
P
DMAX  
= (V • I  
) + (V /2)2/R  
SMAX S L  
S
16301fa  
ꢀꢄ  
LT1630/LT1631  
applicaTions inForMaTion  
Input Offset Voltage  
The LT1630/LT1631’s input stages are protected against  
large differential input voltages by a pair of back-to-back  
diodes D5/D6. When a differential voltage of more than  
0.7V is applied to the inputs, these diodes will turn on,  
preventingtheemitter-basebreakdownoftheinputtransis-  
tors. The current in D5/D6 should be limited to less than  
10mA. Internal 225Ω resistors R6 and R7 will limit the  
input current for differential input signals of 4.5V or less.  
For larger input levels, a resistor in series with either or  
bothinputsshouldbeusedtolimitthecurrent.Worst-case  
differentialinputvoltageusuallyoccurswhentheoutputis  
shorted to ground. In addition, the amplifier is protected  
against ESD strikes up to 3kV on all pins.  
The offset voltage changes depending upon which input  
stage is active, and the maximum offset voltages are  
trimmed to less than 525µV. To maintain the precision  
characteristics of the amplifier, the change of V over the  
OS  
entire input common mode range (CMRR) is guaranteed  
to be less than 525µV on a single 5V supply.  
Input Bias Current  
The input bias current polarity depends on the input  
common mode voltage. When the PNP differential pair is  
active, the input bias currents flow out of the input pins.  
They flow in the opposite direction when the NPN input  
stage is active. The offset voltage error due to input bias  
currents can be minimized by equalizing the noninverting  
and inverting input source impedance.  
Capacitive Load  
The LT1630/LT1631 are wideband amplifiers that can  
drive capacitive loads up to 200pF on 15V supplies in a  
unity-gain configuration. On a 3V supply, the capacitive  
load should be kept to less than 100pF. When there is a  
need to drive larger capacitive loads, a resistor of 20Ω  
to 50Ω should be connected between the output and the  
capacitive load. The feedback should still be taken from  
the output so that the resistor isolates the capacitive load  
to ensure stability.  
Output  
The outputs of the LT1630/LT1631 can deliver large load  
currents;theshort-circuitcurrentlimitis70mA.Takecareto  
keep the junction temperature of the IC below the absolute  
maximum rating of 150°C (refer to the Power Dissipation  
section).Theoutputoftheseamplifiershavereverse-biased  
diodestoeachsupply. Iftheoutputisforcedbeyondeither  
supply, unlimited current will flow through these diodes.  
If the current is transient and limited to several hundred  
mA, no damage to the part will occur.  
Feedback Components  
The low input bias currents of the LT1630/LT1631 make it  
possible to use the high value feedback resistors to set the  
gain. However, care must be taken to ensure that the pole  
formedbythefeedbackresistorsandthetotalcapacitanceat  
theinvertinginputdoesnotdegradestability.Forinstance,  
Overdrive Protection  
To prevent the output from reversing polarity when the  
input voltage exceeds the power supplies, two pairs of  
crossing diodes D1 to D4 are employed. When the input  
voltage exceeds either power supply by approximately  
700mV, D1/D2 or D3/D4 will turn on, forcing the output  
to the proper polarity. For this phase reversal protection  
to work properly, the input current must be limited to less  
than 5mA. If the amplifier is to be severely overdriven,  
an external resistor should be used to limit the overdrive  
current.  
LT1630/LT1631 in a noninverting gain of 2, set with  
the  
two 20k resistors, will probably oscillate with 10pF total  
input capacitance (5pF input capacitance and 5pF board  
capacitance).Theamplifierhasa5MHzcrossingfrequency  
and a 52° phase margin at 6dB of gain. The feedback  
resistors and the total input capacitance form a pole at  
1.6MHz that induces a phase shift of 72° at 5MHz! The  
solution is simple: either lower the value of the resistors  
or add a feedback capacitor of 10pF or more.  
16301fa  
ꢀꢅ  
LT1630/LT1631  
Typical applicaTions  
Single Supply, 40dB Gain, 350kHz  
Instrumentation Amplifier  
Tunable Q Notch Filter  
A single supply, tunable Qnotch filterasshowninFigure 4  
is built with LT1630 to maximize the output swing. The  
filter has a gain of 2, and the notch frequency (f ) is set  
Aninstrumentationamplifierwitharail-to-railoutputswing,  
operating from a 3V supply can be constructed with the  
LT1630 as shown in Figure 2. The amplifier has a nominal  
gain of 100, which can be adjusted with resistor R5. The  
DC output level is set by the difference of the two inputs  
multiplied by the gain of 100. Common mode range can  
be calculated by the equations shown with Figure 2. For  
example, the common mode range is from 0.15V to 2.65V  
if the output is set at one half of the 3V supply. The com-  
mon mode rejection is greater than 110dB at 100Hz when  
trimmed with resistor R1. The amplifier has a bandwidth  
of 355kHz as shown in Figure 3.  
O
by the values of R and C. The resistors R10 and R11 set  
up the DC level at the output. The Q factor can be adjusted  
by varying the value of R8. The higher value of R8 will  
decrease Q as depicted in Figure 5, because the output  
induces less of feedback to amplifier A2. The value of R7  
should be equal or greater than R9 to prevent oscillation.  
If R8 is a short and R9 is larger than R7, then the positive  
feedbackfromtheoutputwillcreatephaseinversionatthe  
output of amplifier A2, which will lead to oscillation.  
C
1000pF  
C1  
2.2µF  
5V  
R5  
432Ω  
R4  
20k  
R2  
2k  
R
+
V
IN  
1.62k  
A1  
V
V
R
OUT  
S
1/2 LT1630  
R1  
20k  
R1  
1.62k  
500Ω  
R3  
2k  
C
R2  
1k  
1000pF  
OUT1  
1/2 LT1630  
+
R6  
1k  
V
1/2 LT1630  
+
R5  
1k  
C5  
OUT  
V
IN  
+
V
IN  
R7  
1k  
A2  
1630/31 F02  
4.7µF  
5V  
1/2 LT1630  
+
BW = 355kHz  
LOWER LIMIT COMMON MODE INPUT VOLTAGE  
R10  
10k  
R8  
5k  
R9  
1k  
R4  
R3  
R2 R3+R2  
VOUT  
AV R5  
R2  
1.0  
1.1  
AV  
=
1+  
+
=100  
1630/31 F04  
VCML  
=
+0.1V  
R1  
R5  
VOUT = V + – V  
• A  
C2  
4.7µF  
R11  
10k  
(
)
5V R11  
IN  
IN  
V
(
)(  
)
UPPER LIMIT COMMON MODE INPUT VOLTAGE  
fO = 98kHz  
VO(DC)  
=
= 2.5V  
R11+R10  
VOUT  
R2  
AV R5  
1.0  
1.1  
VCMH  
=
+ V 0.15V  
(
)
1
fO =  
S
AV = 2  
2πRC  
WHERE VS IS THE SUPPLY CURRENT  
Figure 4. Tunable Q Notch Filter  
Figure 2. Single Supply, 40dB Gain Instrumentation Amplifier  
50  
40  
20  
40  
DIFFERENTIAL INPUT  
30  
20  
10  
INCREASINGR8  
DECREASINGR8  
0
0
COMMON MODE INPUT  
–10  
–20  
–30  
–40  
–50  
–20  
–40  
V
A
= 3V  
S
V
–60  
–70  
= 100  
0
20 40 60 80 100 120 140 160 180 200  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
13630/31 F05  
FREQUENCY (Hz)  
1630/31 F03  
Figure 3. Frequency Response  
Figure 5. Frequency Response  
16301fa  
ꢀꢆ  
LT1630/LT1631  
package DescripTion  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 p .005  
.300 – .325  
.045 – .065  
(3.302 p 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 p .015*  
(6.477 p 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 p .003  
(0.457 p 0.076)  
.100  
(2.54)  
BSC  
N8 1002  
+0.889  
8.255  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 p.005  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
s 45o  
.053 – .069  
(1.346 – 1.752)  
.050 BSC  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0o– 8o TYP  
(0.203 – 0.254)  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.245  
MIN  
.228 – .244  
(5.791 – 6.197)  
.160 p.005  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
SO8 0303  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
.030 p.005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
(8.560 – 8.738)  
NOTE 3  
.045 p.005  
.160 p.005  
.050 BSC  
14  
N
13  
12  
11  
10  
9
8
N
1
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 p.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
s 45o  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
0o – 8o TYP  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
.050  
(1.270)  
BSC  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
16301fa  
ꢀꢇ  
LT1630/LT1631  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
2/2010 Changes to Absolute Maximum Ratings  
Updated Order Information Section  
Added H Grade Part  
2
2
2
Added H Grade Electrical Characteristics Tables  
6, 10  
16301fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢀꢈ  
LT1630/LT1631  
Typical applicaTion  
RF Amplifier Control Biasing and DC Restoration  
5V  
R4  
R2  
Taking advantage of the rail-to-rail input and output, and  
the large output current capability of the LT1630, the  
circuit, shown in Figure 6, provides precise bias currents  
for the RF amplifiers and restores DC output level. To  
ensure optimum performance of an RF amplifier, its bias  
point must be accurate and stable over the operating  
temperature range. The op amp A1 combined with Q1,  
Q2, R1, R2 and R3 establishes two current sources of  
21.5mA to bias RF1 and RF2 amplifiers. The current of  
Q1 is determined by the voltage across R2 over R1, which  
is replicated in Q2. These current sources are stable and  
precise over temperature and have a low dissipated power  
due to a low voltage drop between their terminals. The  
amplifier A2 is used to restore the DC level at the output.  
With a large output current of the LT1630, the output can  
be set at 1.5VDC on 5V supply and 50Ω load. This circuit  
has a 3dB bandwidth from 2MHz to 2GHz and a power  
gain of 25dB.  
R1  
10Ω  
453W  
10Ω  
5V  
Q1  
2N3906  
A1  
Q2  
2N3906  
1/2 LT1630  
+
+
C1  
R3  
10k  
+
+
C6  
C5  
0.01µF  
0.01µF  
0.01µF  
L1  
220µH  
L2  
220µH  
HP-MSA0785  
RF2  
HP-MSA0785  
RF1  
C3  
C2  
1500pF  
C4  
1500pF  
1500pF  
V
V
IN  
OUT  
L3  
3.9µH  
L4  
3.9µH  
+
A2  
1630/31 F06  
R5  
50Ω  
1/2 LT1630  
Figure 6. RF Amplifier Control Biasing and DC Restoration  
relaTeD parTs  
PART NUMBER DESCRIPTON  
COMMENTS  
Input Common Mode Includes Ground, 275µV V  
LT1211/LT1212 Dual/Quad 14MHz, 7V/µs, Single Supply Precision Op Amps  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 1.8mA per Op Amp  
LT1213/LT1214 Dual/Quad 28MHz, 12V/µs, Single Supply Precision Op Amps  
LT1215/LT1216 Dual/Quad 23MHz, 50V/µs, Single Supply Precision Op Amps  
Input Common Mode Includes Ground, 275µV V  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 3.5mA per Op Amp  
Input Common Mode Includes Ground, 450µV V  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 6.6mA per Op Amp  
LT1498/LT1499 Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input and Output  
C-Load™ Op Amps  
High DC Accuracy, 475µV V , 4µV/°C Max Drift,  
OS(MAX)  
Max Supply Current 2.2mA per Amp  
LT1632/LT1633 Dual/Quad 45MHz, 45V/µs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 1.35mV V  
, 70mA Output Current,  
OS(MAX)  
Max Supply Current 5.2mA per Amp  
16301fa  
LT 0210 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁ0  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY