LT1579CGN [Linear]

300mA Dual Input Smart Battery Backup Regulator; 300毫安双输入智能电池备份稳压器
LT1579CGN
型号: LT1579CGN
厂家: Linear    Linear
描述:

300mA Dual Input Smart Battery Backup Regulator
300毫安双输入智能电池备份稳压器

稳压器 电池
文件: 总20页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1579  
300mA Dual Input Smart  
Battery Backup Regulator  
U
DESCRIPTION  
FEATURES  
Maintains Output Regulation with Dual Inputs  
The LT®1579 is a dual input, single output, low dropout  
regulator. This device is designed to provide an  
uninterruptibleoutputvoltagefromtwoindependentinput  
voltage sources on a priority basis. All of the circuitry  
needed to switch smoothly and automatically between  
inputs is incorporated.  
Dropout Voltage: 0.4V  
Output Current: 300mA  
50µA Quiescent Current  
No Protection Diodes Needed  
Two Low-Battery Comparators  
Status Flags Aid Power Management  
The LT1579 can supply 300mA of output current from  
eitherinputatadropoutvoltageof0.4V.Quiescentcurrent  
is 50µA, dropping to 7µA in shutdown. Two comparators  
are included to monitor input voltage status. Two addi-  
tional status flags indicate which input is supplying power  
and provide an early warning against loss of output  
regulation when both inputs are low. A secondary select  
pin is provided so that the user can force the device to  
switch from the primary input to the secondary input.  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting and reverse-  
current protection.  
Adjustable Output from 1.5V to 20V  
Fixed Output Voltages: 3V, 3.3V and 5V  
7µA Quiescent Current in Shutdown  
Reverse-Battery Protection  
Reverse Current Protection  
Remove, Recharge and Replace Batteries Without  
Daisy-Chained Control Outputs  
Loss of Regulation  
U
APPLICATIONS  
Dual Battery Systems  
Battery Backup Systems  
The device is available in fixed output voltages of 3V, 3.3V  
and 5V, and as an adjustable device with a 1.5V reference  
voltage. The LT1579 regulators are available in narrow  
16-lead SO and 16-lead SSOP packages with all features,  
and in SO-8 with limited features.  
Automatic Power Management for  
Battery-Operated Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
5V Dual Battery Supply  
Automatic Input Switching  
12  
5V  
IN1  
OUT  
V
LOAD  
= 10V  
IN2  
300mA  
V
I
10  
8
IN1 SWITCHOVER  
POINT  
+
+
I
= 50mA  
2.7M  
1M  
1µF  
4.7µF  
80  
60  
40  
20  
0
LBI1  
I
6
IN1  
IN2  
LT1579-5  
4
SS  
2
SHDN  
LBO1  
IN2  
+
TO  
0
2.7M  
1M  
1µF  
POWER  
5.05  
5.00  
4.95  
LB02  
LBI2  
MANAGEMENT  
BACKUP  
DROPOUT  
BIASCOMP  
0
2
4
6
8
10 12 14 16 18 20  
GND  
0.01µF  
TIME (ms)  
1579 TA01  
1578 TA02  
1
LT1579  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Power Input Pin Voltage ...................................... ±20V*  
BIASCOMP Pin Voltage ...............................6.5V, 0.6V  
BIASCOMP Pin Current .......................................... 5mA  
Logic Flag Output Voltage............................6.5V, 0.6V  
Logic Flag Input Current ......................................... 5mA  
Output Short-Circuit Duration .......................... Indefinite  
Storage Temperature Range ................. – 65°C to 150°C  
Operating Junction Temperature Range .... 0°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Output Pin Voltage  
Fixed Devices............................................. 6.5V, 6V  
Adjustable Device ............................................ ±20V*  
Output Pin Reverse Current .................................... 5mA  
ADJ Pin Voltage ..............................................2V, 0.6V  
ADJ Pin Current...................................................... 5mA  
Control Input Pin Voltage ............................6.5V, 0.6V  
Control Input Pin Current ....................................... 5mA  
*For applications requiring input voltage ratings greater than 20V,  
consult factory.  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
LT1579CGN  
LT1579CS  
LT1579CGN-3  
LT1579CGN-3.3  
LT1579CGN-5  
LT1579CS-3  
LT1579CS-3.3  
LT1579CS-5  
V
OUT  
V
OUT  
POWER  
INPUTS  
IN1  
IN1  
POWER  
INPUTS  
V
ADJ  
V
BACKUP  
DROPOUT  
LBO1  
IN2  
IN2  
SS  
SHDN  
LBI1  
BACKUP  
LBO1  
SS  
SHDN  
LBI1  
LOGIC  
OUTPUTS  
LOGIC  
OUTPUTS  
CONTROL  
INPUTS  
CONTROL  
INPUTS  
LBO2  
LBO2  
LBI2  
BIASCOMP  
GND  
LBI2  
BIASCOMP  
GND  
GND  
GND  
GN PACKAGE  
S PACKAGE  
GN PACKAGE  
S PACKAGE  
GN PART MARKING  
GN PART MARKING  
1579  
16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO  
16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO  
SEE APPLICATION INFORMATION SECTION  
SEE APPLICATION INFORMATION SECTION  
15793  
157933  
15795  
TJMAX = 125°C, θJA = 95°C/W (GN)  
TJMAX = 125°C, θJA = 68°C/W (S)  
TJMAX = 125°C, θJA = 95°C/W (GN)  
TJMAX = 125°C, θJA = 68°C/W (S)  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
V
V
1
2
3
4
8
7
6
5
OUT  
V
V
1
2
3
4
8
7
6
5
OUT  
IN1  
IN1  
POWER  
INPUTS  
POWER  
INPUTS  
LT1579CS8  
LT1579CS8-3  
LT1579CS8-3.3  
LT1579CS8-5  
BACKUP  
DROPOUT  
BIASCOMP  
ADJ  
IN2  
IN2  
LOGIC  
OUTPUTS  
LOGIC  
OUTPUT  
CONTROL  
INPUT  
CONTROL  
INPUT  
SHDN  
GND  
SHDN  
GND  
BACKUP  
BIASCOMP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
1579  
SEE APPLICATION INFORMATION SECTION  
SEE APPLICATION INFORMATION SECTION  
JMAX = 125°C, θJA = 90°C/W  
15793  
157933  
15795  
TJMAX = 125°C, θJA = 90°C/W  
T
Consult factory for Industrial and Military grade parts.  
2
LT1579  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Regulated Output  
Voltage (Note 1)  
LT1579-3  
V
= V = 3.5V, I  
IN1  
= 1mA, T = 25°C  
IN2  
2.950 3.000  
2.900 3.000  
3.050  
3.100  
V
V
IN1  
IN2  
LOAD  
J
4V < V < 20V, 4V < V < 20V, 1mA < I < 300mA  
LOAD  
LT1579-3.3 V = V = 3.8V, I  
= 1mA, T = 25°C  
3.250 3.300  
3.200 3.300  
3.350  
3.400  
V
V
IN1  
IN2  
IN1  
LOAD  
J
4.3V < V < 20V, 4.3V < V < 20V, 1mA < I < 300mA  
IN2  
LOAD  
LT1579-5  
LT1579  
V
= V = 5.5V, I  
= 1mA, T = 25°C  
4.925 5.000  
4.850 5.000  
5.075  
5.150  
V
V
IN1  
IN2  
LOAD  
J
6V < V < 20V, 6V < V < 20V, 1mA < I < 300mA  
IN1  
IN2  
LOAD  
Adjust Pin Voltage  
Line Regulation  
V
= V = 3.2V, I  
= 1mA, T = 25°C (Note 2)  
1.475 1.500  
1.450 1.500  
1.525  
1.550  
V
V
IN1  
IN2  
LOAD  
J
3.7V < V < 20V, 3.7V < V < 20V, 1mA < I < 300mA  
IN1  
IN2  
LOAD  
LT1579-3 V = 3.5V to 20V, V  
= 3.5V to 20V, I  
= 1mA  
1.5  
1.5  
1.5  
1.5  
3
10  
10  
10  
10  
mV  
mV  
mV  
mV  
IN1  
IN2  
IN2  
IN2  
IN2  
LOAD  
LOAD  
LOAD  
LOAD  
LT1579-3.3 V = 3.8V to 20V, V  
= 3.8V to 20V, I  
= 5.5V to 20V, I  
= 3.2V to 20V, I  
= 1mA  
IN1  
LT1579-5 V = 5.5V to 20V, V  
= 1mA  
IN1  
LT1579  
V = 3.2V to 20V, V  
= 1mA (Note 2)  
IN1  
Load Regulation  
LT1579-3  
V
V
= V = 4V, I  
= 1mA to 300mA, T = 25°C  
= 1mA to 300mA  
12  
25  
mV  
mV  
IN1  
IN1  
IN2  
LOAD  
LOAD  
J
= V = 4V, I  
IN2  
LT1579-3.3 V = V = 4.3V, I  
= 1mA to 300mA, T = 25°C  
= 1mA to 300mA  
3
12  
25  
mV  
mV  
IN1  
IN1  
IN2  
LOAD  
LOAD  
J
V
= V = 4.3V, I  
IN2  
LT1579-5  
LT1579  
V
V
= V = 6V, I  
= 1mA to 300mA, T = 25°C  
= 1mA to 300mA  
5
15  
35  
mV  
mV  
IN1  
IN1  
IN2  
LOAD  
LOAD  
J
= V = 6V, I  
IN2  
V
V
= V = 3.7V, I  
= 1mA to 300mA, T = 25°C (Note 2)  
= 1mA to 300mA  
2
10  
20  
mV  
mV  
IN1  
IN1  
IN2  
LOAD  
LOAD  
J
= V = 3.7V, I  
IN2  
Dropout Voltage  
(Notes 3, 4)  
I
I
= 10mA, T = 25°C  
= 10mA  
0.10  
0.18  
0.25  
0.34  
50  
0.28  
0.39  
V
V
LOAD  
LOAD  
J
V
V
= V  
OUT(NOMINAL)  
=
IN1  
IN2  
I
I
= 50mA, T = 25°C  
= 50mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
J
I
I
= 150mA, T = 25°C  
= 150mA  
0.47  
0.60  
V
V
LOAD  
LOAD  
J
I
I
= 300mA, T = 25°C  
= 300mA  
0.60  
0.75  
V
V
LOAD  
LOAD  
J
Ground Pin Current  
(Note 5)  
I
I
= 0mA, T = 25°C  
= 0mA  
100  
400  
µA  
µA  
LOAD  
LOAD  
J
V
V
= V  
OUT(NOMINAL)  
=
IN1  
IN2  
I
I
= 1mA, T = 25°C  
= 1mA  
100  
200  
500  
µA  
µA  
LOAD  
LOAD  
J
+ 1V  
I
I
I
= 50mA  
= 150mA  
= 300mA  
0.7  
2
1.5  
4
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
5.8  
12  
Standby Current  
(Note 6) I = 0mA  
I
I
: V = 20V, V = V  
+ 0.5V, V = Open (HI)  
IN2 SS  
3.3  
2.0  
7.0  
7.0  
µA  
µA  
VIN2 IN1  
IN2  
OUT(NOMINAL)  
+ 0.5V, V = 20V, V = 0V  
SS  
: V = V  
LOAD  
VIN1 IN1  
OUT(NOMINAL)  
Shutdown Threshold  
V
V
= Off to On  
= On to Off  
0.9  
0.75  
2.8  
V
V
OUT  
OUT  
0.25  
Shutdown Pin Current  
(Note 7)  
V
= 0V  
1.3  
5
µA  
SHDN  
Quiescent Current in  
Shutdown (Note 9)  
I
I
I
: V = 20V, V = 6V, V  
= 0V  
= 0V  
5
5
3
12  
12  
µA  
µA  
µA  
VIN1 IN1  
IN2  
SHDN  
SHDN  
: V = 6V, V = 20V, V  
VIN2 IN1  
IN2  
: V = V = 20V, V = 0V  
SRC IN1  
IN2  
SHDN  
3
LT1579  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Adjust Pin Bias Current  
(Notes 2, 7)  
T = 25°C  
J
6
30  
nA  
Minimum Input Voltage  
(Note 8)  
I
= 0mA  
2.7  
3.2  
V
LOAD  
Minimum Load Current  
LT1579  
V
= V = 3.2V  
3
µA  
IN1  
IN2  
Secondary Select  
Threshold  
Switch from V to V  
1.2  
0.75  
2.8  
V
V
IN2  
IN1  
IN2  
Switch from V to V  
0.25  
IN1  
Secondary Select Pin  
Current (Note 7)  
V
SS  
= 0V  
1
1.5  
µA  
Low-Battery Trip Threshold  
V
V
= V = V  
+ 1V, High-to-Low Transition  
1.440 1.500  
18  
1.550  
30  
V
IN1  
IN2  
OUT(NOMINAL)  
Low-Battery Comparator  
Hysteresis  
= V = 6V, I  
= 20µA (Note 11)  
LBO  
mV  
IN1  
IN2  
Low-Battery Comparator  
Bias Current (Notes 7, 10)  
V
IN1  
= V = 6V, V = 1.4V, T = 25°C  
2
5
nA  
IN2  
LBI  
J
Logic Flag Output Voltage  
I
I
= 20µA  
= 5mA  
0.17  
0.97  
0.45  
1.3  
V
V
SINK  
SINK  
Ripple Rejection  
V
– V  
= V – V  
= 1.2V (Avg), V  
= 0.5V  
P-P  
55  
70  
dB  
IN1  
OUT  
IN2  
OUT  
RIPPLE  
f
= 120Hz, I  
= 150mA  
RIPPLE  
LOAD  
Current Limit  
V
V
= V = V  
+ 1V, V = 0.1V  
OUT  
320  
400  
mA  
mA  
IN1  
IN2  
OUT(NOMINAL)  
Input Reverse Leakage  
Current  
= V = –20V, V  
= 0V  
1.0  
IN1  
IN2  
OUT  
Reverse Output Current  
LT1579-3  
LT1579-3.3 V  
LT1579-5  
V
= 3V, V = V = 0V  
3
3
3
12  
12  
12  
µA  
µA  
µA  
OUT  
OUT  
OUT  
IN1  
IN2  
= 3.3V, V = V = 0V  
IN1  
IN2  
V
= 5V, V = V = 0V  
IN1 IN2  
The  
temperature range.  
Note 1: Operating conditions are limited by maximum junction  
denotes specifications which apply over the full operating  
Note 6: Standby current is the minimum quiescent current for a given  
input while the other input supplies the load and bias currents.  
Note 7: Current flow is out of the pin.  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, output current must be limited.  
When operating at maximum output current, the input voltage range must  
be limited.  
Note 2: The LT1579 (adjustable version) is tested and specified with the  
adjust pin connected to the output pin and a 3µA DC load.  
Note 8: Minimum input voltage is the voltage required on either input to  
maintain the 1.5V reference for the error amplifier and low-battery  
comparators.  
Note 9: Total quiescent current in shutdown will be approximately equal to  
I
+ I  
– I . Both I  
and I  
are specified for worst-case  
VIN1  
VIN2  
SRC  
VIN1  
VIN2  
conditions. I  
is specified under the condition that V > V  
and I  
VIN1  
IN1  
IN2 VIN2  
is specified under the condition that V > V . I  
is drawn from the  
IN2  
IN1 SRC  
Note 3: Dropout voltage is the minimum input-to-output voltage  
differential required to maintain regulation at the specified output current.  
highest input voltage only. For normal operating conditions, the quiescent  
current of the input with the lowest input voltage will be equal to the  
In dropout, the output voltage will be equal to V – V  
.
specified quiescent current minus I . For example, if V = 20V, V  
=
IN  
DROPOUT  
SRC  
IN1  
IN2  
6V then I  
= 5µA and I  
= 5µA – 3µA = 2µA.  
VIN1  
VIN2  
Note 4: To meet the requirements for minimum input voltage, the LT1579  
(adjustable version) is connected with an external resistor divider for a  
3.3V output voltage (see curve of Minimum Input Voltage vs Temperature  
in the Typical Performance Characteristics). For this configuration,  
Note 10: The specification applies to both inputs independently  
(LBI1, LBI2).  
Note 11: Low-battery comparator hysteresis will change as a function of  
current in the low-battery comparator output. See the curve of Low-Battery  
Comparator Hysteresis vs Sink Current in the Typical Performance  
Characteristics.  
V
= 3.3V.  
OUT(NOMINAL)  
Note 5: Ground pin current will rise at T > 75°C. This is due to internal  
J
circuitry designed to compensate for leakage currents in the output  
transistor at high temperatures. This allows quiescent current to be  
minimized at lower temperatures, yet maintain output regulation at high  
temperatures with light loads. See the curve of Quiescent Current vs  
Temperature in the Typical Performance Characteristics.  
4
LT1579  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Guaranteed Dropout Voltage  
Dropout Voltage  
Quiescent Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
= TEST POINTS  
A: I  
B: I  
C: I  
D: I  
= 300mA  
= 150mA  
= 100mA  
= 50mA  
= 10mA  
= 1mA  
V
R
R
= 6V  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
IN  
L
L
A
=
(FIXED)  
T 125°C  
J
= 500k (ADJUSTABLE)  
0.5 E: I  
F: I  
B
C
OPERATING  
QUIESCENT  
CURRENT  
T = 25°C  
J
0.4  
0.3  
0.2  
0.1  
D
E
STANDBY  
QUIESCENT  
CURRENT  
F
0
0
100  
150  
200  
250  
300  
50  
TEMPERATURE (°C)  
125  
50  
50  
TEMPERATURE (°C)  
100 125  
– 50  
–25  
0
25  
75 100  
50 25  
0
25  
75  
OUTPUT CURRENT (mA)  
1579 G35  
1579 G02  
1579 G01  
Quiescent Current in Shutdown  
LT1579-3 Output Voltage  
LT1579-3.3 Output Voltage  
3.38  
7
6
3.08  
V
V
V
= 20V  
= 6V  
SHDN  
I
= 1mA  
I
= 1mA  
IN1  
IN2  
LOAD  
LOAD  
3.36  
3.34  
3.06  
3.04  
= 0V  
5
4
3
2
1
3.32  
3.30  
2.28  
2.26  
2.24  
3.02  
3.00  
2.98  
2.96  
2.94  
I
I
VIN1  
VIN2  
2.92  
2.22  
0
25  
0
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
50  
100 125  
50  
25  
50 25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1579 G03  
1579 G04  
1579 G36  
Adjust Pin Voltage  
Input Current  
LT1579-5 Output Voltage  
1.54  
60  
50  
5.12  
I
IN2  
I
= 1mA  
I
= 1mA  
LOAD  
LOAD  
I
IN1  
1.53  
1.52  
5.09  
5.06  
V
V
LOAD  
= 5V  
= 6V  
OUT  
IN2  
40  
30  
I
= 0  
1.51  
1.50  
1.49  
1.48  
1.47  
5.03  
5.00  
4.97  
4.94  
4.91  
20  
10  
0
1.46  
4.88  
25  
0
50  
75 100 125  
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
– V (V)  
25  
0
50  
75 100 125  
50  
25  
50  
25  
V
IN1  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUT  
1579 G05  
1579 G07  
1579 G05  
5
LT1579  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Input and Ground Pin Current  
Input and Ground Pin Current  
1.2  
1.0  
300  
250  
12  
10  
600  
500  
I
I
IN1  
IN2  
I
I
IN1  
IN2  
V
V
= 5V  
= 6V  
OUT  
IN2  
V
V
LOAD  
= 5V  
= 6V  
OUT  
IN2  
I
= 1mA  
LOAD  
I
= 10mA  
0.8  
0.6  
200  
150  
8
6
400  
300  
I
GND  
I
GND  
0.4  
0.2  
0
100  
50  
0
4
2
0
200  
100  
0
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
– V (V)  
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
– V (V)  
V
V
IN1  
OUT  
IN1  
OUT  
1579 G08  
1579 G09  
Input and Ground Pin Current  
Input and Ground Pin Current  
60  
50  
1.2  
1.0  
120  
100  
3.0  
2.5  
I
I
IN1  
I
I
IN1  
IN2  
IN2  
V
V
LOAD  
= 5V  
= 6V  
OUT  
IN2  
40  
30  
0.8  
0.6  
80  
60  
I
= 100mA 2.0  
I
GND  
I
V
V
LOAD  
= 5V  
= 6V  
= 50mA  
GND  
OUT  
IN2  
1.5  
I
20  
10  
0
0.4  
0.2  
0
40  
20  
0
1.0  
0.5  
0
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
– V (V)  
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
– V (V)  
V
V
IN1  
IN1  
OUT  
OUT  
1579 G10  
1579 G11  
Input and Ground Pin Current  
Input and Ground Pin Current  
160  
140  
120  
100  
80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
350  
300  
250  
200  
150  
100  
50  
14  
12  
10  
8
I
I
IN1  
IN2  
I
I
IN2  
IN1  
I
GND  
I
GND  
V
= 5V  
= 6V  
OUT  
IN2  
V
6
I
= 150mA  
60  
LOAD  
V
V
LOAD  
= 5V  
= 6V  
OUT  
IN2  
4
40  
I
= 300mA  
2
20  
0
0
0
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
V
– V  
(V)  
OUT  
V
IN1  
– V  
OUT  
(V)  
IN1  
1579 G12  
1579 G13  
6
LT1579  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Ground Pin Current  
Minimum Input Voltage  
Shutdown Pin Threshold  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
8
7
6
5
V
= V = V  
+ 1V  
I
= 1mA  
IN1  
IN2  
OUT(NOMINAL)  
LOAD  
4
3
2
1
0
50  
100  
200  
50 25  
0
25  
50  
75  
125  
0
250  
300  
50  
0
25  
50  
75  
125  
100  
150  
–25  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1579 G37  
1579 G15  
1579 G14  
Secondary Select Threshold  
Secondary Select Threshold  
(Switch to VIN1  
Shutdown Pin Current  
(Switch to VIN2  
)
)
2.5  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 1mA  
V
SHDN  
= 0V  
LOAD  
I
= 300mA  
LOAD  
2.0  
1.5  
1.0  
0.5  
0
I
= 1mA  
LOAD  
50 25  
0
25  
50  
75 100 125  
50  
50  
50  
0
25  
75 100 125  
50  
0
25  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1579 G16  
1579 G17  
1579 G18  
Logic Flag Output Voltage  
(Output Low)  
Logic Flag Output Voltage  
(Output Low)  
Secondary Select Pin Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
V
SS  
= 0V  
1.0  
0.8  
0.6  
I
= 5mA  
SINK  
0.4  
0.2  
0
I
= 20µA  
SINK  
50  
0
25  
50  
75 100 125  
1µA  
10µA  
100µA  
1mA  
10mA  
50  
100 125  
–25  
50 25  
0
25  
75  
TEMPERATURE (°C)  
LOGIC FLAG SINK CURRENT  
TEMPERATURE (°C)  
1579 G20  
1579 G19  
1579 G21  
7
LT1579  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Low-Battery Comparator  
Hysteresis  
Logic Flag Input Current  
Control Pin Input Current  
(Output High)  
20  
15  
10  
5
25  
20  
25  
20  
15  
15  
10  
5
10  
5
0
0
0
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
7
0
1
2
3
4
5
6
8
9
LOGIC FLAG VOLTAGE (V)  
I
LBO  
SINK CURRENT (µA)  
CONTROL PIN VOLTAGE (V)  
1579 G24  
1579 G22  
1579 G23  
Low-Battery Comparator  
Hysteresis  
Reverse Output Current  
Reverse Output Current  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
25  
20  
I
= 50µA  
T = 25°C  
J
V
V
V
V
= V = 0V  
IN2  
LBO(SINK)  
IN1  
V
= V = 0V  
IN2  
= 3V (LT1579-3)  
= 3.3V (LT1579-3.3)  
= 5V (LT1579-5)  
IN1  
OUT  
OUT  
OUT  
CURRENT FLOWS INTO  
OUTPUT PIN  
15  
10  
5
LT1579-3.3  
LT1579-3  
6
4
2
LT1579-5  
0
0
0
50 25  
0
25  
50  
75 100 125  
50  
0
25  
50  
75 100 125  
–25  
0
1
2
3
4
5
6
7
8
9
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1579 G25  
1579 G27  
1579 G26  
Current Limit  
Current Limit  
Adjust Pin Input Current  
0.6  
0.5  
0.4  
0.3  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
V
= 0V  
V
= V = V  
IN2  
OUT  
+ 1V  
OUT(NOMINAL)  
OUT  
T = 25°C  
IN1  
J
IN1  
V  
= 0.1V  
V
= V = 0V  
IN2  
TYPICAL  
0.5  
0.4  
0.3  
0.2  
0.1  
GUARANTEED  
0.2  
0.1  
0
0
4
6
7
0
1
2
3
5
50  
0
TEMPERATURE (°C)  
100 125  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ADJUST PIN VOLTAGE (V)  
1579 G28  
50 25  
25  
75  
INPUT VOLTAGE (V)  
1579 G29  
1579 G38  
8
LT1579  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1579-5 “Hot” Plugging and  
Unplugging Transient Response  
Ripple Rejection  
Load Regulation  
100  
90  
0
I  
= 1mA TO 300mA  
LT1579-3  
I
= 150mA  
LOAD  
LT1579  
LOAD  
6V  
5V  
V
= 6V + 50mV  
RIPPLE  
RMS  
IN  
–2  
–4  
VIN1  
80  
LT1579-5  
70  
C
= 47µF  
OUT  
SOLID  
TANTALUM  
–6  
–8  
60  
50  
VOUT  
50mV/DIV  
LT1579-3.3  
40  
30  
20  
10  
0
–10  
–12  
–14  
C
= 4.7µF  
OUT  
SOLID  
TANTALUM  
UNPLUG  
VIN1  
REPLACE  
VIN1  
–16  
10  
100  
1k  
10k  
100k  
1M  
50 25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1579 G30  
1579 G40  
LT1579-5 Transient Response  
LT1579-5 Transient Response  
100  
50  
100  
50  
0
0
V
C
C
= 6V  
V
C
C
= 6V  
50  
–100  
100  
75  
50  
–100  
IN  
IN  
IN  
IN  
= 1µF CERAMIC  
= 1µF CERAMIC  
= 4.7µF TANTALUM  
= 22µF TANTALUM  
OUT  
OUT  
300  
200  
100  
50  
25  
0
0
50 100 150 200 250 300 350 400 450 500  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0  
TIME (µs)  
TIME (ms)  
1579 G33  
1579 G34  
U
U
U
PIN FUNCTIONS  
VIN1: The primary power source is connected to VIN1. A  
bypass capacitor is required on this pin if the device is  
more than six inches away from the main input filter  
capacitor. In general, the output impedance of a battery  
riseswithfrequency,soitisadvisabletoincludeabypass  
capacitorinbattery-poweredcircuits.Abypasscapacitor  
in the range of 1µF to 10µF is sufficient.  
riseswithfrequency,soitisadvisabletoincludeabypass  
capacitorinbattery-poweredcircuits.Abypasscapacitor  
in the range of 1µF to 10µF is sufficient.  
OUT: The output supplies power to the load. A minimum  
output capacitor of 4.7µF is required to prevent oscilla-  
tions. Larger output capacitors will be required for appli-  
cations with large transient loads to limit peak voltage  
transients.  
VIN2: The secondary power source is connected to VIN2  
.
A bypass capacitor is required on this pin if the device is  
more than six inches away from the main input filter  
capacitor. In general, the output impedance of a battery  
ADJ: For the adjustable LT1579, this is the input to the  
error amplifier. This pin is internally clamped to 7V and  
0.6V (one VBE). It has a bias current of 6nA which flows  
9
LT1579  
U
U
U
PIN FUNCTIONS  
out of the pin (see curve of Adjust Pin Bias Current vs  
TemperatureintheTypicalPerformanceCharacteristics).  
A DC load of 3µA is needed on the output of the adjustable  
part to maintain regulation. The adjust pin voltage is 1.5V  
referenced to ground and the output voltage range is 1.5V  
to 20V.  
nally clamped to 7V and 0.6V (one VBE). If unused, this  
pincanbeleftopencircuit.Deviceoperationisunaffected  
if this pin is not connected.  
DROPOUT: The dropout flag is an open collector output  
which pulls low when both input voltages drop suffi-  
ciently for the LT1579 to enter the dropout region. This  
signals that the output is beginning to go unregulated.  
The DROPOUT output voltage is 1V when sinking 5mA,  
dropping to under 200mV at 20µA (see curve of Logic  
Flag Voltage vs Current in the Typical Performance Char-  
SHDN: The shutdown pin is used to put the LT1579 into  
a low power shutdown state. All functions are disabled if  
the shutdown pin is pulled low. The output will be off, all  
logic outputs will be high impedance and the voltage  
comparators will be off when the shutdown pin is pulled acteristics). This makes the DROPOUT pin equally useful  
low. The shutdown pin is internally clamped to 7V and  
– 0.6V (one VBE), allowing the shutdown pin to be driven  
either by 5V logic or open collector logic with a pull-up  
in driving both bipolar and CMOS logic inputs with the  
addition of an external pull-up resistor. It is also capable  
of driving higher current devices, such as LEDs. This pin  
resistor. The pull-up resistor is only required to supply is internally clamped to 7V and 0.6V (one VBE). If  
the pull-up current of the open collector gate, normally unused, this pin can be left open circuit. Device operation  
several microamperes. If unused, the shutdown pin can  
be left open circuit. The device is active if the shutdown  
pin is not connected.  
is unaffected if this pin is not connected.  
BIASCOMP: This is a compensation point for the internal  
bias circuitry. It must be bypassed with a 0.01µF capaci-  
tor for stability during the switch from VIN1 to VIN2.  
SS:ThesecondaryselectpinforcestheLT1579toswitch  
power draw to the secondary input (VIN2). This pin is  
active low. The current drawn out of VIN1 is reduced to  
3µA when this pin is pulled low. The secondary select pin  
isinternallyclampedto7Vand0.6V(oneVBE), allowing  
the pin to be driven directly by either 5V logic or open  
collectorlogicwithapull-upresistor.Thepull-upresistor  
is required only to supply the leakage current of the open  
collector gate, normally several microamperes. If sec-  
ondary select is not used, it can be left open circuit. The  
LT1579drawspowerfromtheprimaryfirstifthesecond-  
ary select pin is not connected.  
LBI1: This is the noninvering input to low-battery com-  
parator LB1 which is used to detect a low input/battery  
condition. The inverting input is connected to a 1.5V  
reference.Thelow-batterycomparatorinputhas18mVof  
hysteresis with more than 20µA of sink current on the  
output (see Applications Information section). This pin is  
internally clamped to 7V and 0.6 (one VBE). If not used,  
this pin can be left open circuit, with no effect on normal  
circuit operation. If unconnected, the pin will float to 1.5V  
and the logic output of LB1 will be high impedance.  
LBI2: This is the noninverting input to low-battery com-  
parator LB2 which is used to detect a low input/battery  
condition. The inverting input is connected to a 1.5V  
reference.Thelow-batterycomparatorinputhas18mVof  
hysteresis with more than 20µA of sink current on the  
output (see Applications Information section). This pin is  
internallyclampedto7Vand0.6V(oneVBE).Ifnotused,  
this pin can be left open circuit, with no effect on normal  
circuit operation. If unconnected, the pin will float to 1.5V  
and the logic output of LB2 will be high impedance.  
BACKUP: The backup flag is an open collector output  
which pulls low when the LT1579 starts drawing power  
from the secondary input (VIN2). The BACKUP output  
voltage is 1V when sinking 5mA, dropping to under  
200mV at 20µA (see curve of Logic Flag Voltage vs  
CurrentintheTypicalPerformanceCharacteristics). This  
makes the BACKUP pin equally useful in driving both  
bipolar and CMOS logic inputs with the addition of an  
external pull-up resistor. It is also capable of driving  
higher current devices, such as LEDs. This pin is inter-  
10  
LT1579  
U
U
U
PIN FUNCTIONS  
LBO1:Thisistheopencollectoroutputofthelow-battery  
LBO2: Thisistheopencollectoroutputofthelow-battery  
comparator LB1. This output pulls low when the com- comparator LB2. This output pulls low when the com-  
parator input drops below the threshold voltage. The parator input drops below the threshold voltage. The  
LBO1 output voltage is 1V when sinking 5mA, dropping  
to under 200mV at 20µA (see curve of Logic Flag Voltage  
LBO2 output voltage is 1V when sinking 5mA, dropping  
to under 200mV at 20µA (see curve of Logic Flag Voltage  
vs Current in the Typical Performance Characteristics). vs Current in the Typical Performance Characteristics).  
This makes the LBO1 pin equally useful in driving both This makes the LBO2 pin equally useful in driving both  
bipolar and CMOS logic inputs with the addition of an bipolar and CMOS logic inputs with the addition of an  
external pull-up resistor. It is also capable of driving external pull-up resistor. It is also capable of driving  
higher current devices, such as LEDs. This pin is inter-  
nally clamped to 7V and – 0.6V (one VBE). If unused, this  
pincanbeleftopencircuit.Deviceoperationisunaffected  
if this pin is not connected.  
higher current devices, such as LEDs. This pin is  
internally clamped to 7V and 0.6V (one VBE). If unused,  
this pin can be left open circuit. Device operation is  
unaffected if this pin is not connected.  
W
BLOCK DIAGRAM  
V
V
IN1  
IN2  
V
OUT  
DROPOUT  
DETECT  
BIAS CURRENT  
CONTROL  
INTERNAL  
SHDN  
RESISTOR DIVIDER  
FOR FIXED VOLTAGE  
DEVICES ONLY  
SS  
ADJ  
+
BIASCOMP  
OUTPUT DRIVER  
CONTROL  
E/A  
1.5V REFERENCE  
BACKUP  
DROPOUT  
WARNING  
FLAGS  
LBI1  
LBI2  
+
LBO1  
LB1  
+
LBO2  
LB2  
1579 • BD  
11  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
Device Overview  
currents and logic functions. In shutdown, quiescent  
currents are 2µA from the primary input, 2µA from the  
secondary input and an additional 3µA which is drawn  
from the higher of the two input voltages.  
The LT1579 is a dual input, single output, low dropout  
linear regulator. The device is designed to provide an  
uninterruptibleoutputvoltagefromtwoindependentinput  
voltage sources on a priority basis. All of the circuitry  
needed to switch smoothly and automatically between  
inputs is incorporated in the device. All power supplied to  
the load is drawn from the primary input (VIN1) until the  
device senses that the primary input is failing. At this point  
the LT1579 smoothly switches from the primary input to  
the secondary input (VIN2) to maintain output regulation.  
The device is capable of providing 300mA from either  
input at a dropout voltage of 0.4V. Total quiescent current  
when operating from the primary input is 50µA, which is  
45µA from the primary input, 2µA from the secondary and  
a minimum input current of 3µA which will be drawn from  
the higher of the two input voltages.  
Adjustable Operation  
The adjustable version of the LT1579 has an output  
voltage range of 1.5V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure1.The  
device servos the output to maintain the voltage at the  
adjust pin at 1.5V. The current in R1 is then equal to 1.5V/  
R1 and the current in R2 is the current in R1 minus the  
adjust pin bias current. The adjust pin bias current, 6nA at  
25°C,flowsoutoftheadjustpinthroughR1toground.The  
output voltage can now be calculated using the formula:  
R2  
R1  
V
= 1.5V 1+  
– I  
(
R2  
)( )  
OUT  
ADJ  
A single error amplifier controls both output stages so  
regulation remains tight regardless of which input is  
providing power. Threshold levels for the error amplifier  
and low-battery detectors are set by the internal 1.5V  
reference. Output voltage is set by an internal resistor  
divider for fixed voltage parts and an external divider for  
adjustable parts. Internal bias circuitry powers the refer-  
ence, error amplifier, output driver controls, logic flags  
and low-battery comparators.  
The value of R1 should be less than 500k to minimize the  
error in the output voltage caused by adjust pin bias  
current. With 500k resistors for both R1 and R2, the error  
induced by adjust pin bias current at 25°C is 3mV or 0.1%  
of the total output voltage. With appropriate value and  
tolerance resistors, the error due to adjust pin bias current  
may often be ignored. Note that in shutdown, the output is  
turned off and the divider current is zero. The parallel  
combination of R1 and R2 should be greater than 20k to  
allow the error amplifier to start. In applications where the  
minimum parallel resistance requirement cannot be met,  
a 20k resistor may be placed in series with the adjust pin.  
This introduces an error in the reference point for the  
resistor divider equal to (IADJ)(20k).  
The LT1579 aids power management with the use of two  
independentlow-batterycomparatorsandtwostatusflags.  
The low-battery comparators can be used to monitor the  
input voltage levels. The BACKUP flag signals when any  
power is being drawn from the secondary input and the  
DROPOUT flag provides indication that both input volt-  
ages are critically low and the output is unregulated.  
Additionally, the switch to the secondary input from the  
primary can be forced externally through the use of the  
secondary select pin (SS). This active low logic pin, when  
pulled below the threshold, will cause power draw to  
switch from the primary input to the secondary input.  
Current flowing in the primary input is reduced to only a  
fewmicroamperes, while allpower draw(loadcurrentand  
bias currents) switches to the secondary. The LT1579 has  
a low power shutdown state which shuts off all bias  
OUT  
ADJ  
V
OUT  
+
C
R2  
R1  
C
FB  
OUT  
GND  
1579 • F01  
Figure 1. Adjustable Operation  
12  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
BIASCOMP Pin Compensation  
A small capacitor placed in parallel with the top resistor  
(R2) of the output divider is necessary for stability and  
transient performance of the adjustable LT1579. The  
impedance of CFB at 10kHz should be less than the value  
of R1.  
The BIASCOMP pin is a connection to a compensation  
point for the internal bias circuitry. It must be bypassed  
witha0.01µFcapacitorforstabilityduringtheswitchfrom  
V
IN1 to VIN2.  
The adjustable LT1579 is tested and specified with the  
output pin tied to the adjust pin and a 3µA load (unless  
otherwise noted) for an output voltage of 1.5V. Specifica-  
tions for output voltages greater than 1.5V are propor-  
tional to the ratio of the desired output voltage to 1.5V;  
(VOUT/1.5V). For example, load regulation for an output  
current change of 1mA to 300mA is 2mV typical at  
VOUT = 1.5V. At VOUT = 12V, load regulation is:  
“Hot” Plugging and Unplugging of Inputs  
The LT1579 is designed to maintain regulation even if one  
of the outputs is instantaneously removed. If the primary  
input is supplying load current, removal and insertion of  
the secondary input creates no noticeable transient at the  
output. In this case, the LT1579 continues to supply  
current from the primary; no switching is required. How-  
ever, whenloadcurrentisbeingsuppliedfromtheprimary  
input and it is removed, load current must be switched  
from the primary to the secondary input. In this case, the  
LT1579 sees the input capacitor as a rapidly discharging  
battery. If it discharges too quickly, the LT1579 does not  
have ample time to switch over without a large transient  
occurring at the output. The input capacitor must be large  
enough to supply load current during the transition from  
primary to secondary input. Replacement of the primary  
creates a smaller transient on the output because both  
inputsarepresentduringthetransition. Fora100mAload,  
input and output capacitors of 10µF will limit peak output  
deviations to less than 50mV. See the “Hot” Plugging and  
Unplugging Transient Response in the Typical Perfor-  
mance Characteristics. Proportionally larger values for  
input and output capacitors are needed to limit peak  
deviations on the output when delivering larger load  
currents.  
12V  
1.5V  
–2mV = –16mV  
(
)
Output Capacitance and Transient Response  
The LT1579 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 4.7µF with an ESR of 3or less is  
recommended to prevent oscillations. Smaller value ca-  
pacitors may be used, but capacitors which have a low  
ESR(i.e.ceramics)mayneedasmallseriesresistoradded  
to bring the ESR into the range suggested in Table 1. The  
LT1579 is a micropower device and output transient  
response is a function of output capacitance. Larger  
values of output capacitance decrease the peak deviations  
andprovideimprovedoutputtransientresponseforlarger  
loadcurrentchanges.Bypasscapacitors,usedtodecouple  
individual components powered by the LT1579, will  
increase the effective output capacitor value.  
Standby Mode  
“Standby” mode is where one input draws a minimum  
quiescent current when the other input is delivering all  
bias and load currents . In this mode, the standby current  
isthequiescentcurrentdrawnfromthestandbyinput. The  
secondary input will be in standby mode, when the pri-  
mary input is delivering all load and bias currents. When  
the secondary input is in standby mode the current drawn  
fromthesecondaryinputwillbe3µAifVIN1 >VIN2 and5µA  
Table 1. Suggested ESR Range  
OUTPUT CAPACITANCE  
SUGGESTED ESR RANGE  
1to 3Ω  
1.5µF  
2.2µF  
0.5to 3Ω  
3.3µF  
0.2to 3Ω  
4.7µF  
0to 3Ω  
13  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
if VIN2 >VIN1, so typically only 3µA. The primary input will  
automatically go into standby mode as the primary input  
dropsbelowtheoutputvoltage.Theprimaryinputcanalso  
be forced into standby mode by asserting the SS pin. In  
either case, the current drawn from the primary input is  
reduced to a maximum of 7µA.  
Low-Battery Comparators  
Therearetwoindependentlow-batterycomparatorsinthe  
LT1579. This allows for individual monitoring of each  
input. The inverting inputs of both comparators are con-  
nected to an internal 1.5V reference. The low-battery  
comparator trip point is set by an external resistor divider  
as shown in Figure 3. The current in R1 at the trip point is  
1.5V/R1. The current in R2 is equal to the current in R1.  
The low-battery comparator input bias current, 2nA flow-  
ing out of the pin, is negligible and may be ignored. The  
value of R1 should be less than 1.5M in order to minimize  
errorsinthetrippoint. ThevalueofR2foragiventrippoint  
is calculated using the formulas in Figure 3.  
Shutdown  
The LT1579 has a low power shutdown state where all  
functions of the device are shut off. The device is put into  
shutdown mode when the shutdown pin is pulled below  
0.7V. The quiescent current in shutdown has three com-  
ponents:2µAdrawnfromtheprimary,2µAdrawnfromthe  
secondary and 3µA which is drawn from the higher of the  
two inputs.  
The low-battery comparators have a small amount of  
hysteresis built-in. The amount of hysteresis is dependent  
upon the output sink current (ISINK) when the comparator  
is tripped low. At no load, comparator hysteresis is zero,  
increasing to a maximum of 18mV for sink currents above  
20µA. See the curve of Low-Battery Comparator Hyster-  
esis in the Typical Performance Characteristics. If larger  
amounts of hysteresis are desired, R3 and D1 can be  
added. D1 can be any small diode, typically a 1N4148.  
CalculatingVLBO canbedoneusingaloadlineonthecurve  
of Logic Flag Output Voltage vs Sink Current in the Typical  
Performance Characteristics.  
Protecting Batteries Using Secondary Select (SS)  
Some batteries, such as lithium-ion cells, are sensitive to  
deep discharge conditions. Discharging these batteries  
belowacertainthresholdseverelyshortensbatterylife. To  
prevent deep discharge of the primary cells, the LT1579  
secondary select (SS) pin can be used to switch power  
draw from the primary input to the secondary. When this  
pin is pulled low, current out of the primary is reduced to  
2µA. A low-battery detector with the trip point set at the  
critical discharge point can signal the low battery condi-  
tion and force the switchover to the secondary as shown  
in Figure 2. The second low-battery comparator can be  
usedtosetalatchtoshutdowntheLT1579(seetheTypical  
Applications).  
V
TRIP  
V
OUT  
R2  
R4  
LBI  
+
LBO  
R1  
1.5V  
I
SINK  
V
CC  
R
P
D1  
R3  
LTC1579 • F02  
LBO  
SS  
R1  
1.5V  
R2 = (V  
– 1.5V)  
TRIP  
(
)
R2  
GND  
HYSTERESIS = V  
1 +  
HYST  
(
)
R1  
FOR ADDED HYSTERESIS  
1579 F02  
(1.5V + V  
– 0.6V – V )(R2)  
LBO  
HYST  
V
R3 =  
HYST(ADDED)  
20µA, V = 18mV,  
FOR I  
FOR I  
Figure 2. Connecting SS to Low-Battery Detector  
Output to Prevent Damage to Batteries  
SINK  
HYST  
< 20µA, SEE THE TYPICAL  
SINK  
PERFORMANCE CHARACTERISTICS  
Figure 3. Low-Battery Comparator Operation  
14  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
Example: The low-battery detector must be tripped at a  
terminal voltage of 5.5V. There is a 100k pull-up resistor  
to 5V on the output of the comparator and 200mV of  
hysteresis is needed to prevent chatter. With a 1M resistor  
for R1, what other resistor values are needed?  
current supplied to the load from each input. Normal  
output deviation during transient load conditions (with  
sufficient input voltages) will not set the status flags.  
Timing Diagram  
Thetimingdiagramforthe5Vdualbatterysupplyisshown  
in Figure 4. The schematic is the same as the 5V Dual  
Battery Supply on the front of the data sheet. All logic flag  
outputshave100kpull-upresistorsadded. Notethatthere  
isnotimescaleforthetimingdiagram.Thetimingdiagram  
is meant as a tool to help in understanding basic operation  
of the LT1579. Actual discharge rates will be a function of  
the load current and the type of batteries used. The load  
current used in the example was 100mA DC.  
Using the formulas in Figure 3,  
5.5V – 1.5V 1MΩ  
(
)(  
)
R2 =  
= 2.67MΩ  
1.5V  
Use a standard value of 2.7M. With the 100k pull-up  
resistor, this gives a sink current and logic flag voltage of  
approximately 45µA at 0.4V. The hysteresis in this case  
will be:  
A
B
C
D
E
2.7MΩ  
1MΩ  
6V  
Hysteresis = 18mV 1+  
= 67mV  
V
IN1  
An additional 133mV of hysteresis is needed, so a resistor  
and diode must be added. The value of R3 will be:  
5V  
6V  
1.5V + 18mV – 0.6V – 0.4V 2.7MΩ  
(
)(  
)
V
IN2  
R3 =  
= 10.5MΩ  
133mV  
5V  
A standard value of 10Mcan be used. The additional  
current flowing through R3 into the comparator output is  
negligible and can usually be ignored  
5V  
4.8V  
V
OUT  
100mA  
Logic Flags  
I
IN1  
The low-battery comparator outputs and the status flags  
of the LT1579 are open collector outputs capable of  
sinking up to 5mA. See the curve of Logic Flag Output  
Voltage vs. Current in the Typical Performance Character-  
istics.  
0
100mA  
I
IN2  
0
1
There are two status flags on the LT1579. The BACKUP  
flag and the DROPOUT flag provide information on which  
inputissupplyingpowertotheloadandgiveearlywarning  
of loss of output regulation. The BACKUP flag goes low  
when the secondary input begins supplying power to the  
load. The DROPOUT flag signals the dropout condition on  
both inputs, warning of an impending drop in output  
voltage. The conditions that set either status flag are  
determined by input to output voltage differentials and  
LB01  
0
1
BACKUP  
LB02  
0
1
0
1
DROPOUT  
0
LTC1579 • F03  
Figure 4. Basic Dual Battery Timing Diagram  
15  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
Five milestones are noted on the timing diagram. Time A  
iswheretheprimaryinputvoltagedropsenoughtotripthe  
low-battery detector LB1. The trip threshold for LB1 is set  
at set at 5.5V, slightly above the dropout voltage of the  
primary input. At time B, the BACKUP flag goes low,  
signaling the beginning of the transition from the primary  
source to the secondary source. Between times B and C,  
the input current makes a smooth transition from VIN1 to  
1. The output current from each input multiplied by the  
respective input to output voltage differential:  
(IOUT)(VIN – VOUT) and  
2. Ground pin current from the associated inputs multi-  
plied by the respective input voltage: (IGND)(VIN).  
If the primary input is not in dropout, all significant power  
dissipationisfromtheprimaryinput.Conversely,ifSShas  
been asserted to minimize power draw from the primary,  
all significant power dissipation will be from the second-  
ary. When the primary input enters dropout, calculation of  
power dissipation requires consideration of power dissi-  
pation from both inputs. Worst-case power dissipation is  
foundusingtheworst-caseinputvoltagefromeitherinput  
and the worst-case load current.  
V
IN2. BytimeC, theprimarybatteryhasdroppedbelowthe  
point where it can deliver useful current to the output. The  
primary input will still deliver a small amount of current to  
the load, diminishing as the primary input voltage drops.  
By time D, the secondary battery has dropped to a low  
enough voltage to trip the second low-battery detector,  
LB2. The trip threshold for LB2 is also set at 5.5V, slightly  
abovewherethesecondaryinputreachesdropout. Attime  
E, bothinputsarelowenoughtocausetheLT1579toenter  
dropout, with the DROPOUT flag signaling the impending  
loss of output regulation. After time E, the output voltage  
drops out of regulation.  
Ground pin current is found by examining the Ground Pin  
Current curves in the Typical Performance Characteris-  
tics. Power dissipation will be equal to the sum of the two  
components above for the input supplying power to the  
load. Power dissipation from the other input is negligible.  
Some interesting things can be noted on the timing  
diagram. The amount of current available from a given  
input is determined by the input/output voltage differen-  
tial. As the differential voltage drops, the amount of  
current drawn from the input also drops, which slows the  
discharge of the battery. Dropout detection circuitry will  
maintainthemaximumcurrentdrawfromtheinputforthe  
given input/output voltage differential. In the case shown,  
this causes the current drawn from the primary input to  
approach zero, though never actually dropping to zero.  
Note that the primary begins to supply significant current  
againwhentheoutputdropsoutofregulation. Thisoccurs  
because the input/output voltage differential of the pri-  
mary input increases as the output voltage drops. The  
LT1579 will automatically maximize the power drawn  
from the inputs to maintain the highest possible output  
voltage.  
The LT1579 has internal thermal limiting designed to  
protect the device during overload conditions. For con-  
tinuous normal load conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources nearby must also be considered.  
Heating sinking for the device is accomplished by using  
the heat spreading capabilities of the PC board and its  
coppertraces.Copperboardstiffenersandplatedthrough-  
holes can also be used to spread the heat. All ground pins  
on the LT1579 are fused to the die paddle for improved  
heat spreading capabilities.  
The following tables list thermal resistances for each pack-  
age. Measured values of thermal resistance for several  
different board sizes and copper areas are listed for each  
package. All measurements were taken in still air on 3/32”  
FR-4 board with one ounce copper. All ground leads were  
connected to the ground plane. All packages for the  
LT1579 have all ground leads fused to the die attach  
paddle to lower thermal resistance. Typical thermal  
Thermal Considerations  
The power handling capability of the LT1579 is limited by  
the maximum rated junction temperature (125°C). Power  
dissipated is made up of two components:  
16  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
resistancefromthejunctiontoagroundleadis40°C/Wfor  
16-lead SSOP, 32°C/W for 16-lead SO and 35°C/W for  
8-lead S0.  
Therefore,  
P = (150mA)(7V – 5V) + (2mA)(7V) = 0.31W  
When switched to the secondary input, current from the  
primary input is negligible and worst-case power dissipa-  
tion will be:  
Table 2. 8-Lead SO Package (S8)  
COPPER AREA  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
TOPSIDE*  
BACKSIDE  
(IOUT(MAX))(VIN2(MAX) – VOUT) + (IGND)(VIN2(MAX)  
Where:  
OUT(MAX) = 150mA  
VIN2(MAX) = 10V  
GND at (IOUT = 150mA, VIN2 = 10V) = 2mA  
Therefore,  
P = (150mA)(10V – 5V) + (2mA)(10V) = 0.77W  
)
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
73°C/W  
75°C/W  
80°C/W  
90°C/W  
I
100 sq mm 2500 sq mm 2500 sq mm  
I
*Device is mounted on topside.  
Table 3. 16-Lead SO Package (S)  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
Usinga16-leadSOpackage, thethermalresistancewillbe  
in the range of 55°C/W to 68°C/W dependent upon the  
copper area. So the junction temperature rise above  
ambient will be approximately equal to:  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
55°C/W  
58°C/W  
60°C/W  
68°C/W  
100 sq mm 2500 sq mm 2500 sq mm  
(0.77W)(65°C/W) = 50.1°C  
*Device is mounted on topside.  
Table 4. 16-Lead SSOP Package (GN)  
COPPER AREA  
The maximum junction temperature will then be equal to  
the maximum temperature rise above ambient plus the  
maximum ambient temperature or:  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
70°C/W  
75°C/W  
80°C/W  
95°C/W  
TJMAX = 50.1°C + 50°C = 100.1°C  
Protection Features  
100 sq mm 2500 sq mm 2500 sq mm  
The LT1579 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse input  
voltages, reverse output voltages and reverse voltages  
from output to input.  
*Device is mounted on topside.  
Calculating Junction Temperature  
Example: Given an output voltage of 5V, an input voltage  
range of 5V to 7V for VIN1 and 8V to 10V for VIN2, with an  
output current range of 10mA to 150mA and a maximum  
ambient temperature of 50°C, what will the maximum  
junction temperature be?  
Current limit protection and thermal overload protection  
are intended to protect the device against current overload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
Current limit protection is designed to protect the device  
if the output is shorted to ground. With the output shorted  
to ground, current will be drawn from the primary input  
until it is discharged. The current drawn from VIN2 will not  
increase until the primary input is discharged. This pre-  
vents a short-circuit on the output from discharging both  
inputs simultaneously.  
When run from the primary input, current drawn from the  
secondary input is negligible and worst-case power dissi-  
pation will be:  
(IOUT(MAX))(VIN1(MAX) – VOUT) + (IGND)(VIN1(MAX)  
Where:  
)
IOUT(MAX) = 150mA  
VIN1(MAX) = 7V  
IGND at (IOUT = 150mA, VIN1 = 7V) = 2mA  
17  
LT1579  
U
W U U  
APPLICATIONS INFORMATION  
flow from one input to another will be limited to less than  
1mA. Output voltage will be unaffected. In the case of  
reverse inputs, no reverse voltages will appear at the load.  
Theinputsofthedevicecanwithstandreversevoltagesup  
to 20V. Current flow into the device will be limited to less  
than 1mA (typically less than 100µA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backwards. Internal  
protection circuitry isolates the inputs to prevent current  
flow from one input to the other. Even with one input  
supplying all bias currents and the other being plugged in  
backwards (a maximum total differential of 40V), current  
Pulling the SS pin low will cause all load currents to come  
from the secondary input. If the secondary input is not  
present, the output will be turned off. If the part is put into  
current limit with the SS pin pulled low, current limit will  
be drawn from the secondary input until it is discharged,  
at which point the current limit will drop to zero.  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
16 15 14 13 12 11 10  
9
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN16 (SSOP) 1197  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18  
LT1579  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
0.228 – 0.244  
(3.810 – 3.988)  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1579  
TYPICAL APPLICATION  
U
Additional Logic Forces LT1579 Into Shutdown to Protect Input Batteries  
V
OUT  
IN1  
OUT  
5V/300mA  
C1  
1µF  
C3  
4.7µF  
R2  
2.7M  
R10  
1M  
IN1  
BACKUP  
MAIN GOOD  
LBI1  
R1  
1M  
R3  
1M  
D2  
D1  
R4  
10M  
D1 TO D3: 1N4148  
LBO1  
DROPOUT  
NC  
SS  
IN2  
C2  
1µF  
R6  
2.7M  
LT1579-5  
IN2  
D3  
LBI2  
R5  
1M  
R7  
1M  
R8  
330k  
LBO2  
BIASCOMP  
D4  
C5  
0.1µF  
V
CC  
C4  
0.01µF  
5.1V  
1N751A  
1/4  
74C02  
1/4  
74C02  
SHDN  
GND  
GND  
1579 TA03  
RESET  
R9  
1.5M  
1/4  
74C02  
RELATED PARTS  
PART NUMBER  
LT1175  
DESCRIPTION  
COMMENTS  
Adjustable Current Limit, Shutdown Control  
Controls Multiple Supplies, 24-Lead SSOP Package  
Controls Single Supply, 8-Lead SO Package  
Power Path Management for Systems with Multiple Inputs  
500mA Negative Low Dropout Micropower Regulator  
Hot SwapTM Controller  
LTC®1421  
LTC1422  
Hot Swap Controller  
LTC1473  
LTC1479  
Dual PowerPathTM Switch Driver  
PowerPath Controller for Dual Battery Systems  
Complete Power Path Management for Two Batteries,  
DC Power Source, Charger and Backup  
LT1521  
300mA Low Dropout Micropower Regulator with Shutdown  
12µA I , Reverse Battery Protection  
Q
Hot Swap and PowerPath are trademarks of Linear Technology Corporation.  
1579f LT/TP 0398 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
20  
LINEAR TECHNOLOGY CORPORATION 1998  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY